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Abstract

This paper presents a robust damage assessment technique for the nondestructive detection and size estimation
of open cracks in beams. The damage detection, based on the constitutive relation error updating method, is
used for the identification of the crack’s location and size in a simply-supported beam. The transverse open
crack is modeled through the introduction of the flexibilitydue to the presence of the crack, i.e. by reducing
the second moment of area of the element at the crack’s location.
This identification algorithm is illustrated through numerical examples involving different positions and sizes
of a transverse open crack. We show that the detection of damage and the identification of the crack’s size and
position can be achieved with satisfactory precision, evenif 20% noise has been added to the simulations and
less than 5% of all displacements have been measured.

1 Introduction

The identification of the depth and position of cracks through nondestructive testing is important to ensure the
integrity of structural components for a wide range of civil, mechanical and aeronautical engineering applica-
tions. Indeed, the importance of an early detection of cracks appears to be crucial for both safety and economic
reasons and has led to the development of various methods.
The most useful damage localization methods based on vibration measurements are probably those based on
changes in natural frequencies and mode shapes. Reviews of research works dealing with the problem of crack
detection based on changes in modal parameters can be found in [1–4]. Indeed, it has been established that
the presence of a crack drastically affects the dynamic behavior of structures. Depending on the crack’s size
and location, the stiffness of the structure is reduced and,therefore, so are its natural frequencies compared to
the original crack-free structure. This shift in natural frequencies has been commonly used to investigate the
crack’s location and size. For example, some research works[5–7] have been devoted to the identification of a
crack’s size and location through the determination of the intersection point of the superimposed contours cor-
responding to the measured eigenfrequency variations due to the crack. This damage identification technique is
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called the “frequency contour lines method”. In order to avoid the problem of a non-unique damage location in
the case of a structural symmetric beam, Swamidas et al. [8] proposed to extend this crack identification method
by adding an off-center mass to the simply-supported beam. Recently, Sinou [9] developed an extension of the
frequency contour lines method based on the changes of frequency ratios in the cracked beam, thus avoiding
the need for accurate knowledge of the material properties and frequencies of the crack-free beam. Moreover,
Owolabi et al. [10] proposed a crack identification technique based not only on the measured changes in the first
three natural frequencies (i.e. the frequency contour lines method), but also in the corresponding amplitudes
of the measured acceleration frequency response functions. Using the frequency contours and amplitude con-
tours of the first three modes, they demonstrated that the crack’s size and location can be determined uniquely.
Recently, Dilena and Morassi [11, 12] proved that the measurement of an appropriate set of frequencies and
antiresonance frequencies enables unique identification of damage. The theoretical results were confirmed by
comparisons with numerical and experimental tests. The authors also suggested that the direction in which the
nodal points move can point to the damage location [13]. In these works, the identification techniques were
based on a shift in natural frequencies. Even though experimental validations of the damage identification
methods based on frequency variations mentioned above haveled to some interesting results, all these methods
require precise measurements of the natural frequencies ofthe cracked system and, therefore, their accuracy is
affected by the presence of noise in these measurements. Indeed, incorrect measurements of natural frequen-
cies, vibration modes and forced vibration amplitudes may result in erroneous identification of the crack’s size
and location. For example, Lele and Maiti [14] found errors in the crack’s location and depth of about 10%.
Cerri and Vestroni [15] indicated that a small error in the data (a mean error of 0.5%) is usually amplified
strongly and becomes more than 5% in identification of the damage parameters. Similarly, Sinou [16] recently
showed that identification of the crack’s parameters for a simply-supported cracked beam using this type of
damage identification technique can become very difficult ifthe noise level affecting the natural frequencies is
greater than 4%.
Consequently, to develop a robust damage assessment technique for the nondestructive detection and size es-
timation of open cracks in beams, we propose to use model updating methods that minimize the discrepancy
between the test data and the model by modifying the numerical model. A state-of-the-art review can be found
in [17]. On the one hand, “direct methods” [18, 19] apply corrections to the model’s mass and stiffness ma-
trices, but, unfortunately, do not take the physical meaning of these modifications into account. On the other
hand, “indirect or parametric methods” update the model by changing its physical parameters. Three categories
of cost functions can be considered: input residuals [20, 21], output residuals [22, 23], and the residual called
“Constitutive Relation Error” (CRE). In this study, the CREis used and provides a measure of the quality of
the updated model which is essential for model validation. This approach has been shown to be effective in
structural dynamics with updated mass, stiffness and damping matrices obtained through eigenmodes or forced
vibrations [24–27]. The method is based on the Drucker errorand can also take into account nonlinearities
due to material behavior or to contacts. Let us also mention two similar approaches used in the case of free
vibration problems: the Minimum Dynamic Residual Expansion (MDRE) method [28] and the Modeling Error
in the Constitutive Equations (MECE) method [29, 30]. Finally, one should note that many other strategies for
the resolution of crack identification problems have been proposed [31], such as the recent strategies based on
the enclosure method or the virtual work principle, which enables the formulation of observation equations,
with emphasis on the reciprocity gap concept.
In this paper, we propose to investigate the effectiveness and robustness of the CRE method in the identification
of cracks of various depths and locations based on noisy measurements. The paper is organized as follows: first,
we give a brief presentation of the modeling of an open transverse crack and the associated model of a simply-
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supported cracked beam. Then, we introduce the damage identification technique based on the CRE updating
method for the identification of the crack’s location. Finally, we illustrate the effectiveness and robustness of
the method through various numerical simulations corresponding to different physical configurations.

2 The modeling of a simply-supported beam with a transverse crack

2.1 Equations of motion

In this paper, we consider a beam with a circular cross section, 1m in length and 0.1m in diameter, divided
into 30 Timoshenko beam finite elements with four degrees-of-freedom per node (see Figure 1). The beam is
assumed to be simply supported at each end.
The equations of motion for the simply-supported cracked beam can be written as

[M] ¨{X} + [C] ˙{X} + [K̃]{X} = {Fd(t)} (1)

where{X} is the vector of the nodal DOFs of the system,t the instant of time,[M] the mass matrix,[K̃] the
global stiffness matrix and{Fd(t)} the external force vector, and where the dot represents the derivative with
respect to time.[C] denotes the proportional damping matrix, which can be expressed as

[C] = α[M] + β[K] (2)

whereα andβ are real constants.
[K̃] contains the stiffness reduction[Kcrack] at the crack’s location and is given by

[K̃] = [K]− [Kcrack] (3)

where[K] is the stiffness matrix of the crack-free beam. The stiffness matrix[Kcrack] of the cracked element
will be given in the next section.
Finally, let us define the external force vector as

{Fd(t)} = {F}eiωt (4)

whereω is the forcing frequency and{F} the amplitude vector.
The response vector can be written as{X(t)} = {X0}eiωt. Using Equation 1, the system governing the
equation in the frequency domain is

(
−ω2[M] + iω[C] + [K̃]

)
{X0} = {F} (5)

We will perform the identification of the crack’s size and location by considering the response simulated from
Equation 5 to a given external force{Fd(t)} and by using the CRE estimator described in the next section.

2.2 The cracked element

In order to represent the stiffness properties of the cracked cross section locally in an crack-free beam, the
flexibility due to the presence of the transverse crack must be taken into account. For a comprehensive literature
survey of various crack modeling techniques, see [32,33].
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Figure 1: Finite-element model of the beam with the cracked cross section

In this study, the stiffness properties of the cracked crosssection in a beam are represented locally using Mayes
and Davies’ transverse crack model [34, 35]. This model incorporates the flexibility due to the presence of
the transverse crack by reducing the element’s second moment of area at the location of the crack by∆I. As
explained by Mayes and Davies [36], the change in themth natural frequency of a system due to the presence
of a transverse crack can be written as

∆ω2
m = −g

(
d2um
dx2

)

x=sc

(6)

whereum is themth mode shape of the beam andsc the location of the crack along the beam.g is a function
of the geometries of the crack and of the beam. Expanding on their analysis and using dimensional analysis to
describe the stress concentration factor at the crack’s front, they obtained the following expression [34]:

∆ω2
m = −4

EI2

πR3

(
1− ν2

)
F (µ)

(
d2um
dx2

)

x=sc

(7)

whereI, R, E and ν denote respectively the second moment of area, the shaft’s radius and the material’s
Young’s modulus and Poisson’s ratio.F (µ) is a nonlinear compliance function which can be obtained from a
series of experiments with chordal cracks [34,35].µ denotes the nondimensional crack depth and is given by

µ =
h

R
(8)

whereh is the depth of the crack in the shaft as illustrated in Figure2.
Then, using the second derivatives of the deflection curves,the bending momentsM0 andM of the original
and cracked systems are given respectively by

M0 (s) = EI0 (s)

(
d2y

dx2

)

x=s

(9)

and

M (s) = M0 (s)−∆M (s) = E (I0 (s)−∆I (s))

(
d2y

dx2

)

x=s

(10)
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wherey ands denote the deflection of the beam and the axial position.I0 is the second moment of area of the
original system.
In addition, assuming that the deflection curve is unchanged, the bending momentsM0 andM of the original
and cracked systems are defined respectively by

M0 (s) = ω2
0

∫ s

0

(s− z)m (z) y (z) dz (11)

and

∆M (s) = ∆ω2
0

∫ s

0

(s− z)m (z) y (z) dz (12)

wherem (z) corresponds to the mass per unit length at locationz along the beam.
Using Equations 9-12 and Rayleigh’s approach, Mayes and Davies [34] derived the relation:

∆ω2 = E

(
d2y

dx2

)

x=s

(
∆I

1− ∆I
I0

)(
1− ∆ω2

ω2
0

)
(13)

By comparing Equations 7 and 13 and considering first-order changes in∆ω2 alone, Mayes and Davies ob-
tained the following relation for a beam with a circular cross section:

∆I

I0
=

R

l

(
1− ν2

)
F (µ)

1 +
R

l

(
1− ν2

)
F (µ)

(14)

whereR andl are the shaft’s radius and length respectively. Mayes and Davies [34,35] proposed to obtain the
evolution ofF (µ) through a series of experiments with chordal cracks. This compliance function was later
used by Sinou and Lees [37, 38] to study the dynamic behavior of a rotating shaft with a crack, taking into
account the opening and closing of the crack at different orientations of the shaft due to its weight.
Then, using classical finite element formulation, the stiffness matrix[Kcrack] at the crack’s location modified
by the transverse crack is:

[Kcrack] =
E

l3




12IX 0 0 6lIX −12IX 0 0 6lIX
12IY −6lIY 0 0 −12IY −6lIY 0

4l2IY 0 0 6lIY 2l2IY 0
4l2IX −6lIX 0 0 2l2IX

12IX 0 0 −6lIX
12IY 6lIY 0

Sym. 4l2IY 0
4l2IX




(15)

The moments of inertiaIX andIY with respect to the parallel centroidal axes are given by [37]

IX =
R4

4

(
(1− µ)

(
1− 4µ+ 2µ2

)
γ +

α

2

)
(16)

and

IY =
πR4

4
+R4

(
2

3
(1− µ) γ3 +

1

4
(1− µ)

(
1− 4µ+ 2µ2

)
γ + sin−1 (γ)

)
− 4

9
R4γ6

(
(1− µ) γ +

α

2

)
−1

(17)
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Figure 2: Cross section of the cracked beam

For convenience,γ =
√

2µ− µ2. α is the crack’s angle as shown in Figure 2 and is equal toα = 2cos−1 (1− µ).

3 The constitutive relation error updating method

The Constitutive Relation Error (CRE) updating method, which uses ana posterioriestimator, has been widely
and successfully used for validation problems in structural dynamics (see for instance [24–27]). It is presented
in the next section in the general case. Its application to the simply-supported beam problem is described in
Section 5.

3.1 The CRE estimator

We will only review the principles of the method. For furtherdetails, see [39].
LetΩ be the domain of the structure and∂Ω its boundary (see Figure 3). The structure vibrates over a time

interval [0, T ]. DisplacementsUd and forcesF d are prescribed respectively at boundaries∂Ω1 and∂Ω2, with
∂Ω1 ∪ ∂Ω2 = ∂Ω. Body forcesf

d
are applied within DomainΩ.

The reference problem consists in finding

s = (M, t) = (U(M, t), σ(M, t), γ(M, t)) M ∈ Ω , t ∈ [0, T ] (18)

(respectively the displacement, the stress and the acceleration, M being the position vector) which verify a
set of reliable equations and a set of less reliable equations. Here, since we are dealing with forced vibration
problems, the equations will be expressed in the frequency domain. The reliable equations consist of the
kinematic constraints and the equilibrium equations; the less reliable equations are the constitutive relations,
which are written as

σ =
(
K+ iωC

)
ǫ(U) (19)
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Ω

F d

∂2Ω
Ud∂1Ωf

d

Figure 3: The domain being studied and the applied loads

Γ = −ρω2U (20)

whereK is the Hooke’s tensor (symmetric and positive definite),C the damping operator (symmetric, positive
definite then ensuring the uniqueness of the solution and verifying Drucker’s stability conditions, see [40]),ǫ
the strain tensor andρ the density. Drucker’s stability conditions ensure the uniqueness of the solution and
are verified by a large class of materials [39, 40]. We seek a solution which is admissible (i.e. which verifies
the equations considered to be reliable). In the context of model updating, there are additional data which
come from measurements. For a structure solicited at one point and whose displacements are measured at
different locations, these quantities are also subdividedinto a reliable set and a less reliable set. The reliable set
consists of the measured angular frequencyω and the positions and directions of the excitations and sensors; the
measured amplitudes of the forcesF̃ d and displacements̃Ud at the excitation and sensor points are considered
to be less reliable. Finally, the problem to be solved consists in finding admissible fieldss which minimize the
modified CREe2ω defined by

e2ω =
ζ2ω
D2

ω

+
r

1− r
η2ω (21)

with a term corresponding to a modeling error:

ζ2ω(U, V ,W ) =

∫

Ω

γ

2
tr[(K+ Tω2

C) (ǫ(V )− ǫ(U)⋆(ǫ(V )− ǫ(U))]

+
1− γ

2
ρω2(U −W )⋆(U −W ) dΩ (22)

a term corresponding to a measurement error:

η2ω =
||U |∂1Ω − Ũd||2

||Ũd||2
+

||F |∂2Ω − F̃ d||2
||F̃ d||2

(23)

and displacementsU, V ,W which must verify

U c = U (24)
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σs =
(
K+ iωC

)
ǫ(V ) (25)

Γs = −ρω2W (26)

where the static quantitiesσ andΓ are denotedσs andΓs and the dynamic quantityU is denotedU c. The
symbol⋆ designates the complex conjugate of a quantity. These equations are written for a given frequency
ω. r is a weighting coefficient, which we will take equal to 0.5 [41], representing the degree of trust one has
in the experimental data. The denominatorD2

ω and the norms being used ensure that the two error terms have
equivalent weights. The following expression can be used [41]:

D2
ω =

∫

Ω

(γ
2
tr[(K+ Tω2

C) ǫ(U)⋆ǫ(U)] +
1− γ

2
ρω2U⋆U

)
dΩ (27)

Finally, over the whole frequency range[ωmin, ωmax], the modified error is calculated using a weighting factor
z(ω) such that

∫ ωmax

ωmin

z(ω)dω = 1 with z(ω) ≥ 0, e.g.z(ω) = 1/(ωmax − ωmin). The error is given by

e2T = ζ2T + η2T (28)

in which

ζ2T =

∫ ωmax

ωmin

ζ2ω
D2

ω

z(ω)dω (29)

η2T =

∫ ωmax

ωmin

η2ωz(ω)dω (30)

3.2 Implementation of the method

The updating of the parameters is carried out by minimizing the modified CRE. Such an inverse problem with
no additional manipulation is ill-posed. Our updating method can be viewed as a regularization process leading
to a unique solution of the problem. The method is iterative,each iteration consisting of two steps. The first
step consists in localizing the most erroneous regions, then the most erroneous structural parameters; the second
step consists in correcting the parameters belonging to these regions. The updating process is stopped when the
threshold error is reached (for further details, see [26,39,40]).
In practice, the solution of the problem described in Section 3.1 enables one to calculateζ2T and e2T . The
value of ζ2T yields the relative quality (in%) of the numerical model with respect to measurements over a
frequency range, which is used to determine whether model updating is necessary. The first step of the model
updating method consists in identifying which substructures have high model error values and can be achieved
by calculating the model error of each substructureE and by choosing a level such as

ζ2ET ≥ δ̃max
E∈E

ζ2ET (31)

whereE is the set of all the substructures andδ̃ is a chosen value.
During the correction process, which is the second step of the model updating method, only the parameters
from these substructures are updated. The final value of these parameters must correspond to a minimum of
e2T . This problem, which is nonlinear with respect to these parameters, is solved using a BFGS minimization
algorithm and the gradients of the parameters are calculated numerically. Besides, for each variation of the
parameters, the mass, stiffness and damping matrices are reassembled. Once the correction has been made, the
model errorζ2T is recalculated. If the new value is less than a given level, the updating process is terminated;
otherwise, a new iteration consisting of a localization step and a correction step is performed.
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3.3 Discretization of the problem

The discrete form of the modified error is written with respect to the vectors (denoted{U}, {V } and{W})
of the nodal values of the displacement fieldsU , V andW . In the case of a single excitation, the measured
displacements are normalized by the amplitude of the force vector, so that only the amplitudes of the displace-
ments appear in the expression of the error measureη2ω. Thus, Equation 23 depends on the displacements alone.
Consequently, one has

e2ω({U}, {V }, {W}) = γ

2
{U − V }T⋆([K] + Tω2[C]){U − V }+ 1− γ

2
ω2{U −W}T⋆[M]{U −W}

+
r

1− r
{ΠU − Ũ}T⋆[G]{ΠU − Ũ} (32)

in which{U −V } and{U −W} denote{U}−{V } and{U}−{W} respectively. Moreover,Π is a projection
operator which, when applied to a vector{Z}, yields the values of that vector at the sensors. The matrix[G]
quantifies the error in the measurements. In our case, we usedthe following expression [42]:

[G] =
γ

2
([k] + Tω2[c]) +

1− γ

2
ω2[m] (33)

where[m], [k] and[c] are respectively the reduced mass, stiffness and damping matrices of the system at the
measurement points. In addition, the solution ({U}, {V }, {W}) must be admissible, i.e. it must verify

([K] + iω[C]){V } − ω2[M]{W} = {F} (34)

{F} is the vector of the excitation forces. The minimization of the errore2ω under the admissibility constraints
is obtained by introducing Lagrange multipliers, which leads to the resolution of a system of linear equations
given by

[A]{Y } = {B} (35)

where[A], {Y } and{B} are written as

[A] =




γ

2
([K] + Tω2[C])

1− γ

2
ω2[M]

r

1− r
ΠT [G]Π

γ

2
([K] + Tω2[C])

1− γ

2
([K]− iω[C]) 0

−[K]− iω[C] ω2[M] [K] + iω[C]− ω2[M]


 (36)

{Y } =



{U − V }
{U −W}

{U}


 (37)

{B} =




r

1− r
ΠT [G]{Ũ}
0

{F}


 (38)
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4 Calculation of the crack’s depth

The CRE updating method described in the previous section enables one to identify the crack’s position within a
particular element of the shaft. Then, the calculation of the crack’s depth may be carried out using the following
strategy. Considering Equations 15, 16 and 17, the stiffness matrixKcrack modified by the transverse crack
is expressed at the crack’s location as a function of the nondimensional crack’s depthµ = h

R
. Therefore, the

identification of the crack’s depth is achieved by minimizing the errore2µ in the crack’s depth with respect to
the nondimensional crack depthµ:

e2µ =

8∑

i=1

8∑

j=1

(Kcrack,ij −Kident,ij)
2 (39)

whereKcrack,ij andKident,ij denote the theoretical and identified flexibility coefficients respectively.

5 Numerical studies

In this section, in order to verify the suitability of the proposed approach, we will present eight numerical ex-
ample cases with different damage locations and crack sizes. The position and size of the crack for each case
is defined in Table 1.
These eight cases were chosen to demonstrate the robustnessof the crack identification method with respect to
the crack’s depth and location. The crack sizes in the eight cases may be rearranged as follows:

• small crack depths: Cases 3, 6 and 7;
• intermediate crack depths: Cases 1 and 5;
• large crack depths: Cases 2, 4 and 8.

It is well-known that an eigenfrequency is unaffected if thecrack is located at a node of the associated mode
(i.e. at the center of the beam for the second vertical and horizontal modes, and at one-third or two-thirds of
the beam for the third vertical and horizontal modes). In order to illustrate the robustness of the identification
method when the crack is located near a node, Case 1 concerns acrack situated at a node of the third vertical
and horizontal modes (at one-third of the beam) and Case 2 concerns a crack situated at the node of the second
vertical and horizontal modes (at the center of the beam). Cases 4, 5, 6 and 7 concern a crack located near a
node of the fourth vertical and horizontal modes. Finally, for Case 3, the crack is located near one end of the
beam.
Moreover, since damage identification can be more or less difficult depending on the information available
(e.g. the number, locations and directions of the sensors, or the presence of noise in the measurements), the
robustness of the method was studied under all of these hypotheses. First of all, the effectiveness of the method
was investigated for the eight cases by considering sensorsall along the beam and in the two transverse direc-
tions, both without noise and with 5% noise. Then, damage identification was carried out for Cases 1 and 2
considering only five sensors along one direction and four noise levels (0%, 5%, 10% and 20%).
The objective of all these numerical examples was to demonstrate that damage detection and the identification
of the crack’s size and position can be obtained with adequate precision even if the crack is small and located
near a node. Moreover, it should be noted that the highest noise level (20%) was added to the simulations and
that less than 5% of the displacements were measured.
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Case Crack’s location (element) Nondimensional crack depth µ

1 10 0.5
2 15 0.7
3 28 0.3
4 7 1.0
5 7 0.5
6 7 0.2
7 7 0.1
8 5 0.8

Table 1: Specific data for Cases1 to 8

For each study, we first calculated the experimental data corresponding to the forced response of the cracked
beam to a solicitation. The beam considered in this section was described in Section 2. The geometrical and
physical parameters of the beam, the frequency range and theproperties of the solicitation applied to the beam
are summarized in Table 2.
The discrepancy between the experiments and the data obtained from an initial model associated with a crack-
free beam is high and can be observed by plotting the verticaland horizontal displacements of the crack-free
and cracked beams for various crack depths and locations (see Figure 4). As explained by various researchers in
the last few decades [37, 43–46], the presence of the crack reduces the stiffness of the structure and, therefore,
the natural frequencies of the original crack-free beam. Basically, an increase in the nondimensional crack
depth decreases the natural frequencies of the beam (see, for example, Cases 4 and 5 in Figure 4). The main
changes in the natural frequencies occur in the vertical mode because of the beam’s height and its influence on
the crack, as indicated in Equation 16. The frequencies are unchanged when the crack is located at a node of
the associated mode (for example, at the center of the beam for the second vertical and horizontal modes, see
Case 2 in Figure 4), and the decrease in the natural frequencies is more pronounced when the crack is located at
the antinodal points of the associated mode shape (for example, at the center of the beam for the first and third
vertical and horizontal modes, and at one-third or two-thirds of the beam for the second vertical and horizontal
modes; see the comparison between Case 2 and Cases 4-5 in Figure 4). Moreover, the presence of the crack
induces changes not only in the natural frequencies, but also in the antiresonant frequencies [11]. Therefore, a
change in natural frequencies and antiresonances is the common first step in the detection of a crack, as well as
in the identification of both the crack’s depth and its location.

In each study, the model error was rather high. Then, the localization step was performed and all local
errors were calculated. The most erroneous element of the beam, corresponding to the highest local error, was
determined. The updating process was carried out by varyingonly the parameter associated with this element.
In the end, the errors were significantly reduced.
First, we considered Cases1 to 8 with sensors located all along the beam and displacements measured in the
two transverse directions. The measurements were assumed to be noise-free. Table 3 gives the modified and
model errors for all these cases. Since the model error was rather high, we started with the localization step.
Figure 5 shows the local errors along the length of the beam for the eight cases. One can see that since the most
erroneous element corresponded to the location of the crackthe localization step was successful in all cases.
Following the updating process, the errors (given in Table 3) were relatively small.
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(b) Horizontal direction

Figure 4: Frequency response functions of the beam for various crack depths and locations at Element5 of the
beam (− crack-free,−− Case 2,· · · Case 4,−.− Case 5)
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Young’s modulusE (Pa) 2× 1011

Shear modulusG (Pa) 7.1× 1010

Density (kg/m3) 7,800
Poisson’s ratioν 0.3

Radius of the cross section (m) 0.05
Length (m) 1

Damping coefficientα 0.66
Damping coefficientβ 1.2 × 10−6

Frequency range (rad/s) [100 25, 000]
Discretization of the frequency range (rad/s) 20

Location and directions of the excitation Node5, horizontal and vertical
Amplitude (N ) of the excitation 1/

√
2

Table 2: Geometrical and physical parameters of the beam, frequency range of the study and nature of the
excitation

Case % noise ζ2T
i

e2T
i

ζ2T
f

e2T
f

1 0 0.92 1.40 0.108 0.109
2 0 1.53 2.24 0.109 0.111
3 0 0.68 0.92 0.108 0.110
4 0 3.66 4.98 0.110 0.112
5 0 0.94 1.40 0.109 0.110
6 0 0.28 0.40 0.108 0.110
7 0 0.14 0.18 0.108 0.110
8 0 2.42 3.41 0.107 0.108

Table 3: Errors (in %) before (subscripti) and after (subscriptf ) the updating process for Cases1 to 8 with no
measurement noise

Then, the crack’s size was obtained by minimizing the error in the crack’s depthe2µ (defined in Equation 39)
with respect to the nondimensional crack depth ratioµ. The assumed and estimated nondimensional crack
depths match perfectly in the eight cases, as shown in Table 4. At this stage of the study, one may point out that
the crack model considered in this paper is a simplified model(with a regular cross section and a transverse
crack with its front axis in the X-direction) which is generally accepted and used for the validation of model
updating methods. Had the crack’s shape at the cross sectionbeen different or the cross section irregular, the
identification of the crack’s size would have been erroneous. However, the crack’s location would have been
correctly identified because the crack modifies only the stiffness properties of the cracked cross section.

Since experimental data are usually affected by measurement noise, we studied the influence of various
noise levels on the method. The random noise was distributeduniformly in space and over the frequency range.
Table 5 shows the results for the eight previous cases, this time with 5% random measurement noise. Again,
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Figure 5: Local errors in the 30 elements (normalized to the highest value) for the eight cases with no measure-
ment noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

12

Nondimensional crack depth µ

C
ra

ck
 d

ep
th

 e
rr

or

1 and 5
2
3
4
6
7
8

Figure 6: Error in the crack’s depth for the eight cases with no measurement noise
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Case Assumedµ Estimatedµ Error (%) Estimatedµ Error (%)
(without noise) (without noise) (with5% noise) (with5% noise)

1 0.5000 0.5001 0.02 0.5156 3.12
2 0.7000 0.7001 0.02 0.7059 3.12
3 0.3000 0.3002 0.02 0.2968 1.07
4 1.0000 1.0002 0.02 1.0200 2
5 0.5000 0.5002 0.04 0.5163 3.26
6 0.2000 0.2002 0.1 0.2267 13.35
7 0.1000 0.1003 0.3 0.1343 34.3
8 0.8000 0.8000 0 0.8087 1.09

Table 4: Comparison of assumed vs. identified nondimensional crack depthµ for Cases1 to 8

Case % noise ζ2T
i

e2T
i

ζ2T
f

e2T
f

1 5 1.35 2.07 0.41 1.30
2 5 1.95 2.76 0.42 1.31
3 5 0.83 1.60 0.43 1.31
4 5 5.32 6.18 0.41 1.31
5 5 1.45 2.11 0.41 1.31
6 5 0.62 1.41 0.41 1.31
7 5 0.48 1.33 0.42 1.31
8 5 3.39 4.17 0.40 1.31

Table 5: Errors (in %) before (subscripti) and after (subscriptf ) the updating process for Cases1 to 8 with
measurement noise

for each case, the model error was rather large and yet the localization step was successful (see Figure 7). The
errors following the updating process are given in Table 5. One can observe that the model error increases with
the nondimensional crack depth ratioµ as well as with the level of measurement noise.
The nondimensional crack depth estimated from the crack depth error function defined in Equation 39 correctly
matched the assumed nondimensional crack depth in all eightcases as shown in Table 4. However, one can
observe that noise in the measurements can make the identification of the size of small cracks more difficult
(see Cases 6 and 7 in Table 4).

Usually, measurements can be performed only at a few sensors, in one direction, and are unfortunately very
noisy. In order to show the robustness of the method, we choseto calculate Cases 1 and 2 with only five sensors
(located at Nodes6, 11, 16, 21 and26), in one direction and with various levels of measurement noise. The
noiseless case was also considered so results with and without noise could be easily compared. Table 6 shows
the results obtained after one localization step followed by the updating process. Figures 8(a) and 9(a) illustrate
the local errors in the 30 elements (normalized to the highest value). In all cases, the final identification of the
crack’s location appears to be in agreement with the assumedposition of the crack.
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Figure 7: Local errors in the 30 elements (normalized to the largest value) for the eight cases with5% random
measurement noise

Then, the determination of the nondimensional crack depth was obtained by minimizing the crack depth error
function. The results are given in Table 7. Figures 8(b) and 9(b) illustrate the evolutions of the error in the
crack’s depth. Even though the difference between the estimated and assumed nondimensional crack depths
increases with the noise level, these results can be considered to be reasonably good. This proves that with 10%
and 20% noise the crack’s location obtained is perfect and the maximum errors in the estimation of the crack’s
size are about 7% and 13% respectively.

Finally, the comparisons of the Frequency Response Functions (FRFs) in the vertical direction obtained
using the estimated crack parameters (i.e. the crack’s location and nondimensional depth after minimization,
indicated with red dotted-dashed lines) with the measurements generated from the assumed theoretical crack
locations and depths (black solid line) are shown in Figures10 to 13 and 14 to 17 for Case 1 and Case 2
respectively. For each case, the four figures correspond to calculations with four random noise levels (0%, 5%,
10% and 20%) affecting the assumed FRFs. Perfect agreement between the estimated and assumed vertical
FRFs is clearly observed in most of the frequency range. The crack-free vertical FRF (black dashed lines)
is shown to indicate the initial configuration used for the CRE updating method. It appears clearly that the
estimated vertical amplitudes are very close to their actual values, even though 20% noise was added to the
numerical simulations and less than 5% of the displacementswere measured.

6 Conclusion

This research deals with the nondestructive detection of cracks in a simply-supported beam. The cracked beam
is modeled by taking into account the flexibility due to the presence of the open transverse crack and by reduc-
ing the second moment of area of the element at the crack’s location.
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case noise (%) ζ2T
i

e2T
i

ζ2T
f

e2T
f

1 0 0.86 1.07 0.075 0.076
1 5 0.96 1.25 0.30 0.53
1 10 1.13 1.58 0.58 1.04
1 20 1.56 2.38 1.11 1.98
2 0 1.63 1.96 0.076 0.077
2 5 1.71 2.08 0.30 0.53
2 10 1.83 2.31 0.58 1.03
2 20 2.17 2.94 1.12 1.98

Table 6: Errors (in %) before (subscripti) and after (subscriptf ) the updating process for cases1 and2 with
sensors in5 displacements and with various levels of noise

case noise (%) Assumedµ Estimatedµ Error (%)
1 0 0.5000 0.5001 0.02
1 5 0.5000 0.5164 3.28
1 10 0.5000 0.5340 6.8
1 20 0.5000 0.5662 13.24
2 0 0.7000 0.7001 0.01
2 5 0.7000 0.7084 1.2
2 10 0.7000 0.7170 2.43
2 20 0.7000 0.7343 4.9

Table 7: Comparison of the assumed and identified non-dimensional crack depthµ for cases1 and2 with
sensors in5 displacements and with various levels of noise
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Figure 8: Local errors in the 30 elements (normalized to the highest value) and evolution of the error in the
crack’s depth for Case 1 with noisy measurements and only with five sensors in one direction
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Figure 9: Local errors in the 30 elements (normalized to the highest value) and evolution of the error in the
crack’s depth for Case 2 with noisy measurements and only with five sensors in one direction
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Figure 10: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 1 without noise
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Figure 11: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 1 with5% random noise
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Figure 12: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 1 with10% random noise
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Figure 13: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 1 with20% random noise
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Figure 14: omparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 2 without noise
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Figure 15: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 2 with5% random noise
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Figure 16: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 2 with10% random noise
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Figure 17: Comparison of the frequency response functions (vertical direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and the updated model (red dotted-dashed lines), obtained at
Element5 for Case 2 with20% random noise
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The damage assessment technique, based on the CRE updating method and a crack depth error function, was de-
veloped in order to identify the crack’s location and its nondimensional size. The effectiveness of the proposed
method is demonstrated through numerical simulations involving different crack locations and nondimensional
crack depths. These examples show that the identification ofthe crack’s parameters can be carried out with
satisfactory precision even when the crack is located near anode of a vertical or horizontal mode or when
the nondimensional crack depth is small. Moreover, these results demonstrate the robustness of the technique
when 20% uniformly distributed noise is added to the simulations and less than 5% of the displacements are
measured.
The results obtained with this robust damage detection toolcombining a model error estimator and model
updating procedure (proposed by Ladeveze and co-workers [24–27]), and the use of antiresonant frequencies
(proposed by Dilena and Morassi [11]) are encouraging. The procedure for determining the crack’s location
and depth appears to be both simple and general. Future workswill focus on assessing the effectiveness and
limitations of the method based on more complex illustrative examples (3D structures with beam networks).
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