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Abstract

We study the growth rate of a cell population that follows an age-structured PDE with
time-periodic coefficients. Our motivation comes from the comparison between experimental
tumor growth curves in mice endowed with intact or disruptedcircadian clocks, known to exert
their influence on the cell division cycle. We compare the growth rate of the model controlled
by a time-periodic control on its coefficients with the growth rate of stationary models of the
same nature, but with averaged coefficients. We firstly derive a delay differential equation
which allows us to prove several inequalities and equalities on the growth rates. We also
discuss about the necessity to take into account the structure of the cell division cycle for
chronotherapy modeling. Numerical simulations illustrate the results.

Key words: cell cycle, circadian rhythms, chronotherapy, structuredPDEs, delay differ-
ential equations.

AMS subject classification:35F05, 35P05, 35P15, 92B05, 92D25.

1 Cell cycle control and circadian rhythms

The cell division cycle is the process by which the eukaryotic cell duplicates its DNA content
and then divides itself in two daughter cells. This process is normally controlled by various
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physiological mechanisms that ensure homeostasis of healthy tissues, that control genome
integrity (e.g. cyclins and cdks, p53, repair enzymes, etc.), launching programmed cell death
(apoptosis) if the DNA is irreversibly damaged (see [21] fora complete presentation). The
system of control has been extensively studied and modeled (see e.g. [14, 16, 23] or [26])
using ordinary differential equations. The cell division can be modeled through branching
processes (see [2]), integral equations, delay differential equations (see [4]) and also many
structured PDE models (for an overview, see [1, 3, 19]) wherethe structuring variables can be
age ([22]), size ([24]) or more recently cyclin content ([5,6, 11]).

Most living organisms exhibit circadian rhythms (from Latin circa diem, “roughly a day”)
which allow them to adapt to an environment that varies with aperiodicity of 24h. These
rhythms can be observed even in the smallest biological functional unit, the cell. The problem
we are studying is the growth of cell populations (undergoing the cell division cycle described
above) under the pressure of circadian rhythms. Circadian rhythm effects on the cell cycle turn
out to be important in tumor proliferation. This is observedby several experiments involving
a major disruption of circadian rhythms in mice. In these experiments it can be seen that the
growth of tumors is significantly enhanced in mice in which the pacemaker circadian clock
has been drastically perturbed, either through neurosurgery, or through light-dark cycle dis-
ruption (see e.g. [13, 12]). Moreover, in the clinic, takingadvantage of the influence exerted
by circadian clocks on anticancer drug metabolism and on thecell division cycle has led in the
past 15 years to successful applications in thechronotherapy of cancers, particularly colorectal
cancer (see [18]). This motivates modeling the circadian rhythm in simple cell cycle models
and studying these effects on the growth rate of a cell population.

Figure 1: Effects of the perturbation of light-dark cycle ontumor proliferation (reproduced from
[12]). In clock-perturbed mice (black dots), the tumor proliferates much faster than in control mice
(white dots).(By courtesy of Elizabeth Filipski).

Contrary to our first idea, the growth rate of a cell population described by a physiologically
structured PDE model with time-periodic control is not necessarily lower than in a model of
the same nature, but with a time-averaged control [7, 8, 9].
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The goal here is twofold. Firstly we analyze how modeling assumptions lead to define
various growth rates under the effects of circadian rhythms. Secondly we model the effect of
chronotherapy on these growth rates.

In the second section we recall the definition of these various growth rates, in terms of
Perron and Floquet eigenvalues of a linear Von Foerster- Mc-Kendrick model. We also discuss
known inequalities between them. In the third section we study a simple division model,
for which we establish (in Theorem 2) strict inequalities comparing the growth rate in the
stationary (Perron) and periodic (Floquet) cases. These inequalities are proved by studying a
related time delay system (which is similar to the one considered in [4]). This model is used
to confirm the impossibility to derive a general comparison between the Perron and Floquet
eigenvalues defined in the second section. In the fourth section, we give an argument for using
multiphase models to represent chronotherapy, taking better into account the structure of the
cell cycle and particularly the existence of various phases. We provide numerical simulations
to illustrate our results. In a first appendix, we give the detailed proof of the existence of the
solution of the eigenproblem, by applying the Krein-Rutmantheorem. In a second appendix,
we derive analytical formulæ for the eigenelements in a specific multiphase case, which yield
further information on their behavior and can be used to validate numerical experiments.

2 The model

2.1 The renewal equation

We base our study on a cell population that follows the classical renewal equation structured
in age with periodic coefficients representing the effect ofcircadian rhythms

{ ∂
∂tn(t, x) + ∂

∂xn(t, x) + d(t, x)n(t, x) = 0,

n(t, x = 0) =
∫ ∞
0 B(t, x)n(t, x)dx.

(1)

Heren(t, x) represents the density of cells of agex in the cycle at timet, d(t, x), B(t, x)
represent respectively the death rate, and the birth rate. Both these coefficients areT -periodic
in time. We define the growth rate of the population in terms ofan eigenproblem. The growth
rateλF (F for Floquet as for ODEs with periodic coefficients) is defined as the unique real
numberλF , such that there is a solutionN to the problem



















∂
∂tN(t, x) + ∂

∂xN(t, x) + [λF + d(t, x)]N(t, x) = 0,

N(t, x = 0) =
∫ ∞
0 B(t, x)N(t, x)dx,

N > 0, T − periodic.

(2)

We refer to [20] for conditions of existence forλF (and to the appendix for the case of division
models).
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2.2 Comparison of eigenvalues

We use the following notations. For aT -periodic functionf we define,

〈f〉 =
1

T

∫ T

0
f(t)dt the arithmetical average,

〈f〉g = exp
( 1

T

∫ T

0
log f(t)dt

)

the geometrical average, whenf > 0.

It may seem natural to introduce the following stationary problem (Perron eigenproblem),
in which the death and birth rates are averaged



















d
dxNP (x) + [λP + 〈d(x)〉]NP (x) = 0,

NP (0) =
∫ ∞
0 〈B(x)〉NP (x)dx = 1,

NP (x) > 0.

(3)

It is shown in [8, 9] that, whenB does not depend on time, the inequalityλF ≥ λP holds.
In the present paper, we show that this inequality does not carry over to the case of a time
dependentB. It should be noted, however, that there is a general inequality, established in
[7], which relatesλF with the solution of the following eigenproblem in which an arithmetical
average of the death rate is taken, whereas the geometrical average of the birth rate is taken,



















d
dxNg(x) + [λg + 〈d(x)〉]Ng(x) = 0,

Ng(0) =
∫ ∞
0 〈B(x)〉gNg(x)dx = 1,

Ng(x) > 0.

(4)

Theorem 1 ([7]). The eigenvalues defined in (2) and (4) satisfy

λF ≥ λg.

This result suggests that there is no general inequality betweenλP andλF , because the
inequality which follows from convexity isλF ≥ λg. Moreover, it follows from the standard
arithmetico-geometrical inequality,

λP ≥ λg.

Such a general comparison cannot hold betweenλF andλP , as shown in the next section. To
go further we use a more specific model.

3 A simple one-phase division model

3.1 Model and main results

We model the cell cycle with the following PDE which is a particular case of (1),
{ ∂

∂tn(t, x) + ∂
∂xn(t, x) + [d(t) +K0ψ(t)χ[a,+∞[(x)]n(t, x) = 0,

n(t, 0) = 2K0ψ(t)
∫ ∞
a n(t, x)dx,
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whereK0 > 0 is a constant,ψ > 0 is aT -periodic function with

〈ψ〉 = 1. (1)

The termK0ψ(t)χ[a,+∞[ represents the division rate,d(t) is the apoptosis rate (we assume it to
beT -periodic). We have denoted byχE the indicator function of setE. Finally,ψ(t) represents
a nonnegative periodic control exerted on division. As before we look for the growth rateλF
of such a system. It is defined so that there is a solution to theFloquet eigenproblem,



















∂
∂tN(t, x) + ∂

∂xN(t, x) +
[

λF + d(t) +K0ψ(t)χ[a,+∞[(x)
]

N(t, x) = 0,

N(t, 0) = 2K0ψ(t)
∫ ∞
a N(t, x)dx,

N > 0, T -periodic,

(2)

and we normalizeN by
∫ T

0

∫ ∞

0
N(t, x)dxdt = 1.

As we already know a general comparison result for the geometrical eigenvalueλg defined
in (4), we are now only interested in the comparison ofλF andλP , the latter quantity defined
by requiring the existence of a solution to the Perron eigenproblem already defined in (3) which
here reads



















d
dxNP (x) + [λP + 〈d〉 +K0χ[a,+∞[(x)]NP (x) = 0,

NP (0) = 2K0

∫ ∞
a NP (x)dx,

NP > 0,

(3)

and we normalizeNP by

NP (0) = 2K0

∫ ∞

a
NP (x)dx = 1.

We are interested in evaluating the effect of the periodic control ψ(t) on the growth of the
system. Therefore we denote byλF (a, ψ) and byλP (a) the above defined eigenelements so
as to keep track of the problem parameters.

The following theorem implies that there is no possible general comparison betweenλF
andλP .

Theorem 2. For all continuous positiveT -periodic functionsψ satisfying (1), we have

λF (a = T,ψ) = λP (T ) = λF (a = T, 1), (4)

and fora in a neighborhood of T, we have, providedψ 6≡ 1

λF (a, ψ) > λP (a) = λF (a, 1) for a < T,

λF (a, ψ) < λP (a) = λF (a, 1) for a > T.
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The proof of this theorem is presented in the next sections. The computations done in
section 4.1 insure that, without loss of generality, we can supposed ≡ 0.

Numerical results are presented in figures 2 and 3 which illustrate this theorem. Graphi-
cally, for fixedψ, this predicts firstly that the curves ofλF (a, ψ) (Floquet curve) andλP (a)
(Perron curve) must cross each other fora = T , secondly that the Floquet curve should be
above the Perron curve before (i.e., fora < T ) the crossing and below this curve after it (i.e.,
for a > T ). A possible interpretation is that for a better adaptation(in the sense of higher
proliferation), the cell cycle should be shorter than24h; an effect already observed in [4].

3.2 Proof of Theorem 2, part 1 (a delay differential equation)

Throughout the proof, we use the shorter notationsλF andλP instead ofλF (a, ψ) andλP (a)
when there is no possible confusion.
To find more information onλF we derive a delay differential equation.
We integrate (2) with respect to age over[a,∞[. We get

d

dt

∫ ∞

a
N(t, x)dx+N(t,∞) −N(t, a) + [λF +K0ψ(t)]

∫ ∞

a
N(t, x)dx = 0.

From the formula of characteristics and the boundary condition in (2),

N(t, a) = N(t− a, 0)e−λF a,
N(t, a) = 2K0e

−λF aψ(t− a)
∫ ∞
a N(t− a, x)dx.

We setP (t) =
∫ ∞
a N(t, x)dx. Since we haveN(t,∞) = 0 (see the appendix) we obtain

the delay differential equation

Ṗ (t) +
(

λF +K0ψ(t)
)

P (t) = 2K0ψ(t− a)P (t− a)e−λF a. (5)

3.3 Proof of Theorem 2, part 2 (equality of growth rates fora = T )

The comparison betweenλP andλF is based on the following formula forλP .

Lemma 3. The Perron eigenvalue defined in (3) satisfies

∀a > 0,
λP +K0

2K0
eλP a = 1. (6)

Proof. From (3), we have, forx ≥ a, NP (x) = e−(λP +K0)x+K0a. We insert that in the
boundary condition and obtain

1 = 2K0

∫ ∞

a
e−(λP +K0)x+K0adx,

1 = 2K0
1

λP +K0
e−λP a.
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Corollary 4. The Perron eigenvalue defined in (3) satisfies

∀a > 0, λP > 0.

Proof. This follows from Lemma 3 and the remark

∀a > 0,∀λ ≤ 0,
λ+K0

2K0
eλa ≤

1

2
.

To obtain (4), we divide (5) byP and find

Ṗ (t)

P (t)
= −λF −K0ψ(t) + 2K0ψ(t− a)

P (t− a)

P (t)
e−λF a.

When we take the average over a period, we get (sinceP is T -periodic in time by its definition
asN is)

0 = −(λF +K0) + 2K0e
−λF a

〈

ψ(t− a)
P (t− a)

P (t)

〉

,

λF +K0

2K0
eλF a =

〈

ψ(t− a)
P (t− a)

P (t)

〉

. (7)

Now we consider the particular casea = T . AsP is T -periodicP (t− a) = P (t). Hence, for
a = T , we arrive at

λF +K0

2K0
eλF a =

〈

ψ(t− a)
P (t− a)

P (t)

〉

= 〈ψ〉 = 1. (8)

This equality is the same forλF as the one described in lemma 1 forλP . As we know that the
mapping

λ 7→
λ+K0

2K0
eλa.

is increasing on[−K0,+∞[ from 0 to+∞ and is negative elsewhere, there is only one solution
to (8) which is also given by (6) and the result (4) is proved.

3.4 Proof of Theorem 2, part 3 (local comparison arounda = T )

We fixψ 6≡ 1. We study the variations ofλF +K0
2K0

eλF a arounda = T . From (7), we know:

λF +K0

2K0
eλF a =

〈

ψ(t− a)
P (t− a)

P (t)

〉

=

〈

ψ(t)
P (t)

P (t+ a)

〉

,

therefore

∂

∂a

λF +K0

2K0
eλF a =

∂

∂a

〈

ψ(t)
P (t)

P (t + a)

〉

,

=

〈

ψ(t)
∂P

∂a
(t)

1

P (t+ a)

〉

+

〈

ψ(t)
−P (t)

P 2(t+ a)

∂

∂a

(

P (t+ a)
)

〉

.
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Recalling thatP depends ona (asN andλF do), we have

∂

∂a
P (t+ a) =

∂P

∂a
(t+ a) + Ṗ (t+ a).

We then split the computations

∂

∂a

λF +K0

2K0
eλF a =

〈

ψ(t)
∂P

∂a
(t)

1

P (t+ a)

〉

−

〈

ψ(t)
P (t)

P 2(t+ a)

(

∂P

∂a
(t+ a) + Ṗ (t+ a)

)〉

,

=

〈

ψ(t)
1

P (t + a)

(

∂P

∂a
(t) −

P (t)

P (t+ a)

∂P

∂a
(t+ a)

)〉

−

〈

ψ(t)
P (t)

P 2(t+ a)
Ṗ (t+ a)

〉

.

Fora = T , the first term vanishes, andP (t+ a) = P (t) i.e.,

∂

∂a

λF +K0

2K0
eλF a = −

〈

ψ(t)
P (t)

P 2(t)
Ṗ (t)

〉

= −

〈

ψ(t)
Ṗ (t)

P (t)

〉

.

To compute this we again make use of the ODE (5) which we multiply by
ψ

P

ψ(t)
Ṗ (t)

P (t)
= −λFψ(t) −K0ψ

2(t) + 2K0ψ(t− a)ψ(t)
P (t− a)

P (t)
e−λF a.

Averaging on a period we still get, fora = T ,

〈

ψ(t)
Ṗ (t)

P (t)

〉

= −λF −K0〈ψ
2〉 + 2K0〈ψ

2〉e−λF a.

Using (8), we arrive at

〈

ψ(t)
Ṗ (t)

P (t)

〉

= −λF −K0〈ψ
2〉 + 〈ψ2〉(λF +K0) = λF (〈ψ2〉 − 1).

We now have the derivative ata = T ,

∂

∂a |a=T

λF +K0

2K0
eλF a = −λF (〈ψ2〉 − 1). (9)

We use here the notationsλ′F (T ) for ∂λF

∂a |a=T
andλF (T ) = λP (T ) to recall that we are

studying the local behavior ofλF andλP arounda = T , (ψ is fixed). We can directly compute

∂

∂a |a=T

λF +K0

2K0
eλF a = λ′F (T )

eλF (T )T

2K0
+ (λ′F (T )T + λF (T ))

K0 + λF (T )

2K0
eλF (T )T ,

Therefore, using (4) and (6), we obtain

∂

∂a |a=T

λF +K0

2K0
eλF a = λ′F (T )

(

eλP (T )T

2K0
+ T

)

+ λF (T ),
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so that, using (4) and (9), we have

λ′F (T ) =
−λP (T )〈ψ2〉

T + eλP (T )T

2K0

.

Similarly we have

λ′P (T ) =
−λP (T )

T + eλP (T )T

2K0

.

Therefore,

λ′P (T ) − λ′F (T ) =
λP (T )(〈ψ2〉 − 1)

T + eλP (T )T

2K0

.

Thanks to corollary 4,λP (T ) is positive. The assumption (1) leads to

〈ψ2〉 − 1 =
〈

(ψ − 1)2
〉

> 0.

Finally we obtain
λ′P (T ) − λ′F (T ) > 0, (10)

and the second statement of the theorem follows then immediately from (4) and (10).

4 Modeling chronotherapy

In the following we propose a model for chronotherapy by the introduction of a periodic death
rate due to the effect of a drug on our cell division cycle model.

4.1 Limit of single-phase division models

We consider a population of cells following a general division equation with apoptosis rated.
As above, all coefficients areT -periodic with respect to time.

{ ∂
∂tn(t, x) + ∂

∂xn(t, x) +
(

d(t, x) +K(t, x)
)

n(t, x) = 0,

n(t, 0) = 2
∫ ∞
0 K(t, x)n(t, x)dx.

We consider the Floquet eigenproblem associated with this equation


















∂
∂tN(t, x) + ∂

∂xN(t, x) +
(

d(t, x) +K(t, x) + λF
)

N(t, x) = 0,

N(t, 0) = 2
∫ ∞
0 K(t, x)N(t, x)dx,

N > 0,
∫ T
0

∫ ∞
0 N(t, x)dxdt = 1

We propose to model the effect of chronotherapy by adding a timeT -periodic, age-independent
death rateγ(t) representing the effect of a drug (for instance we may consider γ proportional
to the quantity of drug in the body). The cell population now follows the equation

{ ∂
∂tn(t, x) + ∂

∂xn(t, x) + [d(t, x) +K(t, x) + γ(t)]n(t, x) = 0,

n(t, 0) = 2
∫ ∞
0 K(t, x)n(t, x)dx.
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The Floquet eigenproblem for this equation reads


















∂
∂tN

γ(t, x) + ∂
∂xN

γ(t, x) +
(

d(t, x) +K(t, x) + γ(t) + λγF
)

Nγ(t, x) = 0,

Nγ(t, 0) = 2
∫ ∞
0 K(t, x)Nγ(t, x)dx,

Nγ > 0, T − periodic
∫ T
0

∫ ∞
0 Nγ(t, x)dxdt = 1.

Lemma 5. The Floquet eigenvalueλγF defined above satisfies

λγF = λF − 〈γ〉.

Proof. We definẽγ = γ−〈γ〉, Γ(t) =
∫ t
0 γ̃(s)ds. Noticing thatΓ is T -periodic, we define the

functionM byM(t, x) = N(t, x)eΓ̃(t). It satisfies


















∂
∂tM(t, x) + ∂

∂xM(t, x) +
(

d(t, x) +K(t, x) + γ(t) + λF − 〈γ〉
)

M(t, x) = 0,

M(t, 0) = 2
∫ ∞
0 K(t, x)M(t, x)dx,

M > 0, T − periodic.

ThereforeλγF = λF − 〈γ〉 and up to a renormalizationM = Nγ .
This result expresses that with such a simple model, chronotherapy is inefficient, since

changing the moment of administration of a drug (in symbols,changingγ(t) into γ(t + θ)
whereθ is a real number) has no effect on the growth rate. In other words, in such one-phase
models, this effects depends on〈γ〉. Only the total daily dose of the drug is relevant!

4.2 Using multiphase models

We now consider more realistic multiphase models. We use theadditional ingredient that the
real cell division cycle is multiphasic because of the existence of checkpoints between phases
(mainly at the G1/S and G2/M transitions) at which it can be arrested if genome integrity is not
preserved. We consider a cell cycle model withI phases whereI > 1 (for instanceI = 4 if we
want to represent the classical phases G1-S-G2-M). We studyI populations of cells,ni(t, x)
being the density of cells of agex in phasei at timet. We use the conventionI + 1 = 1































∂
∂tni(t, x) + ∂

∂xni(t, x) + [Ki→i+1(t, x) + di(t, x)]ni(t, x) = 0,

ni+1(t, 0) =
∫ ∞
0 Ki→i+1(t, y)ni(t, y)dy, 1 < i

n1(t, 0) = 2
∫ ∞
0 KI→1(t, y)nI(t, y)dy,

ni(0, x) = n0
i (x) given.

(1)

HereKi→i+1 represents the transition rate from phasei to i+1. At the end of phaseI division
occurs with rateKI→1. To be as general as possible, we have considered death ratesdi in phase
i. As above, the coefficients are timeT -periodic and we can consider the Floquet eigenproblem
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∂
∂tNi(t, x) + ∂

∂xNi(t, x) + [Ki→i+1(t, x) + di(t, x) + λ]Ni(t, x) = 0,

Ni+1(t, 0) =
∫ ∞
0 Ki→i+1(t, y)Ni(t, y)dy, 1 < i

N1(t, 0) = 2
∫ ∞
0 KI→1(t, y)NI(t, y)dy,

Ni > 0, T − periodic,
∑

i

∫ 1
0

∫ ∞
0 Nidxdt = 1.

(2)

We also consider the adjoint eigenproblem






















∂
∂tφi(t, x) + ∂

∂xφi(t, x) − [Ki→i+1(t, x) + di(t, x) + λ]φi(t, x) = Ki→i+1φi+1(t, 0),

∂
∂tφI(t, x) + ∂

∂xφI(t, x) − [KI→1(t, x) + dI(t, x) + λ]φI(t, x) = 2KI→1φ1(t, 0),

φi > 0, T − periodic,
∑

i

∫ ∞
0 Niφidxdt = 1.

(3)
To model the effect of chronotherapy, we consider a cytotoxic drug acting only on a specific
phase (for instance 5-Fluorouracil acts on S-phase, see [17] for instance and the references
therein) and, as in the previous section we represent its action by an additional death rate in
phasej, γ(t) (we replace in phasej dj by dj + γ) . We also define eigenelements for the
modified equation(λγ , Nγ , φγ). We multiply the first line of (2) (version withdj replaced by
dj + γ, Ni by Nγ

i andλ by λγ) by φi, and (3) byNγ
i . Summing overi and integrating over

age and time, we obtain

(λ− λγ)
∑

i

∫ 1

0

∫ ∞

0
Nγ
i φidxdt =

∫ 1

0
γ(t)

∫ ∞

0
Nγ
j φjdxdt. (4)

We shall not have here the problem encountered with one-phase models. We study the effect
of a death rateγ(t + θ). We denoteλε,θ, N ε,θ the eigenelements associated to an additional
death rateεγ(t+ θ) in phasej. We defineF (ε, θ) by

F (ε, θ) = λ− λε,θ =

∫ 1
0 εγ(t+ θ)

∫ ∞
0 N ε,θ

j φjdxdt
∑

i

∫ 1
0

∫ ∞
0 N ε,θ

i φidxdt
. (5)

As we haveλ = λ0,θ for anyθ,F (0, θ) ≡ 0. Particularly it does not depend onθ. The question
is: doesF (ε, θ) depend onθ for fixedε? To assess this question, we compute using dominated
convergence

∂λ(ε, θ)

∂ε
|ε=0= lim

ε→0

F (ε, θ)

ε
=

∫ 1

0
γ(t+ θ)

∫ ∞

0
Njφjdxdt. (6)

Therefore if neither the functionγ(.) nor the function
∫ ∞
0 Njφj(., x)dx are constant (contrarily

to one-phase models, there are no compensating effect making
∫ ∞
0 Njφj(., x)dx constant, see

for instance the computations of the appendix), thenlim
ε→0

F (ε, θ)

ε
depends onθ (we mean it

is not a constant function ofθ) and so is (at least for smallε) F (ε, .). In this case the Taylor
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first order approximation around0 of λ: λ(ε, θ) ≈ λ + ε
∫ 1
0 γ(t + θ)

∫ ∞
0 Njφjdxdt is not

a constant function ofθ and neither isλ(ε, θ), at least for small values ofε. We illustrate
this property numerically in the next section (see figure 5).It seems that the Taylor first order
approximation is a very good approximation of the growth rate for a reasonable range of values
of the amplitudeε.

5 Numerical simulations

We illustrate the theorems proved above by several numerical simulations. We firstly present
the numerical scheme, then we give several algorithmic properties. Finally tests are presented.

5.1 Discretization

In our numerical simulations we consider a pure division model :

{ ∂
∂tn(t, x) + ∂

∂xn(t, x) +K0ψ(t)χ[a,+∞[(x)n(t, x) = 0,

n(t, 0) = 2K0ψ(t)
∫ ∞
a n(t, x)dx.

(1)

Consider time and age increments∆t,∆x and denote byκi andψk, the quantitiesκi =
K0χ[a,+∞[(i∆x) andψk = ψ(k∆t). Choosing first order finite differences, we obtain from
equation (1) the following approximation with an error of orderO(|∆t| + |∆x|)

nk+1
i − nki

∆t
+
nki − nki−1

∆x
+ κiψ

k+1nk+1
i = 0, 1 ≤ i ≤ I,

where{0 . . . I} is the set of all values ofi to be considered in the discretization. Taking
∆t = ∆x (CFL = 1), we obtain the following compact discretization scheme:











nk+1
i =

nk
i−1

1+∆tκiψk+1 , 1 ≤ i ≤ I,

nk+1
0 = 2ψk

∑

0≤i≤I
κin

k
i∆t.

(2)

Assumeψ is periodic of periodT ≥ 0 and consider a grid over[0, T ]× [0, I∆t], consisting
of squares with sides of length∆t = T/NT , for someNT ∈ N (andI large enough, partic-
ularly I∆t > a andI + 1 > NT ). Then, the populations at time(k + 1)∆t for all ages in
[0, I∆t] can be obtained from the corresponding populations at timek∆t as follows:











nk+1
0

nk+1
1
...

nk+1
I











=













2ψkκ0∆t . . . 2ψkκ
I−1

∆t 2ψkκ
I
∆t

1
1+∆tψk+1κ1

. . . 0 0
...

. . .
...

...
0 . . . 1

1+∆tψk+1κ
I

0























nk0
nk1
...
nkI











(3)

It is clear that the matrix in (3) depends only on the time index k and is periodic of period
NT . We denoteMk this matrix and the vectors respectivelynk andnk+1. The equation (3)
can be writtennk+1 = Mkn

k.
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5.2 Approximating the eigenvalue

The algorithm has already been discussed in [25]. We recall that the growth rate is defined as
the unique realλF such that (1) admits solutions of the formN(t, x)eλF t with N > 0 and
N(., x) is periodic. We can approximate it thanks to:

Lemma 6 (Discrete Floquet theorem).

There exists a unique realλ and a unique sequence of vectors(N k)k∈N ,N k =
(

N k
i

)

0≤i≤I
such that

N k
i > 0,

I
∑

i=0

N 0
i = 1, (4)

k 7→ (N k) is NT -periodic, (5)

nk, defined bynk = N keλ.k∆t is solution to(3) (6)

Proof. The proof is standard and we recall it for the sake of completeness. It is based on the
Perron Frobenius theorem. First we prove uniqueness. Supposing there exists suchnk, we
have

n1 = M0n
0,

n2 = M1n
1 = M1M0n

0,

. . . (7)

nk+1 = Mkn
k = MkMk−1 . . .M1M0n

0, (8)

. . .

nNT = MNT −1MNT −2 · · ·M1M0n
0. (9)

We define
M = MNT −1MNT −2 · · ·M1M0,

thus, (9) readsnNT = Mn0.

Lemma 7. The matrixM is nonnegative and primitive (and therefore is irreducible).

Proof. The nonnegativity is obvious. To prove the primitivity, thekey point isI+1 > NT and
I∆t ≥ a+ 2∆t. For someε > 0 we have for anyk, if we denote byIdk the identity matrix of
orderk,

Mk ≥ ε

(

0 . . . 0 1 1
IdI 0

)

= εW.

Notice thatW is the Wielandt matrix of orderI + 1 which is known to be primitive (see [15]).
Therefore for somep,W p > 0 and thus forqNT ≥ p,

M
q ≥ εqNTW qNT > 0,

which yields the primitivity ofM, the spectral radius of which, denoted here byρ is then posi-
tive. We denote byρ its spectral radius. We haveρ > 0.
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Back to the proof of the discrete Floquet theorem, we have

nNT = eλNT ∆tNNT = eλTN 0 = eλTn0.

Hence we haveMn0 = eλTn0. This means thatn0 is a positive eigenvector ofM associated
to a positive eigenvalueeλT . From the Perron-Frobenius theorem,eλT = ρ andn0 = N 0 is
the (unique) associated eigenvector. The solution is unique.
Conversely, if we know the Perron eigenvectorV and the Perron eigenvalueρ of M, then the

sequence
(

N k
)k∈N

defined by

{

N 0 = V,

N k+1 = e−λ∆t.MkN
k,

satisfies (4),(5) and (6) forλ = log(ρ(M)).
For multiphase models, the idea is mainly the same. To compute ρ = eλT the spectral

radius ofM, thepower algorithmis used. It converges thanks to the primitivity ofM.

5.3 Numerical results

First we present some numerical results to illustrate theorem 2. We scaleT = 1. We fix the
value ofK0 to 2 and test various periodic functionψ. We plot the curves

a → λF (a, ψ),

a → λP (a)

We recall that the eigenvalues for the Perron problem can be directly computed thanks to
lemma 3. From theorem 2, we know that these curves cross forx-coordinatea = T , the second
part of the theorem tells us that we expect (locally) the curve forλF to be above the curve for
λP for a < T and below it fora > T . We plot the curvesλ = λP (a) andλ = λF (a, ψ) for
our functionsψ and look at the crossing of curves aroundT (on the simulations,T = 1). We
also give a more global view ofλF (a, ψsin) andλP in figure 3 to illustrate the fact that the
comparison is only local. Here, the parametersh andδ are respectively set to3 and0.3.

Name of the function Formulation on the interval[0, 1[ 〈ψ2〉
ψsq (square wave) 1.8χ[0,1/2[(t) + 0.1χ[1/2,1[ 1.81

ψpk (peak function) 0.1 + ht/δχ[0,δ[(t) + (2h− ht/δ)χ[δ,2δ[(t) 1.99

ψsin (sinusoidal) 1 + 0.9 cos(2πt) 1.405

Table 1: Functionsψ for the simulations

From the last part of the demonstration of theorem 2, we expect,

∂λF (a, ψpk)

∂a |a=T

>
∂λF (a, ψsq)

∂a |a=T

>
∂λF (a, ψsin)

∂a |a=T

,
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Figure 2: Crossing of the Perron and Floquet curves (detail)for ψ = ψsin.
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Figure 3: Crossing of the Perron and Floquet curves forψ = ψsin.
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Figure 4: Crossing of the Perron and Floquet curves forψ = ψsin (dash dot),ψsq (dots) andψpk
(long dash).

we give figure 4 as a confirmation. Finally we give some simulations to illustrate our remarks
on chronotherapy.

For the chronotherapy simulation we use the following parameter: we fixI = 3 (we
consider S and G2 as a single phase). The parameterγ is a periodic function (with strong
variations on a period to have a stronger effect of the parameter θ ∈ (0, 1)). We compute the
eigenvalue for a death rate in phase 2 (phase S-G2) having thevalueεγ(t+ θ). We test several
value ofε to determine whether or not the amplitude of the death rate changes the relative
behavior of the eigenvalue with respect toθ.The coefficients have the form:

Ki→i+1(t, x) = Kiψi(t)χ[ai,∞[(x),

whereKi, ai are positive,ψi is a positive1 periodic function. We give a simulation for the case
described in the appendix (a case for which we can compute explicitly

∫ ∞
0 N2φ2(t, x)dx). We

fix Ki = 10 for all i, a1 = 10/24, a2 = 12/24 = 0.5, a3 = 2/24, ψ(t) = 1 + 0.9 cos(2πt)
andψi defined fromψ as in the appendix. We chooseγ(t) = cos6(2πt). With these choices
of coefficients, we compute

∫ ∞

0
N2φ2(t, x)dx = C −C ′ sin(2πt),

whereC andC ′ are positive constants. Therefore,

lim
ε→0

λε,θ − λ0

ε
= C + C ′ sin(2πθ).

In figure 5, we remark especially that the location of the optimal phase does not depend on
ε (since we haveθoptimal =

1
4 whatever the value ofε) and corresponds exactly to the value of

θ maximizingsin(2πθ), i.e., minimizing
∫ 1
0 γ(t+ θ)

∫ ∞
0 N2φ2dxdt.
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Figure 5: Variation of the Floquet eigenvalue with respect to the parameterθ for various amplitude
for fixedγ and amplitudeε = 0.1, 0.5, 1 (from left to right).

Concluding remarks

The results of the present paper show that the periodic control on the transition rateKi→i+1 of
cell cycle models yields richer behaviors than in the case inwhich only the death ratesdi are
subject to a periodic control [8, 9]. In particular, the inequality of [8, 9] does not carry over.
This is, to our knowledge, the first time that such results areshown -on special cases of the
control- analytically, thus confirming numerical results first shown in [8, 9].

Our results also indicate that multiphase cell proliferation models are the simplest candi-
dates to represent the effects of chronotherapy. Indeed, asshown in section 4.1, in single-phase
models, in the simple case when only death ratesdi are controlled by a periodic forcing term,
the growth rateλ is modified by a term depending only on the average over a period of the
forcing term, so that no phase of the periodic control function can be relevant to account for
differences in the resulting growth rate, contrary to what is observed in chronotherapy [18].
Furthermore such multiphase models take into account the existence of multiple checkpoints ,
and we know from cell cycle physiology that the minimal number of checkpoints to consider
is 2: at G1/S and G2/M.

We performed numerical and graphical results of section 5, on a 3-phase model with 1-
periodic control on all phase transition functionsKi→i+1, where one represents chronotherapy
as a 1-periodic death termεγ of amplitudeε acting on the second phase (S/G2) only. These
preliminary computational results, in particular performed in a simple analytically tractable
case, seem to indicate that the effect of a chronotherapy on the growth rateλ(ε, θ) highly
depends on the amplitudeε of the death rate but that the optimal phaseθ (related to the best
peak infusion phase) is independent onε (see figure 5). In future work, we intend to introduce
also an effect of chronotherapy on the transition ratesKi→i+1.

From a more general point of view (i.e., independently of chronotherapeutic considera-
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tions), Theorem 2 analytically shows, at least in the single-phase case, that under the control
of a periodic function exerting its influence on cell division, a selective advantage is given
to those cells that are able to divide with a cell cycle duration slightly lower than the control
function period. But, as numerically illustrated on Fig. 3,this cell cycle duration should benot
too much lowerthan the control period, or else the advantage is lost. This leads to a biological
speculation (or prediction): in a population of proliferating cells with variable cycle duration
times, all being under the control of a common 24 h-periodic circadian clock, those cells that
are well controlled by the clock, and endowed with a cycle duration between say 21 h and 23 h
should quickly outnumber the others. Hence in proliferating healthy tissues (fast renewing tis-
sues such as gut or bone marrow), an intrinsic cell cycle timeof 21 to 23 h should be observed
(if such an observation is possible).

Now to explain the initial tumour growth data that first motivated this study, we can spec-
ulate in the following way: tumour cells are less sensitive than healthy cells to circadian clock
control (indeed it is known from chronotherapeutics in oncology that “in contrast with consis-
tent rhythmic changes in drug tolerability mechanisms in host tissues, tumour rhythms appear
heterogeneous with regard to clock gene expression and rhythm in pharmacology determi-
nants as a function of tumour type and stage”[18]), so that their proliferation is more likely to
be governed by a simple Perron eigenvalue rather than by one of the Floquet type. Tumour
surrounding healthy cells and host immune cells, in contrast with tumour cells, are still un-
der circadian control and they may thus have a selective advantage over cancer cells as long
as this circadian control is present. Circadian clock disruption by perturbed light-dark cycle
destroys this advantage, and these perturbed host cells oppose in a less efficient way local tis-
sue invasion by cancer cells, hence the resulting curves shown in the introduction. Of course
such speculation remains to be documented (in particular byinvestigating differential circadian
clock control on proliferation in tumour and healthy tissues), but this is our best explanation
so far for this phenomenon.

A Appendix

A.1 Existence theory forλ

This part is dedicated to the demonstration of the existenceof the Floquet eigenvalue. Partic-
ularly, we try to prove it under general hypothesis on the periodic functionψ. For instance, a
short adaptation of the demonstration given in [20] would besufficient for the case of a pos-
itive continuous periodic functionψ, but one would like to have the possibility of studying
non smooth functions such as a square wave (which for instance could have value1 during the
day and0 during the night). We give a proof of the existence of the Floquet eigenvalue in the
one-phase model. It can easily be adapted for a multiphase-model with out death rates where
the coefficients would have the formKi→i+1 = Kiψi(t)χ[ai,+∞[ with the same hypothesis
on the functionsψi. We prove here existence of a solution to three eigenproblems: the direct

18



eigenproblem


















∂tN(t, x) + ∂xN(t, x) + (λ+Kψ(t)χ[a,+∞[(x))N(t, x) = 0,

N(t, 0) = 2Kψ(t)
∫ ∞
a N(t, x)dx,

N ≥ 0,
∫ ∞
0 Ndx = 1,

(10)

the dual eigenproblem

{

−∂tφ(t, x) − ∂xφ(t, x) + (λ+Kψ(t)χ[a,+∞[(x))φ(t, x) = 2Kψ(t)χ[a,∞[(x)φ(t, 0),

φ > 0,
∫ ∞
0 Nφdx = 1,

(11)
and the delay differential equation

Ṗ (t) = −(Kψ(t) + λ)P (t) + 2Ke−λaψ(t− a)P (t− a), P > 0,

∫ 1

0
P (t)dt = 1. (12)

We give a normalization forP to ensure uniqueness.

Theorem 8. For any positiveT -periodic bounded functionψ 6= 0, a ≥ 0 here exists a unique
λ,N, φ, P such thatP > 0 is solution to (5) andN ≥ 0 is solution to (2) (N > 0 if ψ is
positive).

The proof is based on the Krein-Rutman theorem (see [10] for instance). We consider a
T -periodic nonnegative bounded functionψ 6= 0. We adapt the proof from [20] to our case.
First, using the methods of characteristics for the partialdifferential equations, we reduce the
eigenproblems to integral equations onN(t, 0), φ(t, 0) andP . We consider three operators
depending on a parameterµ. For a boundedT -periodic functionM, we defineNi = Li(M)
by

N1(t) = 2K

∫ ∞

a
ψ(t− x)e−µx−K

∫ x

a
ψ(t−x+s)dsM(t− x)dx, (13)

N2(t) = 2K

∫ ∞

a
ψ(t)e−µx−K

∫ x

a
ψ(t−x+s)dsM(t− x)dx, (14)

N3(t) = 2K

∫ ∞

a
ψ(t+ x)e−µx−K

∫ x

a
ψ(t+s)dsM(t+ x)dx. (15)

These operators are defined such that forµ = λ, we get,

P (t) = L1(P )(t),

N(t, 0) = L2(N(., 0))(t),

φ(t, 0) = L3(φ(., 0))(t).

This means that the functions should be nonnegative eigenvectors of these three operators
associated to the eigenvalue1.
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Lemma 9. For µ ≥ 0,

• Li mapsL∞
per(0, T ) into itself,

• L1,L3 are continuous compact operators onCper(0, T ),

• L1,L3 are strongly positive andL2 is nonnegative (strongly positive ifψ > 0).

Proof. ForM bounded, one has, since forx > a,
∫ x
a ψ(t)dt ≤ 〈ψ〉(x− a) + ‖ψ‖∞T ,

‖Li(M)‖∞ ≤ 2
‖ψ‖∞
〈(ψ)〉

eK‖ψ‖∞T ‖M‖∞ = C‖M‖∞.

For continuity and compactness we only explicit the proof for i = 1, the casei = 3 is very
similar. We considerM continuous andh small,

N1(t+ h) = 2K

∫ ∞

a
ψ(t+ h− x)e−µx−K

∫ x

a
ψ(t+h−x+s)dsM(t+ h− x)dx,

= 2K

∫ ∞

a−h
ψ(t− x)e−µ(x+h)−K

∫ x+h

a
ψ(t−x+s)dsM(t− x)dx,

= 2K

∫ a

a−h
ψ(t− x)e−µ(x+h)−K

∫ x+h

a
ψ(t−x+s)dsM(t− x)dx

+ 2K

∫ ∞

a
ψ(t− x)e−µ(x+h)−K

∫ x+h

a
ψ(t−x+s)dsM(t− x)dx,

= Ah + 2K

∫ ∞

a
ψ(t− x)

(

e−µ(x+h)−K
∫ x+h

a
ψ(t−x+s)ds − e−µx−K

∫ x

a
ψ(t−x+s)ds

)

M(t− x)dx

+ 2K

∫ ∞

a
ψ(t− x)e−µx−K

∫ x

a
ψ(t−x+s)dsM(t− x)dx,

= Ah +Bh + N1(t).

We have bounds onAh andBh,

|Ah| ≤ 2K‖ψ‖‖M‖∞h,

|Bh| ≤ K‖ψ‖∞h‖N1‖∞ ≤ CK‖ψ‖∞‖M‖∞h.

Therefore, using (A.1),(A.1), we obtain the continuity andthe compactness of operatorL1.
Using the same techniques we can prove continuity and compactness of operatorL3. The
operatorL2 needs regularity onψ to be compact (and continuous). All these operators are
positive. We can apply the Krein-Rutman theorem (weak form [10]). We denoteρ1, ρ3 the
spectral radii of respectivelyL1,L3. They are positive (sinceL(1) ≥ ε > 0, ρ1 ≥ ε), so are
the associated nonnegative eigenfunctions. IfM1(t) = 0, then

ψ(t− x)M1(t− x) = 0, for x ≥ a,

which leads toψM1 ≡ 0 andρ1M1 ≡ 0.ThereforeM1 and similarlyM3 can not vanish.

Lemma 10.
L2(ψM1) = ρ1ψM1,

ρ1 = ρ3.
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Proof. The first point is a straightforward computation. The secondpoint uses the duality of
operatorsL2 andL3,

∫ T

0
L2(ψM1)(t),M3(t)dt =

∫ T

0
ψ(t)M1(t)L3(M3)(t)dt,

ρ1

∫ T

0
ψ(t)M1(t)M3(t)dt = ρ3

∫ T

0
ψ(t)M1(t)M3(t)dt.

The existence of a solution to (5) is equivalent to the existence of a positive fixed point ofL1

for µ = λ, therefore, we need to findµ such thatρ1(µ) = 1. Forµ = 0, we have

L3(1) = 2.

Thereforeρ1(0) = 2. As ρ is a decreasing function ofµ andρ1(∞) = 0, there exists some
positiveλ such thatρ1(λ) = 1. The solution to (5) is then given by suchλ andP = M1.
Then, the functionN definedN(t, 0) = ψ(t)M1(t) and the characteristics

N(t, x) = N(t− x, 0)e−λx−
∫ x

0
Kψ(t−x+s)χ[a,∞[(s)ds,

is solution to (2). We remark then, asλ > 0, thatN(t,∞) = 0. Similarly, we defineφ by

φ(t, x) =

∫ ∞

x
Kψ(t+ y − x)χ[a,∞[(y)φ(t+ y − x, 0)e−

∫ y

x
λ+Kψ(t+s−x)χ[a,∞[(s)dsdy.

This is a solution to (11).

A.2 Explicit solutions for the multiphase eigenproblem

In the followingT = 1.
We give here explicit solutions to the eigenproblem in the multiple phases case. We do not

give details for the demonstration. We consider a3 phase model without death terms, where
the transition terms have the form:

Ki→i+1(t, x) = Kiψi(t)χ[ai,∞[(x).

Here,ψi is a positive1-periodic function satisfying〈ψi〉 = 1. We consider the following very
specific case: we choosea1, a2, a3 > 0 such thata1 + a2 + a3 = 1, and we chooseψi in the
following way, for a fixed positive1-periodic functionψ,

ψ1(t) = ψ(t),

ψ2(t) = ψ(t− a2),

ψ3(t) = ψ(t− a2 − a3).

To explain the form of the coefficients, we make the followingremark: if we denotePi(t) =
∫ ∞
ai
Ni(t, x)dx (the same idea as for the one phase model), the1-periodic functionsPi satisfies

a system of delay differential equations and sincea1 + a2 + a3 = 1, the1-periodic functions
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Qi defined byQ1(t) = P1(t), Q2(t) = P2(t+ a2), Q3(t) = P3(t+ a2 + a3) satisfy a system
of ordinary differential equations.

d

dt





Q1(t)
Q2(t)
Q3(t)



 = −





−λ−K1ψ(t) 0 2K3e
−λa1ψ(t)

K1e
−λa2ψ(t) −K2ψ(t) − λ 0

0 K2e
−λa3ψ(t) −K3ψ(t) − λ









Q1(t)
Q2(t)
Q3(t)



 .

We denoteM(t) the above matrix. Due to the special form of the functionsψi, we have
M(t)M(t′) = M(t′)M(t), for all t, t′. Therefore we can write

Q(t) = exp

(
∫ t

0
M(s)ds

)

Q(0).

The vectorQ(t) is 1-periodic, thus,Q(0) has to be a positive eigenvector ofexp(
∫ 1
0 M(s)ds)

associated to the eigenvalue1. The matrixexp(
∫ 1
0 M(s)ds) has eigenvalue1 if and only if

(K1 + λ)(K2 + λ)(K3 + λ) − 2K1K2K3e
−λ(a1+a2+a3) = 0. (16)

This leads toQi(t) = eλ
∫ t

0 (ψ(s)−1)dsQi(0), whereQ(0) is a positive vector satisfying
∫ 1
0 M(s)dsQ(0) =

0. Then, we can computePi(t) andNi(t, 0). Finally, using the methods of characteristics, the
eigenfunctionsNi are given, up to a normalization, by

N1(t, x) = 2K3U3ψ(t+ a1 − x)eλ
∫ t−x+a1
0 (ψ(s)−1)ds−λx−

∫ x

0 K1ψ(t−x+s)χ[a1,∞[(s)ds,

N2(t, x) = K1U1ψ(t− x)eλ
∫ t−x

0 (ψ(s)−1)ds−λx−
∫ x

0 K2ψ(t−x+s−a2)χ[a2,∞[(s)ds,

N3(t, x) = K2U2ψ(t− a2 − x)eλ
∫ t−x−a2
0 (ψ(s)−1)ds−λx−

∫ x

0
K3ψ(t−x+s−a2−a3)χ[a3,∞[(s)ds,

where




U1

U2

U3



 =







1
K1e−λa2

K2+λ
K1+λ

2K3e−λa1






.

The adjoint eigenfunctions are given by the formulas

φ1(t, x) = e−λ
∫ t−a2−a3−min(x,a1)
0 (ψ(s)−1)ds+λmin(x,a1)V1,

φ2(t, x) = e−λ
∫ t−min(x,a2)
0 (ψ(s)−1)ds+λmin(x,a2)V2,

φ3(t, x) = e−λ
∫ t−a2−min(x,a3)
0 (ψ(s)−1)ds+λmin(x,a3)V3,

where




V1

V2

V3



 =







1
K1+λ

K1e−λa1

2K3e−λa3

K3+λ






.

22



Basically, the ideas for the computations ofφi are the same, based on the following remark, as

φi(t, x) =

∫ ∞

0
Ki→i+1(t+ y, x+ y)φi+1(t+ y, 0)e−

∫ y

0
λ+Ki→i+1(t+y′,x+y′)dy′dy,

(with a factor 2 for i = 3), we haveφi(t, x) = φ(t, ai) for a ≥ ai. This leads to a
differential equation forφi(t, 0). Details are left to the reader. In this case, we compute
∫ ∞
0 Ni(t, x)φi(t, x)dx. As we haveφi(t, x) = φi(t, ai) for x ≥ ai,

∫ ∞

0
Ni(t, x)φi(t, x)dx =

∫ ai

0
Ni(t, x)φi(t, x)dx+ φi(t, ai)

∫ ∞

ai

Ni(t, x)dx.

We have
∫ ∞

0
N1(t, x)φ1(t, x) = (K1 + λ)eλa1

∫ a1

0
ψ(t− x+ a1)dx+ U1V1e

λa1 ,

∫ ∞

0
N2(t, x)φ2(t, x)dx = (K1 + λ)eλa1

∫ a2

0
ψ(t− x)dx+ U2V2e

λa2 ,

∫ ∞

0
N3(t, x)φ3(t, x)dx = (K1 + λ)eλa1

∫ a3

0
ψ(t− a2 − x)dx+ U3V3e

λa3 .

Particularly, in this case,
∫ ∞
0 Niφdx is not always constant. We denoteΨ(t) =

∫ t
0 (ψ(s)−1)ds,

it is a 1 periodic function. We also denoteCi = UiVie
λai , C = (K1 + λ)eλa1 , both these

constants are positive,
∫ ∞

0
N1(t, x)φ1(t, x) = C(a1 + Ψ(t) − Ψ(t+ a1)) + C1,

∫ ∞

0
N2(t, x)φ2(t, x)dx = C(a2 + Ψ(t− a2) − Ψ(t)) + C2,

∫ ∞

0
N3(t, x)φ3(t, x)dx = C(a3 + Ψ(t+ a1) − Ψ(t− a2)) + C3.

For instance, using the parameters of the simulation, we have,Ψ(t) = 0.9
2π sin(2πt), a2 = 0.5,

∫ ∞

0
N2φ2(t, x)dx = (Ca2 + C2) − 2C

0.9

2π
sin(2πt) = C ′ − C ′

2 sin(2πt),

∫ 1

0
γ(t+θ)

∫ ∞

0
N2φ2(t, x)dx = C ′

∫ 1

0
cos6(2π(t+θ))dt−C ′

2

∫ 1

0
cos6(2π(t+θ)) sin(2πt)dt,

a short computation leads to

γ(t) =
1

32
cos(6πt) +

3

24
cos(4πt) +

15

32
cos(2πt) +

5

16
,

therefore,
∫ 1

0
γ(t+ θ)

∫ ∞

0
N2φ2(t, x)dx = C ′′ − C ′′

2 sin(2πθ),
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WhereC ′′ ≥ C ′′
2 > 0. Therefore, in this particular case,

lim
λε,θ − λ0

ε
= C ′′

2 sin(2πθ) − C ′′.
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