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Visual Design of coherent Technology-Enhanced Learning 
Systems: a few lessons learned from CPM language 

 
Abstract. Visual instructional design languages currently provide notations for representing the 

intermediate and final results of a knowledge engineering process. As some languages particularly 
focus on the formal representation of a learning design that can be transformed into machine 
interpretable code (i.e., IML-LD players), others have been developed to support the creativity of 
designers while exploring their problem-spaces and solutions. 

This chapter introduces CPM (Computer Problem-based Metamodel), a visual language for the 
instructional design of Problem-Based Learning (PBL) situations. On the one hand, CPM sketches of 
a PBL situation can improve communication within multidisciplinary ID teams; on the other hand, 
CPM blueprints can describe the functional components that a Technology-Enhanced Learning (TEL) 
system should offer to support such a PBL situation. 

We first present the aims and the fundamentals of CPM language. Then, we analyze CPM 
usability using a set of CPM diagrams produced in a case study in a ‘real-world’ setting 

INTRODUCTION 
For several years, the IMS-LD specification (IMS, 2003b) has been the subject of 

converging theoretical and practical works from researchers and practitioners concerned with 
Learning Technologies.  

 
The IMS-LD specification is now well documented (Hummel, Manderveld, Tattersall, & 

Koper, 2004; Koper et al., 2003; Koper & Olivier, 2004) and widely used for the semantic 
representation of learning designs. A learning design is defined as the description of the 
teaching-learning process that takes place in a unit of learning (Koper, 2006). The key 
principle in learning design is that it represents learning activities and support activities being 
performed by different persons (learners, teachers) in the context of a unit of learning. These 
activities can refer to different learning objects that are used/required by these activities at 
runtime (e.g., books, software programs, pictures); they can also refer to services (e.g., 
forums, chats, wikis) used to communicate and collaborate in the teaching-learning process.  

 
Thus, IMS-LD is an Educational Modeling Language that provides a representation of the 

components of a learning environment in a standardized XML schema that can be executed 
by compliant e-learning platforms. According to the classification framework defined in 
(Botturi, Derntl, Boot, & Gigl, 2006), IMS-LD is an example of a ‘finalist-communicative 
language’: it is not intended to enable designers to produce intermediate models of the 
learning design being studied, nor to provide significant methodological support for designers 
to build a final representation complying with the IMS-LD specification. 

 
Initially, designers had to use XML editors (like XMLSpy) to benefit from all IMS-LD 

expressive capabilities (levels A, B, C). Reload, a tree and form based authoring tool, was the 
first editor to significantly improve this situation. Chapter 2.10 of this handbook provides an 
extensive presentation of currently available IMS-LD compliant tools (Tattersall, 2007):  
- LD-editors like Reload (Reload, 2005), CopperAuthor (CopperAuthor, 2005), etc.  
- Visual tools to support practitioners in the creation of IMS-LD compliant designs by means 
of using collaborative pattern-based templates (Hernández-Leo et al., 2006). 
- Authoring environments for IMS-LD designs like the ASK Learning Designer Toolkit – 
ASK-LDT (Sampson, Karampiperis, & Zervas, 2005). 
- Runtime engines able to interpret a LD-scenario like CopperCore (Vogten & Martens, 
2003).  
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- Learning Management Systems able to interpret LD scenarios: dotLRN (Santos, Boticario, & 
Barrera, 2005), LAMS (Dalziel, 2006), Moodle (Berggren et al., 2005), etc. 
 

However, standards like IMS-LD (2003) and IEEE LOM (2002) start from the principle 
that even though learning theories are not pedagogically neutral, neutral reference models and 
standards can still be designed: 'The aim is not to set up a prescriptive model but an 
integrative pedagogical meta-model which is neutral since it models what is common with 
any pedagogical model' (Koper, 2001); this assumption promotes the concept of de-
contextualized learning objects that can be specified once, and then reused to design Learning 
Scenarios relying on instructivist (acquisition metaphor) or constructivist (knowledge creation 
metaphor) principles. 

 
This chapter proposes another way to address the design of learning scenarios. On the one 

hand, we consider that socio-constructivist learning scenarios must be designed in context. On 
the other hand, we think that even the final results of an Instructional Design (ID) process 
should clearly state the mapping between the contextualised activities specified by designers 
and the functionalities provided by a given Learning Management System (LMS). 

 
In the first section, we present various on-going research work focusing on languages 

defined to help designers represent and share ideas about a learning scenario under study. 
Such languages are called ‘generative-reflective languages’ in (Botturi, Derntl et al., 2006). 
The second section introduces CPM (Cooperative Problem-based Metamodel) language, a 
visual design-language focusing on the design of Problem-Based Learning (PBL) situations; 
we present its syntax and semantics that rely on UML language. Then, we try to understand 
CPM usability from an analysis of a set of CPM diagrams produced in the framework of a 
real-world case study. This study illustrates CPM language expressivity; it also states that 
even though designing PBL situations with CPM notation remains a complex knowledge 
engineering activity, good practices can concretely improve designers’ efficiency and 
confidence. Finally, the concluding section summarizes both CPM characteristics and 
proposals for improvement. 

BACKGROUND 
In this section, we only focus on current research work that could lead practitioners 

(teachers, educators, designers) to considering ID languages as adequate tools to explore their 
problem-spaces, not only to share ideas within a design team, but also to prepare the 
implementation of coherent Technological Enhanced Learning Systems. 

 
Situated learning presupposes that meaning is both incorporated within the learning design 

as well as being prone to interpretation and shared understanding (Stahl, 2006): ‘a blind spot 
of activity-centered models is their missing ability to describe the relation between the 
program (the learning design) and its context’(Allert, 2004).  

 
Thus, modelling coherent social systems for learning requires going beyond selecting and 

sequencing activities and resources; but also deciding and documenting for what purposes 
they are being used. This means that roles and activities are to be represented and assessed in 
context (Derntl & Hummel, 2005). With this purpose in mind, (Allert, 2005) introduces the 
concept of Second-Order Learning Objects (SOLOs) which are resources that provide and 
reflect a strategy (generative strategy, learning strategy, problem solving strategy, or decision-
making strategy). SOLOs provide means for structuring information or modelling certain 
aspects of the real world: they represent sets of interrelated concepts that can be used to 
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describe the domain of concern. The use of different SOLOs will thus allow a designer to 
look at a system from different points of view (e.g., organisationally, structurally, and from 
social points of view). 

 
(Pawlowski, 2002; Pawlowski & Bick, 2006) introduce the Didactical Object Model 

(DIN) which extends the aims of current Educational Modelling Languages by introducing 
specifications for contexts, experiences and acceptance. The concept of reusability is, in this 
case, extended since it should be possible not only to share scenarios as technical 
specifications but also to exchange didactical expertise about such scenarios (from the 
knowledge of their context of use, of concrete experiences reported by the actors involved in 
its use). 

 
(Schneemayer, 2002), (Brusilovsky, 2004) and (Paramythis & Loidl-Reisinger, 2004) 

extend the context notion to the environment context which clarifies the real characteristics of 
the LMS (or any other software) from which the learning situation is being exploited. This 
leads to an approach for the engineering of learning situations aiming to specify the learning 
situation together with the LMS which will later enable students to learn from this situation. 

 
Works of (Botturi, 2003; Botturi, Cantoni, Lepori, & Tardini, 2006) promote the 

adaptation of fast prototyping for the specific issues of e-learning project development with 
very particular stress on human-factor management (i.e., the eLab model). They developed a 
visual design language called E2ML (c.f. chapter 2.2 of this handbook) to support fast 
prototyping to enable a developing interdisciplinary team to function (including educators and 
teachers). Outcomes of the language include better communication within the design team, 
availability of precise design documentation to evaluate designs and figure out agreed and 
more feasible solutions.  

 
Despite having quite different objectives, the works that we have listed in this section 

(including those conducted in the framework of the IMS-LD initiative) share the fact that they 
address the complexity of ID. Developing future Technology-Enhanced Learning (TEL) 
systems requires an interdisciplinary team with both pedagogical and technical skills: 
communication and minimal agreement on means and ends are conditions for success within 
such a team. 

 
From the point of view of teachers and educators, ID languages can be communication 

catalysts (Botturi, Derntl et al., 2006) if these actors feel that the concepts of the language are 
in tune with the characteristics of the learning situation to be described and will enable them 
to explore, document and share their design decisions with others.  

 
On the one hand, (Allert, 2005) states that teachers and educators need dedicated 

languages which reduce complexity by reflecting instruction (and the process of ID) 
according to specified criteria (p. 41): i.e., formalization, compatibility and interoperability 
criteria (IMS, 2003b) are to be considered since most educators are now aware that the 
introduction of technologies in Education has important consequences on any design process.  

 
On the other hand, such instructional languages must not neglect didactics, which is the 

science of learning and teaching; even if in the domain of training (reproductive forms of 
learning), the learning design is often limited to the planning and sequencing of non-
contextualized activities and resources. (Pawlowski & Bick, 2006) state that designing 
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situated-learning requires languages that can precisely describe the context and the dynamics 
of the tutoring/learning activities and resources. 

 
Our work on visual ID languages started just before (Koper, 2001) published his first 

results on the Educational Modelling Language (the precursor of the IMS-LD specification). 
From the very beginning, we intended to propose a visual design language that could be 
useful for both educators and developers of TEL systems. From the point of view of 
educators, the language requirements were, 

1. To enable designers to represent learning-tutoring activities in context. 
2. To reduce complexity by reflecting instruction (and the process of ID). 

 
In the following sections, we shall first present the characteristics of the language; then we 

shall study the language usability from an analysis of its use on ‘real-world’ case studies.  

CPM LANGUAGE 
CPM stands for Cooperative Problem-based learning Metamodel. It is a visual design 

language that we developed at the LIUPPA Laboratory (Laboratoire Informatique de 
l’Université de Pau et des Pays de l’Adour, France) as a specialisation of UML language. 
CPM language focuses on the design of Problem-Based Learning (PBL) situations. We 
decided to work on such a dedicated language because we consider with (Allert, 2004) and 
(Pawlowski & Bick, 2006) that, 

1. Pedagogical metamodels are not neutral,  
2. There is an important need for design languages that specifically address generative 
learning (learning in context, situated learning). 

 
According to the ID Classification Scheme defined in (Botturi, Derntl et al., 2006), it is a 

visual (notation level), layered (stratification level), semi-formal (formalization level) 
language promoting multiple perspectives (more than one view) upon the same entities. In the 
next paragraphs, we present the aims of the language and the information model captured by 
CPM language. Fundamentals of both its abstract syntax (the CPM metamodel) and its 
concrete syntax (the CPM profile) are then discussed. Finally, we briefly present three real-
world case studies, which have enabled us to experiment on the usability of CPM language.  

Aims of CPM language 
Even though learning by doing activities promoted by a PBL scenario may seem to be 

natural activities, PBL situations must be scripted. In the context of PBL, the support focuses 
on mentoring, motivating, creating simulated crises, showing how failures result from poor 
communication and lack of foresight, identifying and promoting areas in which teams and 
individuals have to make progress. Thus, PBL is different from traditional instructional 
methods which emphasize the content: this means the main focus is on the learner and 
genuine problems (Norman & Spohrer, 1996). Guided by tutors who take only a facilitator 
role, learners are engaged in active and meaningful cooperative learning. They collaborate 
with each other by using tools to represent problems, to generate solutions, to discuss 
different perspectives, to lead experiments and simulations, or to write reports, etc. The 
driving force is the problem given, the success is the solution of it, and apprenticeship is a 
condition for success. Thus, the object of any PBL activity is an ill-structured problem under 
study and the expected outcomes of a PBL activity are (Miao, 2000),  

- Acquiring knowledge and skills which can be transferred to solve similar problems 
at individual level.  
- Constructing shared knowledge and promoting mutual understanding at group level.  
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To address such objectives, our challenge was to explore UML modelling capabilities for 

the PBL domain and to adapt the semantics of this language, when required, using meta-
modelling techniques.  

 
UML is a standard controlled by the Object Management Group (OMG) which is widely 

known as a design catalyst within teams of software developers (Costagliola, De Lucia, 
Orefice, & Polese, 2002), (Ferruci, Tortora, & Vitello, 2002). Readers needing a basic 
understanding of the UML language will find a useful introduction in chapter 2.4 of this 
handbook. 

 
UML language can be used as a sketch, blueprint or programming language (Fowler, 

2005). In sketch usage, developers use UML to communicate some particular aspects of the 
system being studied. In the blueprint usage, the idea is to build a detailed design for a 
programmer to use in coding software. Blueprints may be used for all the details of a system 
or the designer may draw a blueprint for a particular area. In programming language usage, 
developers draw UML diagrams that are compiled directly into executable code, and UML 
becomes the source code.  

 
Our studies demonstrated that UML is too general to correctly address PBL domain and 

interdisciplinary issues (Sallaberry, Nodenot, Marquesuzaà, Bessagnet, & Laforcade, 2002). 
Yet, UML activity diagrams are explicitly considered in (IMS, 2003a) as useful formalisms to 
capture requirements and build learning specifications. A UML-based language proved to 
supply more support to the interdisciplinary team of developers by means of well known (but 
debatable) UML features: standard notation, communication power, gateway between models 
and implementation platforms including software components and services.  

 
Thus, we developed CPM, a specialization of UML language for PBL which we 

implemented by means of a Profiling mechanism (OMG, 1999). This language addresses 
most of the design process, covering the different stages of conceptual and functional 
designing. This was a matter of differentiating two target audiences. 

 
On the one hand, educators and designers use CPM language to draw models (similar to 

UML sketches) focusing initial requirements of a PBL situation including the PBL domain, 
situated roles of learners/teachers, learners skills, predicted obstacles which the educators 
want learners to overcome, goals and criteria for success within the PBL situation, resources 
available to learners, etc. 

 
On the other hand, CPM language addresses instructional engineers. Their work involves 

designing a viable solution, in coordinating all the actors involved in the development team. 
Knowledge of UML is a prerequisite for such engineers who use CPM language to draw 
various models which capture different points of view or outlooks on the same PBL situation 
(pedagogical, structural, social, or operational). This set of models makes up the 
learning/tutoring scenario which can be planned (in terms of steps and learning/tutoring 
events) but cannot be totally predetermined at design time since PBL addresses generative 
learning (Allert, 2005). The blueprints they produce are expressed in terms of the concepts 
appearing in the sketches produced by educators, thus facilitating discussion and agreement.  

 
CPM sketches and blueprints prepare the detailed design stage that involves mapping 

those agreed CPM models with Platform-Independent Models (PIM), e.g., IMS-LD 
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(Laforcade, 2004) or LMS abstractions (Renaux, Caron, & Le Pallec, 2005). Even though we 
implemented a toolset to generate Level A IMS-LD compliant models from our CPM models, 
abstractions of LMSs are our favourite Platform-Independent Models. The idea consists in 
mapping conceptual design models with components representing abstract views of the 
services provided by an LMS: such a mapping lead designers to use the CPM language in 
order to specialize and contextualize the services supplied by an LMS according to the 
specificities of the activities to be fulfilled.  

The CPM information model 
CPM relies on an information model depicted in Figure 1 (Nodenot, 2005). It is composed 

of three blocks: 

Work
Organisation

Step

* +step

+activity

+parent
*

+subwork

*

0..1

*
+inCollaborationWith

Activity

*
+constraints

+respects

1..* 1..*
+concerns

1

*
+realizes

+assigned to

Role

roleType : RoleType

Resource

+responsible*

1 +owner

Actor
* 1..*
+plays

<<enumeration>>
RôleType

Learner
Tutor

Document KnowledgeTool

+produced +produces
* *+used

**
+uses

Language

+uses

*

*

2

1

3

 
Figure 1: The CPM conceptual information model. 

Block 1 (gray area at the top) deals with the modelling of the situated roles played by the 
very actors involved in a PBL situation. Roles can be assigned to individuals or to groups of 
actors. All roles do not imply the same knowledge and know-how; according to their learning 
goals and responsibilities, roles will often use specific resources to perform their 
learning/tutoring activities. 

 
Block 2 (gray area at the left) deals with the work organization (rules that can constrain 

the way activities will be conducted by roles). This work organization, including collaborative 
work, can be decided by designers (learning scenario) or it can be in charge of the actors at 
runtime. When described at design stage, the organization rules may constrain the activities 
and resources at the learners/tutors’ disposal. Activities can be further detailed in terms of 
steps, enabling designers to elicit the way important learning/tutoring events should be taken 
into account when they are raised at runtime. 

 
Block 3 (white area at the bottom right) deals with the resources used by actors. 

Knowledge can represent activity prerequisites/post requisites, information about what can be 
learned from available documents, etc. A language is useful to the extent it forces actors to 
use a fixed set of vocabulary when they try to reach agreements in collaborative activities or 
when they are asked to describe what they know, what they would like to know, etc. 
Documents and tools represent contextualized artefacts enabling actors to conduct assigned 
activities. 



 

-7- 

The CPM toolset 
From the CPM information model (to be compared with the IMS-LD Information model), 

we first built the abstract syntax of the language (the CPM metamodel) whereas its concrete 
syntax was represented through the CPM profile.  

The CPM metamodel 
To construct the CPM metamodel, an interdisciplinary team started with 35 concepts and 

divided them into two groups. First, concepts were selected which related to the necessity for 
the educators to produce a PBL situation’s conceptual design (using terminology from works 
by (Develay, 1993) and (Meirieu, 1994) and includes notions like Learning Goal, Obstacle, 
Success Criterion, etc.). Then, several concepts were identified which are useful to describe a) 
the learning scenario (its structure and its dynamics) or b) the tool-environment provided to 
actors to conduct their learning/teaching activities. These concepts are borrowed as often as 
possible from the IMS-LD terminology (e.g., Activity, Activity-Structure, Role, etc.). They are 
located in packages and sub-packages (see Figure 2): the CPM_Foundation (defined as a 
subset of UML 1.5) and the CPM_Extensions which adds the necessary concepts needed to 
describe PBL situations. 

<<metamodel>>
CPM_Foundation

<<metamodel>>
BasicElements

<<metamodel>>
StructuralPackage

<<metamodel>>
PedagogicalPackage

<<metamodel>>
SocialPackage

CPM_Extensions

 
Figure 2: The packages of the CPM metamodel 

Among CPM Extensions, cognitive concepts necessary to trace the learning/tutoring 
behaviours of the actors are included in the PedagogicalPackage. This package deals with 
information used to model the components of a PBLS: misconceptions of the learners, 
predicted obstacles that a teacher wants the learners to overcome, goals and success criteria of 
the PBLS, resources available to the learners, etc. The StructuralPackage includes concepts 
necessary to describe the PBL scenario and to break it down into simpler learning/tutoring 
activities. Lastly, the SocialPackage deals includes all the concepts necessary to manage co-
operative work including sharing of resources and of learning/tutoring activities.  

 
There are interconnections between the concepts within these packages. Figure 3 presents 

two extracts: on the left, a Structural Package extract and on the right a Social Package 
extract. Grey concepts refer to elements from the CPM_Foundation package (see UML 1.5).  
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Figure 3: Interconnections between the concepts of the CPM metamodel packages. 

- ActivityConcept particularizes the UML concept of Operation; it is a general concept 
to depict any hierarchy of activities.  
- Learning Phase is used to sequence a Learning scenario; its semantics are close to 
the Act IMS-LD Concept, except that an IMS-LD Act can only be broken down into 
one and only one sublevel. Since it specialises the ActivityConcept, the LearningPhase 
concept can be used to describe a scenario with a hierarchy of acts including a 
hierarchy of scenes from which different roles will carry out particular activities.  
- The ActivityStructure and Activity concepts are also specialisations of 
ActivityConcept; they respectively represent a group of activities and a particular 
activity assigned to one role. Activity Structures can be of different types (i.e.,. the 
structureKind meta-attribute).  
- The CollaborativeActivity concept also specializes the ActivityConcept; the 
metamodel states that such an activity is performed by one and only one role (a role 
can be assigned to a group of concrete actors). Cooperation is not explicit in our 
metamodel since we decided to describe cooperation by means of role sharing and 
resource sharing (i.e., the CPM conceptual information model presented in Figure 1). 

The CPM profile 
To enable designers to draw diagrams that are consistent with such a metamodel, we 

implemented the CPM profile. A profile uses the extension mechanisms of UML in a 
standardized way, for a particular purpose. It merely refines the standard semantics of UML 
by adding further constraints and interpretations that capture domain specific semantics and 
modelling patterns. 

 
Like any UML profile, the CPM profile promotes Stereotypes which are defined for each 

specific meta-class of the UML metamodel. Thus, for each concept of the CPM_Extensions 
package, we defined a particular stereotype attached to a specific UML meta-class (the Base 
meta-class) which the CPM concept directly or indirectly particularises. We also defined 
alternatives which are other UML meta-classes to enable designers to use a CPM concept in 
alternative UML diagrams than those suited to its Base meta-class. For example,  
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- a Role is a stereotype defined for the UseCases::Actor meta-class (i.e., figure 5) (a 
UML actor is something or someone who supplies a stimulus to the system 
operations).  
- But we also promoted alternative meta-classes (i.e., figure 6): 
ActivityGraphs::Partition (to enable designers to use the CPM Role concept in UML 
activity-diagrams), Core::Classifier (to enable designers to use the CPM LeaningPhase 
concept in UML Class Diagrams).  

This mechanism which was already used in (OMG, 2002a) means that 
ActivityGraphs::Partition and Core::Classifier are proxy notations of the UseCases::Actor meta-
class.  
 
Icons are associated to stereotypes to reduce the designers’ cognitive load and to enhance 
visual appropriation of the CPM models. Tagged values are attached to the different 
stereotypes; they represent meta-attributes (e.g., phaseKind, structureKind, roleKind, etc.) of 
the CPM_Extensions concepts. 

 
Figure 4: An extract of the stereotypes provided to designers by the CPM profile. 

We provided designers with an authoring environment supporting CPM language. This 
was developed alongside the Objecteering/UML CASE tool. This prototype allowed us to 
verify the coherence between the CPM profile entities (concrete syntax) and the CPM 
metamodel meta-types (abstract syntax). It also enabled us to store complete case studies 
(e.g., the SMASH case study) as well as reusable design patterns in the Objecteering shared 
repository. The current release of this CPM language is available within a module that can be 
integrated in and used with the free-of-charge-version of the Objecteering/UML Modeler.  

 
In the next sections, we shall denote a CPM stereotype with the << >> symbol (e.g., the 

<<activity-structure>> stereotype. A UML metaclass will be highlighted in italics (e.g., the 
ObjectFlowState metaclass). For the purpose of the case studies that we shall be presenting 
here, model elements which are instances of the CPM stereotypes will appear in italics (e.g., 
the Testimonies analysis <<activity-structure>>). 

Real world case studies designed with the CPM language 
Chronologically, we started with the SMASH PBL situation that addresses 10 to 12 year 

old pupils who must piece together eye-witness accounts to identify the causes of a bicycle 
accident. We set up an interdisciplinary team including two teachers, two CPM specialists, 
two developers mastering the Moodle LMS. This team used CPM language to formalise the 
teaching/learning objectives, to imagine and to detail a cooperative learning scenario that 
could take advantage of available communication tools (chat, forum, etc.). The proposed 
scenario was then tested in real conditions during four half days within a classroom where 
groups of pupils assisted by their teacher had to cooperate according to the constraints of the 
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specified learning/tutoring activities (using dedicated resources—see figure 3). Dedicated 
tools (e.g., a dedicated e-whiteboard to help pupils share their understanding of the actors’ 
spatial position when the accident occurred) were then developed to support learners 
activities; the scenario was then partly implemented for the Moodle LMS. 

 
Proposed by (Vignollet, David, Ferraris, Martel, & Lejeune, 2006), the PLANET-GAME 

case study focused on the didactic transposition (see the initial requirements analysis in figure 
2; see also the account in Chapter 2.7) of a learning game about astronomy. Assisted by a 
primary teacher, we used CPM language to describe the conceptualisation level that 12 year-
old pupils can reach and, in the meantime, we selected different scientific properties of these 
planets: their distances from the sun, their day durations, their year durations, their 
compositions, their average temperatures, etc. This domain study led us to set more detailed 
learning/tutoring objectives from which we defined a learning scenario and tutoring strategies 
(Nodenot & Laforcade, 2006). 

 
The GEODOC case study is an on-the-road project that lead us to formalize CPM 

scenarios putting the focus on learning/tutoring objectives dedicated to text comprehension as 
applied to Geography. Learning activities which we formalized with CPM language include 
actual and inferential questions about what is being read (identification and localisation of 
toponyms, topological identification, mapping-out of routes, etc.). This project investigates 
not only the specialization of LMS services according to formalized learning/teaching 
scenarios, but also the use of on-the-shelf computational applications in relation with the 
taught domain (e.g., Postgis and GoogleEarth).  

 
In the next section, we briefly present the script of a learning scenario and we refer to the 

figures denoting the CPM diagrams produced in the course of the design of such a scenario. 
This will help us give concrete expression of the lessons learned from CPM language. 

The Act2 of the SMASH PBLS: What is this scenario about? 
During Act2 (i.e., the IMS-LD terminology), learners (who were previously divided into 

different groups) have to analyse allocated testimonies. While some groups (that is, 
Investigator role 1 to 3) have access to a limited set, others can read the full set of testimonies 
(i.e., Investigator role 4). The scenario leads all groups (there are several concurrent groups 
playing Investigator role 1 to 3 while a unique group of learners plays the Investigator role 4) 
to exchange information about what they learned/understood from the accounts of the 
testimonies (each group will produce a belief graph) and then to write a single accident report 
that all groups must finally acknowledge. The learning scenario is supervised by the Session 
manager role and by a tutor (i.e., the PoliceChief role) whose job is to help learners develop 
an exhaustive analysis of the available testimonies at their disposal. 

From a pedagogical viewpoint, such scenario script encourages the groups of learners to 
confront their own ideas of road safety (knowledge, know-how, attitudes) with the safety 
rules promoted by Road Regulations (Highway Code).  

 
In the subsequent text, the reader will find several figures produced with CPM language to 

specify the Act2 learning scenario. The model elements produced during the design process 
were all stored in the repository provided by the Objecteering UML Case tool (i.e., Figure 5) 
from the set of CPM diagrams produced by the ID Team in charge of the project. Each model 
element stored in the repository can be used in several diagrams: use-case diagrams, class-
diagrams, activity diagrams, state-machines diagrams, etc. Among the different diagrams that 
were produced in the course of this project, the following were chosen for this chapter: 
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- Figure 6 and Figure 7 describe the roles taken by the actors and the coarse-grain 
activities they performed during Act2. 
- Figure 8 describes the resources that Investigator role 1 can use and produce when 
performing their dedicated activities. 
- Figure 9 details the sequencing of the different coarse-grain activities and the 
conditions that resources must fulfil to accept transitions from one activity to another. 
- Figure 10 and Figure 11 detail the Testimonies Analysis <<activity-structure>>.  

 
In the next section, we shall use these figures to elicit the lessons that we learned about 

CPM language usability. However, from the information given about Act2 in this subsection, 
we strongly encourage the reader to begin by analyzing the semantics conveyed by this set of 
inter-related CPM diagrams. 

LESSONS LEARNED FROM CPM LANGUAGE 
This section presents the lessons we learned about the usability of CPM language to edit / 

produce a learning scenario. From the three case studies summarized above, we drew two 
important lessons: 

- Although CPM adopts the jargon that many pedagogues and educational designers 
already use, producing a set of coherent CPM models for a given case study is still a 
complex activity. 
- Even though most pedagogues are not able to produce a set of CPM coherent models 
by themselves, both pedagogues and developers can contribute to and benefit from 
such design models. 

 
Several observations led us to formalize these lessons. To give concrete expression to 

these observations, we shall rely on CPM models from the SMASH PBL; we shall 
particularly focus on the Act2 learning scenario (the end of the previous section) leading 
learners to investigate the causes of a bicycle accident from a set of eye-witness testimonies. 

Lesson U1: Although CPM adopts the jargon that many pedagogues and educational 
designers already use, producing a set of coherent CPM models for a given case study is 
still a complex activity. 

During the conducted case studies, we noticed that designers encountered difficulties 
when seeking to organize efficiently the different kinds of model elements that they were 
eliciting at design time (see Lesson U1 Observation 1). From the analysis of encountered 
difficulties and observed solutions, we propose a structuring model, which proved useful to 
organize the different model elements under study within cohesive packages. 

 
We also noticed (see Lesson U1 - Observation 2) that without human assistance, most 

educational designers did not know which notation was the most appropriate to represent their 
design intents. Yet, when the same educational designers gained experience about both the 
UML notation and about the CPM metamodel, most could produce expressive yet simple 
CPM diagrams. 

 
Finally, Lesson U1 - Observation 3 shows that designers were sometimes frustrated 

because they were confusing CPM with a drawing tool: in particular, some did not clearly 
understand why the provided toolset (editors and wizards) considered as erroneous some 
diagrams whose model elements did not conform with the CPM metamodel. 



 

-12- 

Lesson U1 - Observation 1: relevant model elements must be conveniently organized by 
designers within packages. CPM diagrams must also be attached to packages. 

 
Real world case studies that we specified with CPM language had in common that they 

could not be mastered by a single designer. All the modelling elements could not be 
represented in the same UML class diagram; learner, tutor roles, learning goals and success 
criteria had to be contextualized according to the steps of the learning process; both dynamics 
and structure of resources and activities had to be specified, etc. Relying on our experience in 
designing such case studies, we argue that in most cases, what is needed is an approach that 
structures the design of complex learning scenarios at different levels. 
 
Packages are UML constructs which enable the grouping of model elements, making UML 
diagrams simpler and easier to understand. Packages themselves may be nested within others; 
they are depicted as file folders and may be Subsystems or Models. When we designed CPM 
language, we decided to provide designers with two stereotypes (see caption in Figure 5 
which extends the Package metaclass: the Learning Process stereotype to break down the 
learning process into subprocesses and the Learning Package stereotype to group other model 
elements. In the course of our case studies, we learned efficient ways to exploit these 
stereotypes for organising model elements. For instance, Figure 5 describes the packages used 
in the SMASH PBLS:  

This is a snapshot of the Browser which enables a 
designer to edit the SMASH Learning Scenario. At 
root level, experience led us to create three Learning 
Packages whose model elements are exploited by 
the Learning Process Package called the SMASH 
Scenario Process. At the bottom of the figure, worth 
noting is the SMASH Scenario denoted as an activity 
diagram used to generally describe how the different 
acts of the SMASH Learning Process are sequenced. 
The model elements (and graphical views) of these 
four acts are then detailed within the SMASH 
Scenario Process.  
In the snapshot of Figure 5, the details of the Act2 
Process were expanded. At this level, it will be 
observed that the package structure is the same as 
the one at root level: Act2 shows a Local Roles 
Package, a Local resources Package, a Local 
Learning Roles Package, and an Act2 Scenes 
Package which contains all the scenes within Act2. 
This structuring promotes the contextualisation of 
roles, learning goals, resources and learning 
activities. For example, the expanded Act2 – Local 
Roles Package shows different Actor stereotypes, 
which are model elements used during Act2 to 
specialize the tutor role and the Learner role (i.e., 
the Global Roles Package).  
 
 

Figure 5: The SMASH PBLS browser. 

It is worth noting that this approach is in tune with (Derntl & Motschnig-Pitrik, 2007) 
which encourages designers to elicit hierarchies of both learning goals and documents. 
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Lesson U1 - Observation 2: Among available CPM diagrams, designers must adequately 
choose those which can help them to produce some simple yet coherent perspectives of the 
relevant model elements. 
 

First, let us recall that UML is a language enabling designers to describe an abstraction of 
a system that focuses on interesting aspects (models) and ignores irrelevant details. A 
perspective (view) focuses on a subset of a model to make it understandable.  

 
Choosing UML to describe learning scenarios requires rethinking current uses and to elicit 

new uses of UML diagrams for dealing with the complexity of learning scenarios. From an 
educational point of view, a learning scenario is a system that must be described in terms of 
learning roles, learning goals, resources made available to the learners, learning and tutoring 
interactions / activities, events used to regulate learners’ activities, etc.  

 
From previous works (Sallaberry et al., 2002) we predicted the new uses of UML 

diagrams that CPM language encourages. As stated in the section devoted to the presentation 
of the CPM profile (see Figure 4), a CPM stereotype such as the <<Role>> Stereotype can 
extend either the Actor metaclass (to represent it in use-case diagrams, or the Partition 
metaclass (to represent it in Activity diagrams) or the Classifier metaclass (to represent it in 
Class diagrams).  

 
During the course of our experiments, we noticed that designers (educators and computer-

scientists) encountered two types of difficulties when trying to map their design intentions 
with available notation (those provided by the different types of diagrams available). First, 
most designers were inclined to start from a visual notation (e.g., the notation for class 
diagrams) and then tried using this specific notation to represent all perspectives of the model 
being studied, even if such a notation was not convenient for all aspects of the model. Second, 
we noticed that designers had questions about the notation they would be advised to use, 
particularly at the beginning of a learning scenario design process.  

 
The case studies we have conducted provide useful answers to these difficulties. Let us 

focus on the intention, “role models involved in a learning scenario.” If we consider the CPM 
information model given in Figure 1, designers should address different perspectives for roles. 
What are these? How are they involved in the Work Organisation that the learning scenario 
promotes? What are their responsibilities in the various (possibly collaborative) activities 
suggested to be performed in the scenario? What kind of resources do they exploit to carry out 
such activities? Applied to Act2 of the SMASH PBLS, Figure 6 and the following are CPM 
diagrams which focus on the different perspectives listed above.  
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Tutor role Learner role

Investigator role 4Investigator role 1 to 3

<<Role>>

{roleKind(computer)}
PoliceChief role

Investigator 1 Investigator 2 Investigator 3 Investigator 4

<<Role>>

{roleKind(human)}
Session manager

Investigator role

 
Figure 6: A class diagram representing a hierarchy of SMASH actors. 

In Figure 6, SMASH roles specialise the Class metaclass. This class diagram shows that 
the Learner role and the Tutor role (from the Global Roles Package) were specialized to 
enable designers to denote all actors playing an important roles during Act 2. All roles are 
played by human beings except the PoliceChief role (we chose a detailed view of the Tutor 
role model element to make the roleKind tag-value visible). Figure 7 offers another 
perspective for these SMASH roles: 

Act2- Local Roles Package

Investigator role  4
PoliceChief role

Investigator role  1 to 3

Session manager

Testimonies delivery

Production of the investigation reports

Testimonies analysis

Time and document management

Production of the accident map

<<performs>>

<<performs>>

<<performs>> <<assists>>

<<performs>>

<<performs>> <<performs>>

<<assists>>

 
Figure 7: A use-case diagram representing the activities in which the different roles are involved. 

In this use-case diagram, roles specialize the Actor metaclass. This perspective focuses on 
the activities carried out by roles during Act2. Each role either performs activities or assists 
other roles performing those activities. Like in IMS-LD, activities that can be broken down 
into simpler ones (e.g., Testimonies analysis, Time and document management or Production 
of the investigation reports) are depicted with the stereotype <<Activity-structure>>. 
 

 
Figure 8 is another class diagram which designers sketched to focus on the resources used 

and produced by each role during act 2 (there is a dedicated class diagram for each leaf role 
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that appears in Figure 6). Resources which are produced have the tag-value output while 
others have the tag-value input. 

Investigator 1
Testimony 1

Testimony 2

Testimony 4

Belief Graph
 Testimonies analysis

Testimony

Investigation report

1

<<performs>>

<<Relation>>
{ relationKind(input) }

<<Relation>>
{ relationKind(input) }

<<Relation>>
{ relationKind(input) }

<<Relation>>
{ relationKind(output) }

<<Relation>>
{ relationKind(output) }

 
Figure 8: A class diagram describing the resources used and produced by the role Investigator 1. 

The different figures provided in this section clearly show that the different perspectives 
provided to describe the roles in Act 2 are complementary (all of them can be reached from 
the model elements Browser presented in Figure 5). Other types of diagrams will be presented 
in Figure 10 (an Activity diagram) and in Figure 11 (a state-machine diagram) to respectively 
detail the Testimonies analysis model element and the Belief Graph model element that 
appeared in Figure 7 and Figure 8. 

 
These figures also show that UML notations must be understood by designers to enable 

them to produce simple yet coherent perspectives of the learning scenario being studied. 
Table 1 provides a synthesis of the practices we noticed during our case studies. To build this 
table, we took into account only diagrams which appeared in the last version of the design 
produced for each of our case studies. 

 

 Use 

Activity 
Diagram 

- External analysis of the learning Scenario  
- Description of collaborative activities 
- Internal analysis of activities and activity-structures 

Use Case 
Diagram 

- Activity cut-out 
- Role identification 

Class Diagram 

- Learning goal description  
- Role description 
- Resource description 
- External analysis of activities and activity-structures 
- Description of the concepts from the domain model 

State Machine 
Diagram 

- Description of the active classes (resources, roles, learning goals, 
activities) 

Object 
Diagram 

- instances from the domain model (concepts being studied, knowledge 
and know-how that learners must acquire) 
 

Table 1: Best practices for CPM diagrams. 

The reader may be surprised that we do not recommend the use of the Object Diagram for 
the definition of roles and of resources. In fact, experience led us to consider that concrete 



 

-16- 

roles appear only when the scenario is deployed on a platform (LMS) and used by concrete 
(groups of) learners. It is only at deployment time that the Investigator role 1 stereotype is 
instantiated and played by concrete learners. And for similar reasons, the resources produced 
and used by Investigator 1 are represented as classes (i.e., Figure 8) and not as objects.  

 
Lesson U1 - Observation 3: To succeed in producing a perspective, designers must agree 

on both the UML notation and the CPM metamodel which both define the rules that the 
model elements in a CPM diagram must fulfil. 

 
During our experiments, designers were at first surprised (and a bit confused) that they 

were constrained by both the rules of UML notations and of the CPM metamodel. On the one 
hand rules from the UML notations, they could not add, for example; any information about 
the timeline in the class diagrams being sketched. On the other hand, the CPM metamodel 
forced them to respect, for example, the following rule: when the <<activity>> and the 
<<resource>> stereotypes both extend the Classifier metaclass (i.e., the class diagram in Figure 
8), connection links between such stereotypes must be of type <<Relation>> (the tag-value can 
either be input or output). Most designers did not understand such CPM rules, because they 
did not realize that the same stereotype (e.g., the <<activity>> stereotype) could represent 
different metaclasses when used in different types of diagrams. For example, in Figure 7, the 
Testimonies analysis model element extends the UseCase metaclass while, in Figure 8, it 
extends the Classifier metaclass (i.e., Figure 4 for the available metaclasses of the CPM 
stereotypes).  
 

The three types of observations presented in this section show that designers need time to 
gain the necessary experience required to relevantly exploit the CPM language. Our 
experience also showed that educators can understand the meaning of a set of CPM diagrams 
but that the (semi) formal nature of CPM language could hinder some educators’ commitment 
in producing such visual designs. They ask for cognitive assistance during the design process: 
since CPM editors do not allow free drawing, designers require some feedback enabling them 
to do some opportunistic productions: to-do lists, checklists, wizards, etc. 

 
The first cognitive tools developed were contextual menus that could infer the metaclass 

to be used from the knowledge of both the diagram type and the stereotype chosen by the 
designer. In the framework of our latest project (the GEODOC case study), we also provided 
designers (educators and computer-scientists) with the best-practices of CPM diagrams and 
with a set of sample CPM diagrams for each design intent listed in Table 1. Our first 
experimental results show that such a design team was more efficient (time and design 
quality) than another team that did not have such documents at their disposal.  

 
But it is already clear that our toolset is still a research prototype that proved expressive 

capabilities but cannot be distributed to an interdisciplinary team without care and human 
guidance. Even though the current state of research presented in this section can provide 
substantial support in understanding PBL scenarios, in designing and documenting new 
scenarios, it is clear that our approach is specified by rather technically oriented computer 
science people and a lot of work is still necessary to transform educators into CPM 
autonomous designers. 
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Lesson U2: Even though most pedagogues were not able to produce a set of CPM 
coherent models, both pedagogues and developers can contribute to and benefit from 
such design models. 

Though educational expressivity of CPM diagrams, Lesson 1 pinpointed some difficulties 
encountered by designers who used the CPM toolset. In this section, we present some 
methodological principles which can help an ID team control the design process complexity. 

 
In the course of the conducted case studies, we first observed that, at any level of the 

learning scenario analysis (conceptual design, functional design), designers might produce 
simple yet expressive CPM diagrams (i.e., Lesson U2 - Observation 1): it is a matter of 
focusing on one and only one perspective at a time.  

We also noticed that a correct stratification of the learning scenario was important (i.e., 
Lesson U2 – Observation 2) to ensure a smooth transition between the perspectives drawn 
during learning scenario conceptual design and those drawn to address the functional design 
of a TEL system that could manage such a learning scenario at runtime.  

Both observations will lead us to elicit a design process in tune with CPM language 
characteristics. 

 
Lesson U2 - Observation 1: complexity of models can be mastered by designers using the 

following rule: Design only what is necessary for a given purpose and recognize overdesign. 
 
Our experience is that most pedagogues can concretely draw various CPM diagrams if 

they keep in mind that each diagram should focus on one perspective that remains simple and 
expressive. Consider the Testimonies analysis model element which appears in Figure 7 and 
in Figure 8. None of these perspectives provides information about the activity sequencing 
planned during Act2. Adding such an information within Figure 7 is difficult since use-case 
diagrams are not suited to the description of activity sequencing: in general, UML specialists 
add OCL constraints (OMG, 2002b) to address such difficulty. Drawing another perspective 
focusing on such activity sequencing is much easier as stated in Figure 9: 

Act2- Scene 1 Process

Testimonies Delivery

Act2- Scene 2 process

Testimonies analysis

Production of the investigation reports

Act2- Scene 3 process

Production of the accident map

<<Resource>>

 [Published]
themap:Accident map[published]

ObjectFlowState:set of Testimonies

[assessed]
ObjectFlowState:set of investigation reports

Time and document management

[assessed]
ObjectFlowState:set of Belief graphs

Testimonies Delivery

Testimonies analysis

Production of the investigation reports

Production of the accident map

 
Figure 9: An activity diagram describing the sequencing of the activities performed during Act2. 

In this figure, the reader will notice all activities and all activity-structures that already 
appeared in the Act2 use-case diagram presented in Figure 7: these model elements are 
grouped together according to the scene during which they are performed by these actors. The 
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information flows between states as ObjectFlowStates: these represent some events that should 
be true either at the beginning (prerequisite) or at the end (post-requisite) of each scene. These 
different scenes (e.g., the Act2- Scene 2 process) are structuring model elements that can also 
be easily located in our SMASH browser (i.e., Figure 5). 

 
We consider that such a diagram can also illustrate what over-design means. At the 

conceptual design level where educators play the most important role, it would be useless to 
try to represent exception-handling in such a predicted learning scenario. At runtime, such a 
script can raise many exceptions (potentially meaningful for educators) that need to be 
managed (particularly those in relation with the Time and document management <<activity-
structure>>). But adding exception handling in such a diagram would be likely to complicate 
the perspective and could mask the key ideas of the scenario, which were already spotted in 
Figure 9.  

 
As a consequence, we consider that educators relying on CPM for conceptual design with 

CPM should strive for an 80% solution: at this stage, visual design should be used to 
represent the intermediate and then the final results of the design, thus providing means of 
communication between educators and computer scientists. All diagrams presented above are 
still intermediate results of design which helped educators clarifying and sharing their initial 
ideas.  

 
CPM activity diagrams are other important perspectives to consider because they are a 

(natural) bridge between the use-case diagrams (which are useful to represent educational 
roles, goals and activities) and the class-diagrams (that developers need to implement required 
functionality on a learning platform). During our experiments, such diagrams represented an 
interesting communication trade-off between our business logic experts (educators and 
interaction designers) and Information Technology experts (software designers, learning 
platform specialists, etc.).  

 
For example, Figure 10 is an activity diagram that details the Testimonies analysis 

<<Activity-structure>>. 

:PoliceChief role:Investigator role 4

asks investigators
 about their beliefs

Analyses all
testimonies

:Investigator role 1 to 3

Replies to
Questions asked

promotes ways
 of investigation

<<Resource>>

[to be assessed]
map:Accident map

<<Resource>>
indication:Order

[to be read]

Analyses available
 testimonies

<<CollaborationMode>>
{synchronous}

Analyses the information
put on the map

Gives
some advice<<Resource>>

[to be assessed]
:Belief Graph

 
Figure 10: An activity diagram to represent the details of the Testimonies analysis activity-structure. 

Three swimlanes are used to identify the specific activities performed by each role; these 
swimlanes are consistent with the roles assigned to the Testimonies analysis <<activity-
structure>> in the use-case diagram presented in Figure 7. In Figure 10, we can notice that the 



 

-19- 

Testimonies analysis <<activity-structure>> exposes four activity-structures (e.g., the Analysis 
available testimonies <<activity-structure>>) that can be further detailed using a top-down 
approach, some collaborative activities (e.g., Replies to Questions asked <<collaborative 
activity>>), some resources (e.g., the Belief Graph <<Resource>> to be assessed when it is 
updated by any real actor playing the <<role>> called Investigator role 1 to 3).  

 
Figure 10 also denotes how designers can describe collaborative activities (i.e., activities 

with a c flag); in the scenario, Investigator role 1 to 3 cannot initiate any synchronous 
conversation but this role can read information and answers questions asked by Investigator 
role 4 (at implementation stage, and will lead developers to specialize a chat service 
according to these requirements).  

 
An ObjectFlowstate denoting a <<Resource>> can be described with a UML State-machine 

diagram. For example, Figure 11 represents the lifecycle of the Belief Graph model element 
elicited in Figure 10: 

Belief Graph lifecycle

assessedto be assessedinitialized

new belief

to be assessed/assessment

new belief

new belief
assessedto be assessedinitialized

new belief

to be assessed/assessment

new belief

new belief

 
Figure 11: a state-machine diagram to represent the lifecycle of the Belief Graph <<resource>>. 

The underlying semantics is the following: each time an investigator adds a belief in his 
belief graph (e.g., a representation of the following belief: “the white car bumped into the 
back of the bicycle”), the state of the belief graph changes to “to be assessed” (since the 
PoliceChief role is played by a machine—that is, the class diagram in Figure 6-, such a 
decision will entail particular design concern about the assessment process elicitation). 

 
We noticed that educators encountered various difficulties when seeking to draw some 

CPM activity diagrams by themselves. It is true that these diagrams are not simple to create 
but they allow complex system/interaction processing to be represented efficiently. In order to 
get round this obstacle, we advised educators to produce a use-case diagram (in our example, 
a use case-diagram detailing the Testimonies analysis <<<activity-structure>>) for identifying 
the activities of interest and their relationships; Information Technology designers used such 
sketches for discussion purposes with them; and together they produced the final 80% 
solution presented in Figure 10. Interestingly enough, once this deadlock was broken, 
educators were able to go further in the conceptual design process. 

 
From this set of observations, we learned that when using CPM diagrams for modelling a 

learning/tutoring scenario, it is important to capture the requirements at a high level of 
abstraction. Whatever the diagram, the perspective must remain simple. Such an approach 
allows designers to emphasize important model elements while hiding low-level processing 
details. Indeed, such details may even obscure the model’s true purpose, which is, 

a. to identifying key activities and dependencies, 
b. to promoting exchanges and communication in the ID team. 
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This is particularly true when drawing activity diagrams. In our experiments, some of 
these proved to be potential deadlocks that frustrated most educators during the design 
process. Dedicated cognitive tools (wizards, to-do-lists, etc.) could probably give them more 
confidence; but we consider that the correct answer will rely on efficient communication in 
the ID team. With this in mind, sketches (even when they represent intermediate design 
results) can now play a central role in enhancing such communication. 

 
Lesson U2 - Observation 2: CPM contributes to producing both stratified and multiple 

perspectives for a given learning scenario. This combination is a key-factor to enable a 
designer team to collaboratively determine the constraints under which a Technology-
Enhanced Learning (TEL) system is to be designed. 

 
UML is a widely accepted language to describe software systems. With the different 
perspectives of a TEL system that CPM offers, our profile adopts the same fundamentals 
(UML notation, UML semantics which we specialized with the CPM metamodel semantics) 
to also describe the educational context: 
- At conceptual level, the language addresses the need to manage educational requirements 
effectively. 
- At functional level, the language addresses the need to describe the required functionality of 
a TEL System in tune with such educational requirements. 
 

Whatever the design level (conceptual vs. functional), it is very important therefore to 
communicate design decisions (and understanding) in an unambiguous form to all partners 
involved in the ID Team (including educators, Information Technology specialists and 
platform of learning developers). 

 
In the previous subsections, we showed that CPM enables designers to produce multiple 

perspectives for a learning scenario. These perspectives favour coherent, unambiguous 
(within the limit of the UML semantics) but intelligible design decisions. The conducted case 
studies have also demonstrated that to reach such a goal, these multiple perspectives of a 
learning scenario should be correctly stratified. During the GEODOC case study, we noticed 
that, from the very beginning of the design process, some geographers were trying to map 
some educational goals with functionalities of the Geographical Information System viewer 
which they had been used to working with previously. Such design decisions were 
problematic because on the one side, educational goals had still to be further detailed and on 
the other, such a detailed analysis failed because the designers were mixing conceptual and 
functional model elements. 

 
The main gains of a correct stratification are modularity and design simplicity (i.e., 

Lesson U2 Observation 1 in the previous subsection). Modularity allows easier adaptability 
when changing requirements; it also allows clear separation of the domains of trust. By 
starting with the most fundamental educational factors (conceptual design) and designing 
them to be contextually appropriate, we were able in the course of the conducted case studies 
to build successive layers design and eventually reach functional design.  

 
Figure 12 is an activity-diagram which exemplifies the frontier between conceptual and 

functional design. In this figure, some activities denote a <<CPL>> stereotype that represents a 
functionality offered by concrete software components. Such components may be those 
provided by most Learning Platforms (e.g., a quiz component, a lecture component, a forum 
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component, a whiteboard component, etc.) or they may be specialized components in relation 
with the domain to be taught (e.g., a Geographical Information System viewer).  

Teacher:

Selects next untreated interview

<<Resource>>

[reported]
current:Expert interview

formulates a statement
to be agreed

answers
 questions

[no more statements]

Student:

reads selected
 interview

agrees / disagrees

asks questions

[learner role deactivated]

Assigned Interviews:Interview Repository

unregisters the Teacher role

<<Resource>>

[reported]
current:Expert interview

formulates a statement
to be agreed

answers
 questions

unregisters the Student role

[no more statements]

Selects next untreated interview

registers as a Teacher
registers the Student role

reads selected
 interview

<<Resource>>

[unread]
current:Expert interview

agrees / disagrees

asks questions

writes an agreed statement
 for current topic of the forum

[learner role deactivated]

adds a topic in the forum
dedicated to this interview

 

Figure 12: an activity diagram for the reciprocal teaching pattern. 

In Figure 13, the <<CPL>> stereotypes denote different functionalities that specialize a 
forum component: Depending on his role, a concrete actor will register differently; the teacher 
role has rights to add a topic in the forum while the learner role can write entries for the topic 
that is currently covered.  

Reciprocal Teaching Phase 1

Teacher

Student

Reciprocal Teaching Phase 2

Student

no other interview to be reported

other interview to be reported

Teacher

 
Figure 13: UML state-machine diagram describing both steps of the reciprocal teaching pattern. 

Both figures were produced in SMASH PBLs to denote the Reciprocal teaching Pattern 
(Palincsar and Brown 1986). The term “reciprocal” describes the nature of the interactions 
each person has in response to the other(s). Teacher and student take turns assuming the role 
of a dialogue leader (see Figure 13); sequencing of the concrete activities performed by both 
roles is formalised by the dedicated swimlanes in Figure 12. The ID team chose this pattern 
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because the designers wanted the students to improve their reading comprehension of the 
available SMASH testimonies; the designers also wanted them to learn to monitor their own 
learning and thinking. Thus, in SMASH PBLs, learners’ peers are key actors in the reciprocal 
teaching pattern. These actors successively play the role of the teacher and the role of the 
student when trying to understand texts or interviews. Figure 12 details how they move from 
one role to another and what the responsibilities of each role within the collaboration are. For 
each text (interview), the teacher role has to select one text. The specification states that the 
teacher role is the one that formulates statements about his reading and understanding but that 
the student role is the one that can ask questions and which, at the very end of the discussion, 
will formulate the agreed statements that can be inferred from the reading. 

 
Detailing how such functionalities should be implemented in a specialized forum is 

outside the scope of CPM. But the layered nature of CPM contributes to the smooth (top-
down or bottom-up) transition between the different domains of trust.  

 
Both lessons presented in this section lead us to the following conclusions: even though 

CPM was specified as a language and not as a design method, experience gained from our 
case studies enables us to promote a design process in tune with the characteristics of the 
CPM language. UML is a language; so is CPM. Current object-oriented methods focus on the 
specification of the static structure of software objects. A noticeable deficiency of these 
methods is that they do not provide any help on how requirements are refined, how class 
diagrams can be derived from scenarios, how to specify the active/dynamic parts of a system, 
or how such a specification may be transformed into an implementation. 

 
During conceptual design, the analysis of the different case studies that we have 

conducted promotes the idea of bridging the gap between educational needs elicitation 
(including requirements elicitation, requirements refinement using a combination of use-case 
diagrams, of activity diagrams, of class diagrams and state-machine diagrams), and the more 
formal specification of class diagrams which are required to prepare the implementation of a 
TEL System (Nodenot, Marquesuzaà, Laforcade, & Sallaberry, 2004). The way we used CPM 
language is as follows. The specification process starts from the definition of use-cases. Each 
use-case diagram is refined either by other use-case diagrams or by one ore more activity 
diagrams (representing teaching/learning scenarios). All model elements used in these 
diagrams are not unrelated parts; they are attributes, messages, etc. which are finally declared 
in the class diagrams. The behaviour of each class is represented by a set of scenarios (activity 
diagrams / state machine diagrams) covering the events declared in the specification part of 
the class.  

CONCLUDING REMARKS AND PERSPECTIVES 
CPM is a visual, layered, semi-formal, multiple perspectives language dedicated to the 

description of collaborative learning scenarios with special emphasis on Problem-Based 
Learning (PBL). By means of the layering mechanism, designers may more easily tackle a 
complex situation using this graphical and conceptual feature: they start with a coarse-grained 
description to grasp the global situation and can then decompose each element to get a 
complete and detailed description (Lesson U2 Observation 1). Next, with the multiple 
perspectives mechanism, the designers may focus on the sequencing of activities, the 
behaviour of a particular activity, role responsibilities, etc. A complex situation may be 
described through a set of simple and clear views (lesson U1 Observation 2). Equally, the 
combination of these two mechanisms promotes collaboration within a team of designers 
(Lesson U2 Observation 2). Finally, as CPM is dedicated to a specific type of learning 
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situations, it allows the designer using it to be more likely to be able to describe such 
situations more quickly than with more general educational languages like IMS-LD. 
According to model-driven approaches like OMG-MDA (OMG, 2003), these specialized (but 
limited) languages offer conceptual frameworks for preliminary analysis of learning situations 
before transforming the resulting models into more operational languages. 

 
Lessons presented in this chapter also reveal some possible ways to improve CPM.  

Improvements of CPM 

Computer support for design processes 
Modelling learning situations is not an easy or usual task for practitioners. Among the 

several reasons that account for this, we might mention the two most obvious ones. First, 
practitioners seek to adapt their courses to learners in situ, as events occur happen 
(opportunistic approach) and they tend to prefer to think in terms of content and coarse-
grained activities. Second, in educational sciences, models are driven by learning events to 
detect and to react upon, rather than by a mere sequence of activities which are more typical 
within the computer world (i.e., workflow sub-domain). So practitioners are not used to 
getting involved in highly structured course modelling in their everyday routine. Because we 
are aware of this, we have already proposed guidelines related to CPM through ‘best-
practices’ (Lesson U1 Observation 2) and a design process (lesson U2 Observation 3) in order 
to help practitioners. (Kent, 2002) already pointed out the problem of ‘how to define a 
model’. He defines it as a main hindrance for the emerging Model Driven Engineering trend. 
While he generally highlights work about macro-processes (‘the order in which models are 
produced and how they are coordinated’), Kent affirms the need for the MDE community to 
work on micro-processes, that is to say ‘guidelines for producing a particular model’. We 
consider therefore that we need to improve CPM micro-processes. A related perspective must 
be to provide a computer support for our guidelines. First, such a support will make the 
application of guidelines easier (and accelerates it). Next, it limits the occurrence of errors 
caused by the misinterpretation of guidelines. Finally assisting the definition of a model 
allows designers to learn guidelines in a better way than by only reading the related 
document.  

 
We have already worked on the computer support for a method dedicated to IMS-LD (Le 

Pallec, Moura, Marvie, Nebut, & Tarby, 2006). We intend to transpose this previous work to 
CPM.  

Templates 
Starting from scratch is another barrier to practitioners when defining models. The 

Objecteering repository provides a way of reusing existing and approved fragments of CPM 
models (i.e., Figure 12). UML templates address this issue much better. A UML template is a 
set of parameters to be applied to model elements before use. Such models have the advantage 
of clearly rendering explicit both the fixed part and the changing part of a model. Equally, 
defining a template is driven by reusability and modularity which is not the case when 
defining new model elements duplicated with copy/cut/paste. The application field of a 
template is consequently broader. However using this mechanism, particularly when defining 
a template, is not an easy task, especially for a non-UML specialist. Even if Objecteering may 
provide a UML template mechanism, future work will likely involve embedding it into a 
more user-friendly interface. 
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Model transformations 
The different CPM perspectives are not entirely bound together. The attribute Testimonies 

analysis of Investigator role 4 (i.e., Figure 10) is not automatically but manually ‘deduced’ 
from the link performs between Investigator role 4 and Testimonies analysis (i.e., Figure 7). If 
the link performs is removed, the previous attribute will not be automatically removed. Not to 
impose constraints about the ubiquity of model elements can provide much freedom, and 
hence flexibility while defining models, especially for practitioners. But in addition to being a 
source of mistakes, it does not render explicit the repercussion of each action which the 
designer is performing. To address these two problems, we might consider, for example, 
developing dynamic transformations between all perspectives so that each action from a 
perspective should induce logic repercussion on other perspectives. These transformations 
would be proposed to designers through clickable operations. 

Towards other conceptual frameworks 
UML and its profile mechanism offers a framework which may prove quickly efficient. 

First it provides several types of diagrams which enable many aspects to be described. 
Second, several design processes have emerged from the UML community over the last 
decade. They describe best-practices related to navigation between previous types of 
diagrams. Nevertheless, there are some weaknesses. First, defining new modelling concepts 
with a UML profile requires using (through inheritance) existing UML metaclasses like Class 
or Actor. UML profile designers do not necessarily need all inherited attributes or methods. 
They have to block access to these undesirable properties both in conceptual and graphical 
ways to respect the semantic of the language they are designing (this can be achieved through 
OCL constraints or through J code (Objecteering, 2006) in case Objecteering is used). It is a 
complex and tedious process if we consider the definition of graphical languages for complex, 
condensed and non-software engineering metamodels (like IMS-LD). In addition, an efficient 
profile (that is to say, with conceptual and graphical filtered accesses) generally works only 
with the UML tool used to define it.  

 
Last, for the time being, it is difficult to provide practitioners with a totally free UML-

based model editor given that UML efficient tools are still expensive. Moreover using a UML 
profile means requiring the use of a whole software engineering oriented environment which 
may constitute a handicap for practitioners.  

 
It is therefore important to explore alternatives like OMG-MOF (OMG, 2007) or 

Eclipse/EMF (EMF, 2007) environments. Based on a meta-modelling approach, they present 
some advantages. For example, defining a language starts with defining a metamodel (abstract 
syntax) which is not created from existing concepts but from scratch. So there is no need to 
filter access to model elements because of undesirable inherited features. Another useful 
functionality of EMF is that creating a metamodel may be done simply by analyzing an XML 
schema or a DTD. Additionally, there are currently powerful graphical tools like TopCaseD 
(Farail et al., 2006) and the forthcoming GMF (GMF, 2007) which both allow defining an 
efficient graphical syntax for a language (concrete syntax). There are of course other facilities 
which are not as efficient in the UML community, like model transformation engines (GMT 
for Eclipse (GMT, 2007), YATL for MOF-based models (Patrascoiu, 2004)) and code 
generation engines like JET (JET, 2007).  

 
But we believe it is still very important to see beyond technology and to maintain a global 

awareness of how organizational, social and technical issues are impinging on the usability of 
VIDL. 
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