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Let X = Spec A be a normal affine variety over an algebraically closed field k of characteristic 0 endowed with an effective action of a torus of dimension n. Let also ∂ be a homogeneous locally nilpotent derivation on the normal affine Z n -graded domain A, so that ∂ generates a k + -action on X.

We provide a complete classification of pairs (X, ∂) in two cases: for toric varieties (n = dim X) and in the case where n = dim X -1. This generalizes previously known results for surfaces due to Flenner and Zaidenberg. As an application we show that ker ∂ is finitely generated. Thus the generalized Hilbert's fourteenth problem has a positive answer in this particular case, which strengthen a result of Kuroda. As another application, we compute the homogeneous Makar-Limanov invariant of such varieties. In particular we exhibit a family of non-rational varieties with trivial Makar-Limanov invariant.

Introduction

Let k be an algebraically closed field of characteristic 0. For an algebraic torus T ≃ (k * ) n acting on an algebraic variety X, the complexity of this action is the codimension of the general orbit. Without loss of generality, we restrict to effective T-actions, so the complexity is dim Xdim T. In particular, a T-variety of complexity 0 has an open orbit and thus is a toric variety. It is well known that a T-action on X = Spec A gives rise to an M -grading on A, where M is a lattice of rank n.

More generally, let A = m∈M Ãm be a finitely generated effectively M -graded domain and K = Frac A. For any m ∈ M we let Then Ãm ⊆ K m , and k ⊆ K 0 ⊆ K are field extensions. Letting {µ 1 , . . . , µ n } be a basis of M , we fix for every i = 1, . . . , n an element χ µ i ∈ K µ i . For every m = i a i µ i we have K m = χ m K 0 , where χ m = i (χ µ i ) a i . Thus, without loss of generality, we assume in the sequel that

A = m∈M A m χ m ⊆ K 0 [M ]
, where A m ⊆ K 0 , and K 0 [M ] denotes the semigroup K 0 -algebra of M . In this setting, the complexity of the T-action equals the transcendence degree of K 0 over k. In particular, for a toric variety X, K 0 = k, and χ m is just a character of T regarded as a rational function on X.

There are well known combinatorial descriptions of normal T-varieties. For toric varieties see e.g., [De], Chapter 1 in [KKMS], and [Od]. For complexity 1 case see Chapters 2 and 4 in [KKMS], and more generally [Ti 1 , Ti 2 ]. Finally for arbitrary complexity see [AlHa, AHS] 1 .

We let N = Hom(M, Z), M Q = M ⊗ Q, and N Q = N ⊗ Q. Any affine toric variety can be described via the weight cone σ ∨ ⊆ M Q spanned over Q 0 by all m ∈ M such that A m = {0} or, alternatively, via the dual cone σ ⊆ N Q . Similarly, the description of normal affine T-varieties of complexity 1 due to Altmann and Hausen deals with a polyhedral cone σ ⊆ N Q (dual to the weight cone σ ∨ ⊆ M Q ), a smooth curve C, and a divisor D on C whose coefficients are polyhedra in N Q invariant by translation in σ. The degree deg D is defined as the Minkowski sum of the coefficients of D (see Subsection 1.1 for precise definitions).

For affine surfaces with a C * -action an alternative description2 was proposed in [FlZa 1 ]. This description was used in [FlZa 2 ] in order to classify all C + -actions on normal C * -surfaces. Generalizing this construction, in the present paper we use the description in [AlHa] to classify normal affine T-varieties of complexity 0 or 1 endowed with a k + -action.

A k + -action gives rise to a locally nilpotent derivation (LND) on A. To any LND on A we can associate a homogeneous LND which maps homogeneous elements into homogeneous elements, see Lemma 1.10. A homogeneous LND ∂ on A = m∈M A m χ m ⊆ K 0 [M ] can be extended to a derivation on K 0 [M ]. We say that ∂ is of fiber type if ∂(K 0 ) = 0 and of horizontal type otherwise.

In Theorem 2.7 we obtain a classification of homogeneous LNDs on toric varieties. For T-varieties of complexity 1, such a classification is given in Theorems 3.8 (for fiber type) and 3.27 (for horizontal type). These theorems are the main results of the paper.

We show as a corollary that the equivalence classes of homogeneous LNDs on the toric variety defined by the cone σ ⊆ N Q are in one to one correspondence with the extremal rays of σ (see Corollary 2.10). This is also true for normal affine T-varieties of complexity 1 over an affine curve C. Over a projective curve C, these classes are in one to one correspondence with the extremal rays of σ disjoint from the polyhedron deg D (see Remark 3.13). The classification of homogeneous LNDs of horizontal type is more involved, see Corollary 3.29.

As an application, we show that for a homogeneous LND ∂ on a T-variety of complexity 0 or 1, the kernel ker ∂ that is, the ring of invariants of the associated k + -action, is finitely generated. Thus, in this particular case, the generalized Hilbert's fourteenth problem has a positive answer (see Theorem 4.1). This strengthens a previously known result due to Kuroda [Ku].

The Makar-Limanov invariant [ML] is an important tool which allows, in particular, to distinguish certain varieties from the affine space. For an algebra A, this invariant is defined as the intersection of the kernels of all locally nilpotent derivations on A. For graded algebras, we introduce a homogeneous version of the Makar-Limanov invariant. For T-varieties of complexity 0 and 1 we give an explicit expression of the latter invariant. The triviality of the homogeneous Makar-Limanov invariant implies that of the usual one. As an application we exhibit in Subsection 4.3 a family of non-rational varieties with a trivial Makar-Limanov invariant.

The content of the paper is as follows. In Section 1 we recall the combinatorial description of T-varieties due to Altmann and Hausen, and also some generalities on locally nilpotent derivations and k + -actions. In Sections 2 and 3 we obtain our principal classification results for toric varieties and for T-varieties of complexity 1, respectively. The comparison with previously known results in the surface case is given in subsection 3.3. Finally in Section 4 we provide the applications to Hilbert's fourteenth problem and to the Makar-Limanov invariant.

In the entire paper k is an algebraically closed field of characteristic 0, except in Section 2, where k is not necessarily algebraically closed.

The author is grateful to Mikhail Zaidenberg for posing the problem and permanent encouragement, and to Dimitri Timashev for useful discussions.

Preliminaries 1.1 Combinatorial description of T-varieties

Let N be a lattice of rank n and M = Hom(N, Z) be its dual lattice. We fix dual bases {ν 1 , • • • , ν n } and {µ 1 , • • • , µ n } for N and M , respectively. We also let

N Q = N ⊗ Q, M Q = M ⊗ Q, and we consider the natural duality M Q × N Q → Q, (m, p) → m, p .
Let T = Spec k[M ] be the corresponding n-dimensional algebraic torus associated to M . Thus M is the character lattice of T and N is the lattice of 1-parameter subgroups. It is customary to write the character associated to a lattice vector m ∈ M as χ m , so that χ m is the comorphism of the morphism k[t] → k[M ], t → m [Od].

Let X = Spec A be an affine T-variety. It is well known that the morphism A → A ⊗ k[M ] induces an M -grading on A and, conversely, every M -grading on A arises in this way. Furthermore, a T-action is effective if an only if the corresponding M -grading is effective3 .

Let A = m∈M A m χ m be a finitely generated effectively M -graded domain. The weight cone σ ∨ ⊆ M Q of A is the cone spanned by all the lattice vectors m ∈ M such that A m = {0}. In the sequel for a cone σ ∨ ⊆ M Q , we let σ ∨ M = σ ∨ ∩ M denote the set of lattice points in σ ∨ , so that

A = m∈σ ∨ M A m χ m .
Since A is finitely generated, the cone σ ∨ is polyhedral and since the grading is effective, σ ∨ is of full dimension or, equivalently, σ is pointed4 . An affine T-variety of complexity 0 is a toric variety. There is a well known way of describing affine toric varieties in terms of pointed polyhedral cones in N Q . To any such cone σ ⊆ N Q we associate an affine semigroup algebra k

[σ ∨ M ] := m∈σ ∨ M kχ m and an affine toric variety X = Spec k[σ ∨ M ].
Conversely, for an affine toric variety the corresponding cone σ is the dual of the weight cone σ ∨ . We note that in this particular case, σ ∨ ⊆ M Q is the cone spanned by all lattice vectors m ∈ M such that the character χ m : T → k * extends to a regular function on X.

In [AlHa], a combinatorial description of affine T-varieties of arbitrary complexity is given. In what follows we recall the main features of this description specialized to the case of complexity 1 torus actions. In [Ti 1 ] a combinatorial description of complexity 1 actions of reductive groups is given and in [Ti 2 ] it is specialized for torus actions. For torus actions of complexity 1, the descriptions in [AlHa] and [Ti 1 ] are equivalent and agree with the one given earlier (in a slightly more restrictive setting) by Mumford [KKMS, Chapters 2 and 4], cf. [Ti 2 ] and [Vo].

Definition 1.1. (i) Let σ be a pointed cone in N Q . We define Pol σ (N Q ) to be the set of all σ-tailed polyhedra, i.e. polyhedral domains in N Q which can be decomposed as the Minkowski sum of a compact polyhedron and σ. The set Pol σ (N Q ) equipped with the Minkowski sum forms an abelian semigroup with neutral element σ.

(ii) We let also CPL Q (σ ∨ ) denote the set of all piecewise linear Q-valued functions h : σ ∨ → Q which are upper convex and positively homogeneous, i.e.

h(m + m ′ ) h(m) + h(m ′ ), and h(λm) = λh(m), ∀m, m ′ ∈ σ ∨ , ∀λ ∈ Q 0 .
The set CPL Q (σ ∨ ) with the usual addition forms an abelian semigroup with neutral element 0.

For a polyhedron ∆ ∈ Pol σ (N Q ) we define its support function

h ∆ : σ ∨ → Q, m → min m, ∆ . Clearly, h ∆ ∈ CPL Q (σ ∨ ). The map Pol σ (N Q ) → CPL Q (σ ∨ ) given by ∆ → h ∆ is an isomorphism of abelian semigroups.
For the following definition we refer to [AlHa].

Definition 1.2. Let C be a smooth curve. A σ-polyhedral divisor on C is a formal sum D = z∈C ∆ z • z, where ∆ z ∈ Pol σ (N Q ) and ∆ z = σ for all but finitely many values of z. For m ∈ σ ∨ we can evaluate D in m by letting D(m) be the Q-divisor on C D(m) = z∈C h ∆z (m) • z .
A σ-polyhedral divisor is called proper if either C is affine or C is projective and the following two conditions hold.

(1) The polyhedron deg D := z∈C ∆ z is a proper subset of the cone σ.

(2) If h deg D (m) = 0, then m is contained in the boundary of σ ∨ and a multiple of D(m) is principal.

These two assumptions are counterparts of the conditions that D(m) is semiample for all m ∈ σ ∨ M and big for all m contained in the relative interior of σ ∨ , cf. [AlHa]. They are automatically fulfilled if C is affine. Definition 1.3. A fan which defines a toric variety consists of pointed cones. We need to consider more generally objects which we call quasifans. These satisfy the usual definition of a fan except that their cones are not necessarily pointed.

As usual, for a function h ∈ CPL Q (σ ∨ ) we define its normal quasifan Λ(h) as the coarsest refinement of the quasifan of σ ∨ such that h is linear in each cone δ ∈ Λ(h). For a σ-polyhedral divisor D on C, we define its normal quasifan Λ(D) as the coarsest common refinement of all Λ(h ∆z ) ∀z ∈ C. We have Λ(D) = Λ(h deg D ).

The following theorem gives a combinatorial description of T-varieties of complexity 1 analogous to the classical combinatorial description of toric varieties. This is a specialization of results in [AlHa] to torus actions of complexity 1. Alternatively, a direct proof is given in [Ti 2 ] for ( 1) and ( 2), while (3) is straightforward from loc. cit. See also Theorem 4.3 in [FlZa 1 ] for the particular case of C * -surfaces. In [FiKa] (see also [FlZa 1 ]), all C * -surfaces are divided into three types: elliptic, parabolic and hyperbolic. In the general case, we will use the following terminology.

An M -graded domain A = A[C, D] (or, equivalently, a T-variety X) will be called elliptic if C is projective. In this case σ is of full dimension. A non-elliptic T-variety will be called parabolic if σ is of full dimension and hyperbolic if σ = {0}. If dim X 3, this does not exhaust all the possibilities.

Example 1.5. Letting N = Z 2 and σ = {(0, 0)}, in N Q = Q 2 we consider the triangle ∆ 0 with vertices (0, 0),(0, 1) and (-1/4, -1) and the segment ∆

1 = {0} × [0, 1]. ∆ 0 ⊆ N Q ∆ 1 ⊆ N Q 1 1 -1 -1 4 Let C = Spec k[t] and D = ∆ 0 • [0] + ∆ 1 • [1]. In the following picture, for the normal quasifans Λ(h ∆ 0 ), Λ(h ∆ 1 ) and Λ(D) in M Q = Q 2 , for i = 0, 1 we show the values of h i = h ∆ i on each maximal cone. Λ(h 0 ) Λ(h 1 ) Λ(D) Q 0 (-4, 1) Q 0 (-4, 1) Q 0 (8, -1) Q 0 (8, -1) Q 0 (-1, 0) Q 0 (-1, 0) Q 0 (-1, 0) Q 0 (1, 0) Q 0 (1, 0) -1 4 m 1 -m 2 0 0 m 2 m 2 m 2 m 2 m 2 m 1 m 1 m 1
We let A = A[C, D] as in Theorem 1.4 and X = Spec A. The torus T = (k * ) 2 acts on X. Since C is affine and σ = {(0, 0)}, X is hyperbolic as T-variety. By Theorem 1.4 we have

A (4,0) = tk[t], A (-1,0) = k[t], A (-4,1) = k[t], and A (8,-1) = t(t -1)k[t] .
An easy calculation shows that the elements u 1 = -tχ (4,0) , u 2 = χ (-1,0) , u 3 = -χ (-4,1) , and u 4 = t(t -1)χ (8,-1) generate A as an algebra. Furthermore, they satisfy the irreducible relation u 1 + u 2 1 u 4 2 + u 3 u 4 = 0, and so

A ≃ k[x 1 , x 2 , x 3 , x 4 ]/(x 1 + x 2 1 x 4 2 + x 3 x 4 ) . (1) 
The Z 2 -grading on A is given by deg x 1 = (4, 0), deg x 2 = (-1, 0), deg x 3 = (-4, 1), and deg x 4 = (8, -1). The curve C and the proper polyhedral divisor D can be recovered from this description of A following the recipe in [AlHa, Section 11].

We let K 0 denote the function field of C. There is a natural embedding of M -graded algebras

A ֒→ K 0 [M ]. If C is affine, then A m is a locally free A 0 -module of rank 1 for every m ∈ σ ∨
M . Following [FlZa 1 , Proposition 4.12], in the next lemma we show the way in which our combinatorial description is affected when passing to a certain cyclic covering.

Lemma 1.6. Let A = A[C, D],
where C is a smooth curve with function field K 0 and D is a proper σ-polyhedral divisor on C. Consider the normalization A ′ of the cyclic ring extension A[sχ e ], where e ∈ M ,

s d = f ∈ A de ⊆ K 0 and d > 0. Then A ′ = A[C ′ , D ′ ],
where C ′ and D ′ are defined as follows:

(i) If A is elliptic, then A ′ is also elliptic and C ′ is the smooth projective curve with function field

K 0 [s]. (ii) If A is non-elliptic, then A ′ is also non-elliptic and C = Spec A ′ 0 , where A ′ 0 is the normalization of A 0 in K 0 [s]. (iii) In both cases, D ′ = z∈C ∆ z • p * (z), where p : C ′ → C is the projection.
Proof. The normalization A ′ admits a natural M -grading. The latter is defined by the M -grading on A and by letting deg sχ e = e. Let K = Frac A. Since (sχ e ) df χ de = 0, A ′ is the normalization of A in the function field andA ′ 0 is the normalization of A 0 in the field K 0 [s]. This proves (i) and (ii).

K ′ := K[sχ e ]. But χ -e ∈ K, so K ′ = K[s]. Moreover K[s] = K 0 [s] ⊗ Frac k[M ], so the function field of C ′ is K 0 [s],
For every m ∈ M we have D ′ (m) = z∈C h z (m)p * (z) = p * (D(m)). Therefore for every f ∈ K 0 there are equivalences:

div C (f ) + D(m) 0 ⇔ div C ′ (p * f ) + p * (D(m)) 0 ⇔ div C ′ (f ) + D ′ (m) 0 . Let m ∈ σ ∨ M and let r > 0 be such that D(rd • m) is integral. Then g ∈ A ′ m ⇔ g rd ∈ A rdm ⇔ div C (g rd ) + D(rd • m) 0 ⇔ div C ′ (g rd ) + D ′ (rd • m) 0 ⇔ div C ′ (g) + D ′ (m) 0 ,
which proves (iii).

Locally nilpotent derivations and k + -actions

Let A be a commutative ring. A derivation on A is called locally nilpotent (LND for short) if for every a ∈ A there exists n ∈ Z 0 such that ∂ n (a) = 0. Let X = Spec A be an affine variety. Given an LND ∂ on A, the map φ ∂ : k + × A → A, φ ∂ (t, f ) = e t∂ f defines a k + -action on X, and any k + -action arises in this way. In the following lemma we collect some well known facts about LNDs over a field of characteristic 0 not necessarily algebraically closed, needed for later purposes, see e.g., [Fr 2 , ML].

Lemma 1.7. Let A be a finitely generated normal domain over a field of characteristic 0. If ∂ and ∂ ′ are two LNDs on A, then the following hold:

(i) ker ∂ is a normal subdomain of codimension 1. (ii) ker ∂ is factorially closed i.e., ab ∈ ker ∂ ⇒ a, b ∈ ker ∂. (iii) If a ∈ A is invertible, then a ∈ ker ∂. (iv) If ker ∂ = ker ∂ ′ , then there exist f, f ′ ∈ ker ∂ such that f ′ ∂ = f ∂ ′ . (v) For a ∈ A, ∂a ∈ (a) ⇒ ∂a = 0. (vi) If a ∈ ker ∂, then a∂ is again a LND.
Definition 1.8. We say that two LNDs ∂ and ∂ ′ on A are equivalent if ker ∂ = ker ∂ ′ . Geometrically this means that the generic orbits of the associated k + -actions coincide, cf. also Lemma 1.7 (iv).

With dual lattices M and N as in subsection 1.1, for a field extension k ⊆ K 0 we consider a finitely generated effectively M -graded domain

A = m∈σ ∨ M A m χ m ,
where A m ⊆ K 0 (we keep our convention from the Introduction regarding M -graded algebras).

A derivation ∂ on A is called homogeneous if it sends homogeneous elements into homogeneous elements. Hence ∂ sends homogeneous pieces of A into homogeneous pieces.

Let It is well known that any LND on A decomposes into a sum of homogeneous derivations, some of which are locally nilpotent. In lack of a good reference, in the next lemma we provide a short argument.

M ∂ = {m ∈ σ ∨ M : ∂(A m χ m ) = 0}. The action of ∂ on homogeneous pieces of A defines a map ∂ M : M ∂ → σ ∨ M i.e., ∂(A m ) ⊆ A ∂ M (m) . By Leibniz rule, for homogeneous elements f ∈ A m \ ker ∂ and g ∈ A m ′ \ ker ∂ we have ∂(f g) = f ∂(g) + g∂(f ) ∈ A ∂(m+m ′ ) , ∂ M (m + m ′ ) = m + ∂ M (m ′ ) = m ′ + ∂ M (m) . Thus ∂ M (m) -m ∈ M is a constant function on M ∂ .
Lemma 1.10. Let A be a finitely generated normal M -graded domain. For any derivation ∂ on A there is a decomposition ∂ = e∈M ∂ e , where ∂ e is a homogeneous derivation of degree e. Moreover, let ∆(∂) be the convex hull in M Q of the set {e ∈ M : ∂ e = 0}. Then ∆(∂) is a bounded polyhedron and for every vertex e of ∆(∂), ∂ e is locally nilpotent if ∂ is.

Proof. Letting a 1 , • • • , a r be a set of homogeneous generators of A we have A ≃ k [r] /I, where k

[r] = k[x 1 , • • • , x r
] and I denotes the ideal of relations of a 1 , • • • , a r . The M -grading and the derivation ∂ can be lifted to an M -grading and a derivation ∂ ′ on k [r] , respectively.

The proof of Proposition 3.4 in [Fr 2 ] can be applied to an M -grading, proving that ∂ ′ = e∈M ∂ ′ e , where ∂ ′ e is a homogeneous derivation on k [r] . Furthermore, since ∂ ′ (I) ⊆ I and I is homogeneous, we have ∂ ′ e (I) ⊆ I. Hence ∂ ′ e induces a homogeneous derivation ∂ e on A of degree e, proving the first assertion.

The algebra A being finitely generated, the set {e ∈ M : ∂ e = 0} is finite and so ∆(∂) is a bounded polyhedron. Let e be a vertex of ∆(∂) and n 1.

If ne = n i=1 m i with m i ∈ ∆(∂) ∩ M , then m i = e ∀i. For a ∈ A m χ m this yields ∂ n e (a) = (∂ n (a)
) m+ne , where (∂ n (a)) m+ne stands for the summand of degree m + ne in the homogeneous decomposition of ∂ n (a). Hence ∂ e is locally nilpotent if ∂ is so.

In the following lemma we extend Lemma 1.8 in [FlZa 2 ] to more general gradings. This lemma shows that any LND ∂ on a normal domain can be extended as an LND to a cyclic ring extension defined by an element of ker ∂. Actually (i) is contained in loc. cit. while the proof of (ii) is similar and so we omit it. 

1.12. Recall that A = m∈σ ∨ M A m χ m , where A m ⊆ K 0 , K 0 is a field containing k and Frac A = K 0 (M ) 6 .
The following lemma provides some useful extension of a homogeneous LND ∂ on A.

Lemma 1.13. For any homogeneous LND ∂ on A, the following hold:

(i) The derivation ∂ extends in a unique way to a k-derivation on K 0 [M ]. (ii) If ∂(K 0 ) = 0 then the extension of ∂ as in (i) restricts to a locally nilpotent K 0 -derivation on K 0 [σ ∨ M ].
Proof. The first assertion is evident. To show (ii), suppose that

∂(K 0 ) = 0. Assuming that f χ m ∈ K 0 [σ ∨ M ], we consider r > 0 such that A rm = 0. Letting g ∈ A rm , we have f r χ rm = f ′ gχ rm for some f ′ ∈ K 0 . Thus f r χ rm is nilpotent an so is f χ m .
In the setting as in the previous lemma, the extension of ∂ to K 0 [M ] will be still denoted by ∂. Following [FlZa 2 ] we use the next definition.

Definition 1.14. With A as in 1.12, a homogeneous LND ∂ on A is said to be of fiber type if

∂(K 0 ) = 0 and of horizontal type if ∂(K 0 ) = 0.
Let A be a finitely generated domain and X = Spec A. In this setting, ∂ is of fiber type if and only if the general orbits of the corresponding k + -action are contained in the closures of general orbits of the T-action given by the M -grading. Otherwise, ∂ is of horizontal type.

Locally nilpotent derivations on toric varieties

In this section we consider more generally toric varieties defined over a field k of characteristic 0, not necessarily algebraically closed. This will be important in section 3 below.

Let M and N be lattices as in Subsection 1.1 with mutually dual bases

{µ 1 , • • • , µ n } of M and {ν 1 , • • • , ν n } of N . A homogeneous derivation on k[M ] is uniquely determined by its action on the characters χ µ 1 , • • • , χ µn .
The following is an analog of partial derivatives.

Notation 2.1. We define the partial derivative ∂ ν i with respect to ν i as the homogeneous derivation on k[M ] given by

∂ ν i (χ µ j ) = µ j , ν i = δ ij .
An easy computation shows that ∂ ν i is indeed a derivation. Let H i , i = 1, . . . , n be the subspace of M Q orthogonal to ν i , H + i be the halfspace of M Q given by •, ν i 0. The kernel ker ∂ ν i is spanned, as an algebra, by all characters χ m with m ∈ M orthogonal to ν i , i.e., ker

∂ ν i = k[H i ∩ M ]. Since deg ∂ ν i = -µ i , for every m ∈ H + i ∩ M , the character χ m is nilpotent and so the derivation ∂ ν i restricted to the subalgebra k[H + i ∩ M ] is a homogeneous LND. On the other hand, ∂ ν i is not locally nilpotent in k[M ], in fact for every m / ∈ H + i ∩ M the character χ m is not nilpotent. Remark 2.2. (1) Let m ∈ H i ∩ M . Then ∂ = χ m ∂ ν i is a derivation on k[M ] of degree m -µ i equivalent to ∂ ν i . Its restriction to k[H + i ∩ M ] is again a homogeneous LND. (2) If ∂ stabilizes a subalgebra A ⊆ k[H + i ∩ M ], then ∂| A is also a homogeneous LND on A and ker(∂| A ) = A ∩ k[H i ∩ M ].
For the rest of this section, we let σ be a pointed polyhedral cone in the vector space N Q , and

A = k[σ ∨ M ] = m∈σ ∨ M kχ m
be the affine semigroup algebra of σ with the corresponding affine toric variety X = Spec A. Since the cone σ is pointed, σ ∨ is of full dimension and the subalgebra A ⊆ k[M ] is effectively graded by M .

To every extremal ray ρ ⊆ σ we can associate a codimension 1 face τ ⊆ σ ∨ given by τ = σ ∨ ∩ ρ ⊥ . We will assume that ρ is pointed upwards i.e., ρ is generated as a cone by the vector

ν = ν n in N Q . Thus σ ∨ ⊆ H + = H + n = { •, ν 0} and τ ⊆ H = H n = { •, ν = 0}.
We also denote µ = µ n the basis vector dual to ν and we refer to the coordinate µ as the height.

Definition 2.3. Let σ 1 be the cone spanned by all the extremal rays of σ except ρ, so that

σ ∨ = σ ∨ 1 ∩ H + . We also let S ρ = σ ∨ 1 ∩ (H -µ) ∩ M .
In particular, the height of e ∈ S ρ is -1.

This definition can be illustrated on the following picture.

ρ σ 1 σ ⊆ N Q τ σ ∨ 1 σ ∨ ⊆ M Q H -µ S ρ Lemma 2.4. Let e ∈ M . Then e ∈ S ρ if and only if (i) e / ∈ σ ∨ M , and (ii) m + e ∈ σ ∨ M , ∀m ∈ σ ∨ M \ τ M . Proof. Assume first that e ∈ S ρ . Then (i) is evident. To show (ii), we let m ∈ σ ∨ M \ τ M . Then m + e ∈ H + because the height of m is at least 1. Also m ∈ σ ∨ ⊆ σ ∨ 1 yielding m + e ∈ σ ∨ 1 . Thus m + e ∈ σ ∨ = σ ∨ 1 ∩ H + . 9
To show the converse, we let e ∈ M be such that (i) and (ii) hold. Letting

ρ i , i = 1, • • • , ℓ be all the extremal rays of σ except ρ, for m ∈ σ ∨ M \ τ M we have m + e, ρ i = m, ρ i + e, ρ i 0, ∀i ∈ {1, • • • , ℓ} . If m ∈ ρ ⊥ i ∩ σ ∨ M then m, ρ i = 0 and so e, ρ i 0 ∀i. Thus e ∈ σ ∨ 1 . Since e ∈ σ ∨ 1 \ σ ∨ , the height of e is negative. We have e ∈ (H -µ), otherwise m + e / ∈ σ ∨ for any m ∈ σ ∨ M of height 1.
This yields e ∈ S ρ .

Remark 2.5. Since ν / ∈ σ 1 we have S ρ = ∅. Furthermore, by the previous lemma, e + m ∈ S ρ whenever e ∈ S ρ and m ∈ τ M .

In the following lemma we provide a translation of Lemma 2.4 from the language of convex geometry to that of affine semigroup algebras.

Lemma 2.6. To any pair (ρ, e), where ρ is an extremal ray in σ and e is a lattice vector in S ρ , we can associate in a natural way a homogeneous LND ∂ ρ,e on

A = k[σ ∨ M ] with kernel ker ∂ ρ,e = k[τ M ] and deg ∂ ρ,e = e.
Proof. If σ = {0}, then σ has no extremal rays, so the statement is trivial. We assume in the sequel that σ has at least one extremal ray ρ generated by the lattice vector ν. Consider the homogeneous The following theorem completes our classification.

LND ∂ ρ,e = χ e+µ ∂ ν on k[H + ∩ M ] from Remark 2.
Theorem 2.7. If ∂ = 0 is a homogeneous LND on A, then ∂ = λ∂ ρ,e for some extremal ray ρ on σ, some lattice vector e ∈ S ρ , and some λ ∈ k * .

Proof. The kernel ker ∂ is a subsemigroup subalgebra of A of codimension 1. Since ker ∂ is factorially closed (see Lemma 1.7), it follows that ker

∂ = k[σ ∨ M ∩ H] for a certain codimension 1 subspace H of M Q .
If σ ∨ ∩ H is not a codimension 1 face of σ ∨ , then H divides the cone σ ∨ into two pieces. Since the action of ∂ on characters is a translation by a constant vector deg ∂, only the characters from one of these pieces can reach H in a finite number of iterations of ∂, which contradicts the fact that ∂ is locally nilpotent.

In the case where σ ∨ ∩ H = τ is a codimension 1 face of σ ∨ , we let ρ be the extremal ray dual to τ . Since ∂ is an homogeneous LND, the translation by e = deg ∂ maps

(σ ∨ M \ τ M ) into σ ∨ M .
So by Lemma 2.4, e ∈ S ρ and ∂ = λ∂ ρ,e , as required.

From our classification we obtain the following corollaries.

Corollary 2.8. A homogeneous LND ∂ on a toric variety is uniquely determined, up to a constant factor, by its degree.

Proof. By Theorem 2.7 we have ∂ = λ∂ ρ,e where e = deg ∂. We claim that the codimension 1 face τ , and thus also ρ, is uniquely determined by deg ∂. Indeed, τ is the unique codimension 1 face of σ ∨ mapped outside σ ∨ by the translation on deg ∂.

Corollary 2.9. Every homogeneous LND ∂ on a toric variety X is of fiber type and negative7 .

Proof. The first claim is evident because T acts with an open orbit. By Theorem 2.7, any LND on a toric variety is of the form λ∂ ρ,e . Its degree is deg ∂ ρ,e = e ∈ S ρ and S ρ ∩ σ ∨ = ∅, so ∂ is negative.

Corollary 2.10. Two homogeneous LNDs ∂ = λ∂ ρ,e and ∂ ′ = λ ′ ∂ ρ ′ ,e ′ on A are equivalent if and only if ρ = ρ ′ . In particular, there is only a finite number of pairwise non-equivalent homogeneous LNDs on A.

Proof. The first assertion follows from the description of ker ∂ ρ,e in Lemma 2.6 and the second one from the fact that σ, being polyhedral, it has only a finite number of extremal rays.

Example 2.11. With N = Z 3 we let σ be the cone spanned in N Q by the lattice vectors n 1 = (1, 0, 0), n 2 = (0, 1, 0), n 3 = (1, 0, 1), andn 4 = (0, 1, 1). The dual cone σ ∨ ⊆ M Q = Q 3 is spanned by the lattice vectors m 1 = (1, 0, 0), m 2 = (0, 1, 0), m 3 = (0, 0, 1), andm 4 = (1, 1, -1). Furthermore, the algebra

A = k[σ ∨ M ] is generated by u i = χ m i , i = 1, .
. . , 4 and these elements satisfy the irreducible relation

u 1 u 2 -u 3 u 4 = 0. Thus A ≃ k[x 1 , x 2 , x 3 , x 4 ]/(x 1 x 2 -x 3 x 4 ) . (2) 
Corollary 2.10 shows that there are four non-equivalent homogeneous LNDs on A corresponding to the extremal rays ρ i ⊆ σ spanned by n i . By a routine calculation we obtain

S ρ 1 = {(-1, b, c) ∈ M : b 0, c 1}, S ρ 2 = {(a, -1, c) ∈ M : a 0, c 1}, S ρ 3 = {(a, b, c) ∈ M : a 0, b + c 0, a + c = -1}, and 
S ρ 4 = {(a, b, c) ∈ M : b 0, a + c 0, b + c = -1} .
Letting e 1 = (-1, 0, 1), e 2 = (0, -1, 1), e 2 = (0, 1, -1), e 4 = (1, 0, -1), and ∂ i = ∂ ρ i ,e i , we have

∂ 1 = χ m 3 ∂ ν 1 , ∂ 2 = χ m 3 ∂ ν 2 , ∂ 3 = χ m 4 ∂ ν 1 + χ m 2 ∂ ν 3 , and ∂ 4 = χ m 4 ∂ ν 2 + χ m 1 ∂ ν 3 ,
where {ν 1 , ν 2 , ν 3 } is the canonical basis of N . Finally, under the isomorphism of ( 2) the four homogeneous LNDs on A are given by

∂ 1 = x 3 ∂ ∂x 1 + x 2 ∂ ∂x 4 , ∂ 2 = x 3 ∂ ∂x 2 + x 1 ∂ ∂x 4 , ∂ 3 = x 4 ∂ ∂x 1 + x 2 ∂ ∂x 3 , and ∂ 4 = x 4 ∂ ∂x 2 + x 1 ∂ ∂x 3 .

Locally nilpotent derivations on T-varieties of complexity 1

In this section we give a complete classification of homogeneous LNDs on T-varieties of complexity 1 over an algebraically closed field k of characteristic 0. In the first part we treat the case of a homogeneous LNDs of fiber type, while in the second one we deal with the more delicate case of homogeneous LNDs of horizontal type. We fix the n-dimensional torus T, a smooth curve C and a proper σ-polyhedral divisor D = z∈C ∆ z • z on C. Letting K 0 be the function field of C, we consider the affine variety X = Spec A, where

A = A[C, D] = m∈σ ∨ M A m χ m , with A m = H 0 (C, O(⌊D(m)⌋)) ⊆ K 0 .
We denote by h z = h ∆z the support function of ∆ z so that D(m) = z∈C h z (m) • z. We also fix a homogeneous LND ∂ on A.

In this context, we can interpret Definitions 1.9 and 1.14 as follows.

Lemma 3.1. With the notation as above, let ∂ be a homogeneous LND on A. Then the following hold.

(i) If ∂ is of fiber type, then ∂ is negative and ker ∂ = m∈τ M A m χ m , where τ is a codimension 1 face of σ ∨ . (ii) Assuming further that A is non-elliptic, ∂ is of fiber type if and only if ∂ is negative. Proof. To prove (i) we let ∂ be a homogeneous LND of fiber type on A. By Lemma 1.13 we can extend ∂ to a homogeneous LND ∂ on Ā = K 0 [σ ∨ M ] which is an affine semigroup algebra over

K 0 . Since ∂(K 0 ) = 0, ∂ is a locally nilpotent K 0 -derivation. It follows from Corollary 2.9 that deg ∂ = deg ∂ / ∈ σ ∨ M , so ∂ is negative. Furthermore, Lemma 2.6 and Theorem 2.7 show that ker ∂ = K 0 [τ M ], where τ is a codimension 1 face of σ ∨ . Thus ker ∂ = A ∩ ker ∂ = m∈τ M (A m ∩ K 0 )χ m = m∈τ M A m χ m , which proves (i).
To prove (ii) we assume further that A is non-elliptic. Let ∂ be a negative homogeneous LND on A. Let ∂ be the extension of

∂ to K 0 [M ] as in Lemma 1.13. Since ∂ is negative, ∂(A 0 ) ⊆ A deg ∂ = 0. Since A is non-elliptic we have K 0 = Frac A 0 , so ∂(K 0 ) = 0 and ∂ is of fiber type.
Remark 3.2. In the elliptic case, the second assertion in Lemma 3.1 does not hold, in general. Consider for instance the elliptic k-domain A = k[x, y] graded via deg x = deg y = 1. Then the partial derivative ∂ x is a negative homogeneous LND of horizontal type on A.

Homogeneous LNDs of fiber type

In this subsection we consider a homogeneous LND ∂ on A of fiber type. Let as before Ā = K 0 [σ ∨ M ] be the affine semigroup algebra with cone σ ∈ N Q over the field K 0 . By Lemma 1.13, ∂ can be extended to a homogeneous locally nilpotent K 0 -derivation on Ā. To classify homogeneous LNDs of fiber type, we will rely on the classification of homogeneous LNDs on affine semigroup algebras from the previous section.

If σ has no extremal ray then σ = 0 and σ ∨ = M Q . By Lemma 3.1 in this case there are no homogeneous LND of fiber type. So we may assume in the sequel that σ has at least one extremal ray, say ρ. Let τ be its dual codimension 1 face, and let S ρ be as defined in Lemma 2.4. Lemma 3.3. For any e ∈ S ρ ,

D e := z∈C max m∈σ ∨ M \τ M (h z (m) -h z (m + e)) • z is a well defined Q-divisor on C. Proof. By Lemma 2.4, for all m ∈ σ ∨ M \ τ M , m + e is contained in σ ∨
M and thus h z (m) and h z (m + e) are well defined. Recall that for any z ∈ C, the function h z is upper convex and piecewise linear on σ ∨ . Thus the above maximum is achieved by one of the linear pieces of h z i.e., by one of the maximal cones in the normal quasifan Λ(h z ) (see Definition 1.3).

For every z ∈ C, we let {δ 1,z , • • • , δ ℓz,z } be the set of all maximal cones in Λ(h z ) and g r,z , r ∈ {1, • • • , ℓ z } be the linear extension of h z | δr,z to M Q . Since the maximum is achieved by one of the linear pieces we have max

m∈σ ∨ M \τ M (h z (m) -h z (m + e)) = max r∈{1,••• ,ℓz} (-g r,z (e)) .
Since g r,z (e) ∈ Q ∀(r, z), D e is indeed a Q-divisor.

Remark 3.4. With the notation as in the preceding proof we can provide a better description of D e . Since τ is a codimension 1 face of σ ∨ , it is contained as a face in one and only one maximal cone δ r,z . We may assume that τ ⊆ δ 1,z . By the upper convexity of h z we have g 1,z (e) g r,z (e) ∀r and so D e = -z∈C g 1,z (e) • z.

Notation 3.5. We let Φ e = H 0 (C, O C (⌊-D e ⌋)). Thus for any ϕ ∈ Φ e and any m ∈ σ ∨ M \ τ M we have

(ϕ) ⌈D e ⌉ D e D(m) -D(m + e) = z∈C (h z (m) -h z (m + e)) • z .
There is a natural way to associate to ϕ ∈ Φ e a homogeneous LND of fiber type on A. More precisely we have the following lemma.

Lemma 3.6. To any triple (ρ, e, ϕ), where ρ is an extremal ray of σ, e ∈ S ρ is a lattice vector, and ϕ ∈ Φ e , we can associate a homogeneous LND ∂ ρ,e,ϕ on

A = A[C, D] with kernel ker ∂ ρ,e,ϕ = m∈τ M A m χ m . Proof. Letting Ā = K 0 [σ ∨ M ],
we consider the K 0 -LND ∂ ρ,e on Ā as in Lemma 2.6. Since ϕ ∈ K 0 , ϕ∂ ρ,e is again an K 0 -LND on Ā.

We claim that ϕ∂ ρ,e stabilizes A ⊆ Ā. Indeed, let f ∈ A m ⊆ K 0 be a homogeneous element so

that div f + ⌊D(m)⌋ 0. If m ∈ τ M , then ϕ∂ ρ,e (f χ m ) = 0. If m ∈ σ ∨ M \ τ M , then ϕ∂ ρ,e (f χ m ) = ϕf ∂ ρ,e (χ m ) = m 0 ϕf χ m+e ,
where m 0 := m, ρ 0 ∈ Z >0 for the primitive vector ρ 0 of the extremal ray ρ. Proof. Since ∂ is of fiber type, ∂| K 0 = 0 and so ∂ can be extended to a K 0 -LND ∂ on the affine semigroup algebra

Ā = K 0 [σ ∨ M ]
. By Theorem 2.7 we have ∂ = ϕ∂ ρ,e for some extremal ray ρ of σ, some e ∈ S ρ and some ϕ ∈ K 0 . Since A is stable under ϕ∂ ρ,e , by Remark 3.7, ϕ ∈ Φ e and so ∂ = ϕ∂ ρ,e | A = ∂ ρ,e,ϕ .

Corollary 3.9. Let as before X = Spec A be a T-variety of complexity 1, ∂ be a homogeneous LND of fiber type on A, and let f χ m ∈ A \ ker ∂ be a homogeneous element. Then ∂ is completely determined by the image gχ m+e := ∂(f χ m ) ∈ A m+e χ m+e .

Proof. By the previous theorem ∂ = ∂ ρ,e,ϕ for some extremal ray ρ, some e ∈ S ρ , and some ϕ ∈ Φ e , where e = deg ∂ and ρ is uniquely determined by e, see Corollary 2.8.

In the proof of Lemma 3.6 it was shown that ∂ ρ,e,ϕ (f χ m ) = m 0 ϕf χ m+e . Thus ϕ = g m 0 f ∈ K 0 is also uniquely determined by our data.

Corollary 3.10. Two homogeneous LND ∂ = ∂ ρ,e,ϕ and ∂ ′ = ∂ ρ ′ ,e ′ ,ϕ ′ of fiber type on A are equivalent if and only if ρ = ρ ′ . In particular, there is a finite number of pairwise non-equivalent LNDs of fiber type on A.

Proof. The first assertion follows from the description of ker ∂ ρ,e,ϕ in Lemma 3.6. The second one follows from the fact that σ has a finite number of extremal rays.

It might happen that Φ e = H 0 (C, O C (⌊-D e ⌋)) as above is empty. Given an extremal ray ρ ⊆ σ, in the following lemma we give a criterion for the existence of e ∈ S ρ such that Φ e is non-empty. If h| τ ≡ 0 then by the linearity of g 1,z we obtain that deg(-D e ) < 0, so deg⌊-D e ⌋ < 0 and Φ e is empty.

If h| τ ≡ 0 then by the upper convexity of h, h(m) > 0 for all m in the relative interior of τ . By Remark 3.4, deg(-D e ) is linear on e and so, according to Remark 2.5, we can choose a suitable e ∈ S ρ so that deg⌊-D e ⌋ g. Hence Φ e is nonempty.

We can now deduce the following corollary.

Corollary 3.12. Let A = A[C, D], and let ρ ⊆ σ be an extremal ray dual to a codimension one face τ ⊆ σ ∨ . There exists a homogeneous LND of fiber type In this more general setting, Lemma 3.6 and Theorem 3.8 hold, with the same proofs, for homogeneous LNDs of fiber type on an affine T-variety of arbitrary complexity.

∂ on A such that ker ∂ = m∈τ M A m χ m if and only if C is affine or C is projective and ρ ∩ deg D = ∅. Proof. Since ρ ∩ deg D = ∅ is equivalent to h deg D | τ ≡ 0,

Homogeneous LNDs of horizontal type Let

A = A[C, D],
where D is a proper σ-polyhedral divisor on a smooth curve C. We consider a homogeneous LND ∂ of horizontal type on A. We also denote by ∂ its extension to a homogeneous k-derivation on K 0 [M ], where K 0 is the field of rational functions of C (see Lemma 1.13 (i)).

The existence of a homogeneous LND of horizontal type imposes strong restrictions on C, as we show in the next lemma.

Lemma 3.15. If there exists a homogeneous LND ∂ of horizontal type on A = A[C, D], then C ≃ P 1 in the case where A is elliptic and C ≃ A 1 in the case where A is non-elliptic. In the latter case A m is a free A 0 -module of rank 1 for every m ∈ σ ∨ M and so A m = ϕ m A 0 for some ϕ m ∈ A m such that div(ϕ m ) + ⌊D(m)⌋ = 0 .

Proof. Let π : X = Spec A C be the rational quotient for the T-action given by the inclusion π * : K 0 ֒→ K = Frac A. Since X is normal, the indeterminacy locus X 0 of π has codimension greater than 1, and so the general orbits of the k + -action corresponding to ∂ are contained in X \ X 0 .

Since ∂| K 0 = 0, the general orbits of the k + -action on X are not contained in the fibers of π, so map dominantly onto C. Hence C being dominated by A 1 we have C ≃ P 1 in the elliptic case and C ≃ A 1 in the non-elliptic case.

Thus, if C is affine then A 0 = k[t] and so A m is a locally free A 0 -module of rank 1 for any m ∈ σ ∨ M . By the primary decomposition, any locally free module over a principal ring is free and so A m ≃ A 0 as a module (see also Ch. VII §4 Corollary 2 in [Bu]). Now the last assertion easily follows.

3.16. For the rest of this section we let K 0 = k(t), C = P 1 in the elliptic case, and C = A 1 otherwise. We also let S ∂ be the set of all lattice vectors m ∈ M such that ker ∂ ∩ A m χ m = {0}, L(∂) ⊆ M be the sublattice spanned by S ∂ , and ω ∨ (∂) be the cone spanned by S ∂ in M Q . We write L and ω ∨ instead of L(∂) and ω ∨ (∂) whenever ∂ is clear from the context. Lemma 3.17. Let A = A[C, D], where D is a proper σ-polyhedral divisor on C, and let ∂ be a homogeneous LND of horizontal type on A. With the notation as above, the following hold.

(1) The kernel ker ∂ is a semigroup algebra given by ker ∂ = m∈ω ∨ L kϕ m χ m , where ϕ m ∈ A m .

(2) In the non-elliptic case div(ϕ m ) + D(m) = 0, while in the elliptic one div(ϕ

m ) + D(m) = λ • [z ∞ ]
for some z ∞ ∈ P 1 and some positive λ ∈ Q.

(3) The cone ω ∨ is a maximal cone of the quasifan Λ(D) in the non-elliptic case, and of the quasifan Λ(D| P 1 \{z∞} ) in the elliptic one. In particular, rank(L) = n.

(4) M is spanned by deg ∂ and L. More precisely, any m ∈ M can be uniquely written as m = l + r deg ∂ for some l ∈ L and some r ∈ Z with 0 r < d, where d > 0 is the smallest integer such that

d deg ∂ ∈ L. Proof. Since k ⊆ ker ∂ we have 0 ∈ S ∂ . If m, m ′ ∈ S ∂ then m + m ′ ∈ S ∂ and so S ∂ is a subsemigroup of σ ∨ M . For any f ∈ K 0 = k(t) we have ∂(f ) = f ′ (t)∂(t), where ∂(t) = 0 since ∂ is of horizontal type. Thus ∂(f ) = 0 if and only if f is constant. Let us fix m ∈ S ∂ . If ϕ m , ϕ ′ m ∈ ker ∂ ∩ A m χ m are nonzero, then ϕ m /ϕ ′ m ∈ ker ∂ ∩ K 0 = k and so ϕ ′ m = λϕ m for some λ ∈ k * . Hence ker ∂ = m∈S ∂ kϕ m χ m
and ker ∂ is a semigroup algebra. Since ker ∂ is normal, S ∂ is saturated, and so S ∂ = ω ∨ L , which proves (1). To prove (2), we assume first that C is affine. Given m ∈ ω ∨ L , we let ϕ m be as in Lemma 3.15. Since ker

∂ is factorially closed, if f ϕ m χ m ∈ ker ∂ ∩ A m χ m for some f ∈ A 0 , then f ∈ ker ∂ ∩ A 0 = k and ϕ m χ m ∈ ker ∂ ∩ A m χ m .
The latter implies that ϕ r m χ rm ∈ ker ∂ ∩ A rm χ rm ∀r 1, and so r⌊D(m)⌋ = ⌊rD(m)⌋ ∀r 1. Hence D(m) is an integral divisor, which yields (2) in the non-elliptic case.

In the case where C = P 1 , we may suppose that that z

∞ = ∞. Given m ∈ ω ∨ L , let us assume that div(ϕ m ) + ⌊D(m)⌋ [0] + [∞] so that tϕ m ∈ A m and t -1 ϕ m ∈ A m . We have (tϕ m χ m )(t -1 ϕ m χ m ) = (ϕ m χ m ) 2 ∈ ker ∂. Thus tϕ m χ m ∈ ker ∂, which contradicts (1). Henceforth div(ϕ m ) + ⌊D(m)⌋ = λ • [z ∞ ], λ ∈ Z 0 .
An argument similar to that employed in the non-elliptic case, yields div(ϕ m ) +

D(m) = λ • [z ∞ ] for some positive λ ∈ Q, proving (2).
We have dim ker 3) in the non-elliptic case. In the elliptic case a similar argument (with z ∈ P 1 \ {z ∞ }) provides the result.

∂ = dim ω ∨ . Since ∂ is an LND, ker ∂ has codimension 1 in A. Hence ω ∨ is of full dimension in M Q . Furthermore, in the non-elliptic case (2) shows that h z | ω ∨ is linear ∀z ∈ A 1 , so that ω ∨ is contained in a maximal cone δ in Λ(D). Assume that ω ∨ δ. Let m ∈ δ \ ω ∨ and ϕ m ∈ k(t) be such that D(m) is integral and div(ϕ m ) + D(m) = 0. Letting m ′ ∈ ω ∨ L be such that m + m ′ ∈ ω ∨ L , the linearity of D implies ϕ m χ m ϕ m ′ χ m ′ = ϕ m+m ′ χ m+m ′ ∈ ker ∂. Hence ϕ m χ m ∈ ker ∂ which is a contradiction, proving (
Finally, since σ ∨ M spans M as a lattice and ∂ is a homogeneous LND, for any m ∈ M we have m + r deg ∂ ∈ L for some r ∈ Z. Thus for 0 r > -d the decomposition as in ( 4) is unique because of the minimality of d.

Corollary 3.18. In the notation of Lemma 3.17, by (3) ω ⊆ N Q is a pointed polyhedral cone and by ( 2)

ker ∂ = m∈ω ∨ L kϕ m χ m ≃ k[ω ∨ L ]
is an affine semigroup algebra, in particular ker ∂ is finitely generated. Starting with an affine toric variety X and a homogeneous LND ∂ of fiber type (see Corollary 2.9), we can restrict the big torus action to an appropriate codimension 1 subtorus T so that ∂ becomes of horizontal type for the T-action of complexity 1 on X. This is actually the case in our examples.

Example 3.19. Letting

A = A[C, D], where C = A 1 , p ∈ N Q , and D = (p + σ) • [0] we have that h 0 : σ ∨ → Q, m → m, p is linear and h z = 0 ∀z ∈ k * . Denoting by h : M Q → Q the linear extension of h 0 to the whole M Q , for m ∈ σ ∨ M we obtain A m = t -⌊h(m)⌋ k[t] = r -h(m) kt r .
Letting N = N × Z, M = M × Z, and σ be the cone in N Q spanned by (σ, 0) and (p, 1), a vector (m, r) ∈ M Q belongs to the dual cone σ ∨ if and only if m ∈ σ ∨ and r -h(m). By identifying χ (0,1) with t we obtain

A = (m,r)∈ σ ∨ M kt r χ m = (m,r)∈ σ ∨ M kχ (m,r) = k[ σ M ] .
Hence A is an affine semigroup algebra and so, we can apply the results of the previous section.

Since A 0 is spanned as affine semigroup algebra by the character χ (0,1) , the only codimension 1 face of σ ∨ not containing the lattice vectors (0, 1) is

τ = {(m, r) ∈ M Q : m ∈ σ ∨ , r = -h(m)} .
This is the face of σ ∨ dual to the extremal ray ρ spanned by (p, 1) in N Q .

In the notation of Lemma 2.4, picking e ′ ∈ S ρ and λ ∈ k * we let ∂ = λ∂ ρ,e ′ be the homogeneous LND with respect to the M -grading described in Lemma 2.6. Since (0, 1) / ∈ τ , ∂ is of horizontal type with respect to the M -grading on A. Let deg M stand for the corresponding degree function.

For any e ′ = (e, r) ∈ M × Z we have deg M ∂ = e and ker ∂ = k[τ M ]. Therefore, in the notation of Lemma 3.17, ω ∨ = σ ∨ and L = {m ∈ M : h(m) ∈ Z}.

To be more concrete, we let d > 0 be the smallest integer such that d • p ∈ N . Then d • h is an integer valued function on σ ∨ M . Letting m 1 ∈ M be a lattice vector such that {h(m 1 )} = { 1 d }, by a routine calculation we obtain

S ρ = (e, r) : e ∈ L -m 1 , r = -1 d -h(e) ∩ σ ∨ 1 , (3) 
and

∂ = λt r χ e t∂ t + i h(µ i )χ µ i ∂ ν i , (4) 
where σ 1 ⊆ N Q is as defined in Lemma 2.4, λ ∈ k * , ∂ t is the partial derivative with respect to t, and ∂ ν i are the partial derivatives as in Definition 2.1. Moreover, in this case σ 1 = σ × {0} and so

S ρ = (e, r) : e ∈ σ ∨ ∩ (L -m 1 ), r = -1 d -h(e) .
Example 3.20. Let C = P 1 , p ∈ N Q . Let ∆ ∞ be a σ-tailed polyhedron (see Definition 1.1 (i)), and let D = (p + σ)

• [0] + ∆ ∞ • [∞]
. Under these assumptions h 0 : σ ∨ → Q, m → m, p is linear and h z = 0 ∀z ∈ k * . We let as before h : M Q → Q denote the linear extension of h 0 to the whole M Q . We also suppose that p + ∆ ∞ σ and so the sum h 0 + h ∞ 0 is not identically 0. Under these assumptions the σ-polyhedral divisor D is proper in the sense of Definition 1.

Letting

A = A[C, D], for any m ∈ σ ∨ M we have A m = -h 0 (m) r h∞(m) kt r .
Let N = N × Z, M = M × Z, and let σ be the cone in N Q spanned by (σ, 0), (p, 1) and (∆ ∞ , -1). A vector (m, r) ∈ M Q belongs to the dual cone σ ∨ if and only if m ∈ σ ∨ , r -h 0 (m) and r h ∞ (m). Thus by identifying χ (0,1) with t we obtain:

A = (m,r)∈ σ ∨ M kt r χ m = (m,r)∈ σ ∨ M kχ (m,r) = k[ σ M ] .
Hence A is again an affine semigroup algebra, and so the results in the previous section can be applied.

We let as before ρ ⊆ σ be the extremal ray spanned by (p, 1). The codimension 1 face dual to ρ is

τ = {(m, r) ∈ M Q : m ∈ σ ∨ , r = -h ( m)} .
In the notation of Lemma 2.4, picking e ′ ∈ S ρ and λ ∈ k * we let ∂ = λ∂ ρ,e ′ be the homogeneous LND with respect to the M -grading described in Lemma 2.6. Again ∂ is of horizontal type with respect to the M -grading on A.

points in the elliptic case. By Lemma 3.17 (4) L and e span M . So the functions h z | ω ∨ are integral except for at most one value of z in the non-elliptic case and at most two values of z in the elliptic case. Furthermore, in the elliptic case one of the two values of z ∈ P 1 such that h z is not integral corresponds to z = ∞.

Without loss of generality, in both cases we may suppose that z = 0 is an exceptional value in A 1 , provided there is one. In particular p z ∈ N is a lattice vector for any z ∈ k * . Since any integral divisor on A 1 and any integral divisor of degree 0 on P 1 are principal, Theorem 1.4 shows that D ω can always be chosen so that p z = 0 ∀z ∈ k * . Now the result follows.

Remark 3.23. ( 1) By Examples 3.19 and 3.20, the previous lemma shows that A ω is an affine semigroup algebra, or equivalently, Spec A ω is a toric variety.

(2) In the notation of Lemma 3.22, let h(m) = m, p . By virtue of Lemma 3.17 ( 1) and ( 2),

L = {m ∈ M : h(m) ∈ Z}.
Remark 3.24. Whatever is an isomorphism A ≃ A[C, D], the proof of the previous lemma implies the following.

(1) If C = A 1 then all h z | ω ∨ are linear and all but possibly one of them are integral.

(2) If C = P 1 then all but possibly one of h z | ω ∨ are linear and all but possibly two of them are integral.

(3) By virtue of Theorem 1.4, we may suppose, in both cases, that

h z | ω ∨ = 0 ∀z ∈ k * and h 0 | ω ∨ is linear.
The following lemma provides the main ingredient in our classification of the homogeneous LNDs of horizontal type. 

(i) If h z (m + e) = 0, then ⌊h z (m + e)⌋ -⌊h z (m)⌋ 1 ∀z ∈ k * . (ii) If h 0 (m + e) = h(m + e), then ⌊dh 0 (m + e)⌋ -⌊dh 0 (m)⌋ 1 + dh(e). (iii) If C = P 1 , then ⌊dh ∞ (m + e)⌋ -⌊dh ∞ (m)⌋ -1 -dh(e).
Here h is the linear extension of h 0 | ω ∨ and d > 0 is the smallest integer such that dh is integral.

Proof. Similarly as in Example 3.19, h(m) = m, p for some p ∈ N Q . Since each h z is upper convex (see Definition 1.1 (ii)), h z (m) 0 for z ∈ k * and h 0 (m) h(m). Letting A M = m∈M ϕ m k[t]χ m ,
where ϕ m = t -⌊h(m)⌋ (see Remark 3.21) we have A ⊆ A M . By virtue of this remark ∂ extends to a homogeneous LND on A M . We still denote by ∂ this extension. Thus ∂ extends to a homogeneous LND on A if and only if ∂ stabilizes A.

To show that ∂ stabilizes A, let us start with the simplest case where h = 0. Case h = 0 h = 0 h = 0. In this case, Remark 3.21 (3) shows that L = M , d = 1, and r = -1, and so ∂ = λχ e ∂ t . Furthermore, h z 0 ∀z ∈ A 1 and in the elliptic case h ∞ 0. For any m ∈ σ ∨ M such that m + e ∈ σ ∨ M , the conditions in the lemma can be reduced to

(i ′ ) If h z (m + e) = 0, then ⌊h z (m + e)⌋ -⌊h z (m)⌋ 1 ∀z ∈ A 1 . (iii ′ ) If C = P 1 , then ⌊h ∞ (m + e)⌋ -⌊h ∞ (m)⌋ -1 ∀m ∈ σ ∨ M . In this case A m = H 0 (C, O(⌊D(m)⌋)) ⊆ k[t] and ∂ stabilizes A if and only if f (t) ∈ A m ⇒ f ′ (t) ∈ A m+e , ∀m ∈ σ ∨ M , or equivalently div f + ⌊D(m)⌋ 0 ⇒ div f ′ + ⌊D(m + e)⌋ 0 , ∀m ∈ σ ∨ M , or else ord z (f ) + ⌊h z (m)⌋ 0 ⇒ ord z (f ′ ) + ⌊h z (m + e)⌋ 0 , ∀m ∈ σ ∨ M and ∀z ∈ C . (5) 
Next we show that (i ′ ) and (iii ′ ) hold if and only if (5) holds.

Let z ∈ A 1 and let m ∈ σ ∨ M such that m + e ∈ σ ∨ M . If h z (m + e) = 0 the condition (5) holds since f ∈ k[t]. Assume h z (m + e) = 0. Since h z 0 is upper convex, if h z (m) = 0 then h z (m + re) = 0 ∀r > 1 contradicting the fact that ∂ is an LND. Hence we may assume that h z (m) = 0 so that f ∈ (t -z)k[t]. In this setting ord z (f ′ ) = ord z (f ) -1 and so ord z (f ′ ) + ⌊h z (m + e)⌋ = ord z (f ) + ⌊h z (m)⌋ + (⌊h z (m + e)⌋ -⌊h z (m)⌋ -1) . (6) 
Therefore (i ′ ) implies (5).

To show the converse, let us suppose that (5) holds. Assuming that C is affine, for every m ∈ σ ∨ M we consider ϕ m as in Lemma 3.17. Since by this lemma ord z (ϕ m ) + ⌊h z (m)⌋ = 0, applying ( 5) and ( 6) to ϕ m we obtain

ord z (ϕ m ) + ⌊h z (m)⌋ + (⌊h z (m + e)⌋ -⌊h z (m)⌋ -1) = ⌊h z (m + e)⌋ -⌊h z (m)⌋ -1 0 , proving (i ′ ) when C is affine. If C is projective, then for any z ∈ A 1 and any m ∈ σ ∨ M we can still find ϕ m,z ∈ A m such that ord z (ϕ m,z ) + ⌊h z (m)⌋ = 0.
Thus again the previous argument applies.

In the elliptic case, we let z = ∞ and we fix m

∈ σ ∨ M . If f is constant, then (5) holds because h ∞ (m) 0. Otherwise ord ∞ (f ′ ) = ord ∞ (f ) + 1 and so ord ∞ (f ′ ) + ⌊h ∞ (m + e)⌋ = ord ∞ (f ) + ⌊h ∞ (m)⌋ + (⌊h ∞ (m + e)⌋ -⌊h ∞ (m)⌋ + 1) . (7) 
Therefore (iii ′ ) implies (5).

To show the converse, we let as before ϕ m,∞ ∈ A m be such that ord ∞ (ϕ m,∞ ) + ⌊h ∞ (m)⌋ = 0. Applying ( 5) and ( 7

) to ϕ m,∞ we obtain ord ∞ (ϕ m,∞ ) + ⌊h ∞ (m)⌋ + (⌊h ∞ (m + e)⌋ -⌊h ∞ (m)⌋ + 1) = ⌊h ∞ (m + e)⌋ -⌊h ∞ (m)⌋ + 1 0 , proving (iii ′ ).
Next we assume that h is integral.

Case h h h integral. In this case we still have d = 1. We recall that h(m) = m, p . Letting

D ′ = D -(p + σ) • [0] if C is affine and D ′ = D -(p + σ) • [0] + (p + σ) • [∞] if C is projective, by Theorem 1.4 (iii) A ≃ A[C, D ′ ]. In this setting A[C, D ′ ] is as in the previous case with h ′ 0 = h 0 -h, h ′ ∞ = h ∞ + h and h ′ z = h z ∀z ∈ k * . This consideration shows that ∂ stabilizes A if and only if (i ′ ) and (iii ′ ) hold for h ′ z (m) ∀z ∈ C. For any z ∈ k * , (i ′ ) is equivalent to (i) in the lemma. Since ⌊h ′ 0 (m + e)⌋ -⌊h ′ 0 (m)⌋ -1 = ⌊h 0 (m + e)⌋ -⌊h 0 (m)⌋ -1 -h(e) , condition (i ′ ) for z = 0 is equivalent to (ii). Similarly, if C is projective ⌊h ′ ∞ (m + e)⌋ -⌊h ′ ∞ (m)⌋ + 1 = ⌊h ∞ (m + e)⌋ -⌊h ∞ (m)⌋ + 1 + h(e)
, and so (iii ′ ) is equivalent to (iii). Now we turn to the general case.

(ii) The lattice vector (e, -1 dh(e)) belongs to S ρ as defined in (3). For any m ∈ σ ∨ M such that m + e ∈ σ ∨ M , the following hold.

(iii) If h z (m + e) = 0, then ⌊h z (m + e)⌋ -⌊h z (m)⌋ 1 ∀z ∈ k * . (iv) If h 0 (m + e) = h(m + e), then ⌊dh 0 (m + e)⌋ -⌊dh 0 (m)⌋ 1 + dh(e). (v) If C = P 1 , then ⌊dh ∞ (m + e)⌋ -⌊dh ∞ (m)⌋ -1 -dh(e).
Moreover,

ker ∂ = m∈ω ∨ L kϕ m χ m , where ϕ m ∈ A m satisfy the relation div(ϕ m ) + D(m) = 0 if C = A 1 or div(ϕ m )| C 0 + D(m)| C 0 = 0 if C = P 1 .
Proof. Let ∂ be a homogeneous LND of horizontal type on A with deg ∂ = e and ω ∨ (∂) = ω ∨ . Lemma 3.17 (3) and Remark 3.24 show that (i) and (i ′ ) hold. Lemma 3.22 and Examples 3.19 and 3.20 shows that (ii) holds. To conclude, Lemma 3.25 shows that (iii)-(v) hold.

To show the converse, assume that (i), (i ′ ) and (ii)-(v) are fulfilled. By Theorem 1.4, (i) and (i ′ ) imply that A ω ≃ A[C, D ω ] with D ω as in Lemma 3.22. By Examples 3.19 and 3.20 and Remark 3.21 ( 2), (ii) shows that there exists a homogeneous LND ∂ : A M → A M with deg ∂ = e. By Lemma 3.25 and its proof, (iii)-(v) imply that ∂ restricts to a homogeneous LND on A. Finally, by Lemma 3.17 (3), (i) and (i ′ ) imply that ω ∨ (∂) = ω ∨ .

Moreover, Lemma 3.17 ( 1) and ( 2) give the desired description of ker ∂.

Corollary 3.28. In the notation of Theorem 3.27, A admits a homogeneous LND ∂ of horizontal type such that ω ∨ (∂) = ω ∨ if and only if (i) and (i ′ ) in the theorem hold.

Proof. The "only if" part follows directly form Theorem 3.25. Assume that (i) and (i ′ ) hold. By Theorem 3.25 and Examples 3.19 and 3.20, we only need to show that there exists e ∈ M such that e, -1 dh(e) ∈ S ρ and (iii)-(v) hold. Let (e ′ , r ′ ) ∈ S ρ (by Remark 2.5, this set is non-empty). By this remark e = e ′ + m ∀m ∈ ω ∨ L is such that (e, r ′h(m)) ∈ S ρ . In particular, we can assume that e belongs to the relative interior of ω ∨ . In this setting, Remark 3.26 shows that (v) holds.

As in the proof of Lemma 3.3, for every z ∈ A 1 , we let {δ 0,z , • • • , δ ℓz,z } denote the set of all maximal cones in Λ(h z ) and g r,z , r ∈ {0, • • • , ℓ z } be the linear extension of h z | δr,z to M Q . We assume further that ω ∨ ⊆ δ 0,z ∀z ∈ A 1 .

Since the functions h z are upper convex, the inequalities in (iii) and (iv) hold if they hold in every maximal cone on Λ(h z ) except δ 0,z i.e., Proof. Indeed, the description of ker ∂ given in Theorem 3.27 depends only on ω ∨ in the non-elliptic case and on ω ∨ and z ∞ ∈ C in the elliptic one.

(iii ′ ) ⌊g r,z (m + e)⌋ -⌊g z (m)⌋ 1 ∀z ∈ k * , ∀r ∈ {1, • • • , ℓ z } and ∀m ∈ δ r,z ∩ M .
Corollary 3.30. The number of pairwise non-equivalent homogeneous LNDs of horizontal type on A = A[C, D] is finite except in the case where A is elliptic and there exists a maximal cone ω ∨ of Λ(D) such that all but possibly one h z | ω ∨ are integral.

Proof. Since Λ(D) has only a finite number of maximal cones, Corollary 3.29 gives the result in the case where A is non-elliptic. Furthermore, in the elliptic case by this corollary there is an infinite number of pairwise non-equivalent LNDs on A if and only if in Theorem 3.27 (i ′ ) we can choose z ∞ ∈ P 1 arbitrarily. However the latter is indeed possible under the assumptions of the corollary.

Example 3.31. A combinatorial description of k [2] = k[x, y] with the grading induced by deg x = deg y = 1 is given by the proper σ-polyhedral divisor D = (1 + σ) • [0] on P 1 , where σ = Q 0 ⊆ N Q ≃ Q. By Corollary 3.30 there exist an infinite number of pairwise non-equivalent LNDs on k [2] homogeneous with respect to the given grading. Indeed, the derivations on the family

∂ λ = λ ∂ ∂x + (1 -λ)
∂ ∂y are homogeneous and pairwise non-equivalent for different values of λ.

In contrast, a combinatorial description of k [2] with the grading induced by deg x =deg y = 1 is given by the proper σ-polyhedral divisor D = [0, 1] • [0] on A 1 . By Corollary 3.30 there exist a finite number of pairwise non-equivalent LNDs homogeneous with respect to this grading. Indeed, by Corollary 3.28 the only such LNDs are the partial derivatives.

In the following example we study the existence of homogeneous LNDs on the M -graded algebra A of Example 1.5.

Example 3.32. Let the notation be as in Example 1.5. Since σ = {0}, Lemma 3.1 shows that there is no homogeneous LND of fiber type on A. In contrast, let us show that there exist exactly 4 pairwise non-equivalent homogeneous LNDs on A.

Indeed, since h 0 is the only support function which is non-integral Corollaries 3.28 and 3.29 show that there are four non-equivalent homogeneous LNDs of horizontal type on A corresponding to the four maximal cones in Λ(D), δ 1 = cone((1, 0), (-4, 1)), δ 2 = cone((-4, 1), (-1, 0)), δ 3 = cone((-1, 0), (8, -1)), δ 4 = cone((8, -1), (1, 0)) .

For the cones δ 1 and δ 2 the hypothesis of Lemma 3.25 are fulfilled i.e., h z | δ i = 0 ∀z ∈ k * for i = 1, 2. Moreover, e 1 = (-3, 1) and e 2 = (-8, 1) satisfy conditions (i)-(iii) in this lemma for δ 1 and δ 2 , respectively.

We let ∂ 1 and ∂ 2 be the respective LNDs defined in (4). By a routine calculation we obtain

∂ 1 = tχ (-3,1) ∂ t -1 4 χ (-2,1) ∂ ν 1 -χ (-3,2) ∂ ν 2 and ∂ 2 = χ (-8,1) ∂ t ,
where {ν 1 , ν 2 } is the standard basis of N Q , ∂ t is the partial derivative with respect to t, and ∂ ν i are the partial derivatives as in Definition 2.1. Furthermore, under the isomorphism (1) in Example 1.5, ∂ 1 and ∂ 2 can be extended to k

[4] = k[x 1 , x 2 , x 3 , x 4 ] as LNDs ∂ 1 = - 1 4 x 3 ∂ ∂x 2 + x 2 1 x 3 2 ∂ ∂x 4 and ∂ 2 = x 3 ∂ ∂x 1 -(2x 1 x 4 2 + 1) ∂ ∂x 4 .
To obtain the derivations corresponding to δ 3 and δ 4 we let

C ′ = Spec k[s], ∆ ′ 1 = {0} × [-1, 0], and D ′ = ∆ 0 • [0] + ∆ ′ 1 • [1]. Theorem 1.4 shows that A ≃ A[C ′ , D ′ ].
Under this new combinatorial description we have u 1 = -sχ (4,0) , u 2 = χ (-1,0) , u 3 = (1s)χ (-4,1) , and u 4 = sχ (8,-1) .

Now the assumptions of Lemma 3.25 are satisfied for δ 3 and δ 4 . Moreover, e 3 = (4, -1) and e 4 = (9, -1) satisfy conditions (i)-(iii) in this lemma for δ 3 and δ 4 , respectively. We let ∂ 3 and ∂ 4 be the respective LNDs defined by (4). By a simple computation we obtain

∂ 3 = sχ (4,-1) ∂ s -χ (4,0) ∂ ν 2 and ∂ 4 = s 2 χ (9,-1) ∂ s -1 4 sχ (10,-1) ∂ ν 1 -sχ (9,0) ∂ ν 2 ,
where ∂ s is the partial derivative with respect to s.

Furthermore, under the isomorphism (1) ∂ 3 and ∂ 4 are induced by the LNDs

∂ 3 = -x 4 ∂ ∂x 1 + (2x 1 x 4 2 + 1) ∂ ∂x 3 and ∂ 4 = 1 4 x 4 ∂ ∂x 2 -x 2 1 x 3 2 ∂ ∂x 3
on k [4] .

The surface case

A description of C * -surfaces was given in [FlZa 1 ] in terms of the DPD (Dolgachev-Pinkham-Demazure) presentation. In [FlZa 2 ] this description was applied to classify the homogeneous LNDs on normal affine C * -surfaces (of both horizontal and fiber type). Here we relate both descriptions. Besides, we stress the difference that appears in higher dimensions.

In the case of dimension 2 the lattice N has rank 1, which makes things quite explicit (cf. e.g., [Su]).

We treat the elliptic case first. In this case σ is of full dimension, and so we can assume that

σ = Q 0 ⊆ N Q = Q. Let A = A[C, D],
where D is a proper σ-polyhedral divisor on a smooth projective curve C. In this setting, D is uniquely determined by the Q-divisor D(1) on C. Here (C, D(1)) coincides with the DPD presentation data. Since the only extremal ray of σ is σ itself and deg D is σ-tailed (see Definition 1.1), by Corollary 3.12 there is no homogeneous LND of fiber type on A.

Furthermore, if there is a homogeneous LND ∂ of horizontal type on A, then ω ∨ (∂) = σ ∨ , and so by Remark 3.23 (1) A = A ω is an affine semigroup algebra i.e., Spec A is an affine toric surface. This corresponds to Theorem 3.3 in loc. cit.

Next we consider a non-elliptic algebra A so that C is an affine curve. In loc.cit. this case is further divided into two subcases, the parabolic one which corresponds to σ = Q 0 , and the hyperbolic one which corresponds to σ = {0}.

In the parabolic case, the DPD presentation data is the same as in the elliptic one. In this case there is again just one extremal ray ρ = σ and S ρ = {-1}. Moreover, since the support functions h z are positively homogeneous on σ ∨ = Q 0 , they are linear and so D -1 = D(1) (see Lemma 3.3). By Theorem 3.8 the homogeneous LNDs of fiber type on A are in one to one correspondence with the rational functions

ϕ ∈ H 0 (C, O C (⌊-D(1)⌋)) .
This corresponds to Theorem 3.12 in loc. cit.

If a graded parabolic 2-dimensional algebra A admits a homogeneous LND of horizontal type, then Spec A is a toric variety by the same argument as in the elliptic case. This yields Theorem 3.16 and Corollary 3.19 in loc. cit.

In the hyperbolic case D is uniquely determined by the pair of Q-divisors (D(1), D(-1)) which correspond to the pair (D + , D -) in the DPD presentation data. According to our Definition 1.1 (ii), this pair satisfies D(1) + D(-1) 0. In this case, by Lemma 3.1 there is no homogeneous LND of fiber type on A since σ = {0}. This corresponds to Lemma 3.20 in loc. cit.

The homogeneous LNDs of horizontal type are classified in Theorem 3.27 above. Specializing this classification to dimension 2 gives Theorem 3.22 in loc. cit. More precisely, conditions (i) and (ii) of 3.27 lead to (i) of Theorem 3.22 in loc. cit. while (iii) and (iv) in 3.27 lead to (ii) in Theorem 3.22 in loc. cit.

In contrast, in dimension 3 a new phenomena appear. For instance, there exist non-toric threefolds with an elliptic T-action and a homogeneous LND of horizontal or fiber type, see subsection 4.3 for an example of fiber type. With the notation as in subsection 4.3, considering C = P 1 and D

= ∆ • [0] + ∆ • [1] + ∆ • [∞]
gives an example with LNDs of both horizontal and fiber type.

Applications

In this section we give some applications of our classification results.

Finite generation of the ring of invariants

The generalized Hilbert's fourteenth problem can be formulated as follows.

Let k ⊆ L ⊆ K be field extensions, and let A ⊆ K be a finitely generated k-algebra. Is it true that the k-algebra A ∩ L is also finitely generated?

In the case where K = Frac A and Spec A has a k + -action, we consider L = K k + so that A ∩ L is the subring of invariants of the k + -action. So A ∩ L = ker ∂, where ∂ is the associated LND on A. In this case the answer is known to be negative even for the polynomial rings in n 5 variables.

Explicit counterexamples can be found in [Ro], [Fr 1 ] and [DaFr] (see also [Fr 2 , Chapter 7]). For instance, Daigle and Freudenburg showed in [DaFr] that ker ∂ is not finitely generated for the LND

∂ = x 3 1 ∂ ∂x 2 + x 2 ∂ ∂x 3 + x 3 ∂ ∂x 4 + x 2 1 ∂ ∂x 5 on k [5] = k[x 1 , . . . , x 5 ].
Furthermore it is easy to see that ∂ is homogeneous under the effective Z 2 -grading on k [5] given by deg

x 1 = (1, 0), deg x 2 = (3, 1), deg x 3 = (3, 2), deg x 4 = (3, 3), deg x 5 = (2, 1) .
The corresponding T-action on A 5 is of complexity 3. On the other hand, for T-actions of complexity 0 or 1 we have the following result.

Theorem 4.1. Let A be a normal finitely generated effectively M -graded algebra, where M is a lattice of finite rank, and let ∂ be a homogeneous LND on A. If the complexity of the corresponding T-action on Spec A is 0 or 1, then ker ∂ is finitely generated.

Proof. If the complexity is 0, then by Lemma 2.6 and Theorem 2.7, ker ∂ is an affine semigroup algebra, and so it is finitely generated. If the complexity is 1 and ∂ is of horizontal type, then Corollary 3.18 shows again that ker ∂ is an affine semigroup algebra.

In the case of complexity 1 and ∂ of fiber type, we let A = A[C, D], where D is a proper σpolyhedral divisor on a smooth curve C. In the notation of Theorem 3.8 we have ∂ = ∂ ρ,e,ϕ , where ρ ⊆ σ is an extremal ray. Letting τ ⊆ σ ∨ be the codimension 1 face dual to ρ, Lemma 3.6 shows that ker ∂ = m∈τ M A m χ m .

Let a 1 , . . . , a r be a set of homogeneous generators of A. Without loss of generality, we assume further that deg a i ∈ τ M if and only if 1 i s < r. We claim that a 1 , . . . , a s generate ker ∂. Indeed, let P be any polynomial such that P (a 1 , . . . , a r )

∈ ker ∂. Since τ ⊆ σ ∨ is a face, m i ∈ τ M for m i ∈ σ ∨ M implies that m i ∈ τ ∀i.
Hence all the monomials composing P (a 1 , . . . , a r ) are monomials in a 1 , . . . , a s , proving the claim.

Remark 4.2. In the particular case where Spec A is rational, Theorem 4.1 is a consequence of Theorem 1.2 in [Ku].

Remark 4.3. To our best knowledge it is unknown whether Theorem 4.1 holds in complexity 2.

The Makar-Limanov invariant

Let A be a finitely generated normal domain, and let LND(A) be the set of all LNDs on A. The Makar-Limanov invariant of A is defined as

ML(A) = ∂∈LND(A) ker ∂ .
Similarly, if A is effectively M -graded we let LND h (A) be the set of all homogeneous LNDs on A, and we call

ML h (A) = ∂∈LND h (A) ker ∂ the homogeneous Makar-Limanov invariant of A. Clearly ML(A) ⊆ ML h (A).
In the sequel we apply the results in Section 2 and 3 in order to compute ML h (A) in the case where the complexity of the T-action on Spec A is 0 or 1. We also give some partial results for the usual invariant ML(A) in this particular case.

Remark 4.4. Since two equivalent LNDs (see Definition 1.8) have the same kernel, to compute ML(A) or ML h (A) it is sufficient to consider pairwise non-equivalent LNDs on A. The pairwise non-equivalent homogeneous LNDs on A are classified in Corollary 2.10 for complexity 0 case, and in Corollaries 3.10 and 3.29 for complexity 1 case.

We treat first the case of complexity 0. Let σ ⊆ N Q be a pointed polyhedral cone.

Lemma 4.5.

If A = k[σ ∨ M ] is an affine semigroup algebra, then ML(A) = ML h (A) = k[θ M ] ,
where θ ⊆ M Q is the maximal subspace contained in σ ∨ . In particular ML(A) = k if and only if σ is of complete dimension.

Proof. By Corollary 2.10 and Theorem 2.7, the pairwise non-equivalent homogeneous LNDs on A are in one to one correspondence with the extremal rays of σ. For the rest of this section, we let A = A[C, D], where D is a proper σ-polyhedral divisor on a smooth curve C. We also let ML f ib (A) and ML hor (A) be the intersection of the kernels of all homogeneous LNDs of fiber type and of horizontal type, respectively, so that ML h (A) = ML f ib (A) ∩ ML hor (A) .

(9)

We first compute ML f ib (A). If A is non-elliptic (elliptic, respectively) we let {ρ i } be the set of all extremal rays of σ ∨ (of all extremal rays of σ ∨ such that ρ ∩ deg D = ∅, respectively). In both cases we let τ i ⊆ M Q denote the codimension 1 face dual to ρ i and θ = τ i .

Lemma 4.6. With the notation as above,

ML f ib (A) = m∈θ M A m χ m .
Proof. By Corollary 3.12, for every extremal ray ρ i there is a homogeneous LND ∂ i of fiber type with kernel ker ∂ i = m∈τ i ∩M A m χ m . By Corollary 3.10 any homogeneous LND of fiber type on A is equivalent to one of the ∂ i . Finally, taking the intersection i ker ∂ i gives the desired description of ML f ib (A).

Remark 4.7. If A is non-elliptic, then θ ⊆ M Q is the maximal subspace contained in σ ∨ . In particular, if A is parabolic then θ = {0} and ML f ib (A) = A 0 , and if A is hyperbolic then θ = M Q and ML f ib (A) = A.

If there is no LND of horizontal type on A, then ML hor (A) = A and ML h (A) = ML f ib (A). In the sequel we assume that A admits a homogeneous LND of horizontal type.

If A is non-elliptic, we let {δ i } be the set of all cones in M Q satisfying (i) in Theorem 3.27, and δ = i δ i . If A is elliptic, we let {δ i,z } be the set of all cones in M Q satisfying (i ′ ) in Theorem 3.27 with z ∞ = z, B = {m ∈ σ ∨ : h deg D = 0}, and δ = i,z δ i,z ∩ B. Proof. We treat first the non-elliptic case. By Corollary 3.28 for every δ i there is a homogeneous LND ∂ i of horizontal type with kernel

ker ∂ i = m∈δ i ∩L i kϕ m χ m ,
where L i = L(∂ i ) and ϕ m ∈ A m is such that div(ϕ m ) + D(m) = 0. By Corollary 3.29, any homogeneous LND of horizontal type on A is equivalent to one of the ∂ i . Taking the intersection of all ker ∂ i gives the lemma in this case.

Let further A be elliptic, and let ∂ be a homogeneous LND of horizontal type on A. Let z 0 , z ∞ ∈ P 1 , and ω ∨ and L be as in Theorem 3.27 so that ker ∂ = where ϕ m ∈ A m is such that div(ϕ m ) + D(m) = 0. Now the lemma follows by an argument similar to that in the non-elliptic case.

Theorem 4.9. In the notation of Lemmas 4.6 and 4.8, if there is no homogeneous LND of horizontal type on A, then

ML h (A) = m∈θ M A m χ m .
Affine T-varieties and locally nilpotent derivations

In this setting we have A (0,0) = A (1,0) = A (0,1) = k , A (2,0) = A (1,1) = A (0,2) = k + kt , A (3,0) = A (2,1) = A (1,2) = A (0,3) = k + kt + ks , A (4,0) = A (3,1) = A (2,2) = A (1,3) = A (0,4) = k + kt + kt 2 + ks .

It is easy to see that A admits the following set of generators. u 1 = χ (1,0) , u 2 = χ (0,1) , u 3 = tχ (2,0) , u 4 = tχ (1,1) , u 5 = tχ (0,2) , u 6 = sχ (3,0) , u 7 = sχ (2,1) , u 8 = sχ (1,2) , u 9 = sχ (0,3) .

So A ≃ k [9] /I, where k [9] = k[x 1 , . . . , x 9 ], and I is the ideal of relations of u i (i = 1 . . . 9)9 . Furthermore, A m ⊆ k[s, t]/(s 2t 3 + t) ∀m ∈ σ ∨ M since D is supported at the point at infinity P . The semigroup σ ∨ M is spanned by µ 1 and µ 2 , so letting v = χ µ 1 and w = χ µ 2 we obtain A = k[v, w, tv 2 , tvw, tw 2 , sv 3 , sv 2 w, svw 2 , sw 3 ] ⊆ k[s, t, v, w]/(s 2t 3 + t) .

Thus Spec A is birationally dominated by C 0 × A 2 , where C 0 = C \ {P }.

Since C ≃ P 1 , by Lemma 3.15 there is no homogeneous LND of horizontal type on A. There are two extremal rays ρ i ⊆ σ spanned by the vectors ν i , i = 1, 2. Since deg D = ∆ is contained in the relative interior of σ, Corollaries 3.10 and 3.12 imply that there are exactly 2 pairwise non-equivalent homogeneous LNDs ∂ i of fiber type which correspond to the extremal rays ρ i , i = 1, 2, respectively.

The codimension 1 face τ 1 dual to ρ 1 is spanned by µ 2 and, in the notation of Lemma 3.6, S ρ 1 = {(-1, r) : r 0}. Letting e 1 = (-1, 1) yields D e 1 = 0 and so Φ e 1 = k. We fix ϕ 1 = 1 ∈ Φ e 1 . By the same lemma we can chose ∂ 1 = ∂ ρ 1 ,e 1 ,ϕ 1 = χ µ 2 ∂ ν 1 , where ∂ ν 1 is the partial derivative as in Notation 2.1.

Likewise, the codimension 1 face τ 2 dual to ρ 2 is spanned by µ 1 and, in the notation of Lemma 3.6, S This agrees with Corollary 4.12.

The LNDs ∂ i are induced, under the isomorphism A ≃ k [9] /I, by the following LNDs on k [9] : We let below X = Spec A, and we let π : X C be the rational quotient for the T-action on X. The comorphism of π is given by the inclusion π * : K 0 ֒→ Frac A = K 0 (u 1 , u 2 ).

∂ 1 = x 2 ∂

Theorem 1 .

 1 4.(1) To any proper σ-polyhedral divisor D on a smooth curve C one can associate a normal finitely generated effectively M -graded domain of dimension n + 1, where n = rank(M ), given by 5A[C, D] = m∈σ ∨ M A m χ m , where A m = H 0 (C, O C (⌊D(m)⌋)) .(2) Conversely, any normal finitely generated effectively M -graded algebra of dimension n + 1 is isomorphic to A[C, D] for some smooth curve C and some proper σ-polyhedral divisor D on C. (3) Moreover, the M -graded algebras A[C, D] and A[C ′ , D ′ ] are isomorphic if and only if C ≃ C ′ , and under this identification, D(m) -D ′ (m) is principal for all m ∈ σ ∨ M .

Lemma 1 .

 1 11. (i) Let A be a finitely generated normal domain and let ∂ be an LND on A. Given a nonzero element v ∈ ker ∂ and d > 0, we let A ′ denote the normalization of the cyclic ring extension A[u] ⊇ A in its fraction field, where u d = v. Then ∂ extends in a unique way to an LND ∂ ′ on A ′ . (ii) Moreover, if A is M -graded and ∂ and v are homogeneous, with deg v = dm for some m ∈ M , then A ′ is M -graded as well, and u and ∂ ′ are homogeneous with deg u = m and deg ∂ ′ = deg ∂.

  2 (1). By this remark deg ∂ ρ,e = e and by Lemma 2.4 ∂ ρ,e stabilizes A. Hence by Remark 2.2 (2), ∂ ρ,e is a homogeneous LND on A with kernel k[τ M ], as required.

  Moreover by virtue of Notation 3.5, div(m 0 ϕf ) + ⌊D(m + e)⌋ = div ϕ + div f + ⌊D(m + e)⌋ D(m) -D(m + e) -⌊D(m)⌋ + ⌊D(m + e)⌋ = {D(m)} -{D(m + e)} . Since the divisor div(m 0 ϕf ) + ⌊D(m + e)⌋ is integral and all the values of the divisor {D(m)} -{D(m + e)} are in the interval ] -1, 1[ we have div(m 0 ϕf ) + ⌊D(m + e)⌋ 0 and so m 0 ϕf ∈ A m+e , yielding the claim. Finally ∂ ρ,e,ϕ := ϕ∂ ρ,e | A is an homogeneous LND on A with kernel ker ∂ ρ,e,ϕ = m∈τ M A m χ m , as desired. Remark 3.7. We have shown actually that ϕA m ⊆ A m+e for any m ∈ σ ∨ M \ τ M and any ϕ ∈ Φ e . It is easily seen from the construction of the divisor D e that all the functions ϕ ∈ K 0 with the latter property are contained in Φ e . The following theorem gives the converse of Lemma 3.6 and so completes our classification of homogeneous LNDs of fiber type on T-varieties. Theorem 3.8. Every homogeneous LND ∂ of fiber type on A = A[C, D] is of the form ∂ = ∂ ρ,e,ϕ for some extremal ray ρ ⊆ σ, some lattice vector e ∈ S ρ , and some function ϕ ∈ Φ e .

  Lemma 3.11. Let A = A[C, D], and let ρ ⊆ σ be an extremal ray dual to a codimension one face τ ⊆ σ ∨ . There exists e ∈ S ρ such that Φ e is non-empty if and only if the curve C is affine or C is projective and h deg D | τ ≡ 0. Proof. If C is affine, then for a Z-divisor D the sheaf O C (D) is generated by the global sections. It follows in this case that Φ e = ∅. Let further C be a projective curve of genus g. If deg⌊-D e ⌋ < 0 then Φ e = ∅. On the other hand, by the Riemann-Roch theorem Φ e = ∅ if deg⌊-D e ⌋ g (see Lemma 1.2 in [Ha, Chapter IV]). Letting h = h deg D = z∈C h z , with the notation of Remark 3.4 we have h| τ = z∈C g 1,z and deg(-D e ) = z∈C g 1,z (e). By the definition of proper σ-polyhedral divisor, h(m) > 0 for any m in the relative interior of σ ∨ .

  the corollary follows from Theorem 3.8 and Lemma 3.11. Remark 3.13. By Corollaries 3.10 and 3.12, the equivalence classes of LNDs of horizontal type on A = A[C, D] are in one to one correspondence with the extremal rays ρ ⊆ σ if C is affine and with extremal rays ρ ⊆ σ such that ρ ∩ deg D = ∅ if C is projective. Remark 3.14. As stated in the introduction, Altmann and Hausen [AlHa] gave a combinatorial description of normal affine T-varieties of arbitrary complexity. In the notation of loc. cit., let C be a semiprojective variety and D be a proper σ-polyhedral divisor on C so that Spec A[C, D] is a T-variety of complexity dim C.

  Let us consider two basic examples, one with a non-elliptic T-action and the other one with an elliptic T-action. They are universal in the sens of Lemma 3.22 below. We use both examples in our final classification, cf. Lemma 3.25 and Theorem 3.27.

  Lemma 3.25. Let D be a proper σ-polyhedral divisor on C = A 1 or C = P 1 . Let ω ∨ be a maximal cone in the quasifan ∆(D) or ∆(D| A 1 ), respectively, such that h z | ω ∨ = 0 ∀z ∈ k * . Let ∂ be the derivation of degree e given by formula (4). Then ∂ extends to a homogeneous LND on A = A[C, D] if and only if, for every m ∈ σ ∨ M such that m + e ∈ σ ∨ M the following hold.

(

  iv ′ ) ⌊dg r,0 (m + e)⌋ -⌊dg r,0 (m)⌋ 1 + dh(e) ∀r ∈ {1, • • • , ℓ 0 } and ∀m ∈ δ r,0 ∩ M . These inequalities are fulfilled if g r,z (e) 1 ∀z ∈ k * and ∀r ∈ {1, • • • , ℓ z }, and g r,0 (e) 1 d + ⌈h(e)⌉ ∀r ∈ {1, • • • , ℓ 0 } . (8) Since e belongs to the relative interior of ω ∨ , we have g r,z (e) > g 0,z (e) ∀z ∈ A 1 , g 0,0 (e) = h(e), and g 0,z = 0 ∀z ∈ k * . By the linearity of the functions g r,z we can choose e such that (8) holds, proving the corollary.Corollary 3.29. In the notation on Theorem 3.27, two homogeneous LND ∂ and ∂ ′ of horizontal type on A are equivalent if and only if ω ∨ (∂) = ω ∨ (∂ ′ ) and, in the elliptic case, z ∞ (∂) = z ∞ (∂ ′ ).

  For any extremal ray ρ ⊆ σ and any e ∈ S ρ as in Lemma 2.4, the kernel of the corresponding homogeneous LND is ker∂ ρ,e = k[τ M ],where τ ⊆ σ ∨ is the codimension 1 face dual to ρ.Since θ ⊆ σ ∨ is the intersection of all codimension 1 faces, we have MLh (A) = k[θ M ]. Furthermore, the characters in k[θ M ] ⊆ Aare invertible functions on A and so, by Lemma 1.7 (iii), ∂(k[θ M ]) = 0 ∀∂ ∈ LND(A). Hence k[θ M ] ⊆ ML(A), proving the lemma.

  Lemma 4.8. With the notation as before, if ∂ is a homogeneous LND on A of horizontal type, then ML hor (A) = m∈δ L kϕ m χ m , where L = L(∂) and ϕ m ∈ A m satisfy the relation div(ϕ m ) + D(m) = 0.

L

  kϕ m χ m , where ϕ m ∈ A m satisfies div(ϕ m )| P 1 \{z∞} + D(m)| P 1 \{z∞} = 0.By permuting the roles of z 0 and z ∞ in Theorem 3.27 we obtain another LND ∂ ′ on A. The description of ker ∂ and ker∂ ′ shows that ker ∂ ∩ ker ∂ ′ = ω ∨ L ∩B kϕχ m ,

  ρ 2 = {(r, -1) : r 0}. Letting e 2 = (1, -1) yields D e 2 = 0 and so Φ e 2 = k. We fix ϕ 2 = 1 ∈ Φ e 2 . By Lemma 3.6 we can chose∂ 2 = ∂ ρ 2 ,e 2 ,ϕ 2 = χ µ 1 ∂ ν 2 , where ∂ ν 2 is as in Notation 2.1.The kernels of ∂ 1 and ∂ are given by ker∂ 1 = m∈τ 1 ∩M A m χ m and ker ∂ 2 = m∈τ 2 ∩M A m χ m . Since τ 1 ∩ τ 2 = {0} we have ML(A) = ker ∂ 1 ∩ ker ∂ 2 = A (0,0) = k .

  This leads to the following definition.

	Definition 1.9. Let ∂ be a nonzero homogeneous derivation on A. The degree of ∂ is the lattice
	vector deg ∂ defined by deg ∂ = deg ∂(f ) -deg(f ) for any homogeneous element f / ∈ ker ∂. With M is just the translation by the vector deg ∂. this notation the map ∂ M : M ∂ → σ ∨ We also say that an LND ∂ on A is negative if deg ∂ / ∈ σ ∨ M , and M , non-negative if deg ∂ ∈ σ ∨ positive if ∂ is non-negative and deg ∂ = 0.

In the case of complexity 1, the descriptions in [AlHa] and [Ti2] are equivalent and agree with the one in [KKMS, Chapters

and 4], see [Ti2, Section 6] and[Vo].2 Which is actually equivalent, see Example

3.5 in [AlHa].

We say that an M -graded algebra A is effectively graded by M if the set {m ∈ M : Am = 0} is not contained in a proper sublattice of M .

A cone in a vector space is called pointed if it contains no subspaces of positive dimension.

For a Q-divisor D, ⌊D⌋ stands for the integral part and {D} for the fractional part of D.

For a field K0 and a lattice M , K0(M ) denotes the function field of K0[M ].

See Definitions 1.9 and 1.14.

The classification results in [FlZa2] are stated for surfaces over the field C but they are valid over any algebraically closed field of characteristic 0 with the same proofs.

Using a software for elimination theory, we were able to find a minimal generating set of I consisting of 22 polynomials.

Furthermore, for any e ′ = (e, r) ∈ M × Z we have deg M ∂ = e and ker ∂ = k[τ M ]. Therefore, in the notation of Lemma 3.17, ω ∨ = σ ∨ and L = {m ∈ M : h(m) ∈ Z}.

To be more concrete, we let d and m 1 be as in the previous example. By a routine calculation we obtain that S ρ is as in (3) and ∂ is as in (4).

Remark 3.21. (1) In both examples, the homogeneous LND ∂ extends to a derivation on K 0 [M ] given by ( 4).

(2) With the same formula (4), ∂ extends to a homogeneous LND on

(3) In particular, if p = 0, then ρ is the extremal ray spanned by (0, 1), d = 1, and L = M . Furthermore, we can choose m 1 = 0 so that S ρ = (M × {-1}) ∩ σ ∨ 1 , and the homogeneous LND ∂ of horizontal type on A is given by ∂ = λχ e ∂ t , where (e, -1) ∈ S ρ .

We return now to the general case. We recall that

and ∂ is a homogeneous LND of horizontal type on A.

In the next lemma we show that the subalgebra of A generated by the homogeneous elements whose degrees are contained in ω ∨ , is as in the previous examples.

Lemma 3.22. With the notation of Lemma 3.17, we let

as M -graded algebras, where (i) D ω = (p + ω) • [0] for some p ∈ N Q , in the case where C = A 1 , and

in the case where C = P 1 .

Proof. By Lemma 3.17 (3), the support functions h z restricted to ω ∨ are linear for all z ∈ A 1 in the non-elliptic case and for all z ∈ P 1 \ {z ∞ } in the elliptic case. In the non-elliptic case this shows that D ω = z∈C (p z + ω) • z, where p z ∈ N Q . In the elliptic case, we may suppose that z ∞ = ∞ and so

By Lemma 1.7 (vi), without loss of generality we may assume that deg ∂ ∈ ω ∨ M . Letting e = deg ∂ we consider the 2-dimensional finitely generated normal Z 0 -graded domain

If C is affine then (B e , ∂| Be ) is a parabolic pair in the sense of Definition 3.1 in [FlZa 2 ]. Now Corollary 3.19 in loc. cit. shows that, for any r ∈ Z 0 , the fractional part {D ω (re)} is supported in at most one point 8 . While for C projective, (B e , ∂| Be ) is an elliptic pair in the sense of loc. cit. Then Theorem 3.3 in loc. cit. shows that B e is an affine semigroup algebra. According to Example 5.1 in [Ti 2 ], for any r ∈ Z 0 , the fractional part {D ω (re)} is supported in at most two point.

Given m ∈ L, the derivation ϕ m χ m ∂ on A with ϕ m as in Lemma 3.17 ( 1) is again locally nilpotent. Applying the previous analysis to this LND shows that, for any r ∈ Z 0 , the fractional part {D ω (r • (e + m))} is supported in at most one point in the non-elliptic case and in at most two General case. We may assume that h is not integral i.e., d > 1. We consider the normalization

, where ϕ de := t -h(de) so that A ⊆ A ′ is a cyclic extension. With the notation of Lemma 1.6 we have

By the minimality of d we deduce that gcd(h(de), d) = 1 and so d √ ϕ de = t a+b/d , where gcd(b, d) =

and

, where ϕ m = t -⌊h(m)⌋ . We define further

We let h ′ be the linear extension of h ′ 0 | ω ∨ . Clearly h ′ = dh. The previous case shows that ∂ ′ stabilizes A ′ if and only if, for any m ∈ σ ∨ M such that m + e ∈ σ ∨ M , the following conditions hold. 

In the following theorem we describe all the homogeneous LND of horizontal type on a T-variety of complexity one. It is our main classification result which summarizes the previous ones. (i) If C = A 1 , then ω ∨ is a maximal cone in the quasifan Λ(D), and there exists

Without loss of generality, we may suppose that z 0 = 0, z ∞ = ∞ in the elliptic case, and h z (m)| ω ∨ = 0 ∀z ∈ k * . Let h and d be as in Lemma 3.25, let m 1 be as in Example 3.19, and let L be as in Remark 3.23 (2).

If ∂ is a homogeneous LND of horizontal type on A, then

Proof. The assertions follow immediately by virtue of ( 9) and Lemmas 4.6 and 4.8.

In the following corollary we give a criterion of triviality of the homogeneous Makar-Limanov invariant ML h (A).

Corollary 4.10. With the notation as above, ML h (A) = k if and only if one of the following conditions hold.

(i) A is elliptic, rank(M ) 2, and deg D is contained in the relative interior of σ ∨ .

(ii) A admits a homogeneous LND of horizontal type and θ ∩ δ = {0}.

In particular, in both cases ML(A) = k.

Proof. By Lemma 4.6, (i) holds if and only if ML hor (A) = k. By Theorem 4.9, (ii) holds if and only if there is a homogeneous LND of horizontal type and ML h (A) = k.

Remark 4.11. It easily seen that ML h = k for A as in Example 3.32.

A non-rational threefold with trivial Makar-Limanov invariant

To exhibit such an example, we let σ be a pointed polyhedral cone in M Q , where rank(M ) = n 2. We let as before A = A[C, D], where D is a proper σ-polyhedral divisor on a smooth curve C. By 1.12 Frac A = K 0 (M ) and so Spec A is birational to C × P n (cf. Corollary 3 in [Ti 2 ]).

By Corollary 4.10, if A is non-elliptic and ML(A) = k, then A admits a homogeneous LND of horizontal type. So C ≃ A 1 and Spec A is rational. On the other hand, if A is elliptic Corollary 4.10 (i) is independent of the curve C. So if (i) is fulfilled, then ML(A) = 0 while Spec A is birational to C × P n . This leads to the following corollary.

Proposition 4.12. Let A = A[C, D], where D is a proper σ-polyhedral divisor on a smooth projective curve C of positive genus. Suppose further that deg D is contained in the relative interior of σ. Then ML(A) = k whereas Spec A is non-rational.

In the rest of this section we give a simple geometric example illustrating this proposition. Letting N = Z 2 , we fix the standard dual bases {µ 1 , µ 2 } and {ν

Furthermore, we let A = A[C, D], where C ⊆ P 2 is the elliptic curve with affine equation s 2t 3 + t = 0, and D = ∆ • P is the proper σ-polyhedral divisor on C with P being the point at infinity of C.

Since C ≃ P 1 and deg D = ∆, A satisfies the assumptions of Corollary 4.12. Letting K 0 be the function field of C, by Theorem 1.4 we obtain

The functions t, s ∈ K 0 are regular in the affine part of C, and have poles of order 2 and 3 on P , respectively. By the Riemann-Roch theorem dim H 0 (C, O(rP )) = r ∀r > 0. Hence the functions {t i , t j s : 2i r and 2j + 3 r} form a basis of H 0 (C, O(rP )) (see [Ha] Chapter IV, Proposition 4.6).

The orbit closure Θ = π -1 (0, 0) over (0, 0) ∈ C is general and it is isomorphic to A 2 = Spec k[x 1 , x 2 ]. The restrictions to Θ of the k + -actions φ i corresponding to ∂ i , i = 1, 2, respectively are given by φ 1 | Θ : (t, (x 1 , x 2 )) → (x 1 + tx 2 , x 2 ) and φ 2 | Θ : (t, (x 1 , x 2 )) → (x 1 , x 2 + tx 1 ) .

Furthermore, the there is a unique singular point 0 ∈ X corresponding to the fixed point of the T-action on X. The point 0 is given by the augmentation ideal

A m χ m , On the other hand, let A = A[C, D], where D is a proper σ-polyhedral divisor on a smooth projective curve C. By Theorem 2.5 in [KaRu], if Spec A is smooth, then Spec A ≃ A n+1 (see also Proposition 3.1 in [Su]). In particular, Spec A is rational.