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Simulation of Rain-Water Overland-Flow

O. Delestre, S. Cordier, F. James, and F. Darboux

Abstract. We are interested in simulating overland flow on agricultural fields
during rainfall events. In this context, we definitely have to cope with dry/wet
interfaces and water inflow on dry soil. The model considered is the Shallow
Water system (or Saint-Venant equations) without infiltration. Moreover, the
model has to be completed with friction terms.

It is numerically solved by a finite volume method. The topography and
friction terms are treated by a well-balanced strategy with specific additional
features to deal with dry/wet transitions.

The method as well as the choice of the friction term are validated on both
analytical solutions and experimental dataset produced by INRA-Orléans.

Introduction

Rain on agricultural fields can yield to overland flow. This flow may have
some undesirable effects. At the field scale, we can have soil erosion and pollutant
transport. Downstream the fields, roads and houses may be damaged. To prevent
these effects, control measures can be taken, such as grass strips. But we must
know how the water is flowing in order to put efficiently these developments. This
is exactly the context of the ANR project METHODE [10, 11]: the simulation
of water flows on agricultural fields, thanks to the Shallow Water equations in the
spirit of [5, 6].

This article is divided into two main parts. First we explain the numerical
method for the resolution of the Shallow Water equations. We consider a hydro-
static reconstruction scheme coupled with two different treatments of the friction
term. In the second part we describe two tests which allow us to validate the
method: the first one is analytical and the second one is closer to the physical
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problem we are interested in. At last we present numerical simulations which en-
able us to determine the most suitable method.

1. Numerical method

1.1. Numerical scheme. We consider the Shallow Water equations with to-
pography







∂th + ∂x(hu) = 0,

∂t(hu) + ∂x

(

hu2 +
gh2

2

)

= −gh∂xz.

We use the second order hydrostatic reconstruction scheme proposed in [1, 2]. It
writes as:

(1.1) Un+1
i = Un

i − ∆t

∆xi

(

Fn
i+1/2L − Fn

i−1/2R − Fcn
i

)

with left and right numerical fluxes through interfaces:

Fn
i+1/2L = F (Un

i+1/2L, Ui+1/2R) +

(

0
g

2

(

(hn
i+1/2−)2 − (hn

i+1/2L)2
)

)

,

Fn
i−1/2R = F (Un

i−1/2L, Ui−1/2R) +

(

0
g

2

(

(hn
i−1/2+)2 − (hn

i−1/2R)2
)

)

,

where F is a consistent numerical flux for the Shallow Water system without source
term, and the reconstructed states Ui+1/2L, Ui−1/2R are defined by:















Ui+1/2L = (hi+1/2L, hi+1/2Lui+1/2−),
Ui−1/2R = (hi−1/2R, hi−1/2Rhi−1/2+),
hi+1/2L = max

(

0, hi+1/2− + zi+1/2− − max(zi+1/2−, zi+1/2+)
)

,

hi−1/2R = max
(

0, hi−1/2+ + zi−1/2+ − max(zi−1/2−, zi−1/2+)
)

,

We compute Ui+1/2− and Ui−1/2+ with a MUSCL or an ENO reconstruction (see
for example [3]). The values of Hi+1/2− and Hi−1/2+ (where H = z + h is the free
surface level) are also reconstructed in order to get zi+1/2− and zi−1/2+ for the case
of dry/wet interface [1].

A cell-centered source term is added to preserve the consistency:

Fcn
i =

(

0
g

2

(

hn
i−1/2+ − hn

i+1/2−

)

∆zi

)

where ∆zi = zi+1/2− − zi−1/2+.
The second-order accuracy in time is recovered by the Heun method. We can

write (1.1) under the form

Un+1 = Un + ∆tΦ(Un),

thus we get a second-order scheme in space and time

(1.2)

Ûn+1 = Un + ∆tΦ(Un),

Ûn+2 = Un+1 + ∆tΦ(Un+1),

Un+1 =
Un + Ûn+2

2
.

The boundary conditions are treated by the method of characteristics (see [4]).
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1.2. Numerical flux. We use the HLL flux [3]

F (Ul, Ur) =















F (Ul) if 0 ≤ c1,
c2F (Ul) − c1F (Ur)

c2 − c1
+

c1c2

c2 − c1
(Ur − Ul) if c1 < 0 < c2,

F (Ur) if c2 < 0,

with

c1 = inf
U=Ul,Ur

(

inf
j∈{1,2}

|λj(U)|
)

, c2 = sup
U=Ul,Ur

(

sup
j∈{1,2}

|λj(U)|
)

.

where λ1(U) = u −√
gh and λ2(U) = u +

√
gh are the eigenvalues of the system.

1.3. Source terms treatment. We now consider the Shallow Water equa-
tions with rain R(x, t) and friction Sf







∂th + ∂x(hu) = R,

∂t(hu) + ∂x

(

hu2 +
gh2

2

)

= gh(Sf − ∂xz).

The rain is treated by a second-order accurate splitting

Un+1 = S(∆t/2)Sh
(∆t)S(∆t/2)(Un),

where S is the resolution of ∂th = R and Sh the application of the scheme (1.2).
Concerning the friction term, we use either Manning’s friction law

(1.3) Sf = −k2u|u|
h4/3

= −k2q|q|
h10/3

,

or Darcy-Weisbach’s friction law

(1.4) Sf = −ku|u|
8gh

= −kq|q|
8gh3

,

where k > 0 stands for the resistance value and q = hu is the discharge. Both
laws are derived from empirical considerations and are widely used in hydrology
(see for instance [5, 6, 8, 9]). This friction term has been treated by two different
means (detailed in the following): the first one is the apparent topography method
introduced in [3] and the second one is a semi-implicit treatment [4].

1.3.1. The apparent topography method. First, we should recall that the hydro-
static reconstruction has been designed in order to preserve steady states. Espe-
cially without friction term, the steady states at rest are:

u = 0, ∂x(h + z) = 0.

The key point of the apparent topography method, is to write the friction term as

fr(t, x) = Sf (h, u),

so the steady states at rest are given by:

u = 0, ∂x(h + z) = fr.

In this way we introduce a modified Shallow Water equation, with the apparent
topography zmod = z − Fr, where ∂xFr = fr.

We apply the scheme (1.2) to this new topography. So we define ∆Fr
n
i+1/2 =

fr
n
i+1/2∆xi+1/2 for the hydrostatic reconstruction and ∆Fr

n
i = fr

n
i ∆xi for the cell-

centered source term, with ∆xi+1/2 = xi+1 − xi and ∆xi = xi+1/2 − xi−1/2.
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We consider that there is no friction when there is no water. For Manning’s
law we take:

fr
n
i+1/2 =











0 if hn
i+1/2− = hn

i+1/2+ = 0,

−
k2un

i+1/2|un
i+1/2|

(hn
i+1/2)

4/3
otherwise,

and for Darcy-Weisbach’s law

fr
n
i+1/2 =











0 if hn
i+1/2− = hn

i+1/2+ = 0,

−
kun

i+1/2|un
i+1/2|

8ghn
i+1/2

otherwise,

with

un
i+1/2 =

hn
i+1/2−un

i+1/2− + hn
i+1/2+un

i+1/2+

hn
i+1/2− + hn

i+1/2+

and

hn
i+1/2 =

hn
i+1/2− + hn

i+1/2+

2
.

1.3.2. The semi-implicit treatment. We choose this method among other split-
ting methods not only because it preserves steady states at rest, but also for its
stability. For Manning’s law, following [4], we obtain

qn+1
i =

qn+1
i∗

1 + g∆t
k2|un

i |
(hn+1

i )4/3

and for Darcy-Weisbach’s law

qn+1
i =

qn+1
i∗

1 + k∆t
|un

i |
8hn+1

i

,

where qn+1
i∗ stands for the discharge obtained at each step of the Heun method

(1.2).

2. Tests description and numerical validation

2.1. Analytical solution test. Here we present briefly an adaptation to the
1-d case and our friction laws of an idea presented in [8, 9] for pseudo two di-
mensional cases. At steady states, we have ∂th = ∂tu = ∂tq = 0, thus the mass-
conservation equation gives q = cst and we get the equation

(2.1) ∂xz =

(

q2

gh3
− 1

)

∂xh + Sf (q, h)

where Sf (q, h) depends on the friction law chosen (1.3) or (1.4). For any given value
of the constants k and q, once we are given an explicit expression for h(x), then
formula (2.1) allows us to compute the topography corresponding to this steady
state and this water height.
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The configuration of our test is a channel of length 1 km (fig. 1). The water
height h(x) for the steady problem is given by

h(x) =

(

4

g

)1/3
(

1 +
1

2
exp

(

−16

(

x

1000
− 1

2

)2
))

.

The flow is subcritical at inflow and outflow, so we impose a discharge of q = 2 m2/s
at inflow and a water height corresponding to the value of h(1000) downstream.
The Manning roughness coefficient is k = 0.033. The topography is calculated
iteratively thanks to

∂xz =

(

4

gh(x)3
− 1

)

h
′

(x) − 4k2

h(x)10/3
.
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Figure 1. Steady state solution and numerical results.

The global relative error E is defined as

E =

√

√

√

√

∑

i

(

hn
i − hex

i

hex
i

)2

where hn
i is the water height at the current time level and hex

i the exact height. It
turns out that both methods preserve correctly the steady state along time. How-
ever, since we are interested also in non-stationary solutions, we have considered an
initially dry soil and the upstream discharge q = 2 m2/s. Both methods (apparent
topography and semi-implicit treatment) converge toward the steady state (fig. 2-
b). We show in (fig. 1) the free surface level at steady state. We can see that both
methods give good results. In (fig. 1-a), we represent the discharge at equilibrium.
Results are little better with the apparent topography method.

However, before the steady state is reached, we have a wet/dry transition (fig. 3-
b). We note that the apparent topography method is not adapted to this transition:
we have a peak in the velocity that we do not get with the semi-implicit treatment
(fig. 3-a).
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Figure 2. (a) Discharge comparison at steady state. (b) L2 con-
vergence in time.
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Figure 3. (a) Water front velocities comparison at t = 200 s. (b)
Water front propagation with the semi-implicit treatment at t =
200 s.

2.2. Rainfall hydrograph test. In this section we present another test case,
based on experimental measurements realised thanks to the ANR project METH-
ODE in a flume at the rain simulation facility at INRA-Orléans. The flume is 4 m
long with a slope of 5% (fig. 4). The simulation duration is 250 s. The rainfall
intensity R(x, t) is described by

R(x, t) =

{

50 mm/h if (x, t) ∈ [0, 3.95 m] × [5, 125 s],
0 otherwise.

For this test, as there is no rain on the last 5 cm, we have a wet/dry transition.
The measured output is an hydrograph, that is a plot of the discharge versus time
(fig. 6). The mathematical model for this ideal overland flow is the following: we
consider a uniform plane catchment whose overall length in the direction of flow is
L. The surface roughness and slope are assumed to be invariant in space and time.

We consider a constant rainfall excess such that

R(x, t) =

{

I for 0 ≤ t ≤ td, 0 ≤ x ≤ L,

0 otherwise,

where I is the rainfall intensity and td is the duration of the rainfall excess. First we
compute some explicit ”naive” analytical solution to the problem. We notice that
three phases can clearly be identified on the hydrograph: a first non-steady step
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flume     5%

5 cm

4 m

R(x, t)

Figure 4. Experimental configuration.

at the beginning of the rainfall event, then a steady-state and at last a non-steady
step. The first and the second step solutions can be computed explicitly, and the
”naive” solution is obtained by assuming a simple concatenation of the two parts.

As the rain begins to fall uniformly on the plane at t = 0, we have ∂xh = ∂xu =
∂xq = 0. So the local depth increases everywhere at the rate given by ∂th = R(t).
Since I does not change in time, we have

(2.2) h = I t.

This is the case initially, except at x = 0 where there is no inflow from upstream.
The local depth continues to grow everywhere according to (2.2) until the discharge
reaches its limit, which must be equal to the inflow q(x) =

∫ x

0 Idx = I x at time
teq(x). This is called the rising limb (fig. 5).
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Figure 5. Water height during the rising limb, t = 25 s.

Then the local depth and the local discharge remain constant. So when the
equilibrium reaches the end of the plane at x = L, we get the peak flow and we
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have

(2.3) q(x) = I x, 0 ≤ x ≤ L,

thus the second equation of the Shallow Water system writes

(2.4) ∂x

(

q2

h
+

gh2

2

)

= gh (Sf (q, h) − ∂xz) .

After calculations with (2.3) and (2.4), we get

(2.5) ∂xh =
gh3 (Sf (x I, h) − ∂xz) − 2x I2h

gh3 − x2I2
,

where we have for Manning’s law

Sf (x I, h) = −k2I2x2

h10/3

and for Darcy-Weisbach’s law

Sf (x I, h) = −kI2x2

8gh3
.

Thus we are able to calculate the water height profile and the discharge for the
times 0 ≤ t ≤ td.

Now we compare at first numerical results with the analytical ”naive” solution.
Once again, with (fig. 6-a) we show that with the apparent topography method,
we get a peak on the discharge downstream that we do not get far from this tran-
sition. With the semi-implicit method, we do not have this peak (fig. 6-b). This
treatment gives good results closed to the naive exact solution. The hydrograph is
well calculated (fig. 6-b), the height and the velocity too (fig. 7).
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Figure 6. (a) Rainfall hydrograph with the apparent topogra-
phy method (AT). (b) Rainfall hydrograph with the semi-implicit
treatment for Darcy-Weisbach’s law (DW).

Next, we propose a comparison between experimental measurements and nu-
merical simulation (fig. 8), obtained with the Darcy-Weisbach’s friction law. We
obtain a reasonable agreement, but it turns out that it is impossible to fit correctly
the shape of both the increasing and decreasing parts of the hydrograph. This indi-
cates clearly that the model has to be modified, for instance by choosing alternative
friction laws, but this is beyond the scope of this paper.
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Figure 7. (a) Water height at steady state, t = 60 s. (b) Velocity
at steady state, t = 60 s.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  50  100  150  200  250

q 
(g

/s
)

t (s)

rain duration
measured data

semi-implicit DW, k=0.15

Figure 8. Comparison between experimental measures and nu-
merical results.

Conclusion

This preliminary study of overland flow due to rainfall events clearly enlights
several specific difficulties. First, from the numerical point of view, it seems that the
apparent topography method, which was designed in order to catch steady states, is
not adapted for wet/dry transitions. The semi-implicit treatment seems to be better
in the problems we consider and gives good results compared to experimental data.
Next, the model itself has to be improved, in particular regarding the empirical
friction laws we used, which were not developed in this hydrological context. Finally,
more realistic situations require infiltration and two-dimensional simulations, which
are in progress and already validated on analytical solutions. This will be again
compared with experimental data, as for the flume test.
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MAPMO Orléans, France

E-mail address: francois.james@univ-orleans.fr
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