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Abstract.

This paper is devoted to the study of the mechanical behavior of thin elastic shells
when their relative thickness ε tends to zero. We focus on the case of hyperbolic shells
whose middle surface has principal curvatures of opposite signs everywhere. We use
the Koiter model to describe the mechanical behavior of the shell. The corresponding
system, which depends on the relative thickness ε, is elliptic except at the limit for
ε = 0 where it is hyperbolic. In a first part, we study theoretically the phenomena of
internal layers appearing during the singular perturbation process, when the loading
is somewhat singular. These layers have very different structures either they are along
or across the asymptotic lines of the middle surface of the shell. Moreover, we may
have pseudo-reflections when a part of the boundary is not along an asymptotic line
of the surface. In any case, the layers become very thin when ε tends to zero and the
displacements inside the layers tends to infinity. In order to have a good description
of the singularities of the displacements inside the layers, we propose here to use an
anisotropic and adaptive mesh procedure. In a second part, we will present numerical
computations performed with such meshes. They enable us to approach accurately the
singularities inside the layers predicted by the theory. Finally, we test the behavior of
the remeshing procedure when the shell is non-inhibited.

AMS subject classification (2000): 74B05, 74K25, 74S05, 76M45, 35A21, 65N50

Key words: Shell theory, Singular perturbation, Anisotropic mesh, Internal layers.

1 Introduction

In this paper, we consider thin elastic shells of relative thickness ε and their
asymptotic behavior when ε tends to zero. Classically, asymptotic studies of
such structures when ε ց 0 give either a membrane model or a pure bending
one. To have both contributions (membrane and bending), we use the Koiter
model [16] although it is not an asymptotic model. The variational form of the
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Koiter model can be written [4, 19]:

Find u ǫ V, such as, ∀ v ǫ V :

am(uε, v) + ε2ab(u
ε, v) = b(v)(1.1)

It contains two parts: am represents the membrane effects and ε2ab the bend-
ing effects proportional to ε2. For ε > 0, the corresponding system is always
elliptic and classical results of regularity hold true. The solution belongs to
the energy space of the variational problem denoted V , which is essentially
H1 × H1 × H2 (for the tangent and normal components of the displacement
vector, respectively) with the kinematic boundary conditions. The limit prob-
lem (when ε = 0) of the Koiter shell model is very different either the space

(1.2) G = {v ǫ V ; am(v, v) = 0} = {v ǫ V ; γαβ(v) = 0}

reduces to {0} or not, γαβ denoting the covariant components of the membrane
strain tensor which writes:

(1.3) γαβ(u) =
1

2
(Dαuβ +Dβuα)− bαβu3

where Dαuβ = ∂αuβ − Γλ
αβuλ denotes the covariant derivative of uβ with re-

spect to α, and bαβ are the covariant components of the second fundamental
form accounting for curvatures.

When G = {0}, the shell is called inhibited or geometrically rigid : the middle
surface does not admit inextensional displacements, i. e. displacement leaving
the metrics unchanged (in the linearized sense). Oppositely, when G 6= {0}, the
shell is not inhibited. The nature of G depends only on the geometry of the
middle surface and on boundary conditions [19].
In the case of inhibited shells, the asymptotic process when εց 0 is a singular

perturbation problem since the bending part contains the highest order deriva-
tives. As the normal displacement u3 is in H2 when ε > 0 but only in L2 (at
best) when ε = 0, boundary layers appear during the asymptotic process. The
limit problem is the membrane problem which writes:

(1.4) am(u0, v) = b(v)

Moreover, the limit problem is hyperbolic (respectively parabolic or elliptic) if
the middle surface of the shell is respectively hyperbolic (respectively parabolic
or elliptic). When the middle surface is parabolic or hyperbolic, the limit prob-
lem has real characteristic lines (corresponding to the asymptotic lines of the
surface) (see for instance [19]). Consequently, a non-smooth loading causes sin-
gularities at the limit that may propagate along these lines. In this case, when
ε ց 0, internal layers appear. It should be noted that, in most examples, the
singularities are so important that a good description of the layers amounts to
a good description of the whole solution.
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The very peculiar structure of the limit problem implies that ”very singular”
solutions may be provoked by ”moderate” singularities of the data. For instance,
in certain cases, singularities of the solutions are ”two steps” more singular than
the data (it means that, as an example, a jump of the second derivatives of
the normal force imply a jump of the normal displacement itself, and so on).
Consequently, the corresponding theory is currently handled in the framework
of distribution theory (including δ− like and even more singular elements, which
appear in applications). Appendix A contains a few indications in this context.

Obviously, a very large variety of situations may appear according to the ge-
ometry of the middle surface. In this paper, we focus on hyperbolic shells i.

e. the principal curvatures of the middle surface of the shell have (everywhere)
opposite signs (this occurs when b11b22 − b12

2 < 0). For this kind of shells,
reflection phenomena may also appear [13, 15]. When an internal layer reaches
a non-characteristic boundary, singularities may reflect and propagate along the
two characteristics starting from the intersection of the internal layer and the
boundary. As these reflections do not satisfy laws of classical reflection, they are
often called ”pseudo reflections” (in most cases, the reflected singularity is ”one
step” less singular than the incident one; several cases were described in [15]).

Along boundary and internal layers, singularities may be very sharp (as the
Dirac mass on the curve, and even more singular), containing most of the de-
formation energy. Obviously, for small ε, the singularities of the limit problem
are replaced by layers, so that a local refinement of the mesh nearby them is
highly pertinent. Moreover, because of the phenomenon of propagation of sin-
gularities along the characteristics, the local structure of the layers is somewhat
anisotropic. So, anisotropic meshes with higher refinement across the layer than
along it are most fitted for computing such kind of problems. But the simultane-
ous presence of several kinds of such singularities in a problem makes it difficult
to foresee a good mesh before solving (even approximately) the problem. In
addition, the construction of such meshes is made practically impossible by the
presence of phenomena of reflection of the singularities at the boundaries. These
peculiarities are analogous to those of computation in fluid mechanics problems.
Precisely, the main aim of this paper is to show the reliability and efficiency in
shell problems of the two-dimensional anisotropic mesh generator BAMG de-
veloped by INRIA 1 for fluid flow problems. More precisely, this adaptive and
anisotropic mesh procedure, based on iterative automatic mesh generation, was
applied previously [2, 3, 10, 11] to singularities in various situations of inhibited
shells. In the present paper, we apply it to hyperbolic shells in the various situa-
tions analogous to those of the ”real word”, with simultaneous presence of several
kinds of singularities, including refections (in section 4) and both non-inhibited
regions and singularities in inhibited regions (in section 5).
In the case of non-inhibited shells (i. e. the middle surface is not geomet-

rically rigid), the difficulties are of a different nature. In order to minimize

1. Institut National de Recherche en Informatique et Automatique
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elastic energy, the natural trend of the solution (for small ε) is to perform ”pure
bendings”, which avoid the (large) membrane energy, and only use the (small)
bending energy. This implies very particular deformations where the asymptotic
lines of the surface play a peculiar role, inducing anisotropic deformation. Let
us explain this a little. The elements of G are solutions of the ”rigidity system”:

(1.5)























γ11 = D1u1 − b11u3 = 0

γ22 = D2u2 − b22u3 = 0

γ12 = 1
2 (D1u2 +D2u1)− b12u3 = 0

which (after eliminating one of the unknowns, u3 for instance, from the third
equation) is a hyperbolic system of first order with two equations and two un-
knowns. The characteristics of the system are the asymptotic curves of the
middle surface, which play in some sense the role of ”local infinitesimal hinges”
allowing infinitesimal rotations along them. This is particularly evident in the
case when the surface is ruled, made of family of straight lines (called ”genera-
tors”): the surface admits (the boundary conditions are not taken into account)
displacements consisting of arbitrary infinitesimal rotations around the gener-
ators, which preserve the intrinsic metrics of the surface. Clearly, such kind
of displacements is highly anisotropic along the generators. The simplest and
clearest example is that of the ”ruled quadrics” (the hyperbolic hyperboloid and
the hyperbolic paraboloid) which have two families of such generators. All the
isometric deformations are made of the above mentioned rotations around the
two families of generators. According to boundary conditions, one or both rota-
tions may be (partially or totally) impeached, giving various specific examples
of subspace G (the case when the boundary conditions impeach both rotations
everywhere is the ”inhibited” case). We shall see in section 5 examples of such
situations. The general case (when the characteristics are not straight) is essen-
tially analogous ”at the leading order” of deformation, whereas other smoother
terms are also present.
The reasons of the difficulties of computation of solutions in the subspace G

of pure bendings are classical, as the ε − dependent problem takes the form of
a penalty problem, which classically induces locking (see for instance [1, 17]).
Incidentally, it should be mentioned that the difficulties of computation of sin-
gularities in the inhibited case may be interpreted in terms of locking (in fact a
local locking inside the layers) via a re-scaling of the variables and unknowns.
Indeed, after such re-scaling, the problem describing the singularities exhibits a
G− like subspace describing the limit behaviour (see [8, 18]).

Obviously, the reliability of the above mentioned automatic procedure of adap-
tive anisotropic meshes should also be accurate for other shapes of the shell (el-
liptic and parabolic shells), but this question will not be discussed here, as it
implies very different singular behaviors. For instance, the reader can refer to
[2, 3] for the case of elliptic shells.
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The paper is organized as follows. In section 2, we study the membrane limit
problem for a hyperbolic shell subjected to a singular loading. We exhibit the
singularities of the three displacements for three different loadings. Section 3 is
devoted to numerical computation of the Koiter shell model for very small thick-
nesses using the anisotropic and adaptive mesh procedure for the three loadings
considered before. These examples prove the efficiency of such a technique to
obtain accurate results inside the layers. In particular, the advantage of an adap-
tive mesh with respect to an uniform one is shown. In section 4, we show how
useful this numerical procedure is when pseudo-reflection of singularities occur
on boundaries. Finally, the last section is devoted to numerical computation for
non-inhibited problems where we study how behaves the remeshing procedure
in more complex situations where membrane and bending effects dominate in
different areas of the shells.

2 The limit problem for a hyperbolic inhibited shell

Let us consider a shell whose middle surface is hyperbolic and boundary con-
ditions such as the shell is inhibited 2. As we mentioned in the introduction,
in that case, the limit problem when ε tends to zero is the membrane problem.
The limit solution u0 satisfies the membrane system:

(2.1)







−DβT
αβ = fβ

−bαβTαβ = f3

with the associated boundary conditions and where

(2.2) Tαβ = Aαβλµγλµ

denote the components of the membrane stress tensor and γαβ are the compo-
nents of the strain tensor given in term of the unknowns ui by the expressions
(1.5). The coefficients Aαβλµ are the isotropic linear elastic constitutive law
coefficients defined by (see [4]):

(2.3) Aαβλµ =
E

2(1 + ν)

[

aαλaβµ + aαµaβλ +
2ν

1− ν
aαβaλµ

]

where ν and E are respectively the Poisson ratio and the Young modulus.

Replacing in (2.1) the expressions (2.2) of Tαβ, we obtain a system of partial
differential equations characterizing the displacement u (see [2] for more details).
Another way to solve the membrane problem is to compute first the tensions Tαβ

from (2.1). Then, thanks to equation (2.2), we can find the components of the
membrane strain γλµ and finally the displacements u. Note that in this second
case, it is easier to use the inverse relation:

(2.4) γλµ = BαβλµT
αβ

2. For that, every asymptotic line has to be clamped or simply supported at least at one
point.
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where Bαβλµ are the membrane compliance coefficients.

Taking a special parametrization (y1, y2), where the coordinate lines are the
asymptotic curves of the middle surface, the covariant components bαβ of the
second fundamental form reduce to b11 = b22 = 0 and b12 6= 0. In what follows,
we will consider the case of a normal loading, giving the most singular results
for displacements. We then have:

(2.5) f1 = f2 = 0

It enables us to write the membrane system (2.1) like follows:

(2.6)























D1T
11 +D2T

12 = 0

D2T
22 +D1T

12 = 0

−2b12T
12 = f3

In the sequel, this system will be used to determine the higher order term sin-
gularity of the three displacements (solutions of the limit problem) for various
loadings. Numerical simulations using F. E. method and an adaptive mesh pro-
cedure will confirm this result when εց 0.

2.1 Example of a hyperbolic paraboloid

In what follows, we will consider the case of a shell whose middle surface S is
a hyperbolic paraboloid (see Fig. 2.1). The surface S is defined by the mapping
(Ω,Ψ) with:

(2.7) Ω =
{

(y1, y2) ∈ R
2, (y1, y2) ∈ [−L,L]2

}

and

(2.8) Ψ(y1, y2) =

(

y1, y2,
y1y2

c

)

We will consider the values L = 50 mm and c = 250 mm for the numerical
computations. Moreover, the material considered is isotropic and homogeneous,
with a Young modulus E = 28500MPa and a Poisson ratio ν = 0.4. The rel-
ative thickness ε is taken as the ratio ”thickness/2L” which gives in our case
ε = 0.01× thickness.

This specific parametrization corresponds to that of the asymptotic lines. In-
deed, the mapping (Ω,Ψ) implies the following covariant coefficients of the first
(2.9) and second (2.10) fundamental forms:

(2.9) aαβ =











1 +
(y2)2

c2
y1y2

c2

y1y2

c2
1 +

(y1)2

c2










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(2.10) b11 = b22 = 0 b12 = b21 =
1

√

c2 + (y1)2 + (y2)2

The only non-vanishing Christoffel symbol used in this paper is

(2.11) Γ1
12 =

y2

c2 + (y1)2 + (y2)2

-50

0

50
 y1 

-50

0

50

 y2 

-10

0

10

 y3 

Figure 2.1: The hyperbolic paraboloid

The middle surface is then uniformly hyperbolic. The asymptotic directions
satisfy

(2.12) 2b12(dy
1)(dy2) = 0

which gives, as b12 > 0, two distinct families of asymptotic curves:

(2.13) y1 = const and y2 = const

The asymptotic curves play an important role as they correspond to the char-
acteristic lines of the membrane and rigidity systems [19]. We will see that if
the loading is somewhat singular along an asymptotic line, the resulting dis-
placements will be singular on the whole asymptotic line. In what follows, we
shall call these lines indifferently ”asymptotic” or ”characteristic”. We are now
considering the case when a normal loading f3 is singular along a characteristic
line, and we shall exhibit the leading order singularities and their propagative
character. The case of singularity along non-characteristic lines is similar to that
of elliptic or parabolic shells which were considered in [2, 3]. The terminology
used for singularities is detailed in appendix A.

2.2 Singularities of the displacements due to a loading singular on the line

y1 = 0

Let f3 be singular on a characteristic line y1 = 0. We shall write it under the
form:

(2.14) f3 = ψ(y1) ϕ(y2)
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where ψ(y1) plays the role of S0 (see (A.1) in appendix A for more details)
and ϕ(y2) denotes its weight along y1 = 0.
Let us study the system (2.6) near y1 = 0. It becomes:

(2.15)























D1T
11 +D2T

12 = 0

D2T
22 +D1T

12 = 0

−2b12(0, y
2)T 12 = f3

From the third equation of (2.15), we get:

(2.16) T 12 = τ12(y2) ψ(y1)

with

(2.17) τ12(y2) = − 1

2b12(0, y2)
ϕ(y2)

Replacing T 12 in the second equation of (2.15), we obtain:

(2.18) ∂2T
22 + Γ1

12(0, y
2)T 22 = −τ12(y2)ψ′(y1) + . . .

where Γγ
αβ are the Christoffel symbols and . . . denotes lower order terms. We

then deduce the leading term of T 22:

(2.19) T 22 = τ22(y2) ψ′(y1) + . . .

with

(2.20) ∂2τ
22(y2) + Γ1

12τ
22(y2) = −τ12(y2)

and where . . . denotes lower order terms.

Finally, replacing T 12 in the first equation of (2.15), we obtain the expression of
T 11:

(2.21) T 11 = τ11(y2) ψ(−1)(y1) + . . .

with

(2.22) τ11(y2) = −∂2τ12(y2)
where ψ(−1) is such that ∂1ψ

(−1)(y1) = ψ(y1) (see appendix A).

The most singular tension is T 22 which is one order more singular than ψ(y1).
Using the inverse constitutive law (2.4), we get the system:

(2.23)



























D1u
0
1 = B1122τ

22(y2) ψ′(y1) + . . .

D2u
0
2 = B2222τ

22(y2) ψ′(y1) + . . .

1

2
(D1u

0
2 +D2u

0
1)− 2b12u

0
3 = 2B1222τ

22(y2) ψ′(y1) + . . .
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We deduce u01 and u02 respectively from the first and the second equations of
(2.23). Finally, we get u03 from the third equation of (2.23) where ∂1u

0
2 is more

singular that the right hand side. We obtain the general form of the displace-
ments (only the most singular terms with respect to y1) in the vicinity of the
line y1 = 0:
(2.24)






















u01(y
1, y2) = U1(y

2) ψ(y1) + ...

u02(y
1, y2) = U2(y

2) ψ′(y1) + ...

u03(y
1, y2) = U3(y

2) ψ′′(y1) + ...

with



























U1(y
2) = B1122τ

22(y2)

∂2U2(y
2) = B2222τ

22(y2)

U3(y
2) =

1

4b12
U2(y

2)

We then observe that the leading order terms of the singularities are defined
up to two arbitrary constants (from the two first order equations: (2.20) and the
second one of the right of (2.24)). They are easily defined using the boundary
conditions at the first order. Two aspects of the results must be underlined. On
one hand, u01, u

0
2 and u03 are respectively 0, 1 and 2 order(s) more singular than

f3 (their highest order singularity are respectively ψ, ψ′ and ψ′′). On the other
hand, the singularities propagate along the corresponding generator y1 = 0. In-
deed, U1, U2 and U3 do not vanish when ϕ(y2) vanishes. As they are primitives
of ϕ(y2) with respect to y2, they contain smooth terms generally different from
0. This implies that the singular terms in y1 exist all along the characteristic
line y1 = 0 even if ϕ(y2) (and consequently f3) vanishes.

2.3 The three cases of loading
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L = (−50, 0)
K = (−50, 25)
J = (−50, 50)
I = (0, 50)
H = (25, 50)
G = (50, 50)
F = (50, 25)
E = (50, 0)
D = (50,−50)
C = (25,−50)

A = (−50,−50)
B = (0,−50)

A B C

O = (0, 0)

A B

G

D

IJ

K

O

y2

y1
EL

A B C

G

D

HJ

K

O

y2

y1
E

F

L

F

A B

G

D

IJ

K

O

y2

y1
EL

F

C

H H

C

I

Figure 2.2: The three loadings considered on the domain Ω: (A) discontinuity on a
characteristic line ([BI]), (B) discontinuity on non-characteristic lines ([AO] and [JO]),
(C) discontinuity on a non-characteristic curve ([AOJ]), but tangent to a characteristic
line ([BI])

The three cases of loading are presented on Fig. 2.2. An uniform normal
pressure, proportional to the thickness is applied respectively in the regions A,
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B, and C. Let us exhibit the singularities of these three loadings near the line
y1 = 0 in the previous context.

• Loading A

The expression of the loading A is 3 f3 = H(−y1). The singularity near y1 = 0
is then:

(2.25) ψ(y1) = H(−y1) and ϕ(y2) = 1

• Loading B

The expression of the singularity of loading B near y1 = 0 is not direct. For
a fixed y1 < 0, we have:

(2.26) f3 = H(y2 − y1)−H(y2 + y1) = (−2y1)
H(y2 − y1)−H(y2 + y1)

−2y1

and f3 vanishes for y1 > 0. It then appears that the expression of the singu-
larity of the loading B near y1 = 0 is finally:

(2.27) f3 ≈ −2y1H(−y1)δ(y2)
where δ denotes the Dirac mass (see appendix A). A rigorous proof of (2.27)

may be obtained using distributions acting on test functions. This gives:

(2.28) ψ(y1) = y1H(−y1) and ϕ(y2) = −2δ(y2)

A similar singularity (i. e. with the same order) exist along y2 = 0.

• Loading C

The expression of the singularity of the loading C near by the line y1 = 0 is
obtained in the same way. For a fixed y1 < 0, we have:

(2.29) f3 = H(y2 + s)−H(y2 − s)

where s has to be expressed using the equation of the circle. This finally gives:

(2.30) f3 ≈ 2
√
2L

√

−y1H(−y1)δ(y2)
so that we have:

(2.31) ψ(y1) =
√

−y1H(−y1) and ϕ(y2) = 2
√
2Lδ(y2)

Obviously, the singularity of ψ(y1) in (2.31) is not very classical and it is not
an element of the classical chain (A.2) (see appendix A). But it may be taken
as S0 for a chain of the type (A.1) describing the singularities of the solutions.

3. H(.) denotes the classical Heaviside jump function.
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2.4 The singularities of the resulting displacements

Using (2.24), we deduce the singularities of the three displacements at y1 = 0
for each loading. The corresponding results are summarized in Table 2.1.

Loading A Loading B

u01 = U1(y
2)H(−y1)

u02 = U2(y
2)δ(−y1)

u03 = U3(y
2)δ′(−y1)

u01 = U1(y
2)y1H(−y1)

u02 = U2(y
2)H(−y1)

u03 = U3(y
2)δ(−y1)

Loading C

u01 = U1(y
2)
√

−y1 H(−y1)

u02 = U2(y
2)(−y1)− 1

2H(−y1)

u03 = U3(y
2)

d

dy1

(

(−y1)− 1

2H(−y1)
)

Table 2.1: Orders of the singularities of the three displacements for the three loadings

where
d

dy1
is the derivative in the sense of distributions.

3 Numerical computations using adaptive meshes

3.1 Numerical procedure

The numerical computations have been performed with the finite element soft-
ware MODULEF using the DKTC element [4]. The mesh is realized on the
2D domain of the local mapping of the middle surface, which avoids geomet-
rical approximations of planar facet decomposition. According to the general
considerations in the introduction, we need anisotropic adaptive meshes more
refined across the layers than along them. To create such meshes, we use the
”bidimensional anisotropic mesh generator” BAMG, developed by INRIA. Error
estimates for finite elements using anisotropic meshes inside of layers in the case
of parabolic shells have been presented in [20, 21]. It leads to a better description
of the singularities with a reduced number of elements.

The software BAMG performs an anisotropic mesh adaptation using metric

control technique. It was initially developed to compute supersonic aerodynamic
flows which exhibit shock waves [5, 6, 7]. It has already been used with success
for shell and shell-like problems computations in [2, 3, 10, 11]. A new mesh is
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generated with a modified metrics. To do this, BAMG uses the Hessian of the
solution at each step of an iteration to define a new Riemannian metrics for the
next step: lengths are increased (respectively diminished) in the areas and the
directions where the second order derivatives are large (respectively small) (see
[12]). Consequently, the mesh is refined (respectively coarsened) when the sec-
ond order derivatives are large (respectively small). For more details, one may
refer to [2, 3, 10]. For the shell problems considered here, we use the bending
displacement uε3 for the remeshing procedure. Then the mesh will be refined in
the areas where the second order derivatives of uε3 are large. They correspond
to the areas where the bending is important.

It should be emphasized that the very point of the procedure relies on the
construction of a new (non Euclidean, but Riemannian) metrics whose length
element is defined with the Hessian of the solution (at the previous step of
the iterative procedure). In terms of this metrics, which remains hidden, the
mesh is (more or less) uniform and isotropic. The triangles are only elongated
in terms of the usual Euclidean metrics, whereas they are equilateral in the
hidden metrics, which is essentially used in the computation. It is known that
elongated triangles with angles nearby π may give trouble; but such difficulty
was never encountered with BAMG, as the ”effective shape” of the triangles in
the ”effective” (but hidden) metrics is (almost) equilateral.

3.2 Numerical results for loading A

First, let us observe the adaptation process at some iterations.

(a) Initial mesh (b) Iteration 2

Figure 3.1: Evolution of the mesh during the adaptation process (iterations 0 and 2)
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(a) Iteration 5 (b) Iteration 7

Figure 3.2: Evolution of the mesh during the adaptation process (iterations 5 and 7)

The initial mesh is quite uniform (Fig. 3.1(a)). At the first iteration, anisotropy
is not very apparent (the initial mesh was too coarse). From the second iteration,
the elements start to become clearly anisotropic and we can observe the layers
which appear progressively. The final mesh (Fig. 3.2(b)) is highly anisotropic
and non-uniform: the elements are small and lengthened in the layers, especially
along y1 = 0 corresponding to an internal layer. The displacements at various
iterations and for two relative thicknesses are plotted on Figs. 3.3(a) and 3.3(b).
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Figure 3.3: Displacement u3 at y2 = 0 for y1
∈ [−25, 25] and at various iterations for

loading A
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In Fig. 3.3(a), we can see that the results are nearly the same at the 4th and
the 7th iteration for ε = 10−4 as the process has nearly converged. The results
obtained with the initial mesh and at the first and second iterations are quite
far from those of the 7th. Subsequent iterations do not improve the solution.

The efficiency of the adaptive process is more visible for ε = 10−5 (Fig. 3.3(b)).
For this thickness, the process takes longer to converge, and a refinement is very
useful to get accurate results. The displacements at the 7th iteration are about
twice larger than those at the first iteration. This shows the pertinence of such
an automatic anisotropic procedure of refinement.

3.2.1 Convergence toward the limit problem

The solutions (in fact sections of them at y2 = 25) of the three displacements
for various values of the relative thickness ε are represented on figures 3.4 to 3.6.
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Figure 3.7: Layer thickness η vs. ε1/3

These three figures show that the displacements converge to the predicted dis-
tributions: uε1 to a Heaviside jump in y1 = 0, uε2 to a δ and uε3 to a δ′ (see Fig.
A.1 in appendix A). A way to confirm the nature of these singularities is to
study how the amplitudes vary with ε.

First, let us measure the corresponding internal layer thickness on the dis-
placement uε3. We take the thickness η as being the distance between the two
extrema visible on Fig. 3.6. It is known (see for instance [14, 18]) that the
thickness vary like ε1/3 when an internal layer is along a characteristic line (here
y1 = 0). Fig. 3.7 shows a comparison between the numerical results and the
theoretical ones which are in very good concordance.

Now, let us analyse the variation of the amplitude of uε2 and u
ε
3 for the different

values of ε. To this end, we shall consider the maximum of these two displace-
ments. We recall that, according to the analysis developed in section 2, uε2 et uε3
tends respectively to be a Dirac singularity and its derivative. In appendix A,
we recall that δ can be seen as the limit of a distribution whose support width is
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η and amplitude is 1/η when η tends toward zero. If we take η as the thickness
of the internal layer, the amplitude of uε2 should vary like 1/η i. e. ε−1/3. With
the same reasoning on δ′, we conclude that uε2 should vary like ε−2/3. Figs 3.8
and 3.9 are in good agreement with that.
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Figure 3.8: Value of uε
2max vs. ε−1/3

0

15

30

45

60

75

90

0 500 1000 1500 2000

numerical
theoretical

Figure 3.9: Value of uε
3max vs. ε−2/3

On the other hand, all along the clamped boundary, we have a boundary layer.
The most important one (in amplitude) is located along the edge AJ because
AJ is also a boundary of the loading domain. As AJ is a characteristic line, the
layer thickness should also be proportional to ε1/3. Fig. 3.10 shows the normal
displacement uε3 in this layer for various thicknesses.
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Figure 3.11: Boundary layer thickness
η vs. ε1/3

We can see on Fig. 3.10 that the description of the boundary layer is not
so good for ε = 10−5. In fact most elements concentrate in the internal layer
where singularities are more important (in amplitude but not in order) and there
are few elements outside. Without taking into account the value obtained for
ε = 10−5, we see that the layer thickness varies like ε1/3 (see Fig. 3.11).
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3.3 Results for the loading B

3.3.1 Mesh adaptation and displacements

We now consider loading B. The meshes obtained at various iterations are
represented on Fig. 3.12. The evolution of the mesh is different from that of
the case A because there is propagation of singularities. We can see that the
mesh is refined along the loading domain boundary AOJ , but also along the
characteristic lines tangent to the point O where the loading is locally singular
in y1 (see (2.27)) but also in y2 (with the same orders as the singularity near
y1 = 0).

(a) Iteration 2 (b) Iteration 5

Figure 3.12: Evolution of the mesh during the adaptation process

Let us now consider the singularities of the displacements along the line y2 = 0.
In this case the order of the singularities of u1 and u2 are exchanged compared
to the results presented in Tab. 2.1 (where the considered singularity was along
the line y1 = 0). The results concerning the two most singular displacements
along the line y2 = 0, i. e. uε1 and uε3, are presented on figures 3.13 and 3.14 at
y1 = 25 i. e. on CH of Fig. 2.2.
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Figure 3.14: Displacement uε
3 at y1 = 25 for y2

∈ [−25, 25] and for various thicknesses

In particular, we can notice that the singularities propagate along the charac-
teristic line y2 = 0 (as it is provoked by a singularity of the data at the origin).
The displacement uε1 tends to be a Heaviside whereas uε3 tends to be a Dirac.
The displacement uε2 is not presented here.

3.3.2 Comparison with structured meshes

Let us exhibit some numerical computations using uniform structured meshes.
Fig. 3.15 displays the normal displacement for various meshes and for ε = 10−5.
We observe the efficiency of the adaptive process: adapted meshes of 34171
degrees of freedom (iteration 3) and 48437 DOF (iteration 7) give more accurate
results than a structured uniform mesh with 71525 DOF (called S4). This last
mesh is made of equal squares, each being divided in two triangles.
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Figure 3.15: Displacement uε
3 on the line y1 = 25 for several meshes and for ε = 10−5
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Figure 3.16: Comparison between the convergence of adapted and structured meshes
- Normalized value of the normal displacement uε

3 at the point (y1, y2) = (25, 0) vs.
number of DOF for ε = 10−5

Fig. 3.16 shows the convergence of the results for ε = 10−5 versus the number
of DOF . The reference result u3ref is that of the last iteration of the adaptive
process though it may not be the exact result. We can see that the computations
using adapted meshes converge much faster that those using structured meshes.
The difference is not as important for thicker shells. This is due to the fact that
the layers become very thin as ε tend to zero (like ε1/2 or ε1/3) and the elements
need to be very thin and very elongated in the layers to get accurate results with
a reasonable number of elements.
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3.4 Results for the loading C

The meshes obtained at various iterations are plotted on Figs. 3.17(a) and
3.17(b). We can see that the mesh is refined along the loading domain boundary
AOJ but also along the characteristic line y1 = 0 tangent to the point O where
the loading is locally singular in y1 (see Fig. 2.2) but not in y2. A main difference
is that this loading is not singular for y2 = 0 and consequently, no propagation
(or refinement) is seen along y2 = 0.

(a) Iteration 3 (b) Iteration 5

Figure 3.17: Evolution of the mesh during the adaptation process
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Figure 3.18: Displacement uε
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Figure 3.19: Displacement uε
3 on the line y2 = 0

The shapes of these two displacements do not enable us to determine accu-
rately the type of singularity. We do not have one distinct oscillation as on figure
3.5 or two distinct oscillations as on figure 3.6. On figure 3.19, we can see one
main oscillation, one intermediate and a last smaller. According to Fig. A.1,
these singularities do not correspond to a δ or a δ′ − like singularity. According
to the results of table 2.1, the singularity of the displacement uε3 is between δ
and δ′ and that of the displacement uε2 between and Heaviside singularity H
and a Dirac δ. That could be verified by studying respectively the variations of
|uε2|max and |uε3|max when ε tends to zero.

4 Some examples including pseudo-reflections

Singularities propagating in hyperbolic shells enjoy non-classical properties of
refraction (incidentally called pseudo-reflections) when arriving at a boundary.
The main reason for a non-classical behaviour is that the boundary conditions
are very different from those of classical Cauchy’s problems of wave propagation,
which lead to ”classical reflection”. These problems are far from completely
solved, but some results are known from [15], from which the two following rules
are taken (see Proposition 8.1 of [15]):

- Rule 1 : when f3 has a singularity of order ψ along a characteristic, u3 bears
a singularity of order ψ′′ along that characteristic. When arriving at a sim-
ply supported (or clamped) boundary, the other characteristic issued from that
point bears a singularity of order ψ′. This pseudo-reflection phenomenon does
not occur when the boundary is free (in that case there is no reflection at all).
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- Rule 2 : when f3 has a singularity of order ψ along a non-characteristic
curve, u3 bears also a singularity of order ψ along it. It has a non-propagating
character, but it may arrive at a non-characteristic boundary provided that the
support of the given singular loading arrives at it. In that case, the two charac-
teristics issued from that point bear propagating singularities of order ψ or ψ′

when the boundary is simply supported/clamped or free, respectively.

These rules are sufficient for understanding the examples in this section.

Let us consider the hyperbolic paraboloid defined by the same mapping (see
(2.8)) with c = 1 but on the triangular domain of figures 4.1 and 4.2. This way,
a part of the boundary (i. e. BC) is not along a characteristic line, which allows
pseudo-reflection phenomena. Numerical computations are done with thickness
10−4 (and consequently relative thickness 2.5× 10−5) .
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Figure 4.1: First problem
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Figure 4.2: Second problem

4.1 Reflection of a characteristic layer

The first considered problem is similar to that of [13] but the computations are
now performed with the adaptive mesh procedure. The shell is clamped along
the part BC of the boundary and is consequently inhibited. A δ normal force
with unit weight is applied on the segment y2 = 1 with 1 ≤ y1 ≤ 2, specifically
f3 = [H(y1−1)−H(y1−2)]δ(y2−1). As we saw in section 2.2, there is propaga-
tion of singularities for u3 (see Fig. 4.1): δ′ − like singularities propagate along
the lines y1 = 1 and y1 = 2 whereas a δ′′ − like singularity propagate along the
line y2 = 1.
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Moreover, we have pseudo-reflection of the propagated singularity in δ′′ as the
boundary BC is not along a characteristic line (Rule 1). In the case considered
here (reflection of a singularity along a characteristic line), the reflected singu-
larity of u3 at D is in δ′; it is one order lower than that of the initial one. We
also have reflections of the two other propagated singularities in δ′ (along y1 = 1
and y2 = 1) in E and F , which give δ − like singularities along the lines y2 = 2
and y2 = 3. Note that there would be no reflection if the shell was free along BC.

We handled this problem numerically, using the adaptive and anisotropic
remeshing procedure. The last mesh and results for u3 are presented on Figs.
4.3 to 4.5.
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Figure 4.3: Mesh at the 5th iteration
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Figure 4.5: Displacement u3 along the line y1 = 0.5

We clearly observe that the mesh is mainly refined along the characteristic line
y2 = 1, corresponding to the discontinuity of the loading, and leading to a prop-
agated δ′′− like singularity as seen previously (it is the higher order singularity).

Moreover, the mesh is also refined along the characteristic lines y1 = 1 and
y1 = 2. As quoted above, the singularities also propagate along these character-
istic lines, but are of a lower order (only in δ′) than the previous one. So that the
mesh is less refined than in the vicinity of the characteristic y2 = 1. The mesh
is also slightly refined along the characteristic line y1 = 3, corresponding to the
pseudo-reflection of the singularity of u3 at the fixed edge. Finally, there is no
refinement along the lines y2 = 2 and y2 = 3 where the existing singularities are
negligible (”only” in δ).

Fig 4.4 displays u3 along the line y2 = 0.5 exhibiting three δ′−like singularities
(”double oscillations”). The two first ones, at y1 = 1 and y1 = 2 are those
propagated from the extremities of the applied loading, whereas the third one,
at y1 = 3 is the pseudo-reflected from D (see Fig. 4.2). It has to be noted
that this last one is weaker that the original singularity, in order (δ′ against δ′′)
but also in amplitude (0.05 against 2.5). Figure 4.5 displays u3 along the line
y1 = 0.5, exhibiting the singularity of the highest order (δ′′ − like or ”triple
oscillation”).

4.2 Reflection of a non-characteristic layer

Let us now consider the second situation (Fig. 4.2). The shell is now subjected
to a δ normal loading with unit weight along the line y1 = y2 for 1 ≤ y1 ≤ 2.
This loading can be written f3 = δ(y1 − y2)H(y1 − 1)H(y2 − 1). The loading
is singular along a non-characteristic line which has an intersection with the
boundary BC (which is a boundary along a non-characteristic line). According
to Rule 2, the singularity of the displacement u3 is of the same order as that of
the loading f3 (but there is no propagation). Consequently, u3 has a δ − like
singularity along the line y1 = y2 (for 1 ≤ y1 ≤ 2). Moreover, there are some
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classical propagated singularities of u3 along the lines y1 = 1 and y2 = 2. On the
other hand, according to Rule 2, some reflected singularities also appear on the
two characteristic lines issued from the point G = (2, 2) which is the intersection
between the loading domain and the boundary BC. The order of the singular-
ity of u3 in these two reflected layers depends on the boundary condition along
the boundary BC. When BC is clamped (respectively free), u3 has a δ − like
singularity (respectively a δ′ − like singularity).

Let us observe the numerical results for two types of boundary conditions:
(a) the shell is clamped along BC and free elsewhere
(b) the shell is free along BC and clamped elsewhere
With any of these two boundary conditions, the shell is inhibited.

4.2.1 Case a
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Figure 4.6: Refined mesh for the
first problem
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Figure 4.7: Displacement u3 on the line y2 = 0.5
in case a

According to Rule 2, the singularity of u3 arriving at the boundary BC re-
flects. As the shell is clamped along BC, the reflected singularity is of the same
order as the initial one. Figure 4.6 clearly shows that the mesh is refined along
five layers:

- three classical layers where the mesh is strongly refined, along the loading
domain and the characteristic lines y1 = 1 and y2 = 1 issued from the disconti-
nuity of the loading

- two reflected layers along the lines y1 = 2 and y2 = 2.

The other reflected singularities are negligible. Figs. 4.7 clearly shows that
δ′ − like singularity (two oscillations) along y1 = 1 and the δ − like singularity
(one main oscillation) along the line y1 = 2.
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4.2.2 Case b
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Figure 4.8: Refined mesh for the
second problem
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Figure 4.9: Displacement u3 on the line y2 = 0.5
in case b

In this case, as the shell is free along BC, the reflected singularities are one
order more singular than the initial one (Rule 2). Figure 4.8 displays the mesh
of the last iteration: it is here clearly refined along the reflected layers which
are the most important ones (δ′ − like). The classical propagated singularities
(which are δ′ − like too) are less important because of the boundary conditions.
On Fig. 4.9, we see two δ′ − like singularities: in y1 = 1 there is a small singu-
larity (in amplitude) whereas the reflected singularity in y1 = 2 is much more
important.

The previous examples show that despite the various types of layers (propa-
gated or reflected), the automatic and adaptive numerical procedure allows to
get accurate results for the normal displacement by refining automatically the
mesh where it needs to be. Doing a manual refinement needs a priori knowl-
edge of all the existing singularities, their order and amplitude everywhere on
the shell. It would have been much longer in the two considered examples, and
would be nearly impossible in general for complex shell geometries and loadings.

5 Use of anisotropic meshes for non-inhibited shell problems

In this section, we will see how the numerical procedure can reduce membrane
locking when the shell is not inhibited. In this case, the middle surface natu-
rally deforms with inextensional displacements and the Koiter model tends to
a pure bending problem when ε tends to zero. For such problems, it is known
that membrane locking occurs and leads to an important underestimate of the
displacement when the relative thickness ε decreases. Locking is usually defined
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[1] as non-uniformity with respect ε of the convergence of the F.E. process. In
particular, this implies non-commutativity of the limits εց 0 and hց 0 (where
Vh is the F. E. space). As a matter of fact, when the shell is not inhibited, the
solutions of the limit ε ց 0 are in G. Correspondingly, the limit when ε ց 0
of the solutions of the numerical approximation in Vh are in Vh ∩ G. In most
cases, Vh ∩ G reduces to the zero element, rendering commutativity impossible
and locking arises.

Examples of membrane locking can be seen in [9] for hyperbolic shells or in
[17] for parabolic ones.

Let us consider the following problem.
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Figure 5.1: Domain in R
2

We still consider the same hyperbolic paraboloid defined by the mapping (2.8)
with c = 1. The reference domain of the local variables (y1, y2) is that of Fig
5.1. The shell is clamped along the edges BG and BE, the distances EC and
GA being respectively equal to β and α which are taken as parameters. A
constant normal loading is applied on the hatched area. When β and α vary,
the non-inhibited area will be more or less important.

5.1 First case: α = 0 and β = 0.25

In this case, the shell is only non-inhibited in the rectangle [0.75, 1]× [−1, 1].
In fact, referring to the considerations on rotations given in the introduction, we
could say that this zone is ”partially-inhibited” because of the whole family of
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characteristics y2 = const is clamped at y1 = −1 and rotations around them are
prevented. Only rotations around y1 = const for 0.75 < y1 < 1 are allowed.
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Figure 5.2: Mesh at the 5th iteration
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Figure 5.3: Zoom of the mesh

On Fig. 5.2, we can see that the mesh is mainly refined along the line y1 =
0.75 which is the border of the non-inhibited zone. In this zone the mesh is
strongly anisotropic (anisotropy factor of about 10, see Fig. 5.3) in order to
describe the bending which occurs around the direction y1 = const. Moreover,
the mesh is also refined anisotropically along the lines y2 = −0.75 and y2 = −1
corresponding to an internal and a boundary layer due to the loading in the
inhibited domain.
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Figure 5.4: Displacement u3

On Fig. 5.4, we can see that the displacements are much more important
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in the non-inhibited region, and also significant in the two layers. This put
in a prominent position the capacity of the remeshing procedure to describe
automatically phenomena qualitatively and quantitatively very different.

5.2 Second case: α = 0.25 and β = 0.25

The shell is now non-inhibited on a more important area composed of three
”subareas”. In the rectangle [0.75, 1] × [−0.75, 1], only the bending in the
direction y1 = const is allowed, whereas it is only allowed in the direction
y2 = const in the rectangle [−1, 0.75] × [−1,−0.75]. Finally, the rectangle
[0.75, 1]× [−1,−0.75] admits bending in the two directions and is ”completely
non-inhibited”.
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Figure 5.5: Mesh at the 5th iteration
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Figure 5.6: Zoom of the mesh around the
point (0.75,−0.75)

The automatic refinement is now performed mainly along the lines y1 = 0.75
and y2 = −0.75, where the anisotropy factor of the elements (in the directions
y1 and y2) reaches 20. In the totally ”non-inhibited domain”, as the bending
is allowed in both directions, the mesh is nearly isotropic (see Fig. 5.6). The
little anisotropy (anisotropy factor about 1.5) is caused by the non-symmetrical
loading.
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Figure 5.7: Displacement u3

Displacement u3 is plotted on Fig. 5.7: it is important in the tree non-inhibited
areas but reaches its maximum in the totally ”non-inhibited domain”, which is
moreover subjected to the normal loading.
It is interesting to observe the repartition of membrane and bending energies

as this problem contains inhibited and non-inhibited regions. The percentage of
bending energy surface density with respect to the total energy surface density
is displayed on Fig. 5.8.
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Figure 5.8: Percentage of bending energy surface density

In the inhibited region, membrane energy is dominating, which corresponds to
the membrane limit behaviour. Bending energy surface density is concentrated



ADAPTIVE MESH FOR VERY THIN HYPERBOLIC SHELLS 31

along the characteristics y2 = −0.75 and y1 = 0.75 which behave like ”hinges”
(about 95% of the total energy surface density). It is still important in the rest
of the partially inhibited domain (about 70− 80%). Moreover, bending energy
is dominating in the ”totally inhibited region” (80− 95%).

6 Conclusion

In the first part of this paper we established some theoretical results on the
limit behavior of hyperbolic inhibited shells. When the loading is singular, we
deduced the most singular term of the resulting displacements. In particular,
we proved that the normal displacement u3 is two orders more singular than the
normal loading f3 when f3 is singular along a characteristic line, and only as
singular as f3 when f3 is singular on a non characteristic line. For thin shells, the
solutions exhibit internal layers where functions vary drastically in the normal
direction. Accurate numerical computations are then obtained via an adaptive
and anisotropic mesh procedure which enables us to refine automatically the
mesh inside the layers, mainly in the direction normal to the layer. The numerical
results obtained for very thin hyperbolic shells are in good agreement with the
theory: we recover the theoretical results for displacements amplitudes and for
layers thicknesses. Moreover, we showed the advantage of such an automatic
anisotropic remeshing compared to uniform meshes which require much more
elements to obtain similar results especially when the shell is thin.
Finally, we show the pertinence of the automatic character of the adaptive

re - meshing, specially in entangled situations of the real world, where the the-
oretical description of the asymptotic behavior is practically impossible (think
to cases involving repeated pseudo reflections, or cases where both bending and
membrane dominated regions are present in the shell).

A Appendix: Some recalls about distributions

Let us specify the terminology used in this paper for describing singularities.
Let S0(x) be a basic singularity. Then, we have the corresponding chain:

(A.1) . . . S−2(x), S−1(x), S0(x), S1(x), S2(x), S3(x), . . .

with Sk+1 =
d

dx
Sk. This chain of singularities must be understood in the sense

of functions (or distributions) defined up to an additive function (or distribution)
which is smooth in the neighborhood of x. Thus, we say that S2(x) is 2 orders
more singular than S0(x) and S−2(x) is 2 orders less singular than S0(x). An
example is:

(A.2) . . . x H(x), H(x), δ(x), δ
′

(x), . . .

H(.) being the Heaviside jump function and δ(.) the Dirac function, but there
are many other ones. In order to interpret numerical results, we recall that
the Dirac distribution δ corresponds to the limit of a function having a support
length equal to η and an amplitude equal to 1/η when η tends toward zero. The
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distribution δ
′

being the derivative of δ, it has the same support of length η,
an amplitude 1/η2 and one more oscillation. That characterizes the family of
singularities δ, δ

′

, δ
′′

. . . (see Fig. A.1 )

δ δ′′δ′

1

η3

ηη

η

1

η

1

η2

Figure A.1: Heuristic patterns of δ singularity family
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21. J. Sanchez-Hubert, É. Sanchez-Palencia, Anisotropic finite element estimates and
local locking for shells: parabolic case, C. R. Acad. Sci., Sér. IIb, 329 (2001), pp.
153–159.


