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 for stochastic target problems. This opens the doors to a wide range of applications, particularly in risk control in finance and insurance, in which a controlled stochastic process has to be maintained in a given set on a time interval [0, T ]. As an example of application, we show how it can be used to provide a viscosity characterization of the super-heging price of American options under portfolio constraints, without appealing to the standard dual formulation from mathematical finance. In particular, we allow for a degenerate volatility, a case which does not seem to have been studied so far in this context.

Introduction

A stochastic target problem can be described as follows. Given a set of controls A, a family of ddimensional controlled processes Z ν 0,z with initial condition Z ν 0,z (0) = z and a Borel subset G of R d , find the set V (0) of initial conditions z for Z ν 0,z such that Z ν 0,z (T ) ∈ G P-a.s. for some ν ∈ A. Such a problem appears naturally in mathematical finance. In such applications, Z ν 0,x,y = (X ν 0,x , Y ν 0,x,y ) typically takes values in R d-1 × R, Y ν 0,x,y stands for the wealth process, ν corresponds to the financial strategy, X ν 0,x stands for the price process of some underlying financial assets, and G is the epigraph E(g) of some Borel map g : R d-1 → R. In this case, V (0) = {(x, y) ∈ R d-1 × R : ∃ ν ∈ A s.t. Y ν 0,x,y (T ) ≥ g(X ν 0,x (T )) P-a.s.}, which, for fixed values of x, corresponds to the set of initial endowments from which the European claim of payoff g(X ν 0,x (T )) paid at time T can be super-replicated. In the mathematical finance literature, this kind of problems has usually been treated via the so-called dual formulation approach, which allows to reduce this non-standard control problem into a stochastic control problem in standard form, see e.g. [START_REF] Karatzas | Methods of Mathematical Finance[END_REF] and [START_REF] Karoui | Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market[END_REF].

1 However, such a dual formulation is not always available. This is the case when the dynamics of the underlying financial assets X ν depends on the control ν in a non-trivial way. This is also the case for certain kind of models with portfolio constraints, see e.g. [START_REF] Soner | Super-replication under Gamma constraint[END_REF] for Gamma constraints. Moreover, it applies only in mathematical finance where the duality between super-hedgeable claims and martingale measures can be used, see [START_REF] Karatzas | Methods of Mathematical Finance[END_REF]. In particular, it does not apply in most problems coming from the insurance literature, see e.g. [START_REF] Bouchard | Stochastic Target with Mixed diffusion processes[END_REF] for an example.

In [START_REF] Soner | Stochastic target problems, dynamic programming and viscosity solutions[END_REF] and [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF], the authors propose to appeal to a new dynamic programming principle, called geometric, which is directly written on the stochastic target problem:

V (t) = {z ∈ R d : ∃ ν ∈ A s.t. Z ν t,z (θ) ∈ V (θ) P-a.s.} for all θ ∈ T [t,T ] , (1.1) 
where V (θ) extends the definition of V (0) to the non trivial time origin θ and T [t,T ] denotes the set of stopping times taking values in [t, T ].

Since then, this principle has been widely used in finance and insurance to provide PDE characterizations to super-hedging type problems, see also [START_REF] Soner | Stochastic representation of mean curvature type geometric flows[END_REF] for an application to mean curvature flows. Recent results of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] also allowed to extend this approach to the case where the condition P Z ν 0,z (T ) ∈ G = 1 is replaced by the weaker one P Z ν 0,z (T ) ∈ G ≥ p, for some fixed p ∈ [0, 1]. Similar technologies are used in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF] to study optimal control problems under stochastic target or moment constraints. Surprisingly, it seems that no American version of this geometric dynamic programming principle has been studied so far. By American version, we mean the following problem: find the set V (0) of initial conditions z for Z ν 0,z such that Z ν 0,z (t) ∈ G(t) ∀ t ∈ [0, T ] P-a.s. for some ν ∈ A. Here, t → G(t) is now a set valued map taking values in the collection of Borel subsets of R d . The main aim of this paper is to extend the geometric dynamic programming principle to this setting. We shall show in Section 2 that the counterpart of (1.1) for American targets is given by:

V (t) = {z ∈ R d : ∃ ν ∈ A s.t Z ν t,z (τ ∧ θ) ∈ G τ,θ V P -a.s ∀ τ ∈ T [t,T ] } for all θ ∈ T [t,T ] , (1.2) 
where G τ,θ

V := G(τ ) 1 τ ≤θ + V (θ) 1 τ >θ .

In Section 3, we provide an example of application in mathematical finance. Namely, we study the problem of super-hedging an American option under portfolio constraints. The problem of superhedging financial options under constraints has been widely studied since the seminal works of Cvitanic and Karatzas [START_REF] Cvitanic | Hedging contingent claims with constrained portfolios[END_REF] and Broadie et al. [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF]. From a practical point of view, it is motivated by two important considerations: 1. constraints may be imposed by a regulator, 2. imposing constraints avoids the well-know phenomenon of explosion of the hedging strategy near the maturity when the payoff is discontinuous, see e.g. [START_REF] Shreve | Valuation of exotic options under shortselling constraints[END_REF].

Recently, this problem has been further studied by [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF] who considered the problem of super-hedging under constraints for barrier type options in a general Markovian setting, thus extending previous results of [START_REF] Shreve | Valuation of exotic options under shortselling constraints[END_REF]. A similar analysis has been carried out by [START_REF] Karatzas | Hedging American contingent claims with constrained portfolios[END_REF] for American options and by [START_REF] Karatzas | A Barrier Option of American type[END_REF] for perpetual American barrier options both within a Black and Scholes type financial model. Our analysis can be compared to [START_REF] Soner | The problem of super-replication under constraints[END_REF] who considered European type options, and the proofs are actually very close once the dynamic programming (1.1) is replaced by (1.2). The main difference here comes from the fact that we do not impose that the volatility matrix is invertible, an assumption which was also crucial in [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF], [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF], [START_REF] Cvitanic | Hedging contingent claims with constrained portfolios[END_REF], [START_REF] Karatzas | Hedging American contingent claims with constrained portfolios[END_REF], [START_REF] Karatzas | A Barrier Option of American type[END_REF] and [START_REF] Soner | The problem of super-replication under constraints[END_REF]. This introduces new technical difficulties which we tackle d i=1 (x i ) ρ i , whenever the operations are well defined. We denote by B r (x) the open ball of radius r > 0 and center x. For a set A ⊂ R d , we note int(A) its interior and ∂A its boundary. Given a smooth map ϕ on [0, T ] × R d , we denote by ∂ t ϕ its partial derivatives with respect to its first variable, and by Dϕ and D 2 ϕ is partial gradient and Hessian matrix with respect to its second variable. For a locally bounded map v on [0, T ] × (0, ∞) d , we set

v * (t, x) := lim inf (s, z) → (t, x) (s, z) ∈ [0, T ) × (0, ∞) d v(s, z) and v * (t, x) := lim sup (s, z) → (t, x) (s, z) ∈ [0, T ) × (0, ∞) d v(s, z) for (t, x) ∈ [0, T ] × (0, ∞) d .

The American geometric dynamic programming principle

The American stochastic problem consists in describing the set of initial conditions on Z ν such that Z ν (τ ) ∈ G(τ ) for all stopping time τ ≤ T :

V (t) := {z ∈ R d : ∃ ν ∈ A s.t Z ν t,z (τ ) ∈ G(τ ) for all τ ∈ T [t,T ] } , t ≤ T .
Before to state our main result, we now make precise the definitions of the involved quantities. We also recall the natural assumptions that were used in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF] and introduce a new assumption which will allow us to extend their result to our framework: the right-continuity assumption on the target G.

Standing Assumptions

On the target. The map G is a measurable set-valued map from [0, T ] to the set B R d of Borel sets of R d . It is assumed to be right-continuous in the following sense: G. Right-continuity of the target. For all sequence (t n , z n

) n of [0, T ] × R d such that (t n , z n ) → (t, z), we have t n ≥ t n+1 and z n ∈ G(t n ) ∀ n ≥ 1 =⇒ z ∈ G(t) .
On the set admissible controls. Given a Borel subset U of an Euclidean space, we denote by U the set of all progressively measurable processes ν : [0, T ] × Ω → U . The set of admissible controls A is defined as a given Borel subset of U which satisfies the following two conditions: A1. Stability under concatenation at stopping times: For all ν 1 , ν 2 ∈ A and θ ∈ T ,

ν 1 1 [0,θ) + ν 2 1 [θ,T ] ∈ A.
A2. Stability under measurable selection: For any θ ∈ T and any measurable map φ : (Ω, F(θ)) → (A, B A ), there exists ν ∈ A such that

ν = φ on [θ, T ] × Ω, Leb × P -a.e.,
where B A is the set of all Borel subsets of A.

Remark 2.1 The previous assumptions are natural in optimal control, see e.g. [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF], and already appear in Soner and Touzi [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF]. The assumption A2 holds whenever A is a separable metric space, see Lemma 2.1 in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF].

On the state process. The controlled state process is a map from

S × A into a subset Z of H 0 d (θ, ξ, ν) ∈ S × A → Z ν θ,ξ ∈ Z .
As in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF], except for Z2 which is stated in a stronger form, the state process is assumed to satisfy the following conditions, for all (θ, ξ) ∈ S and ν ∈ A: Z1. Initial condition: Z ν θ,ξ = 0 on [0, θ) and Z ν θ,ξ (θ) = ξ. Z2. Consistency with deterministic initial data: For all (t, z) ∈ S and bounded Borel function f , we have

E f (Z ν θ,ξ (ϑ ∨ θ)) | (θ, ξ) = (t, z) = E f (Z ν t,z (ϑ ∨ t)) .

Z3. Flow property:

For τ ∈ T such that θ ≤ τ P-a.s.:

Z ν θ,ξ = Z ν τ,µ on [τ, T ]
, where µ := Z ν θ,ξ (τ ). Z4. Causality: Let τ be defined as in Z3 and fix

ν 1 , ν 2 ∈ A. If ν 1 = ν 2 on [θ, τ ], then Z ν1 θ,ξ = Z ν2 θ,ξ on [θ, τ ] .
Z5. Measurability: For any u ≤ T , the map

(t, z, ν) ∈ S × A → Z ν t,z (u)
is Borel measurable.

The American Geometric Dynamic Programming Principle

We can now state the main result of this section which extends Theorem 3.1. in Soner and Touzi [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF].

Theorem 2.1 Suppose that the assumptions Z1 -Z5, A1 -A2 and G are satisfied. Fix t ≤ T and θ ∈ T [t,T ] . Then

V (t) = {z ∈ R d : ∃ ν ∈ A s.t. Z ν t,z (τ ∧ θ) ∈ G τ,θ V ∀ τ ∈ T [t,T ] } , where G τ,θ V := G(τ ) 1 τ ≤θ + V (θ) 1 τ >θ .
The above result states that not only Z ν t,z (τ ) ∈ G(τ ) for all τ ∈ T [t,T ] but also that Z ν t,z (θ) should belong to V (θ), the set of initial data ξ such that G(θ, ξ) = ∅, where

G(t, z) := {ν ∈ A : Z ν t,z (τ ) ∈ G(τ ) for all τ ∈ T [t,T ] } , (t, z) ∈ S .
To conclude this section, let us discuss some particular cases. In the discussions below, we assume that the conditions of Theorem 2.1 hold.

Example 2.1 (One sided constraint) Let Z ν t,x,y be of the form (X ν t,x,y , Y ν t,x,y ) where X ν t,x,y takes values in R d-1 and Y ν t,x,y takes values in R. Assume further that:

• G(t) := {(x, y) ∈ R d-1 × R : y ≥ g(t, x)), for some Borel measurable map g : [0, T ] × R d-1 → R.
• The sets Γ(t, x) := {y ∈ R : (x, y) ∈ V (t)} are half spaces, i.e.:

y 1 ≥ y 2 and y 2 ∈ Γ(t, x) ⇒ y 1 ∈ Γ(t, x), for any (t, x) ∈ [0, T ] × R d-1 .
Note that the last condition is satisfied if X ν does not depend on the initial condition y and when y → Y ν t,x,y is non-decreasing.

In this case, the associated value function

v(t, x) := inf Γ(t, x) , (t, x) ∈ [0, T ] × R d-1
completely characterizes the (interior of the) set V (t) and a version of Theorem 2.1 can be stated in terms of the value function v:

(DP1) If y > v(t, x), then there exists ν ∈ A such that Y ν t,x,y (θ) ≥ v(θ, X ν t,x,y (θ)) for all θ ∈ T [t,T ] . (DP2) If y < v(t, x), then ∃ τ ∈ T [t,T ] such that P Y ν t,x,y (θ ∧ τ ) > v(θ, X ν t,x,y (θ))1 θ<τ + g(τ, X ν t,x,y (τ ))1 θ≥τ < 1
for all θ ∈ T [t,T ] and ν ∈ A.

Note that, by definition of v we have v ≥ g, which explains why the constraints Y ν t,x,y (τ ) ≥ g(τ, X ν t,x,y (τ )) needs not to appear in (DP1).

Example 2.2 (Two sided constraint) Let Z ν t,x,y be as in Example 2.1. Assume that G satisfies:

• G(t) := {(x, y) ∈ R d-1 × R : g(t, x) ≤ y ≤ ḡ(t, x))}, for some Borel measurable maps g, ḡ : [0, T ] × R d-1 → R satisfying g ≤ ḡ on [0, T ] × R d-1 .
• The sets Γ(t, x) := {y ∈ R : (x, y) ∈ V (t)} are convex, i.e.: λ ∈ [0, 1] and

y 1 , y 2 ∈ Γ(t, x) ⇒ λy 1 + (1 -λ)y 2 ∈ Γ(t, x), for any (t, x) ∈ [0, T ] × R d-1 .
In this case, the associated value functions

v(t, x) := inf Γ(t, x) and v(t, x) := sup Γ(t, x) , (t, x) ∈ [0, T ] × R d-1
completely characterize the (interior of the) set V (t) and a version of Theorem 2.1 can be stated in terms of these value functions:

(DP1) If y ∈ (v(t, x), v(t, x)), then there exists ν ∈ A such that v(θ, X ν t,x,y (θ)) ≤ Y ν t,x,y (θ) ≤ v(θ, X ν t,x,y (θ)) for all θ ∈ T [t,T ] . (DP2) If y / ∈ [v(t, x), v(t, x)], then ∃ τ ∈ T [t,T ] such that P Y ν t,x,y (θ ∧ τ ) ∈ (v, v) (θ, X ν t,x,y (θ))1 θ<τ + g, ḡ (τ, X ν t,x,y (τ ))1 θ≥τ < 1 ,
for all θ ∈ T [t,T ] and ν ∈ A.

Proof of Theorem 2.1

The proof follows from similar argument as the one used in Soner and Touzi [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF], which we adapt to our context.

Given t ∈ [0, T ], we have to show that V (t) = V (t) where

V (t) := {z ∈ R d : ∃ν ∈ A s.t Z ν t,z (τ ∧ θ) ∈ G τ,θ V for all τ ∈ T [t,T ] } , for some θ ∈ T [t,T ] .
We split the proof in several Lemmas. From now on, we assume that the conditions of Theorem 2.1 hold.

Lemma 2.1 V (t) ⊂ V (t).
Proof. Fix z ∈ V (t) and ν ∈ G(t, z), i.e. such that

Z ν t,z (τ ) ∈ G(τ ) for all τ ∈ T [t,T ] . It follows from Z3 that Z ν θ,ξ (ϑ ∨ θ) ∈ G(ϑ ∨ θ) for all ϑ ∈ T [t,T ]
, where ξ := Z ν t,z (θ). Hence,

1 = P Z ν θ,ξ (ϑ ∨ θ) ∈ G(ϑ ∨ θ) = E P Z ν θ,ξ (ϑ ∨ θ) ∈ G(ϑ ∨ θ) | (θ, ξ) ∀ ϑ ∈ T [t,T ] . Given ϑ ∈ T [t,T ] , set J ϑ (θ, ξ) := P Z ν θ,ξ (ϑ ∨ θ) ∈ G(ϑ ∨ θ) | (θ, ξ
) and observe that the family {J ϑ (θ, ξ), ϑ ∈ T [t,T ] } is directed downward. It follows that we can find a sequence (ϑ n ) n≥1 in T [t,T ] such that lim n ↓ J ϑn (θ, ξ) = essinf{J ϑ (θ, ξ), ϑ ∈ T [t,T ] }. The above equality combined with the monotone convergence theorem thus implies that

1 = lim n ↓ E [J ϑn (θ, ξ)] = E ess inf ϑ∈T [t,T ] J ϑ (θ, ξ) , which, by Z2, implies that P Z ν t,z (ϑ ∨ t) ∈ G(ϑ ∨ t) = 1 for all ϑ ∈ T [t,T ] for µ-a.e. ( t, z) ∈ [t, T ] × R d
, where µ is the pull-back measure of (θ, ξ) under P. This shows that z ∈ V ( t) for µ-a.e. ( t, z) ∈ [t, T ]×R d and therefore ξ = Z ν t,z (θ) ∈ V (θ) P-a.s. Since we already know that Z ν t,z (τ ) ∈ G(τ ) for all τ ∈ T [t,T ] , this shows that z ∈ V (t). ✷

It remains to prove the opposite inclusion.

Lemma 2.2 V (t) ⊂ V (t).
Proof. We now fix z ∈ V (t) and ν ∈ A such that

Z ν t,z (θ ∧ τ ) ∈ G τ,θ V P -a.s for all τ ∈ T [t,T ] . (2.1)
1. We first work on the event set {θ < τ }. On this set, we have Z ν t,z (θ) ∈ V (θ) and therefore

(θ, Z ν t,z (θ)) ∈ D := {(t, z) ∈ S : z ∈ V (t)}.
Let B D denote the collection of Borel subsets of D. Applying Lemma 2.3 below to the measure induced by (θ, Z ν t,z (θ)) on S, we can construct a measurable map φ :

(D, B D ) → (A, B A ) such that Z φ(θ,Z ν t,z (θ)) θ,Z ν t,z (θ) (ϑ) ∈ G(ϑ) for all ϑ ∈ T [θ,T ] , i.e. φ(θ, Z ν t,z (θ)) ∈ G(θ, Z ν t,z (θ)) .
In view of A2, we can then find

ν 1 ∈ A such that ν 1 = φ(θ, Z ν t,z (θ)) on [θ, T ] Leb × P-a.e. It then follows from A1 that ν := ν1 [0,θ) + ν 1 1 [θ,T ] ∈ A .
Moreover, according to Z3 and Z4, we have

Z ν t,z (τ ) = Z φ(θ,Z ν t,z (θ)) θ,Z ν t,z (θ) (τ ) ∈ G(τ ) on {θ < τ } .
2. Let ν be defined as above and note that, by (2.1), we also have

Z ν t,z (τ ) = Z ν t,z (τ ) ∈ G τ,θ V = G(τ ) on {τ ≤ θ} .
3. Combining the two above steps shows that ν ∈ G(t, z) and therefore z ∈ V (t). ✷

It remains to prove the following result which was used in the previous proof.

Lemma 2.3

For any probability measure µ on S, there exists a Borel measurable function φ

: (D, B D ) → (A, B A ) such that ϕ(t, z) ∈ G(t, z) for µ -a.e. (t, z) ∈ D . Proof. Set B := {(t, z, ν) ∈ S × A : ν ∈ G(t, z)}. It follows from Z5 that the map (t, s, ν) ∈ S × A → Z ν t,z ( 
r) is Borel measurable, for any r ≤ T . Then, for any bounded continuous function f , the map

ψ r f : (t, s, ν) ∈ S × A → E[f (Z ν t,z (r))] is Borel measurable. Since G(r) is a Borel set, the map 1 G(r) is the limit of a sequence of bounded continuous functions (f n ) n≥1 . Therefore, ψ r 1 G(r) = lim n→∞ ψ r f n is a Borel function. This implies that B r is a Borel set, where, for θ ∈ T [t,T ] , B θ := {(t, s, ν) ∈ S × A : ψ θ 1 G (t, z, ν) ≥ 1} = {(t, s, ν) ∈ S × A : Z ν t,z (θ) ∈ G(θ)} . Since B = θ∈T [t,T ] B θ
, appealing to the right-continuous assumption G and the right-continuity of Z ν t,z , we deduce that B = r≤T, r∈Q B r . This shows that B is a Borel set and therefore an analytic subset of S × A, see [START_REF] Bertsekas | Stochastic Optimal Control: The Discrete Time Case[END_REF]. Applying the Jankov-von Neumann Theorem (see [START_REF] Bertsekas | Stochastic Optimal Control: The Discrete Time Case[END_REF] Proposition 7.49), we then deduce that there exists an analytically measurable function φ :

D → A such that ϕ(t, z) ∈ G(t, z) for all (t, z) ∈ D .
Since an analytically measurable map is also universally measurable, the required result follows from Lemma 7.27 in [START_REF] Bertsekas | Stochastic Optimal Control: The Discrete Time Case[END_REF]. ✷

Application to American option pricing under constraints

In this section, we explain how the American geometric dynamic programming principle of Theorem 2.1 can be used to relate the super-hedging price of an American option to a suitable classe of PDEs, in a Markovian setting.

More precisely, we shall consider a Brownian diffusion type financial market with portfolio strategies constrained to take values in a convex compact set. We note that the case of an unbounded set of controls can also be handled by following the ideas introduced in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. Similarly, jumps could be added to the dynamics without major difficulties, see [START_REF] Bouchard | Stochastic Target with Mixed diffusion processes[END_REF].

On the other hand, we shall allow for a possibly degenerate diffusion coefficient, a case which as not been studied so far in this literature. We therefore take this opportunity to explain how it can be treated, which is of own interest and could be transposed to other hedging problems under constraints, e.g. for plain vanilla European options or for barrier options.

The financial model

From now on, we assume that the filtration F := (F t ) t≤T is generated by a standard d-dimensional Brownian motion W .

We consider a Markovian model of financial market composed of a non-risky asset, which price process is normalized to unity, and d risky assets X = (X 1 , ..., X d ) whose dynamics are given by the stochastic differential equation

dX(s) = diag [X(s)] µ(X(s))ds + diag [X(s)] σ(X(s))dW s . (3.1) 
Here µ : R d → R d and σ : R d → M d , the set of d × d-matrices. Time could be introduced in the coefficients without difficulties, under some additional regularity assumptions. We deliberately choose a time homogeneous dynamics to alleviate the notations.

Given x ∈ (0, ∞) d , we denote by X t,x the solution of the above equation on [t, T ] satisfying X t,x (t) = x.

In order to guarantee the existence and uniqueness of a strong solution to (3.1), we assume that (µ, σ) is bounded and

x ∈ R d + → (diag [x] σ(x), diag [x] µ(x)) is Lipschitz continuous. (3.2)
Importantly, we do not assume that σ is uniformly elliptic nor invertible, as in e.g. [START_REF] Bensoussan | Penalty approximation and analytical characterization of the problem of super-replication under portfolio constraints[END_REF], [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF] or [START_REF] Soner | The problem of super-replication under constraints[END_REF].

A financial strategy is described by a d-dimensional predictable process π = (π 1 , ..., π d ). Each component stands for the proportion of the wealth invested in the corresponding risky asset. In this paper, we restrict to the case where the portfolio strategies are constrained to take values in a given compact convex set K: π ∈ K Leb × dPa.e , with 0 ∈ K ⊂ R d convex and compact.

We denote by A the set of such strategies.

To an initial capital y ∈ R + and a financial strategy π, we associate the induced wealth process Y π t,x,y defined as the solution on [t, T ] of

dY (s) = Y (s)π ′ s diag [X t,x (s)] -1 dX t,x (s) = Y (s)π ′ s µ(X t,x (s))ds + Y (s)π ′ s σ(X t,x (s))dW s , (3.3) 
with Y (t) = y.

The super-hedging problem and the dynamic programming principle

The option is described by a locally bounded map g defined on [0, T ] × R d + and satisfying

g ≥ 0 and g is continuous on [0, T ] × (0, ∞) d . (3.4)
The buyer receives the payoff g (τ, X t,x (τ )) when he/she exercises the option at time τ ≤ T .

The super-hedging price is thus defined as

v(t, x) := inf y ∈ R + : ∃ π ∈ A s.t Y π t,x,y (τ ) ≥ g(τ, X t,x (τ )) ∀ τ ∈ T [t,T ] . (3.5) 
Remark 3.1 Note that v(t, x) coincides with the lower bound of the set {y ∈ R + : (x, y) ∈ V (t)} where

V (t) := {(x, y) ∈ (0, ∞) d × R + : ∃ π ∈ A s.t. Z π t,x,y (τ ) ∈ G(τ ) ∀ τ ∈ T [t,T ] },
with Z π t,x,y and G defined as

Z π t,x,y := (X t,x , Y π t,x,y ) and G(t) := {(x, y) ∈ R d + × R + : y ≥ g(t, x)} .
Also notice that A satisfies the condition A1 of Section 2.1. Since A is a separable metric space, it also satisfies A2, see Remark 2.1 of Section 2.1. Moreover, Z1 -Z5 hold for Z π t,x,y and the continuity assumption (3.4) implies that G(t) satisfies the right-continuity condition G of Section 2.1.

It follows from the above Remark that the American geometric dynamic programming principle of Theorem 2.1 applies to v, compare with Example 2.1.

Corollary 3.1 Fix (t, x, y) ∈ [0, T ] × (0, ∞) d × R + . (DP1). If y > v(t, x), then there exists π ∈ A such that Y π t,x,y (θ) ≥ v(θ, X t,x (θ)) for all θ ∈ T [t,T ] . (DP2) If y < v(t, x), then ∃ τ ∈ T [t,T ] such that P Y π t,x,y (θ ∧ τ ) > v(θ, X t,x,y (θ))1 θ<τ + g(τ, X t,x,y (τ ))1 θ≥τ < 1
for all θ ∈ T [t,T ] and π ∈ A.

PDE characterization of the super-replication price

In this section, we show how the dynamic programming principle of Corollary 3.1 allows to provide a PDE characterization of the super-hedging price v. We start with a formal argument.

The first claim (DP1) of the geometric dynamic programming principle can be formally interpreted as follow. Set y := v(t, x) and assume that v is smooth. Assuming that (DP1) of Corollary 3.1 holds for y = v(t, x), we must then have, at least at a formal level, dY π t,x,y (t) ≥ dv(t, X t,x (t)), which can be achieved only if

π ′ t µ(x)v(t, x) -Lv(t, x) ≥ 0 and v(t, x)π ′ σ(x) = (Dv) ′ (t, x)diag [x] σ(x),
where

Lv(t, x) := ∂ t v(t, x) + (Dv) ′ (t, x)diag [x] µ(x) + 1 2 Trace diag [x] σ(x)σ ′ (x)diag [x] D 2 v(t, x) .
Moreover, we have by definition v ≥ g on [0, T ) × (0, ∞) d . Thus, v should be a supersolution of:

Hϕ(t, x) := min{ sup π∈N ϕ(t,x) (π ′ µ(x)ϕ(t, x) -Lϕ(t, x)) , ϕ -g} = 0 , (3.6) 
where, for a smooth function ϕ, we set N ϕ(t, x) := N (x, ϕ(t, x), Dϕ(t, x)) with

N (x, y, p) := {π ∈ K : yπ ′ σ(x) = p ′ diag [x] σ(x)} , for (x, y, p) ∈ (0, ∞) d × R + × R d ,
and we use the usual convention sup ∅ = -∞.

Note that the supersolution property implies that N v = ∅, in the viscosity sense. We shall show in Lemma 3.2 below that, for (x, y, p)

∈ (0, ∞) d × R + × R d , N (x, y, p) = ∅ ⇐⇒ M (x, y, p) ≥ 0 , (3.7) 
where M (x, y, p) := inf

ρ∈ Kx {δ x (ρ)y -ρ ′ diag [x] p} with δ x (ρ) := sup {π ′ ρ, π ∈ K x } , K x := π ∈ R d : π′ σ(x) = π ′ σ(x) for some π ∈ K , and Kx := ρ ∈ R d : |ρ| = 1 and δ x (ρ) < ∞ .
Hence, v should be a supersolution of min{Hϕ , Mϕ} = 0 ,

where Mϕ(t, x) := M (x, ϕ(t, x), Dϕ(t, x)), the possible identity [START_REF] Rockafellar | Convex analysis[END_REF], reflecting the fact that the constraint is binding. Since N ϕ(t, x) is a singleton, when σ is invertible, we then retrieve a formulation similar to [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF] and [START_REF] Soner | Stochastic target problems, dynamic programming and viscosity solutions[END_REF].

M (x, v(t, x), Dv(t, x)) = 0 which is equivalent to v(t, x) -1 diag [x] Dv(t, x) ∈ ∂K x , see
Moreover, the minimality condition in the definition of v should imply that v actually solves (in some sense) the partial differential equation (3.8), with the usual convention sup ∅ = -∞.

We shall first prove that v is actually a viscosity solution of (3.8) in the sense of discontinuous viscosity solutions. In order to prove the subsolution property, we shall appeal to the additional regularity assumption:

Assumption 3.1 Fix (x 0 , y 0 , p 0 ) ∈ (0, ∞) d × (0, ∞) × R d such that y -1 0 diag [x 0 ] p 0 ∈ int(K x0 ). Set π 0 ∈ N (x 0 , y 0 , p 0 ).
Then, for all ε > 0, there exists an open neighborhood B of (x 0 , y 0 , p 0 ) and a locally Lipschitz map π such that |π(x 0 , y 0 , p 0 ) -

π 0 | ≤ ε and π(x, y, p) ∈ N (x, y, p) on B ∩ (0, ∞) d × (0, ∞) × R d .
Remark 3.3 In the case where σ is invertible, it corresponds to Assumption 2.1 in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. To this purpose, we shall need the following additional assumptions:

Assumption 3.2 (i) There exists γ ∈ K ∩ [0, ∞) d and λ > 1 such that λγ ∈ K x for all x ∈ (0, ∞) d and such that (ii) there exists a constant C > 0 such that |g(t, x)| ≤ C (1 + x γ ) for all (t, x) ∈ [0, T ] × (0, ∞) d .
(iii) There exists c K > 0 such that δ x (ρ) ≥ c K for all x ∈ (0, ∞) d and ρ ∈ Kx .

(iv) There exists C > 0 such that, for all x, y ∈ (0, ∞) d and ρ ∈ Kx , we can find ρ ∈ Ky satisfying |ρ -ρ| ≤ C|x -y| and δ y (ρ)δ x (ρ) ≤ ǫ(x, y), where ǫ is a continuous map satisfying ǫ(z, z) = 0 for all z ∈ (0, ∞) d . (v) Either (v.a.) There exists L > 0 such that, for all (x, x, y, ȳ, p, p) 

∈ (0, ∞) 2d × R 2 + × R 2d : π ∈ N (x, y, p) = ∅, N (x, ȳ, p) = ∅ and |x -x| ≤ L -1 =⇒ ∃ π ∈ N (x, ȳ, p) s.t. |yπ ′ µ(x) -ȳπ ′ µ(x)| ≤ L|p ′ diag [x] µ(x) -p′ diag [x] µ(x)| . or (v.b.) For all p, q ∈ R d and x ∈ (0, ∞) d : p ′ σ(x) = q ′ σ(x) =⇒ p ′ µ(x) = q ′ µ(x).

The condition (ii) implies that

∃ C > 0 s.t. |v(t, x)| ≤ C (1 + x γ ) ∀ (t, x) ∈ [0, T ] × (0, ∞) d . (3.11)
Indeed, let π ∈ A be defined by π s = γ for all t ≤ s ≤ T . Since σ is bounded, one easily checks from the dynamics of the processes X t,x and Y π t,x,1 that 1

+ d i=1 (X i t,x (u)) γi ≤ C 1 + d i=1 (x i ) γi Y π t,x,1 (u) for all u ∈ [t, T ] ,
where C > 0 depends only on |γ| and the bound on |σ|. Then, after possibly changing the value of the constant C, (ii) of Assumption 3.2 implies

g(u, X t,x (u)) ≤ C 1 + x γ Y π t,x,1 (u) for all u ∈ [0, T ] .
Since yY π t,x,1 = Y π t,x,y for y > 0, we deduce (3.11) from the last inequality.

3. The condition (iii) is implied by 0 ∈ int(K). Indeed, if 0 ∈ int(K), then δ x ≥ δ where the later is uniformly strictly positive, see [START_REF] Rockafellar | Convex analysis[END_REF]. 4. The condition (iv) is trivially satisfied if δ x = δ for all x ∈ (0, ∞) d , which is the case when σ is invertible.

5. The condition (v) is trivially satisfied when σ is invertible. The condition (v.b.) is natural in the case 0 ∈ int(K) as, in this case, it is equivalent to π ′ σ(x) = 0 ⇒ π ′ µ(x) ≤ 0 for all π ∈ K, which is intimately related to the minimal no-arbitrage condition: π ∈ A and Y t,x,y π ′ σ(X t,x ) = 0 Leb×P-a.e. on [t, T ] ⇒ Y t,x,y π ′ µ(X t,x ) ≤ 0 Leb×P-a.e. on [t, T ].

The "face-lift" phenomenon

When σ is invertible, it can be shown under mild assumptions, see Section 3.5.4 below, that the unique viscosity solution of (3.10), in a suitable class, is given by ĝ(T, •) where ĝ(t, x) := sup

ρ∈R d e -δ(ρ) g(t, xe ρ ) .
A standard comparison theorem, see Section 3.5.4 below, then implies that the boundary condition of Theorem 3.2 can actually be written in v * (T,

•) = v * (T, •) = ĝ(T, •)
. This is the so-called "face-lift" procedure which was already observed by [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF] in the context of European option pricing, see also [START_REF] Bensoussan | Penalty approximation and analytical characterization of the problem of super-replication under portfolio constraints[END_REF], [START_REF] Bouchard | Stochastic Target with Mixed diffusion processes[END_REF], [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF] or [START_REF] Cvitanic | Super-replication in stochastic volatility models with portfolio constraints[END_REF]. Similarly, one could replace g by ĝ in the definition of Hϕ by using (3.7).

In our general context, where σ is not assumed to be invertible anymore, the solution of the PDE min {φ(x)g(t 0 , x) , Mφ(x)} = 0 has a more complex structure. Standard optimal control arguments actually show that it should be related to the deterministic control problem ǧ(t 0 , x) := sup

(ρ,τ )∈L 0 1 (Leb)×R+ e - R τ 0 δ χ ρ
x (s) (ρs)ds g(t 0 , χ ρ x (τ ))

where L 0 1 (Leb) denotes the set of measurable functions ρ = (ρ s ) s≥0 on R + satisfying |ρ t | = 1 for all t ≥ 0 and, for ρ ∈ L 0 1 (Leb), the process χ ρ x is the solution of

χ(t) = x + t 0 diag [χ(s)] ρ s ds , t ≥ 0 .
Note that, in the case where σ is invertible, (3.9) implies that it can be rewritten in sup

(ρ,τ )∈L 0 1 (Leb)×R+ e - R τ 0 δ(ρs)ds g(t 0 , χ ρ x (τ ))
which value function is easily seen to coincide with ĝ(t 0 , •) by using the fact that δ is convex and homegenous of degree one, and g ≥ 0.

We now make precise the above discussion in the two following Corollaries. The first one actually states that g can be replaced by ǧ in the definition of H and in the terminal condition.

Corollary 3.2 Let Assumption 3.1 and (i)-(iv) of Assumption 3.2 hold. Assume further that:

(i) For each x ∈ (0, ∞) d , the map t ∈ [0, T ] → ǧ(t, x) is continuous. (ii) The map x ∈ (0, ∞) d → sup{δ x (ρ), ρ ∈ Kx } is locally bounded. Then, v is a discontinuous viscosity solution on [0, T ) × (0, ∞) d of min{ sup π∈N ϕ(t,x) (π ′ µ(x)ϕ(t, x) -Lϕ(t, x)) , Mϕ(t, x) , ϕ(t, x) -ǧ(t, x)} = 0 (3.12)
and satisfies the boundary condition

v * (T, •) = v * (T, •) = ǧ(T, •) . (3.13)
If moreover, (v) of Assumption 3.2 hold, then it is the unique viscosity solution of (3.12)-(3.13), in the class of non-negative functions satisfying the growth condition (3.11).

In the case where σ is invertible, the above discussion already shows that ĝ = ǧ. If moreover µ and σ are constant, we can actually interpret the super-hedging price as the price of an American option with payoff ĝ, without taking the portfolio constraints into account. This phenomenon was already observed for plain vanilla or barrier european options, see e.g. [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF] and [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF]. It comes from the fact that, when the parameters are constant, the gradient constraint imposed at T by the terminal condition v(T, •) = ĝ propagates into the domain. It is therefore automatically satisfied and we retrieve the result of Corollary 1 in [START_REF] Broadie | Optimal replication of contingent claims under portfolio constraints[END_REF].

Corollary 3.3 Let the conditions of Theorem 3.3 hold. Assume further that µ and σ are constant and that σ is invertible. Then, ǧ = ĝ and

v(t, x) = sup τ ∈T [t,T ] E Q [ĝ(τ, X t,x (τ ))] (3.14)
where Q ∼ P is defined by

dQ dP := e -1 2 |σ -1 µ| 2 T +(σ -1 µ) ′ W T .
Remark 3.5 Since σ is constant and invertible, the condition that µ is constant could be relaxed, under mild assumptions, by performing a suitable initial change of measure.

Proof of the PDE characterization

From now on, we assume that v is locally bounded.

The supersolution property

We start with the supersolution property of Theorem 3.1 and Theorem 3.2.

Lemma 3.1 The map v * is a viscosity supersolution of Hϕ = 0 on [0, T ) × (0, ∞) d .
Proof. Note that v ≥ g by definition. Since g is continuous, this implies that v * ≥ g. It thus suffices to show that v * is a supersolution of sup π∈N ϕ(t,x)

(π ′ µ(x)ϕ(t, x) -Lϕ(t, x)) = 0 .
The proof follows from similar arguments as in [START_REF] Soner | Stochastic target problems, dynamic programming and viscosity solutions[END_REF], the main difference comes from the fact that σ is not assumed to be non-degenate which only modifies the terminal argument of the above paper. We therefore only sketch the proof and focus on the main difference. Fix (t 0 , x 0 ) ∈ [0, T ) × (0, ∞) d and let ϕ be a smooth function such that (t 0 , x 0 ) achieves a strict minimum of v *ϕ on [0, T ) × (0, ∞) d satisfying (v * -ϕ)(t 0 , x 0 ) = 0. Let (t n , x n ) n≥1 be a sequence in [0, T )×(0, ∞) d that converges to (t 0 , x 0 ) and such that v(t n , x n ) → v * (t 0 , x 0 ) as n → ∞.

We have

y 0 := ϕ(t 0 , x 0 ) = v * (t 0 , x 0 ) = lim n→∞ v(t n , x n ) . Set y n := v(t n , x n ) + 1 n .
Since y n > v(t n , x n ), it follows from (DP1) of Corollary 3.1 that we can fin π n ∈ A such that, for any stopping time τ n ∈ T [tn,T ] , we have

Y πn tn,xn,yn (τ n ) ≥ v(τ n , X tn,xn (τ n )) . Since v ≥ v * ≥ ϕ, it follows that Y πn tn,xn,yn (τ n ) ≥ v(τ n , X tn,xn (τ n )) ≥ ϕ(τ n , X tn,xn (τ n )) .
Set Y n := Y πn tn,xn,yn , X n := X tn,xn . It follows from the previous inequality and Ito's Lemma that

0 ≤ y n + τn tn Y n (s)π ′ n (s)σ(X n (s))dW s + τn tn Y n (s)π ′ n (s)µ(X n (s))ds -ϕ(t n , x n ) - τn tn Lϕ(s, X n (s))ds - τn tn (Dϕ) ′ (s, X n (s))diag [X n (s)] σ(X n (s))dW s
which can be written as

0 ≤ β n + τn tn Y n (s)π ′ n (s)µ(X n (s)) -Lϕ(s, X n (s))ds + τn tn ψ(s, X n (s), Y n (s), π n (s))dW s , (3.15) 
where

β n := y n -ϕ(t n , x n ) and ψ : (s, x, y, π) → (yπ ′ -(Dϕ) ′ (s, x)diag [x])σ(x) .
By choosing a suitable sequence of stopping times (τ n ) n , introducing a well-chose sequence of change of measures as in Section 4.1 of [START_REF] Soner | Stochastic target problems, dynamic programming and viscosity solutions[END_REF] and using the Lipschitz continuity assumption (3.2) and the fact that K is convex and compact, we deduce from the previous inequality and exactly the same arguments as in [START_REF] Soner | Stochastic target problems, dynamic programming and viscosity solutions[END_REF] that, for all κ > 0,

0 ≤ sup π∈K (ϕ(t 0 , x 0 )π ′ µ(x 0 ) -Lϕ(t 0 , x 0 ) + κ|ψ(t 0 , x 0 , y 0 , π)| 2 ) .
Recalling that K is compact and ψ is continuous, we obtain by sending κ to ∞ that ϕ(t 0 , x 0 )π ′ µ(x 0 ) -Lϕ(t 0 , x 0 ) ≥ 0 and |ψ(t 0 , x 0 , y 0 , π)| 2 = 0 for some π ∈ K .

Noting that 0 = ψ(t 0 , x 0 , y 0 , π) = (y 0 π ′ -(Dϕ) ′ (t 0 , x 0 ) diag [x 0 ])σ(x 0 ) ⇒ π ∈ N ϕ(t 0 , x 0 ) ,
we finally obtain sup

π∈N ϕ(t0,x0) (ϕ(t 0 , x 0 )π ′ µ(x 0 ) -Lϕ(t 0 , x 0 )) ≥ 0 .

✷

As explained in Section 3.3, we now use the fact that N ϕ(t, x) = ∅ if and only if Mϕ(t, x) ≥ 0.

Lemma 3.2 Fix (x, y, p) ∈ (0, ∞) d × R + × R d . Then, N (x, y, p) = ∅ if and only if M (x, y, p) ≥ 0. If moreover y > 0, then y -1 diag [x] p ∈ int(K x ) if and only if M (x, y, p) > 0.
Proof. For y > 0, N (x, y, p) = ∅ ⇔ y -1 diag [x] p ∈ K x ⇔ M (x, y, p) ≥ 0 since K x is a closed convex set, see [START_REF] Rockafellar | Convex analysis[END_REF], and similarly, for y > 0, y -1 diag [x] p ∈ int(K x ) if and only if M (x, y, p) > 0. We now consider the case y = 0. Since 0 ∈ K ⊂ K x , we have δ x ≥ 0. Hence, N (x, 0, p)

= ∅ ⇔ 0 σ(x) = p ′ diag [x] σ(x) ⇔ ε -1 p ′ diag [x] ∈ K x for each ε > 0 ⇔ M (x, ε, p) ≥ 0 for each ε > 0 ⇔ M (x, 0, p) ≥ 0. ✷
As a corollary of Lemma 3.1 and the previous Lemma, we obtain:

Corollary 3.4 The map v * is a viscosity supersolution of Mϕ = 0 on [0, T ) × (0, ∞) d .
We now turn to the boundary condition at t = T .

Lemma 3.3 The map v * (T, ) is a viscosity supersolution of min{v * (T, •)-g(T, •) , Mφ} = 0 on (0, ∞) d .
Proof. The fact that v * (T, •) ≥ g(T, •) follows from the continuity of g and the fact that v ≥ g on [0, T ) × (0, ∞) d by definition. Let φ be a smooth function and x 0 ∈ (0, ∞) d be such that x 0 achieves a strict minimum of v * (T, •)φ and v * (T,

x 0 ) -φ(x 0 ) = 0. Let (s n , ξ n ) n be a sequence in [0, T ) × (0, ∞) d satisfying : (s n , ξ n ) -→ (T, x 0 ) , s n < T and v * (s n , ξ n ) -→ v * (T, x 0 ) .
For all n ∈ N and k > 0, we define :

ϕ k n (t, x) := φ(x) - k 2 |x -x 0 | 2 + k T -t T -s n . Notice that 0 ≤ (T -t)(T -s n ) -1 ≤ 1 for t ∈ [s n , T ],
and therefore :

lim k→0 lim sup n→∞ sup (t,x)∈[sn,T ]×Br(x0) |ϕ k n (t, x) -φ(x)| = 0 , (3.16) 
where

r > 0 is such that B r (x 0 ) ⊂ (0, ∞) d . Next, let (t k n , x k n ) be a sequence of local minimizers of v * -ϕ k n on [s n , T ] × B r (x 0 ) and set e k n := (v * -ϕ k n )(t k n , x k n )
. Following line by line the arguments of the proof of Lemma 20 in [START_REF] Bouchard | Stochastic Target with Mixed diffusion processes[END_REF], one easily checks that, after possibly passing to a subsequence :

for all k > 0 , (t k n , x k n ) -→ (T, x 0 ) , (3.17) 
for all k > 0 , t k n < T for sufficiently large n ,

v * (t k n , x k n ) -→ v * (T, x 0 ) = φ(x 0 ) as n → ∞ and k → 0 . (3.18) 
Notice that (3.17) and a standard diagonalization argument implies that we may assume that x k n ∈ (B r (x 0 )) for all n ≥ 1 and k > 0. It then follows from (3.18) that, for all k > 0, (t

k n , x k n ) is a sequence of local minimizers of v * -ϕ k n on [s n , T ) × B r (x 0 )
. Also, notice that (3.16), (3.17) and (3.19) imply

for all k > 0 , Dϕ k n (t k n , x k n ) = Dφ(x k n ) -k(x k n -x 0 ) → Dφ(x 0 ) , (3.20) 
and lim

k→0 lim n→∞ e k n = 0 . (3.21) 
It then follows from Theorem 3.1, recall the convention sup ∅ = -∞, (3.18) and the fact that (t k n , x k n ) is a local minimizer for v *ϕ k n that, for sufficiently large n, we can find

π k n ∈ K such that v * (t k n , x k n )(π k n ) ′ σ(x k n ) = Dϕ k n (t k n , x k n ) ′ diag x k n σ(x k n ) .
Since K is compact, we can assume that π k n → π ∈ K as n → ∞ and then k → 0. Taking the limit as n → ∞ and then as k → 0 in the previous inequality, and using (3.17), (3.19), (3.20), as well as the continuity of x → diag [x] σ(x) thus implies that

v * (T, x 0 )π ′ σ(x 0 ) = Dφ(x 0 ) ′ diag [x 0 ] σ(x 0 ) .
Appealing to Lemma 3.2 then implies the required result. ✷

The subsolution property

We now turn to the subsolution property of Theorem 3.1 and Theorem 3.2.

Lemma 3.4 Under Assumption 3.1, the map v * is a viscosity subsolution of min{Hϕ , Mϕ} = 0 on [0, T ) × (0, ∞) d .

Proof. Fix (t 0 , x 0 ) ∈ [0, T ) × (0, ∞) d and let ϕ be a smooth function such that (t 0 , x 0 ) achieves a strict maximum of v *ϕ on [0, T ) × (0, ∞) d satisfying (v *ϕ)(t 0 , x 0 ) = 0. We assume that min sup

π∈N ϕ(t0,x0) (ϕ(t 0 , x 0 )π ′ µ(x 0 ) -Lϕ(t 0 , x 0 )) , ϕ(t 0 , x 0 ) -g(t 0 , x 0 ) , Mϕ(t 0 , x 0 ) := 2ε > 0 ,
and work towards a contradiction. Note that v * (t 0 , x 0 ) = ϕ(t 0 , x 0 ) > 0 since g ≥ 0. In view of Lemma 3.2, this implies that ϕ(t 0 , x 0 ) -1 diag [x 0 ] Dϕ(t 0 , x 0 ) ∈ int(K x0 ). It then follows from Assumption 3.1 that we can find r > 0 and a Lipschitz continuous map π such that min {yπ(x, y, Dϕ(t, x)) ′ µ(x) -Lϕ(t, x) , yg(t, x)} > ε and π(x, y, Dϕ(t, x)) ∈ N (x, y, Dϕ(t, x)) for (t, x, y)

∈ B r (t 0 , x 0 ) × B r (ϕ(t, x)) . (3.22) Let (t n , x n ) n be a sequence in B r (t 0 , x 0 ) such that v(t n , x n ) → v * (t 0 , x 0 ) and set y n := v(t n , x n ) -n -1
so that y n > 0 for n large enough. Without loss of generality, we can assume that

y n ∈ B r (ϕ(t n , x n )) for each n. Let (X n , Y n ) denote the solution of (3.1) and (3.3) associated to the Markovian control π(X n , Y n , Dϕ(•, X n )) and the initial conditions (X n (t n ), Y n (t n )) = (x n , y n ).
Note that these processes are well defined on [t n , τ n ] where

τ n := inf {t ≥ t n : (t, X n (t)) / ∈ B r (t 0 , x 0 ) or |Y n (t) -ϕ(t, X n (t))| ≥ r} .
Moreover, it follows from the definition of (t 0 , x 0 ) as a strict maximum point of v *ϕ that

(v * -ϕ)(τ n , X n (τ n )) < -ζ or |Y n (τ n ) -ϕ(τ n , X n (τ n ))| ≥ r (3.23) 
for some ζ > 0. Since v * ≤ ϕ, applying Itô's Lemma to Y nϕ(•, X n ), recalling (3.22) and using a standard comparison Theorem for stochastic differential equations shows that

Y n (τ n ) -v(τ n , X n (τ n )) ≥ Y n (τ n ) -ϕ(τ n , X n (τ n )) ≥ r on {|Y n (τ n ) -ϕ(τ n , X n (τ n ))| ≥ r} .
The same arguments combined with (3.23) also implies that

Y n (τ n ) -v(τ n , X n (τ n )) ≥ y n -ϕ(t n , x n ) + ζ on {|Y n (τ n ) -ϕ(τ n , X n (τ n ))| < r} . Since y n -ϕ(t n , x n ) → 0, combining the two last assertions shows that Y n (τ n ) -v(τ n , X n (τ n )) > 0 for n large enough. Moreover, it follows from (3.22) that Y n > g(•, X n ) on [t n , τ n ]. Since y n < v(t n , x n ),
this contradicts (DP2) of Corollary 3.1. ✷ Lemma 3.5 Let Assumption 3.1 hold. Fix x 0 ∈ (0, ∞) d and assume that there exists a smooth function φ such that Mφ(x 0 ) > 0 and x 0 achieves a strict local maximum of v * (T, •)φ. Then, v * (T, x 0 ) ≤ g(T, x 0 ).

Proof. Without loss of generality, we may assume that v * (T, x 0 )φ(x 0 ) = 0. Assume that v * (T, x 0 ) > g(T, x 0 ). Note that this implies that φ(x 0 ) > 0. Since g is continuous and Mφ(x 0 ) > 0, it follows from Lemma 3.2 and Assumption 3.1 that we can find r, η > 0 and a Lipschitz continuous map π such that π(x, y, Dϕ(t, x)) ∈ N (x, y, Dϕ(t, x)) , ϕ(t, x)-g(t, x) ≥ η for (t, x, y) ∈ [T -r, T ]×B r (x 0 )×B r (ϕ(t, x)) (3.24) where ϕ(t, x) := φ(x) + |x -

x 0 | 4 + √ T -t for (t, x) ∈ [0, T ] × (0, ∞) d . Since ∂ t ϕ → -∞ as t →
T and K is compact, we also have, after possibly changing r > 0, yπ(x, y, Dϕ(t, x)) ′ µ(x) -Lϕ(t, x) ≥ η for (t, x, y) ∈ [Tr, T ] × B r (x 0 ) × B r (ϕ(t, x)) .

(3.25)

Let (t n , x n ) n be a sequence in [0, T ]×(0, ∞) d such that v(t n , x n ) → v * (t n ,
x n ) and let ( tn , xn ) be a strict maximum point of v *ϕ on [t nn -1 , T ] × (0, ∞) d . Arguing as in Section 5.2 of [START_REF] Bouchard | Stochastic Target with Mixed diffusion processes[END_REF], one easily checks that tn < T and that ( tn , xn ) → (t 0 , x 0 ). Let (X n , Y n ) denote the solution of (3.1) and (3.3) associated to the Markovian control π(X n , Y n , Dϕ(•, X n )) and the initial conditions (X n ( tn ), Y n ( tn )) = (x n , ŷn ). Note that these processes are well defined on [ tn , τ n ] where

τ n := inf t ≥ tn : (t, X n (t)) / ∈ B r (t 0 , x 0 ) or |Y n (t) -ϕ(t, X n (t))| ≥ r .
Applying Itô's Lemma to Y nϕ(•, X n ) and arguing as in the proof of Lemma 3.4, we then deduce that (3.24) and (3.25) lead to a contradiction to (DP2) of Corollary 3.1. ✷

A comparison result

We now prove Theorem 3.3. This is a consequence of the following comparison result and the growth property for v which was derived in Remark 3.4.

Proposition 3.1 Let Assumption 3.2 hold. Let V (resp. U ) be a non-negative lower-semicontinuous (resp. upper-semicontinuous) locally bounded map on [0, T ] × (0, ∞) d satisfying (3.11). Assume that

V (resp. U ) is a supersolution (resp. subsolution) of (3.8) on [0, T ) × (0, ∞) d such that V (T, •) (resp. U (T, •)) is a supersolution (resp. subsolution) of (3.10) on (0, ∞) d . Then, V ≥ U on [0, T ] × (0, ∞) d .
Proof. 1. As usual, we first fix κ > 0 and introduce the functions Ũ (t, x) := e κt U (t, x), Ṽ (t, x) := e κt V (t, x) and g(t, x) := e κt g(t, x), so that the function Ṽ (resp. Ũ ) is a viscosity supersolution (resp. subsolution) of Hϕ = 0, where for a smooth function ϕ Hϕ(t, x) := min{ sup π∈N ϕ(t,x) (π ′ µ(x)ϕ(t, x) + κϕ(t, x) -Lϕ(t, x)) , ϕ(t, x)g(t, x)} . (3.26)

Let λ > 1 and γ ∈ (0, ∞) d be as in Assumption 3.2. Let β be defined by β(t, x) = e τ (T -t) 1 + x λγ , for some τ > 0 to be chosen below, and observe that the fact that δ x ≥ 0 and λγ ∈ K x for all x ∈ (0, ∞) d implies that

Mβ(t, x) = inf ρ∈ Kx δ x (ρ) + x λγ [δ x (ρ) -ρ ′ (λγ)] e τ (T -t) ≥ 0 ∀ (t, x) ∈ [0, T ] × (0, ∞) d . (3.27)
Moreover, one easily checks, by using the fact that µ and σ are bounded, and K is compact, that we can choose τ large enough so that, on [0

, T ] × (0, ∞) d , min -2L|Dβ(t, x) ′ diag [x] µ(x)| + κβ(t, x) -Lβ(t, x), κβ(t, x) -∂ t β(t, x) - 1 2
Tr a(x)D 2 β(t, x) ≥ 0 (3.28) where a(z) := diag [z] σ(z)σ(z) ′ diag [z], and L is as in (v.a) of Assumption 3.2 if it holds and L = 0 otherwise. 2. In order to show that U ≤ V , we argue by contradiction. We therefore assume that sup

[0,T ]×(0,∞) d (U -V ) > 0 (3.29)
and work towards a contradiction.

2.1.

Using the growth condition on Ũ and Ṽ , and (3.29), we deduce that 0 < 2m := sup

[0,T ]×(0,∞) d ( Ũ -Ṽ -2αβ) < ∞ (3.30)
for α > 0 small enough. Fix ε > 0 and let f be defined on (0, ∞) d by

f (x) = d i=1 (x i ) -2 . (3.31)
Arguing as in the proof of Proposition 6.9 in [START_REF] Bouchard | Barrier option hedging under constraints: a viscosity approach[END_REF], see also below for similar arguments, we obtain that

Φ ε := Ũ -Ṽ -2(αβ + εf ) admits a maximum (t ε , x ε ) on [0, T ] × (0, ∞) d , which, for ε > 0 small enough, satisfies Φ ε (t ε , x ε ) ≥ m > 0 , (3.32) 
as well as

lim sup ε→0 ε (|f (x ε )| + |diag [x ε ] Df (x ε )| + |Lf (x ε )|) = 0 . (3.33) 2.2.
For n ≥ 1 and ζ ∈ (0, 1), we then define the function

Ψ ε n,ζ on [0, T ] × (0, ∞) 2d by Ψ ε n,ζ (t, x, y) := Θ(t, x, y) -ε(f (x) + f (y)) -ζ(|x -x ε | 2 + |t -t ε | 2 ) -n 2 |x -y| 2 ,
where Θ(t, x, y) := Ũ (t, x) -Ṽ (t, y)α (β(t, x) + β(t, y)) .

It follows from the growth condition on Ũ and Ṽ that Ψ ε n,ζ attains its maximum at some (t

ε n , x ε n , y ε n ) ∈ [0, T ] × (0, ∞) 2d . Moreover, the inequality Ψ ε n,ζ (t ε n , x ε n , y ε n ) ≥ Ψ ε n,ζ (t ε , x ε , x ε ) implies that Θ(t ε n , x ε n , y ε n ) ≥ Θ(t ε , x ε , x ε ) -2εf (x ε ) + n 2 |x ε n -y ε n | 2 + ζ |x ε n -x ε | 2 + |t ε n -t ε | 2 + ε (f (x ε n ) + f (y ε n )) .
Using the growth property of Ũ and Ṽ again, we deduce that the term on the second line is bounded in n so that, up to a subsequence,

x ε n , y ε n ----→ n→∞ xε ∈ (0, ∞) d and t ε n ----→ n→∞ tε ∈ [0, T ] .
Sending n → ∞ in the previous inequality and using the maximum property of (t ε , x ε ), we also get

0 ≥ Φ ε ( tε , xε ) -Φ ε (t ε , x ε ) ≥ lim sup n→∞ n 2 |x ε n -y ε n | 2 + ζ |x ε n -x ε | 2 + |t ε n -t ε | 2 , which shows that (a) n 2 |x ε n -y ε n | 2 + ζ |x ε n -x ε | 2 + |t ε n -t ε | 2 ----→ n→∞ 0 , (b) Ũ (t ε n , x ε n ) -Ṽ (t ε n , y ε n ) ----→ n→∞ Ũ -Ṽ (t ε , x ε ) ≥ m + 2αβ(t ε , x ε ) + 2εf (x ε ) > 0 ,
where we used (3.32) for the last assertion.

where θ(ε, n) is independent of (η, ζ) and satisfies lim sup

ε→0 lim sup n→∞ |θ(ε, n)| = 0 . (3.38)
Sending η → 0 in the previous inequality provides

κ m 2 ≤ C(1 + ζ)θ(ε, n) + 1 2 Tr [Ξ(x ε n , y ε n )A ε n ] , so that κ m 2 ≤ C(1 + ζ)θ(ε, n) + ζTr [σ(x ε n )σ ′ (x ε n )] + n 2 |diag [x ε n ] σ(x ε n ) -diag [y ε n ] σ(y ε n )| 2 .
Finally, using (a) and the Lipschitz continuity of the coefficients, we obtain by sending n to ∞ and then ζ to 0 in the last inequality that κm ≤ 0, which is the required contradiction and concludes the proof. 

κ Ũ (t ε n , x ε n ) -Ṽ (t ε n , y ε n ) ≤ 2ζ(t ε n -x ε ) -ατ (β(t ε n , x ε n ) + β(t ε n , y ε n )) + 1 2 Tr Ξ(t ε n , x ε n , y ε n ) A ε n + B ε n + η(A ε n + B ε n ) 2 ,
and the proof is concluded as in 3.2.b. above by using the fact that the right hand-side in the min in of (3.28) is non-negative (instead of the left hand-side as above). ✷

Proof of the "face-lifted" representation

In this Section, we prove Corollary 3.2 and Corollary 3.3. We start with some preliminary results. 

- R τ 0 δ χ ρ x (s) (ρs)ds g(t 0 , χ ρ x (τ )) ≤ C 1 + d i=1 (x i ) γi e R τ 0 γi ρi s ds e - R τ 0 δ χ ρ x (s) (ρs)ds ≤ C 1 + x γ
where we used the fact δ χ ρ x ≥ 0 since 0 ∈ K z for all z ∈ (0, ∞) d , and the fact that γ′ ρδ χ ρ x (ρ) ≤ 0 since γ ∈ K ⊂ K χ ρ x . 2. We now prove that ǧ(t 0 , •) is a (discontinuous) viscosity solution of (3.39). Let ǧ * (t 0 , •) (resp. ǧ * (t 0 , •)) be the lower-semicontinuous (resp. upper-semicontinuous) envelope of x → ǧ(t 0 , x). Note that ǧ(t 0 , •) satisfies the dynamic programming principle ǧ(t 0 , x) = sup

(ρ,τ )∈L 0 1 (Leb)×R+ e - R τ ∧h 0 δ χ ρ x (s) (ρs)ds (g(t 0 , χ ρ x (τ ))1 τ ≤h + ǧ(t 0 , χ ρ x (h))1 τ >h ) , h > 0 . (3.41)
2.a. We start with the supersolution property. Note that ǧ ≥ g by construction (take ρ = 0 and τ = 0 in the definition of ǧ or in (3.41)). Let φ be a non-negative smooth function and let

x 0 ∈ (0, ∞) d be a strict minimum point of ǧ * (t 0 , •) -φ such that ǧ * (t 0 , x 0 ) -φ(x 0 ) = 0. Let (x n ) n be a sequence in (0, ∞) d such that ǧ(t 0 , x n ) → ǧ * (t 0 , x 0 ). Assume that inf ρ∈ Kx 0 (δ x0 (ρ)φ(x 0 ) -ρ ′ diag [x 0 ] Dφ(x 0 )) < 0 .
It then follows from (iv) of Assumption 3.2 that we can find r, m > 0 and a Lipschitz continuous map ρ such that, for some η > 0,

δ x (ρ(x)) ≤ η and δ x (ρ(x))φ(x) -ρ(x) ′ diag [x] Dφ(x) < -m ∀ x ∈ B r (x 0 ) . (3.42)
This implies that χn defined as χ ρ xn for the Markovian control ρ = ρ( χn ) satisfies

φ(x n ) < e - R hn 0 δ χn(s) ( ρ( χn(s)))ds (φ( χn (h n )) -mh n )
where h n := inf{s ≥ 0 : χn (s) / ∈ B r (x 0 )} ∧ h for some h > 0. Since x 0 is a strict minimum point of ǧ * (t 0 , •)φ, we can then find ζ > 0 such that φ(x n ) < e - R hn 0 δ χn(s) ( ρ( χn(s)))ds (-ζ1 hn<h + ǧ(t 0 , χn (h n ))mh n ) .

Using the left-hand side of (3.42), we then obtain φ(x n ) < e - R hn 0 δ χn(s) ( ρ( χn(s)))ds ǧ(t 0 , χn (h n ))e -hη (ζ1 hn<h + mh1 hn=h ) .

Since ǧ(t 0 , x n )φ(x n ) → 0, this leads to a contradiction to (3.41) for n large enough. 2.b. We now turn to the subsolution property. Let φ be a non-negative smooth function and let x 0 ∈ (0, ∞) d be a strict maximum point of ǧ * (t 0 , •)φ such that ǧ * (t 0 , x 0 )φ(x 0 ) = 0. Let (x n ) n be a sequence in (0, ∞) d such that ǧ(t 0 , x n ) → ǧ * (t 0 , x 0 ). Assume that min inf ρ∈ Kx 0 (δ x0 (ρ)φ(x 0 )ρ ′ diag [x 0 ] Dφ(x 0 )) , φ(x 0 )g(t 0 , x 0 ) > 0 .

(3.43)

Since g ≥ 0, this implies that φ > 0 on B r (x 0 ), for some r > 0. Moreover, the fact that Kx0 is compact implies that, after possibly changing r > 0, we can find ε > 0 such that φ(x)ε > 0 on B r (x 0 ) and M (x 0 , φ(x 0 )ε, Dφ(x 0 )) > 0. In view of Lemma 3.2, this implies that (φ(x 0 )ε) -1 diag [x 0 ] Dφ(x 0 ) ∈ int(K x0 ). It the follows from Assumption 3.1 that, after possibly changing r > 0, N (x, φ(x)-ε, Dφ(x)) = ∅ on B r (x 0 ), which, by Lemma 3.2 again, implies that M (x, φ(x)ε, Dφ(x)) ≥ 0 on B r (x 0 ). Since δ x ≥ c K > 0, recall (iii) of Assumption 3.2, we deduce that M (x, φ(x), Dφ(x)) ≥ εc K on B r (x 0 ). Using Lemma 3. for some η > 0.

We now consider a sequence (x n ) n in (0, ∞) d such that ǧ(t 0 , x n ) → ǧ * (t 0 , x 0 ). Given ρ ∈ L 0 1 (Leb), we set h n := inf{s ≥ 0 : χ ρ xn (s) / ∈ B r (x 0 )} ∧ h for some h > 0. Then, (3.44) and the fact that x 0 is a strict maximum point of ǧ * (t 0 , •)φ implies that we can find ζ > 0 such that, for all τ ≥ 0, Since φ(x n )-ǧ(t 0 , x n ) → 0, the above inequality combined with (3.45) leads to a contradiction to (3.41) for n large enough, by arbitrariness of τ and ρ. ✷

We can now conclude the proof of Corollary 3.2.

Proof of Corollary 3.2 The subsolution property follows from Theorem 3.1 and Theorem 3.2 since ǧ ≥ g. As for the supersolution property, we note that Theorem 3.1 and Theorem 3.2 imply that, for fixed t 0 ∈ [0, T ], v * (t 0 , •) is a supersolution of (3.39). It thus follows from Lemma 3.6 that v * ≥ ǧ. The supersolution property then follows. To conclude, we note that the comparison result of Proposition 3.1 obviously still holds if we replace g by ǧ since ǧ is continuous with respect to its first variable by assumption, and with respect to its second one by Lemma 3.7. ✷

Proof of Corollary 3.3. The fact that ǧ = ĝ follows from the discussion at the beginning of Section 3.4. Note that the continuity of g implies that ĝ is continuous too. Also observe that the fact that σ is invertible implies that, for a smooth function ϕ, E Q e δ(ρ) ĝ(τ, X t,x (τ )) = e δ(ρ) w(t, x) .

It follows that w(t, x) ≥ e -δ(ρ) w(t, xe ρ ) for all ρ ∈ R d which implies that w is a viscosity supersolution of Mϕ = 0. Hence, w is a supersolution of (3.12), recall (3.46). Finally, (3.40) and standard estimates show that w satisfy the growth condition (3.11). It thus follows from Corollary 3.2 that v * = v * = w. ✷

Remark 3 . 2

 32 Note that K = K x and δ x (ρ) = δ(ρ) where δ(ρ) := sup {π ′ ρ : π ∈ K} , when σ(x) is invertible.(3.9)

Theorem 3 . 1 . 10 ) 3 . 2

 311032 Assume that v is locally bounded. Then, v * is a viscosity supersolution of (3.8) on [0, T ) × (0, ∞) d . If moreover Assumption 3.1 holds, then v * is a viscosity subsolution of (3.8) on [0, T ) × (0, ∞) d . 10 Not surprisingly, the constraint Mv ≥ 0 should propagate to the boundary point t = T which implies that the boundary condition should be written in terms of the solution of the partial differential equation min {φ(x)g(T, x) , Mφ(x)} = 0 . (3Theorem Assume that v is locally bounded. Then, v * (T, •) is a viscosity supersolution on (0, ∞) d of (3.10). Assume further that Assumption 3.1 holds, then v * (T, •) is a viscosity subsolution on (0, ∞) d of (3.10). We conclude by establishing a comparison result for (3.8)-(3.10) which implies that v is continuous on [0, T ) × (0, ∞) d , with a continuous extension to [0, T ] × (0, ∞) d , and is the unique viscosity solution (3.8)-(3.10) in a suitable class of functions.

Theorem 3 . 3

 33 Let Assumptions 3.1 and 3.2 hold. Then, v * = v * is continuous on [0, T ] × (0, ∞) d and is the unique viscosity solution of (3.8)-(3.10) in the class of non-negative functions satisfying the growth condition (ii) of Assumption 3.2. Remark 3.4 1. The first condition holds whenever λγ ∈ K.

3. 2

 2 .c. In the case where (v.b) of Assumption 3.2 holds. Then, (3.35) and (3.36) imply that

Lemma 3 . 6 Lemma 3 . 7

 3637 Let (i)-(iv) of Assumption 3.2 hold. Fix t 0 ∈ [0, T ] and let V (resp. U ) be a lowersemicontinuous (resp. upper-semicontinuous) viscosity supersolution (resp. subsolution) on (0, ∞) d of min {Mφ , φg(t 0 , •)} = 0 .(3.39)Assume that U and V are non-negative and satisfy the growth condition(3.11).Then, U ≤ V on (0, ∞) d .Proof. This follows from the same line of arguments as in Steps 1., 2. and 3.1. of the proof of Proposition 3.1.✷ Let (i)-(iv) of Assumption 3.2 hold. Then, (i)There exists C > 0 such that |ǧ(t, x)| ≤ C(1 + x γ ) for all (t, x) ∈ [0, T ] × (0, ∞) d .(3.40)(ii) Assume further that the assumptions of Corollary 3.2 hold. Then, for each t 0 ∈ [0, T ], ǧ(t 0 , •) is continuous on (0, ∞) d and is the unique viscosity solution of (3.39) satisfying the growth condition (3.40).Proof. 1. Fix ρ ∈ L 0 1 (Leb) and τ ≥ 0. It follows from Assumption 3.2 that we can find C > 0 such that e

  2, the continuity of g and (3.43), we finally obtainmin inf ρ∈ Kx (δ x (ρ)φ(x)ρ ′ diag [x] Dφ(x)) , φ(x)g(t 0 , x) ≥ m on B r (x 0 ) (3.44)for some m > 0. Moreover, it follows from Assumption (ii) of Corollary 3.2 that sup{δ x (ρ), ρ ∈ Kx } ≤ η on B r (x 0 ) (3.45)

  ) (ρs)ds φ(χ ρ xn (h n ∧ τ )) + m(h n ∧ τ ) ) (ρs)ds ǧ(t 0 , χ ρ xn (h n ))1 hn>τ + g(t 0 , χ ρ xn (τ ))1 τ ≤hn + ζ ∧ m ∧ (mh) .

2 2

 22 sup π∈N ϕ(t,x) (π ′ µ(x)ϕ(t, x) -Lϕ(t, x)) = -∂ t ϕ -1 Trace diag [x] σσ ′ diag [x] D 2 ϕ . (3.46)Let us now observe that the map w defined on [0, T ] × (0, ∞) d byw(t, x) := sup τ ∈T [t,T ] E Q [ĝ(τ, X t,x (τ ))] is a viscosity solution on [0, T ) × (0, ∞) d of min -∂ t ϕ -1 Trace diag [x] σσ ′ diag [x] D 2 ϕ , ϕĝ = 0 . (3.47)In particular, it is a subsolution of (3.12), recall (3.46). We next deduce from the definition of ĝ that, for all ρ ∈ R d ,w(t, xe ρ ) = sup τ ∈T [t,T ] E Q [ĝ(τ, X t,x (τ )e ρ )] ≤ sup τ ∈T [t,T ]

3.1. Assume that, after possibly passing to a subsequence, t ε n = T , for all n ≥ 1. Then, Ishii's Lemma, see e.g. [START_REF] Barles | Solutions de Viscosité des Equations d'Hamilton-Jacobi[END_REF], and the viscosity property of U (T, •) and V (T, •) imply that min M x ε n , Ũ (T,

where

Assuming that, after possibly passing to a subsequence, Ũ (T,

) so that passing to the limit, recall (a) and the fact that

We can therefore assume that Ũ (T, x ε n ) > g(T, x ε n ) for all n. Using the two above inequalities, we then deduce that

which implies that we can find ρx ε n ∈ Kx ε n such that for all ρ ε n ∈ Ky ε n we have

In view of (iv) of Assumption 3.2 and (a) above, we can choose ρ ε n such that, for some C > 0,

Using (a), (b), (iii) of Assumption 3.2, the fact that Ṽ , β, f ≥ 0, (3.27) and (3.33), the previous inequality applied to ε > 0 small enough and n large enough leads to

which contradicts (3.32).

3.2.

In view of the above point, we can now assume, after possibly passing to a subsequence, that t ε n < T for all n ≥ 1. From Ishii's Lemma, see Theorem 8.3 in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], we deduce that, for each η > 0, there are real coefficients b

see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the standard notations P+ Ō and P-Ō , where

, and I d stands for the d × d identity matrix.

3.2.a. Assume that, after possibly passing to a subsequence, either

Since the supersolution property of Ṽ ensures that M y ε n , Ṽ (t ε n , y ε n ), q ε n ≥ 0, arguing as in Step 2.2. above leads to a contradiction. Similarly, we can not have

) along a subsequence since V ≥ g and g is continuous, recall (a) and (b). We can then assume that

) for all n ≥ 1, after possibly passing to a subsequence. It then follows from the super-and subsolution properties of Ṽ and Ũ , see Step 1., the fact that K is compact and Lemma 3.2 that there exists

where σ(z) := diag [z] σ(z), μ(z) = diag [z] µ(z) and the positive semi-definite matrix Ξ(t ε n , x ε n , y ε n ) is defined by

3.2.b. We now assume that (v.a) of Assumption 3.2 holds. Then, for n large enough, we can choose π

It then follows from (3.35) and (3.36) that

Using (a)-(b), (3.28) and (3.33), we deduce that we can find C > 0 independent of (η, ζ) such that for ε small and n large enough