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Abstract

We study the growth rate of a cell population that follows ge-atructured PDE with
time-periodic coefficients. Our motivation comes from tloenparison between experimental
tumor growth curves in mice endowed with intact or disruptiedadian clocks, known to exert
their influence on the cell division cycle. We compare thenghorate of the model controlled
by a time-periodic control on its coefficients with the growate of stationary models of the
same nature, but with averaged coefficients. We firstly degsivdelay differential equation
which allows us to prove several inequalities and equalita the growth rates. We also
discuss about the necessity to take into account the steuctfuthe cell division cycle for
chronotherapy modeling. Numerical simulations illusrtte results.

Key words: cell cycle, circadian rhythms, chronotherapy, structue&Es, delay differ-
ential equations.

AMS subject classification: 35F05, 35P05, 35P15, 92B05, 92D25.

1 Cell cycle control and circadian rhythms

The cell division cycle is the process by which the eukaryotll duplicates its DNA content
and then divides itself in two daughter cells. This processarmally controlled by various
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physiological mechanisms that ensure homeostasis ofhlyetidtsues, that control genome
integrity (e.g. cyclins and cdks, p53, repair enzymes),danching programmed cell death
(apoptosis) if the DNA is irreversibly damaged (s¢q [21] docomplete presentation). The
system of control has been extensively studied and modskesl €.g. [[14[ 14, 3] of [R6])
using ordinary differential equations. The cell divisioancbe modeled through branching
processes (se€][2]), integral equations, delay diffeabrtjuations (sed][4]) and also many
structured PDE models (for an overview, Sgd]1, B, 19]) whiegestructuring variables can be
age ([2R)), size ([34]) or more recently cyclin conterf} @6[L1]).

Most living organisms exhibit circadian rhythms (from Lratirca diem “roughly a day”)
which allow them to adapt to an environment that varies withegodicity of 24h. These
rhythms can be observed even in the smallest biologicatifumal unit, the cell. The problem
we are studying is the growth of cell populations (undergdhre cell division cycle described
above) under the pressure of circadian rhythms. Circadligthm effects on the cell cycle turn
out to be important in tumor proliferation. This is obsen®dseveral experiments involving
a major disruption of circadian rhythms in mice. In theseesipents it can be seen that the
growth of tumors is significantly enhanced in mice in whick fracemaker circadian clock
has been drastically perturbed, either through neurosyrge through light-dark cycle dis-
ruption (see e.g[T13, 112]). Moreover, in the clinic, takimgvantage of the influence exerted
by circadian clocks on anticancer drug metabolism and oodhelivision cycle has led in the
past 15 years to successful applications indfm@notherapy of cancerparticularly colorectal
cancer (sed [18]). This motivates modeling the circadiatthrn in simple cell cycle models
and studying these effects on the growth rate of a cell ptipuala
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Figure 1: Effects of the perturbation of light-dark cycle toimor proliferation (reproduced from
[L2]). In clock-perturbed mice (black dots), the tumor [fevates much faster than in control mice
(white dots).(By courtesy of Elizabeth Filipski).

Contrary to our first idea, the growth rate of a cell populatiescribed by a physiologically
structured PDE model with time-periodic control is not resagily lower than in a model of
the same nature, but with a time-averaged conftd]][[7, 8, 9].
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The goal here is twofold. Firstly we analyze how modelinguagstions lead to define
various growth rates under the effects of circadian rhyth8econdly we model the effect of
chronotherapy on these growth rates.

In the second section we recall the definition of these varignowth rates, in terms of
Perron and Floquet eigenvalues of a linear Von FoersterkKktedrick model. We also discuss
known inequalities between them. In the third section welsta simple division model,
for which we establish (in Theorefh 2) strict inequalitiesnparing the growth rate in the
stationary (Perron) and periodic (Floquet) cases. Thesgualities are proved by studying a
related time delay system (which is similar to the one carsid in [}]). This model is used
to confirm the impossibility to derive a general comparisetwzen the Perron and Floquet
eigenvalues defined in the second section. In the fourtlioseete give an argument for using
multiphase models to represent chronotherapy, takingmigtio account the structure of the
cell cycle and particularly the existence of various pha¥és provide numerical simulations
to illustrate our results. In a first appendix, we give theaded proof of the existence of the
solution of the eigenproblem, by applying the Krein-Rutntla@orem. In a second appendix,
we derive analytical formulae for the eigenelements in aifipenultiphase case, which yield
further information on their behavior and can be used talesdi numerical experiments.

2 The model

2.1 The renewal equation

We base our study on a cell population that follows the atassenewal equation structured
in age with periodic coefficients representing the effeatiafadian rhythms

{ Qn(t,x) + ain(t,x) +d(t,z)n(t,xz) =0,
(t,z =0) fo n(t,z)dz.

(1)

Heren(t,z) represents the density of cells of agen the cycle at timet, d(t,z), B(t, )
represent respectively the death rate, and the birth ratth tBese coefficients afé-periodic
in time. We define the growth rate of the population in termarogigenproblem. The growth
rate A\ (F for Floquet as for ODEs with periodic coefficients) is deinas the unique real
number\z, such that there is a solutioi to the problem

IN(t,z)+ ZN(t,z) + [\ +d(t,2)|N(t,z) =0,
N(t,z =0) = [ B(t,z)N(t,z)dz, 2
N >0, T — periodic

We refer to [2] for conditions of existence fag- (and to the appendix for the case of division
models).



2.2 Comparison of eigenvalues

We use the following notations. Forfaperiodic functionf we define,

1 (7 : :
(fy = T/ f(t)dt  the arithmetical average,
0

T
(f)g = exp (%/0 log f(t)dt) the geometrical average, whe¢n> 0.

It may seem natural to introduce the following stationargtppem (Perron eigenproblem),
in which the death and birth rates are averaged

L Np(@) + [\p + (d())]Np(z) = 0,
Np(0) = [7°(B(x))Np(z)dz =1, 3)
Np(zx) > 0.

It is shown in [B,[P] that, whe® does not depend on time, the inequality > \p holds.
In the present paper, we show that this inequality does rmoy caer to the case of a time
dependentB. It should be noted, however, that there is a general ingguabtablished in
[[], which relates\ - with the solution of the following eigenproblem in which artlametical
average of the death rate is taken, whereas the geometraralge of the birth rate is taken,

5 Ng () + [Ag + {d(2))]Ng(2) = 0,
Ny(0) = [y (B(@))gNyg(z)dz = 1, (4)
Ny(z) > 0.
Theorem 1 ([[I]). The eigenvalues defined i (2) affl (4) satisfy
AR > Ay

This result suggests that there is no general inequalitwdesi A\ and A, because the
inequality which follows from convexity isr > A,. Moreover, it follows from the standard
arithmetico-geometrical inequality,

Ap > Ag.

Such a general comparison cannot hold betweemand A p, as shown in the next section. To
go further we use a more specific model.

3 A simple one-phase division model

3.1 Model and main results
We model the cell cycle with the following PDE which is a peutar case of{{1),

{ Gn(t,x) + Fn(t,x) + [d(t) + Ko ()X[a, oo (2)]n(t, 2) = 0,
n(t,0) = 2Ko(t) [~ n(t,z)dx,
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whereK, > 0 is a constanty > 0 is a7-periodic function with

() =1. (1)

The termKo1 () x4, 0] FEPresents the division raié(t) is the apoptosis rate (we assume it to
beT-periodic). We have denoted ky; the indicator function of sef. Finally, ¢)(¢) represents

a nonnegative periodic control exerted on division. As tefee look for the growth ratdp

of such a system. It is defined so that there is a solution t&libguet eigenproblem,

%N(t,:ﬂ) + iN(t,:ﬂ) + [)‘F + d(t) + Kow(t)X[a,—f—oo[(x)] N(t’x) = 07
N(t,0) = 2Ko(t) [° N(t (2
N > 0, T-periodic

and we normalizeV by

T oo
/ / N(t,z)dxdt = 1.
0 0

As we already know a general comparison result for the getzakeigenvalue\, defined
in @), we are now only interested in the comparison\pfand \ p, the latter quantity defined
by requiring the existence of a solution to the Perron eigasipm already defined ifif(3) which

here reads
= Np(x) + [Ap + (d) + KoX{a,+00[(2)]Np(2) = 0,

NP(O) = 2K0 faoo Np(.%')d.%', (3)
Np >0,

and we normalizeVp by
Np(0) = 2K0/ Np(xz)dzr = 1.

We are interested in evaluating the effect of the perioditrab«(¢) on the growth of the
system. Therefore we denote Ry (a, ) and byAp(a) the above defined eigenelements so
as to keep track of the problem parameters.

The following theorem implies that there is no possible gaheomparison betweekg
and\p.

Theorem 2. For all continuous positive-periodic functions) satisfying [[L), we have
Ar(a=T,¢) = Ap(T) = Ap(a =T, 1), (4)
and fora in a neighborhood of T, we have, providédz 1
Ar(a, ) > Ap(a) = Ap(a,1) for a<T,
Ar(a, ) < Ap(a) = Ap(a,1) for a>T.



The proof of this theorem is presented in the next sectiorse domputations done in
section 4.1 insure that, without loss of generality, we agpssed = 0.

Numerical results are presented in figufes 2 Bnd 3 whichtitltes this theorem. Graphi-
cally, for fixed, this predicts firstly that the curves af-(a, 1)) (Floquet curve) and\p(a)
(Perron curve) must cross each other doe= T, secondly that the Floquet curve should be
above the Perron curve before (i.e., fox T') the crossing and below this curve after it (i.e.,
for a > T). A possible interpretation is that for a better adaptafionthe sense of higher
proliferation), the cell cycle should be shorter tiaih; an effect already observed [1j [4].

3.2 Proof of Theorem 2, part 1 (a delay differential equation

Throughout the proof, we use the shorter notatidpsand\ p instead of\(a, ¢) andAp(a)
when there is no possible confusion.

To find more information or\» we derive a delay differential equation.

We integrate [2) with respect to age oyeroo|. We get

% / T N(t2)de + N(t,00) — N(t,a) + P + Kow(t)] / " N(t,x)dz = 0.

From the formula of characteristics and the boundary candin (3),

N(t,a) = N(t — a,0)e*r9,
N(t,a) = 2Koe 4t — a) [° N(t — a,z)dz.

We setP(t) = [ N(t,z)dz. Since we haveV(t,00) = 0 (see the appendix) we obtain
the delay differential equation

P(t) + ()\F + Kow(t))P(t) — 2Kt — a)P(t — a)e ¥, )

3.3 Proof of Theorem 2, part 2 (equality of growth rates fora = T)
The comparison betweexyp and )\ is based on the following formula foxp.
Lemma 3. The Perron eigenvalue defined [ih (3) satisfies

Ap + Ko Apa
Y _— =1.
a >0, 5K, e (6)

Proof. From (3), we have, for > a, Np(z) = e~ (rHKozt+Koa We insert that in the
boundary condition and obtain

1 =2K, /OO e*(APJrKo):erKoadx’
a

1
Ap + Ky

—Apa

1 222}(0 (&



Corollary 4. The Perron eigenvalue defined [ (3) satisfies
Va > 0, Ap > 0.

Proof. This follows from Lemma]3 and the remark

< — M <
Va > 0,V <0, oK e <5
]
To obtain [#), we divide[{5) by? and find
P(t) _ P(t_a) —Ara
P(t) = —)\F - K(ﬂ/)(t) + 2K0¢(t - CL) P(t) (& .
When we take the average over a period, we get (sihissl'-periodic in time by its definition
asN is)
_ P(t—a)
— Ara _
0 (Ar + Kp) + 2Kpe <¢(t a) P >,
AR+ Ko \pa _ _ P(t —a)

Now we consider the particular cage= T'. As P is T-periodic P(t — a) = P(t). Hence, for
a =T, we arrive at

e — g — = - 1.
T Wt =) =gy ) = W) (8)
This equality is the same forr as the one described in lemma 1 fgs. As we know that the
mapping

A+ Ky

Aa
oK, e,

A

is increasing omf— K, +oo[ from 0 to 400 and is negative elsewhere, there is only one solution
to (8) which is also given by[]6) and the res{ilt (4) is proved. O

3.4 Proof of Theorem 2, part 3 (local comparison around: = 7))
We fix ¢ # 1. We study the variations G¥522e*#® arounda = T'. From (J), we know:

M@/\F“:<¢(t—a)]g(]i(;)a)>:<¢(t) P(t) >

2K0 P(t + CL)
therefore
0 Ar+ Ko .4 0 P(t)
£ 7Y - t
da 2K, * da W )P(t—i-a) '

0 - 0
= (o050 ) + (90 2 (Ple + ) )
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Recalling thatP depends om (asN and A do), we have

0 oP i
%P(t +a) = %(t +a)+ P(t+a).
We then split the computations
0 \rp + Ky Apa a_P 1 B P(t) a_P .
da 2K, <w<t) da (t)P(t+a)> <¢(t)P2(t+a) <aa (t+a) +P(t+a)>>’

(t+a) (t+a)

—<¢(t)%f?(t —|—a)>.

Fora = T, the first term vanishes, arfél(t + a) = P(t) i.e.,

22 B re - (i) = - (v )

da 2K P2(t) P(t)
To compute this we again make use of the OFE (5) which we niyllh'p%
P() _ 2 Plt—a) sa
¢(t)% = —ApY(t) — Koy~ (t) + 2Ko(t — a)iﬁ(t)we :
Averaging on a period we still get, far= T,
Using (), we arrive at
PON Ko 4 (02 () —
UOpey ) = A= Kolwh) + @) + Ko) = Ar((w?) — 1),
We now have the derivative at= T,
0 )\F =+ KO Apa 2y
By 2 € —Ar((¥7) —1). ©)

We use here the notationg,(T') for 222 and\p(T) = A\p(T) to recall that we are

Oa |u—1

studying the local behavior ofz and\p arounda = T, (v is fixed). We can directly compute

0 Ar+ Ko )\, N / Ko+ Ar(T) \peyr
TR0 Apa T T))————Le'\F
dal_r 2K, Ar(T) 2K, + AR (T)T + Ar(T)) 29K, ’

Therefore, using[[4) and](6), we obtain

AP(T)T

0 A+ Ko :)\%(T)< +T> +Ar(T),
2K,

%‘a:T 2K0

8



so that, using[{4) and](9), we have

—Ap(T)(4?)
Ne(T) = — o
T 2Ky
Similarly we have
—Ap(T)
p(T) = — ar
T+ 2Ky
Therefore,

2 —
) ) =
+ 2K,

Thanks to corollary]4)p(T) is positive. The assumptiof] (1) leads to
@) —1=(w-1? >0

Finally we obtain
Xp(T) = Xp(T) > 0, (10)

and the second statement of the theorem follows then imiteggligom (4) and [(2J0). O

4 Modeling chronotherapy

In the following we propose a model for chronotherapy by tiieoduction of a periodic death
rate due to the effect of a drug on our cell division cycle miode

4.1 Limit of single-phase division models

We consider a population of cells following a general dimisequation with apoptosis rate
As above, all coefficients afB-periodic with respect to time.

In(t,z) + Ln(t,z) + (d(t,z) + K(t,2))n(t,z) = 0,
{ n(t,0) =2 [;° K(t, z)n(t, z)dz.
We consider the Floquet eigenproblem associated with thiateon
IN(t,2)+ ZN(t,z)+ (dt,z) + K(t,z) + A\p)N(t,z) = 0,
N(t,0) =2 [ K(t,z)N(t, z)d,
N >0, [ [*N(tz)dedt =1

We propose to model the effect of chronotherapy by addingefi-periodic, age-independent
death ratey(t) representing the effect of a drug (for instance we may censigroportional
to the quantity of drug in the body). The cell population n@hdws the equation

{ %n(t,x) + a%n(t,ac) + [d(t,x) + K(t,z) +v(t)n(t,x) =0,
n(t,0) =2 [;° K(t,z)n(t, z)dz.
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The Floguet eigenproblem for this equation reads
INV(t,2) + ZNV(t,z) + (dt,z) + K(t,2) +~(t) + \p )N (t,2) =0,
N7(t,0) =2 [[° K(t, )N (t, z)dx,
N7 >0, T —periodic [ [ N7(t,z)dzdt = 1.
Lemma 5. The Floquet eigenvalug). defined above satisfies
Ao =Ar— (7).
Proof. We definey = v — (v), T'(¢ fo 7(s)ds. Noticing thatl" is T-periodic, we define the
function M by M (t,z) = N(t ) (), It satisfies
D M(t,x) + L M(t,z) + (d(t,z) + K(t, ) + () + Ap — (7)) M(t,z) =0,
M(t,0) =2 [;° K(t,2)M(t,z)dz,
M >0, T — periodic

ThereforeA]. = A\p — (7) and up to a renormalizatioh/ = N". O
This result expresses that with such a simple model, chihenapy is inefficient, since
changing the moment of administration of a drug (in symbok&nging~(¢) into (¢ + 0)
whered is a real number) has no effect on the growth rate. In othedsyan such one-phase
models, this effects depends ¢y). Only the total daily dose of the drug is relevant!

4.2 Using multiphase models

We now consider more realistic multiphase models. We usadid@ional ingredient that the
real cell division cycle is multiphasic because of the exise of checkpoints between phases
(mainly at the G1/S and G2/M transitions) at which it can bested if genome integrity is not
preserved. We consider a cell cycle model withhases wheré > 1 (for instancel = 4 if we
want to represent the classical phases G1-S-G2-M). We dtypayulations of cellsp;(t, )
being the density of cells of agein phase at timet. We use the conventioh+ 1 =1

( %nl(tvm) + agnl(t,.%') + [Ki—>i+1(t7x) + dl(tvm)]nl(tvm) - 07
ni1(t,0) = [ Kimip1 (8, y)ni(t, y)dy, 1 <1
nl(t,O) = 2]0 Klal(tay)nl(tay)dya

ni(0,x) = nd(x) given.

(1)

Here K; ;1 represents the transition rate from phatei + 1. At the end of phasé division
occurs with ratd<;_.;. To be as general as possible, we have considered death ratghase
1. As above, the coefficients are tirfieperiodic and we can consider the Floguet eigenproblem

10



QNi(t,x) + QNZ(t,SC) + [Kiﬂprl(t,x) + di(t,x) + )\]Nz(t,zﬂ) =0,
erl t 0 fO Z*>Z+1 t y) i(t,y)dya 1<
Nl(tao = 2]0 Klﬂl(t’y)NI(t’y)dy,

N; >0, T — periodic Zfol Jo© Nidzdt = 1.

)

We also consider the adjoint eigenproblem

Soi(t, ) + L it x) — [Kimis1 (t, ) + di(t, ) + Ni(t, 2) = Kimiz1i41(t,0),
Dor(t,x) + Lor(t,x) — [Ki_a(t,x) + di(t,x) + Nor(t, z) = 2K-161(t,0),
¢; >0, T —periodic 3 [0° Nipidedt = 1.

Z ©

To model the effect of chronotherapy, we consider a cytotoxiig acting only on a specific
phase (for instance 5-Fluorouracil acts on S-phase, [s§i€fdiihstance and the references
therein) and, as in the previous section we represent itsnaby an additional death rate in
phasej, v(t) (we replace in phasg d; by d; + v) . We also define eigenelements for the
modified equationf\”, N7, #7). We multiply the first line of [[2) (version with, replaced by
d; + v, N; by N] and\ by \7) by ¢;, and (B) byN;’. Summing oveii and integrating over
age and time, we obtain

(A—m)z/ol /OOON;’%d:Udt:/Olv(t) /OOON;Yqzﬁjd:cdt. (4)

We shall not have here the problem encountered with oneepimasiels. We study the effect
of a death rate/(t + ). We denote\*?, N the eigenelements associated to an additional
death ratev(t + 0) in phasej. We defineF'(¢, §) by

Jo et +0) [5° N7 p;dudt

F(e,0) =A— X" = —
S o JoT N7 didadt

()

As we have\ = \°? for anyé, F(0,6) = 0. Particularly it does not depend énThe question
is: doesF (¢, 0) depend ord for fixede? To assess this question, we compute using dominated
convergence

e—0 I

OA (e, 0 F(e,0 ! 00
2O g TEOD o) [T Njoyauae 6)

Therefore if neither the function(.) nor the function(; N;¢;(., z)dx are constant (contrarily
to one-phase models, there are no compensating effect mﬁfﬁd\qubj(., x)dx constant, see

F(e, 0 .
M depends o (we mean it
is not a constant function @f) and so is (at least for smad) F'(,.). In this case the Taylor

for instance the computations of the appendix), thﬁg
E—
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first order approximation arour@ of \: A(e,6) ~ A + e [} y(t + 0) [ Njp;dzdt is not

a constant function of and neither is\(¢, #), at least for small values of. We illustrate
this property numerically in the next section (see figjrel&3eems that the Taylor first order
approximation is a very good approximation of the growtle fat a reasonable range of values
of the amplitudes.

5 Numerical simulations

We illustrate the theorems proved above by several nuniesiivaulations. We firstly present
the numerical scheme, then we give several algorithmicestims. Finally tests are presented.

5.1 Discretization

In our numerical simulations we consider a pure division etod

{ %n(t7 .%') + a%gn(t? .%') + KO"/}(t)X[a,Jroo[(w)n(tv 1‘) =0,

1)
n(t,0) = 2K (t) [ n(t, z)dx.
Consider time and age incrememnis, Az and denote by:; and*, the quantities:; =
KoX[a,+o0[(1AT) andy* = ¢(kAt). Choosing first order finite differences, we obtain from
equation [(I) the following approximation with an error oflerO(|At| + |Ax|)

nktt ko pk—nk

R e NI R §
x

where{0... I} is the set of all values of to be considered in the discretization. Taking
At = Ax (CFL = 1), we obtain the following compact discretization scheme:

k

k+1 _ nyi_q .
N = Tawey 112
2)
k1 (
nott =20k 3 kinkAt.
0<i<I

Assumey is periodic of period” > 0 and consider a grid oved, 7] x [0, [ At], consisting
of squares with sides of lengtht = T'/Np, for someNy € N (and ! large enough, partic-
ularly IAt > a andI + 1 > N7). Then, the populations at tim& + 1)At for all ages in
[0, IAt] can be obtained from the corresponding populations at titkeas follows:

nit! zwkTOAt cee 2Rk, At 2Rk At nk

k41 1 k

n1+ 1+Atpk+t1 gy 0 0 ni
— _ 3)

k+1 1 k

TLI 0 1+Atwk’+1nl 0 TlI

It is clear that the matrix if[J3) depends only on the time indend is periodic of period
Nr. We denotel}, this matrix and the vectors respectively andn**!. The equation[{3)
can be writtem*t1 = M.nk.

12



5.2 Approximating the eigenvalue

The algorithm has already been discussed ih [25]. We reualithe growth rate is defined as
the unique realr such that[[1) admits solutions of the forWi(t, z)e*** with N > 0 and
N(.,z) is periodic. We can approximate it thanks to:

Lemma 6 (Discrete Floquet theorem).
There exists a unique realand a unique sequence of vectols* ).y , N = <NZ’“)

0<:i<I
such that ;
NE>0, Y NP =1, (4)
=0
k— (N*) is Np-periodic, (5)
n*,  defined byn® = N eMFAT s solution to(B) (6)

Proof. The proof is standard and we recall it for the sake of compes. It is based on the
Perron Frobenius theorem. First we prove uniqueness. Simpthere exists such®, we
have

nl — ]\4’0n07
n2 = Mlnl = MlMonO,
(7)
nk+1 = Mknk = MkMkfl . MlMoTLO, (8)
Nr 0
n = Myy,-1Mpy—o--- MiMon". (9)
We define
M = My, 1 Mn, 2 MMy,
thus, () reads™¥™ = Mn®. O

Lemma 7. The matrixM is honnegative and primitive (and therefore is irreducjble

Proof. The nonnegativity is obvious. To prove the primitivity, tkey pointis/ +1 > N and
IAt > a+ 2At. For somes > 0 we have for any, if we denote byld,, the identity matrix of

orderk,
0...0 11
> —
Mk_5< 14 0) eW.

Notice thatl¥ is the Wielandt matrix of ordef + 1 which is known to be primitive (se¢ [IL5]).
Therefore for some, WP > 0 and thus fog N > p,

MY > cINT 7 aNT 0,

which yields the primitivity ofV, the spectral radius of which, denoted herephy then posi-
tive. We denote by its spectral radius. We haye> 0.
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Back to the proof of the discrete Floquet theorem, we have

Nt — ANTALANT _ NT A0 AT, 0

Hence we hav&In® = e*T'n%. This means that” is a positive eigenvector dfl associated
to a positive eigenvalue’”. From the Perron-Frobenius theorem! = p andn® = NV is
the (unique) associated eigenvector. The solution is @niqu

Conversely, if we know the Perron eigenvectorand the Perron eigenvalyeof M, then the

keN
sequence(/\/k) = defined by

N =V,

NFHL = e—AAt_Mka

satisfies [4)[{5) and](6) fox = log(p(M)). O
For multiphase models, the idea is mainly the same. To comput ¢*” the spectral
radius ofM, thepower algorithmis used. It converges thanks to the primitivity df

5.3 Numerical results

First we present some numerical results to illustrate #ref®. We scald” = 1. We fix the
value of K to 2 and test various periodic functiafh We plot the curves

a — )\F(aﬂ/f)’
a — Ap(a)

We recall that the eigenvalues for the Perron problem canifeetly computed thanks to
lemma&[B. From theorefij 2, we know that these curves crossdoprdinatex = 7', the second
part of the theorem tells us that we expect (locally) the edor \r to be above the curve for
Ap for a < T and below it fora > 7'. We plot the curves\ = Ap(a) and\ = Ap(a, ) for
our functionsy and look at the crossing of curves aroufidon the simulations]” = 1). We
also give a more global view 0fz(a,vs;,) and Ap in figure[3 to illustrate the fact that the
comparison is only local. Here, the parametieiendd are respectively set tdand0.3.

Name of the functior Formulation on the interva, 1] (%)
154 (SQuare wave) 1.8x0,1/21(t) + 0.1x[1/2,1] 1.81

Ui (peak function) | 0.1 + ht/dxjo.6(t) + (2 — ht/)x[s20/(t) | 1.99
Ysin (Sinusoidal) 1+ 0.9 cos(27t) 1.405

Table 1. Functiong for the simulations

From the last part of the demonstration of theo&m 2, we dxpec

a)\F(aa ¢pk) > a)‘F(a7 wsq) > a)‘F(a7 %m)
8@ Ia:T 8@ ‘a:T 8@ Ia:T

)
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Figure 3: Crossing of the Perron and Floquet curvesg/fer ¢;,,.
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Figure 4: Crossing of the Perron and Floquet curves/fer 1, (dash dot)g),, (dots) andy,
(long dash).

we give figurd 4 as a confirmation. Finally we give some sinmutat to illustrate our remarks
on chronotherapy.

For the chronotherapy simulation we use the following patem we fix/ = 3 (we
consider S and G2 as a single phase). The parametem periodic function (with strong
variations on a period to have a stronger effect of the patemiec (0,1)). We compute the
eigenvalue for a death rate in phase 2 (phase S-G2) havingline=~ (¢ + 0). We test several
value ofe to determine whether or not the amplitude of the death rate@bs the relative
behavior of the eigenvalue with respecttd he coefficients have the form:

Ki—>i+1(t7 x) = szz(t)X[al,oo[(x%

whereK;, a; are positivey); is a positivel periodic function. We give a simulation for the case
described in the appendix (a case for which we can compulk:'ﬂabypfooo Nogo(t, z)dx). We

fix K; = 10 for all ¢, a; = 10/24,a2 = 12/24 = 0.5,a3 = 2/24, ¢(t) = 1 + 0.9 cos(27t)
andv; defined fromy) as in the appendix. We choosét) = cos®(2rt). With these choices
of coefficients, we compute

/ Noo(t, x)dx = C — C'sin(27t),
0

whereC andC’ are positive constants. Therefore,

e,0 _ O
lim XA C + C'sin(270).

e—0 IS

In figure[$, we remark especially that the location of theroptiphase does not depend on
e (since we hav@optimal = % whatever the value af) and corresponds exactly to the value of

6 maximizingsin(276), i.e., minimizingfo1 Y(t+0) [y Nogodadt.
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Figure 5: Variation of the Floquet eigenvalue with respeche parametet for various amplitude
for fixed v and amplitude = 0.1, 0.5, 1 (from left to right).

Concluding remarks

The results of the present paper show that the periodic@amirthe transition raté’; ;1 of
cell cycle models yields richer behaviors than in the casehiith only the death rateg are
subject to a periodic controf][§] 9]. In particular, the inatity of [B,[d] does not carry over.
This is, to our knowledge, the first time that such resultsstu@vn -on special cases of the
control- analytically, thus confirming numerical resultstishown in [B[19].

Our results also indicate that multiphase cell prolifenatmodels are the simplest candi-
dates to represent the effects of chronotherapy. Indeesthaen in sectiof 4]1, in single-phase
models, in the simple case when only death rd{esre controlled by a periodic forcing term,
the growth rate\ is modified by a term depending only on the average over ageficthe
forcing term, so that no phase of the periodic control fuorcitan be relevant to account for
differences in the resulting growth rate, contrary to wisablserved in chronotherapy J18].
Furthermore such multiphase models take into account tiseeexe of multiple checkpoints ,
and we know from cell cycle physiology that the minimal numbkcheckpoints to consider
is 2: at G1/S and G2/M.

We performed numerical and graphical results of sedfionn5a 8-phase model with 1-
periodic control on all phase transition functioRs_.; 1, where one represents chronotherapy
as a l-periodic death termy of amplitudes acting on the second phase (S/G2) only. These
preliminary computational results, in particular perfednin a simple analytically tractable
case, seem to indicate that the effect of a chronotherapyh@mgrowth rate\(e, 6) highly
depends on the amplitudeof the death rate but that the optimal ph&sgelated to the best
peak infusion phase) is independentsofsee figurd]5). In future work, we intend to introduce
also an effect of chronotherapy on the transition rafes; 1.

From a more general point of view (i.e., independently ofodltherapeutic considera-
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tions), Theorenf]2 analytically shows, at least in the sipglase case, that under the control
of a periodic function exerting its influence on cell divisjca selective advantage is given
to those cells that are able to divide with a cell cycle doraslightly lower than the control
function period. But, as numerically illustrated on Higtt8s cell cycle duration should beot
too much lowethan the control period, or else the advantage is lost. Eaidd to a biological
speculation (or prediction): in a population of prolifénat cells with variable cycle duration
times, all being under the control of a common 24 h-periodicadian clock, those cells that
are well controlled by the clock, and endowed with a cycleatlan between say 21 h and 23 h
should quickly outnumber the others. Hence in prolifeigtiealthy tissues (fast renewing tis-
sues such as gut or bone marrow), an intrinsic cell cycle h#4 to 23 h should be observed
(if such an observation is possible).

Now to explain the initial tumour growth data that first matied this study, we can spec-
ulate in the following way: tumour cells are less sensitivant healthy cells to circadian clock
control (indeed it is known from chronotherapeutics in dagg that “in contrast with consis-
tent rhythmic changes in drug tolerability mechanisms istltigssues, tumour rhythms appear
heterogeneous with regard to clock gene expression antimhit pharmacology determi-
nants as a function of tumour type and stagg”[18]), so theit froliferation is more likely to
be governed by a simple Perron eigenvalue rather than by fote d-loquet type. Tumour
surrounding healthy cells and host immune cells, in cohtréth tumour cells, are still un-
der circadian control and they may thus have a selectiversaga over cancer cells as long
as this circadian control is present. Circadian clock gisam by perturbed light-dark cycle
destroys this advantage, and these perturbed host celiseppa less efficient way local tis-
sue invasion by cancer cells, hence the resulting curvesrshothe introduction. Of course
such speculation remains to be documented (in particulaMegtigating differential circadian
clock control on proliferation in tumour and healthy tissyebut this is our best explanation
so far for this phenomenon.

A Appendix

A.1 Existence theory for\

This part is dedicated to the demonstration of the existeftiee Floquet eigenvalue. Partic-
ularly, we try to prove it under general hypothesis on theqaiée functiont. For instance, a
short adaptation of the demonstration given[ir] [20] wouldsbficient for the case of a pos-
itive continuous periodic functior, but one would like to have the possibility of studying
non smooth functions such as a square wave (which for instemald have valué during the
day and0 during the night). We give a proof of the existence of the Btceigenvalue in the
one-phase model. It can easily be adapted for a multiphaskimvith out death rates where
the coefficients would have the ford; ;11 = K;3i(t)X|a;,+00| With the same hypothesis
on the functiong);. We prove here existence of a solution to three eigenprabléne direct
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eigenproblem
ON (t,z) + 0N (t,7) + (A + Kp(t)X[a,400[(2))N (¢, 7) = 0,
N(t,0) = 2K(t) [ N(t, x)dz, (10)
N >0, JoS Ndz =1,

the dual eigenproblem

{ —0i(t, ) = 0xd(t, ) + (A + K (t)X(a,400] (£))0(E; ) = 2K ()X [a,00( (€) (2, 0),

¢ >0, fOOONqbdac =1,
(11)
and the delay differential equation

P(t) = —(K¢(t) + N P(t) + 2Ke ) (t —a)P(t —a), P >0, /1 P(t)dt = 1. (12)
0

We give a normalization foP to ensure uniqueness.

Theorem 8. For any positiveT-periodic bounded functioty # 0, a > 0 here exists a unique
A\, N, ¢, P such thatP > 0 is solution to [[p) andV > 0 is solution to [R) (Vv > 0 if ¢ is
positive).

The proof is based on the Krein-Rutman theorem (fee [10Jnfstance). We consider a
T-periodic nonnegative bounded functign## 0. We adapt the proof fron{ 0] to our case.
First, using the methods of characteristics for the padiiférential equations, we reduce the
eigenproblems to integral equations di¢,0), ¢(t,0) and P. We consider three operators
depending on a parameter For a bounded-periodic functionM, we define\; = £;(M)
by

N(t) = 2K / Ooq,b(t — p)e Hr KL Pmas)ds A f(4 — 1) da, (13)
Na(t) = 2K / Ooq/)(t)e_“x_K-]: Vlt=wts)ds A (¢ — o) di, (14)
Ns3(t) = 2K /OO P(t + x)e PR STVEE) D A (4 4 2. (15)

These operators are defined such thagifer \, we get,
P(t) = Li(P)(t),

N(t,0) = Lo(N(.,0))(¢),

o(t,0) = L3(o(.,0))(?).

This means that the functions should be nonnegative eigtargeof these three operators
associated to the eigenvalue

—~
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Lemma 9. For i > 0,
e L; mapsL . (0,7) into itself,

per

e Ly, L3 are continuous compact operators 6h.,(0,7"),
e L1, L3 are strongly positive and, is nonnegative (strongly positiveuf > 0).

Proof. For M bounded, one has, since for> a, [" ¢(t)dt < (¢)(z — a) + |[[¢||o T,

[¥llso Kot _
Li(M)]|oo —_ M| = C||M||so-
[1£i(M)][oo <2 W) M| M|

For continuity and compactness we only explicit the proofife- 1, the case = 3 is very
similar. We consideM continuous and small,

Nl(t + h) — QK/ w(t +h— :C)ei‘um*Kfaw w(tJrhfers)dsM(t +h— x)dm,

— 9K /oo Wit — x)efu(erh)fK f;'*hw(tfers)dsM(t — z)da,
a—h

= 2K ’ Pt — x)e_“($+h)_Kf;+h Vlt=ets)ds Af(t — g)d
a—h

+ QK/ Wt — x)e_“($+h)—Kff+h Vlt=eta)ds \f(t — 2)du,
_ Ah ok /oo w(t - x) <e_u(x+h)—](f;+h Y(t—z+s)ds e—um—K f; w(t—m—l—s)ds) ./\/l(t _ x)dm

+ 2K / h G(t — z)e P IS Plme ) ds p g (4 ),
= A +th + N ().
We have bounds odA;, and By,
|Anl < 2K [ Mook,

| Bi| < K[[¢]lachl[Nloo < CK[]|oo Moo -

Therefore, using[(A]1),(A]1), we obtain the continuity aheé compactness of operatdy.
Using the same techniques we can prove continuity and camgsse of operatoLs;. The
operatorLs needs regularity ony to be compact (and continuous). All these operators are
positive. We can apply the Krein-Rutman theorem (weak fdt@j)} We denotepy, p3 the
spectral radii of respectivelg,, £3. They are positive (sinc&(1) > ¢ > 0, p; > ¢), SO are

the associated nonnegative eigenfunctions\if(¢) = 0, then

Pt —z)Mi(t —x) =0, for z > a,
which leads tapM; = 0 andp; M, = 0.ThereforeM; and similarly M3 can not vanish.

Lemma 10.
Lo(Y M) = p1yp My,

P1 = pP3.
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Proof. The first point is a straightforward computation. The secpaitt uses the duality of
operatorsCs and Ls,

T T
/0 Lo M) (1), Ma(t)dt = /0 B My (1) L5(Ms) (1),

T T
o / PHOMIOMs()dt = py / B My () Ms () dt.
0 0

The existence of a solution tf| (5) is equivalent to the eristeof a positive fixed point of
for u = A, therefore, we need to findsuch that; (1) = 1. Foru = 0, we have

L5(1) = 2.

Thereforep, (0) = 2. As p is a decreasing function @f andp;(c0) = 0, there exists some
positive A such thatp; (\) = 1. The solution to[(5) is then given by sughand P = M.
Then, the functionV definedN (¢,0) = ¢ (t).M, (t) and the characteristics

N(t,z) = N(t — =, O)G—Ag;_fow Ky (t=2+5)X[a 00 (5)ds

is solution to [R). We remark then, as> 0, that N (¢, 00) = 0. Similarly, we definep by

ot x) = [ Kip(t+1y — 2)X(ao0 (W)t +y — x,0)e™ Jo AEUIHa=Xla o0l ()5 gy
fa.00]

This is a solution to[(11).

A.2 Explicit solutions for the multiphase eigenproblem

In the followingT = 1.

We give here explicit solutions to the eigenproblem in thdtiple phases case. We do not
give details for the demonstration. We considey ghase model without death terms, where
the transition terms have the form:

Ki—>i+1(t7 x) = szz(t)X[al,oo[(w)

Here,v; is a positivel-periodic function satisfyindi;) = 1. We consider the following very
specific case: we choosg, as, ag > 0 such thatu; + as + a3 = 1, and we choos@); in the
following way, for a fixed positive -periodic functiony,

0i(t) = P(),
1/}2(15) - w(t - a2)7
Y3(t) = Pt — a2 —as3).
To explain the form of the coefficients, we make the followneghark: if we denote’;(¢) =

f;" N;(t, z)dx (the same idea as for the one phase model)] gperiodic functions; satisfies
a system of delay differential equations and siage- as + a3 = 1, the 1-periodic functions
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Q; defined byQ1(t) = Pi(t), Q2(t) = Po(t + a2),Qs(t) = P3(t + as + a3) satisfy a system
of ordinary differential equations.

g [ @) —A— Kii(t) 0 2K3e~214)(t) Q1(t)
dt Qa(t) | = — | Kie?2y(t) —Kob(t) — A 0 Q2(t) |-
Qs(1) 0 Koe 2(t)  —Kap(t) — A Qs(1)

We denote)M(t) the above matrix. Due to the special form of the functians we have
Mt)M(t") = M(t')M(t), for all t,¢'. Therefore we can write

Q) = e ([ 216)25) Q00

The vectorQ(t) is 1-periodic, thus(0) has to be a positive eigenvectoreoa‘p(fo1 M (s)ds)
associated to the eigenvalueThe matriXexp(fO1 M (s)ds) has eigenvalué if and only if

(K14 M) (K2 + M) (K3 4+ \) — 2K Ky Kge Maitaztas) — (16)
This leads ta), (t) = e* o (¥()=Dds ), (0), whereQ(0) is a positive vector satisfyingj 1 (s)dsQ(0) =

0. Then, we can computg;(¢) andN;(¢,0). Finally, using the methods of characteristics, the
eigenfunctiongV; are given, up to a normalization, by

Ni(t,z) = 2K3Usy(t+ay —z)e’ o T W)~ ds— Az [ K1 (t=a+5)X(ay ool (5)d
No(t,z) = KiUip(t — z)eMo W) —Dds—ra— [ Kay(t=o+5-02)X[a,c0( ()5
Na(t,z) = KoUsth(t — as — z)eMo 2 (W)= Dds=Ao— [ Kst(t—a-+s—a2-a3)X(ag,00((s)ds.
where

Ui 1

U o Kle_/\a2

)| k3

U3 2K3167>‘a1

The adjoint eigenfunctions are given by the formulas

b1t x) = e Mo 12T T ()~ )ds A min(zar)
po(t,x) = e o () ds A minGz.az)
(b?,(t, .%') _ e—)\ fot_%_min(x’a?’)(w(s)—l)ds—l—)\ min(a:,ag)‘/?”
where
( I ) 1
Ki+)\
‘/2 = Kle_/\;l
2K3e "3
Vs Kyt
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Basically, the ideas for the computationsggfare the same, based on the following remark, as
[e.9]
(bl(t7 1’) — / Ki—>i+1(t + Y, T + y)¢l+1(t + Y, O)e_ f()y >\+KH1‘+1(t+y’,x+y’)dy'dy’
0
(with a factor2 for i = 3), we have¢;(t,r) = ¢t,a;) for a > a;. This leads to a

differential equation forp;(¢,0). Details are left to the reader. In this case, we compute
Jo" Ni(t,2)¢4(t, x)dx. As we havep;(t, z) = ¢;(t, a;) for x > a;,

/ Nt )it ) — / " NA(t 2)6(t 2)d + dult, ar) / ¥ Ni(t,a)da.
0 0 a;
We have

[ee] ai
/ Ni(t,2)p1(tx) = (Ki+A)e™ / P(t —x + ar)de + U Ve,
0 0
o) a2
/ N2(ta $)¢2(f, x)dm = (Kl + )\)6)‘“1 / ¢(t - $)d$ + U2V26)\a2’
0 0

o] as
/ Ns(t, x)ps(t, x)de = (K + A)e ™ / Y(t — ag — x)dx + UsVze .
0 0

Particularly, in this casef;™ V;¢dz is not always constant. We dendii¢t) = fotw(s)—l)ds,
it is a 1 periodic function. We also denotg; = U;V;e*,C = (K + \)e ™, both these
constants are positive,

C(a1 + \If(t) — \I/(t + al)) + Cl,

/ " Nt 2)én ()
0
/O T No(t,)n(t,a)de = Clan + W(t — az) — W(t)) + Co,

/OOO N3(t,$)¢3(t,£6)d$ = C(a3 + \I/(t + al) — \I/(t — CLQ)) + Cg.

For instance, using the parameters of the simulation, we,laft) = %2 sin(27t), as = 0.5,

2

/ Nogo(t, z)dx = (Cag + Cy) — 202;9 sin(27t) = C' — CY sin(27t),
0 m

1 o0 1 1
/ 'y(H—G)/ Nogo(t, x)dx = C// COSG(27T(t+9))dt—Cé/ cos® (27 (t+0)) sin(27t)dt,
0 0 0 0

a short computation leads to

1 3 15 )
- 2 cos(4 =2 cos(2 2
~(t) % cos(6mt) + 54 cos(4rt) + % cos(2mt) + 16’

therefore, .
/ y(t+ 9)/ Nogo(t, x)dx = C" — C¥ sin(270),
0 0
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WhereC” > CY > 0. Therefore, in this particular case,

e,0 _ 0
lim oA ) sin(270) — C”.
£
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