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Abstract

This paper presents a robust damage assessment technigjoe fiendestructive detection and size estimation
of open cracks in beams. The damage detection, based onrhttative relation error updating method, is
used for the identification of the crack’s location and sizeisimply-supported beam. The transverse open
crack is modeled through the introduction of the flexibilitye to the presence of the crack, i.e. by reducing
the second moment of area of the element at the crack’s ¢ocati

This identification algorithm is illustrated through nunoat examples involving different positions and sizes
of a transverse open crack. We show that the detection of geswad the identification of the crack’s size and
position can be achieved with satisfactory precision, é/20% noise has been added to the simulations and
less than 5% of all displacements have been measured.

1 Introduction

The identification of the depth and position of cracks thioagndestructive testing is important to ensure the
integrity of structural components for a wide range of ¢iwlechanical and aeronautical engineering applica-
tions. Indeed, the importance of an early detection of @agpears to be crucial for both safety and economic
reasons and has led to the development of various methods.

The most useful damage localization methods based on idgbrateasurements are probably those based on
changes in natural frequencies and mode shapes. Revieasaairch works dealing with the problem of crack
detection based on changes in modal parameters can be folihdd]. Indeed, it has been established that
the presence of a crack drastically affects the dynamic\behaf structures. Depending on the crack’s size
and location, the stiffness of the structure is reduced tratefore, so are its natural frequencies compared to
the original crack-free structure. This shift in naturaduencies has been commonly used to investigate the
crack’s location and size. For example, some research Wb+#kg have been devoted to the identification of a
crack’s size and location through the determination of thersection point of the superimposed contours cor-
responding to the measured eigenfrequency variationsadine tcrack. This damage identification technique is



called the “frequency contour lines method”. In order toidwbe problem of a non-unique damage location in
the case of a structural symmetric beam, Swamidas et alr¢®psed to extend this crack identification method
by adding an off-center mass to the simply-supported beaneRly, Sinou [9] developed an extension of the
frequency contour lines method based on the changes ofdneguratios in the cracked beam, thus avoiding
the need for accurate knowledge of the material propertiesfiizquencies of the crack-free beam. Moreover,
Owolabi et al. [10] proposed a crack identification techeitpased not only on the measured changes in the first
three natural frequencies (i.e. the frequency contouslimethod), but also in the corresponding amplitudes
of the measured acceleration frequency response functigsiag the frequency contours and amplitude con-
tours of the first three modes, they demonstrated that tlek’sraize and location can be determined uniquely.
Recently, Dilena and Morassi [11, 12] proved that the meament of an appropriate set of frequencies and
antiresonance frequencies enables unique identificafidarmage. The theoretical results were confirmed by
comparisons with numerical and experimental tests. Theoasiialso suggested that the direction in which the
nodal points move can point to the damage location [13]. #&s¢hworks, the identification techniques were
based on a shift in natural frequencies. Even though expetah validations of the damage identification
methods based on frequency variations mentioned abovddwue some interesting results, all these methods
require precise measurements of the natural frequencig® aracked system and, therefore, their accuracy is
affected by the presence of noise in these measurementednohcorrect measurements of natural frequen-
cies, vibration modes and forced vibration amplitudes nesylt in erroneous identification of the crack’s size
and location. For example, Lele and Maiti [14] found errarghie crack’s location and depth of about 10%.
Cerri and Vestroni [15] indicated that a small error in théadéa mean error of 0.5%) is usually amplified
strongly and becomes more than 5% in identification of theadpparameters. Similarly, Sinou [16] recently
showed that identification of the crack’s parameters fomapsy-supported cracked beam using this type of
damage identification technique can become very difficuliéfnoise level affecting the natural frequencies is
greater than 4%.

Consequently, to develop a robust damage assessmentaeetor the nondestructive detection and size es-
timation of open cracks in beams, we propose to use modelingdaethods that minimize the discrepancy
between the test data and the model by modifying the nuneniodel. A state-of-the-art review can be found
in [17]. On the one hand, “direct methods” [18, 19] apply ections to the model's mass and stiffness ma-
trices, but, unfortunately, do not take the physical meguhthese modifications into account. On the other
hand, “indirect or parametric methods” update the modellanging its physical parameters. Three categories
of cost functions can be considered: input residuals [2]),@ttput residuals [22, 23], and the residual called
“Constitutive Relation Error” (CRE). In this study, the CRdEused and provides a measure of the quality of
the updated model which is essential for model validatiohis Bpproach has been shown to be effective in
structural dynamics with updated mass, stiffness and dagnpatrices obtained through eigenmodes or forced
vibrations [24-27]. The method is based on the Drucker earat can also take into account nonlinearities
due to material behavior or to contacts. Let us also mentiamdimilar approaches used in the case of free
vibration problems: the Minimum Dynamic Residual Expangi®DRE) method [28] and the Modeling Error
in the Constitutive Equations (MECE) method [29, 30]. Hyaine should note that many other strategies for
the resolution of crack identification problems have be@ppsed [31], such as the recent strategies based on
the enclosure method or the virtual work principle, whiclaleles the formulation of observation equations,
with emphasis on the reciprocity gap concept.

In this paper, we propose to investigate the effectiveneds@ustness of the CRE method in the identification
of cracks of various depths and locations based on noisyureragnts. The paper is organized as follows: first,
we give a brief presentation of the modeling of an open trarse/crack and the associated model of a simply-



supported cracked beam. Then, we introduce the damagéficktiin technique based on the CRE updating
method for the identification of the crack’s location. Flgalve illustrate the effectiveness and robustness of
the method through various numerical simulations corredpa to different physical configurations.

2 The modeling of a simply-supported beam with a transverserack

2.1 Equations of motion

In this paper, we consider a beam with a circular cross sgcfim in length and 0.1m in diameter, divided
into 30 Timoshenko beam finite elements with four degrees-of-fsbeeger node (see Figure 1). The beam is
assumed to be simply supported at each end.

The equations of motion for the simply-supported crackeghibean be written as

[MI{X} + [CI{X} + [KH{X} = {Fa(t)} @

where{ X} is the vector of the nodal DOFs of the systenthe instant of time|M]| the mass matrix,K] the
global stiffness matrix andlF;(¢)} the external force vector, and where the dot representsdtieative with
respect to time[C| denotes the proportional damping matrix, which can be esga@ as

[C] = o[M] + S[K] (2)

wherea and are real constants.

[K] contains the stiffness reducti¢K.....| at the crack’s location and is given by
[K] = [K] — [Kerack] 3

where[K] is the stiffness matrix of the crack-free beam. The stiffnemtrix [K....x| of the cracked element
will be given in the next section.
Finally, let us define the external force vector as

{Fy(t)} = {F}e** @)

wherew is the forcing frequency anflF'} the amplitude vector.
The response vector can be written @%(¢)} = {Xo}e™?. Using Equation 1, the system governing the
equation in the frequency domain is

(—w2M] + iw[C] + [K]) {Xo} = {F} (5)
We will perform the identification of the crack’s size anddtion by considering the response simulated from
Equation 5 to a given external for¢d’;(¢) } and by using the CRE estimator described in the next section.
2.2 The cracked element

In order to represent the stiffness properties of the crdakess section locally in an crack-free beam, the
flexibility due to the presence of the transverse crack masaken into account. For a comprehensive literature
survey of various crack modeling techniques, see [32, 33].
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Figure 1: Finite-element model of the beam with the cracked<section

In this study, the stiffness properties of the cracked csegtion in a beam are represented locally using Mayes
and Davies’ transverse crack model [34, 35]. This modelripotes the flexibility due to the presence of
the transverse crack by reducing the element’s second ntoshanea at the location of the crack kByl. As
explained by Mayes and Davies [36], the change intii natural frequency of a system due to the presence
of a transverse crack can be written as

d?u
2 m
Aw2 = —g < il ) 6)

whereu,, is them'” mode shape of the beam agmdthe location of the crack along the beagnis a function
of the geometries of the crack and of the beam. Expandinge&inahalysis and using dimensional analysis to
describe the stress concentration factor at the crack’d,ftbey obtained the following expression [34]:

s EP

9 d*uy,
Aw;, = 47T—R3(1_V)F('u)<d:z:2>: (7)

wherel, R, F andv denote respectively the second moment of area, the shaftiss and the material’s
Young’s modulus and Poisson’s ratif. () is a nonlinear compliance function which can be obtainethfeo
series of experiments with chordal cracks [34, 3bHenotes the nondimensional crack depth and is given by

h
B= R (8)
whereh is the depth of the crack in the shaft as illustrated in Figure

Then, using the second derivatives of the deflection cuthesbending moments{, and M of the original
and cracked systems are given respectively by

2
My (s) = EIy (s) (%) ) 9)
and 2
M (s) = Mo (s) — AM (s) = E (I (s) — AI(s)) (d—y) ) (10)
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wherey ands denote the deflection of the beam and the axial positigiis the second moment of area of the
original system.

In addition, assuming that the deflection curve is unchantiedbending moments/, and M of the original
and cracked systems are defined respectively by

Moo= [ (5= 2 m )y () ds (11)
and 5
AM (s) = Awg/o (s—2z)m(z)y(z)dz (12)

wherem (z) corresponds to the mass per unit length at locatiafong the beam.
Using Equations 9-12 and Rayleigh’s approach, Mayes anieB§®4] derived the relation:

d?y Al Aw?
sten () () (%) -
T=s 0

By comparing Equations 7 and 13 and considering first-ortianges inAw? alone, Mayes and Davies ob-
tained the following relation for a beam with a circular g@ction:

At TP FR

- = (14)
fo l—l—?(l—UQ)F(,u)

whereR and! are the shaft’s radius and length respectively. Mayes anieB§34, 35] proposed to obtain the
evolution of F' (1) through a series of experiments with chordal cracks. Thisglmnce function was later
used by Sinou and Lees [37, 38] to study the dynamic beha¥iarrotating shaft with a crack, taking into
account the opening and closing of the crack at differemrations of the shaft due to its weight.

Then, using classical finite element formulation, the s&ffs matriXK,..x| at the crack’s location modified
by the transverse crack is:

[12Ix O 0 6llx —12Ix 0 0 6l1x 7
12y —6lly 0 0 —12Iy —6lly 0
4Ly 0 0 611y 2121y 0
B 4PIx  —6lIx 0 0  2P%Ix
[Kcrack:] - l_3 12IX 0 0 —6lIX (15)
12Iy  6lly 0
Sym. 412 Iy 0
L APIx |
The moments of inertidy andly with respect to the parallel centroidal axes are given by [37
R* «
IX:I((l_N) (1—4u+2u2)7+§) (16)
and
TR 2 1 . 4 o1
Iy ==+ R <§(l—u)73+1(1—u) (1 —4p+2p%) v + sin 1(7)) L ((1—u)7+5)

(17)



centroid

~
7

=g
|
—
|
ek
i
- - /.'

‘----
»

Jm

Figure 2: Cross section of the cracked beam

For conveniencey = /2u — p?. aisthe crack’s angle as shown in Figure 2 and is equal402cos~! (1 — ).

3 The constitutive relation error updating method

The Constitutive Relation Error (CRE) updating method,ahhises am posterioriestimator, has been widely
and successfully used for validation problems in strud¢tdyaamics (see for instance [24-27]). It is presented
in the next section in the general case. Its application éostmply-supported beam problem is described in
Section 5.

3.1 The CRE estimator

We will only review the principles of the method. For furtréetails, see [39].

Let 2 be the domain of the structure af€ its boundary (see Figure 3). The structure vibrates ovena ti
interval [0, T']. Displacement$/; and forcest’,; are prescribed respectively at boundadés, ando2,, with
001 U 0y = 092. Body forcesid are applied within Domait.

The reference problem consists in finding

s=(M,t) = (U(M,1),0(M 1), v(M,t)) MeQ , tel0,T] (18)
(respectively the displacement, the stress and the aatieler)/ being the position vector) which verify a
set of reliable equations and a set of less reliable equatibiere, since we are dealing with forced vibration
problems, the equations will be expressed in the frequemeyaih. The reliable equations consist of the
kinematic constraints and the equilibrium equations; #ss Ireliable equations are the constitutive relations,
which are written as
o= (K + iwC) eU) (19)



Figure 3: The domain being studied and the applied loads

I' = —p?U (20)

whereK is the Hooke’s tensor (symmetric and positive defini@Yhe damping operator (symmetric, positive
definite then ensuring the uniqueness of the solution aniflywey Drucker’s stability conditions, see [40]3,

the strain tensor angd the density. Drucker’s stability conditions ensure thequeness of the solution and
are verified by a large class of materials [39, 40]. We seeluwisn which is admissible (i.e. which verifies
the equations considered to be reliable). In the context @fiehupdating, there are additional data which
come from measurements. For a structure solicited at ona jpoid whose displacements are measured at
different locations, these quantities are also subdividama reliable set and a less reliable set. The reliable set
consists of the measured angular frequen@&nd the positions and directions of the excitations andsenthe
measured amplitudes of the forcEg and displacements, at the excitation and sensor points are considered
to be less reliable. Finally, the problem to be solved cassisfinding admissible fields which minimize the
modified CREe2 defined by

2
2_ S, T o
ew - DZ; 1— r% (21)
with a term corresponding to a modeling error:
GV I) = [ T + Tw2C) (V) — ()" (e(V) ~ (L)
Q
1—
gt (U — W) (U~ W) d2 (22)
a term corresponding to a measurement error:
7T 2 2
2 Wl Dl | \Flose — Fy) 23)
U4l [Pa]
and displacementd, V., W which must verify
Uu.=U (24)



os = (K + iwC) e(V) (25)

where the static quantities and" are denotedr; andL', and the dynamic quantity/ is denotedU,. The
symbolx designates the complex conjugate of a quantity. These ieqaadre written for a given frequency

w. r is a weighting coefficient, which we will take equal to 0.5 J4fepresenting the degree of trust one has
in the experimental data. The denominaf@t and the norms being used ensure that the two error terms have
equivalent weights. The following expression can be uséil [4

D2 = /Q (Lir((K + Tw?C) ()" e(V)] + “T'VMQ*Q) a0 27)

Finally, over the whole frequency ran§e, ..., wmaz |, the modified error is calculated using a weighting factor
z(w) such thatf;"** z(w)dw = 1 with 2(w) > 0, €.9.2(w) = 1/(Winaz — Winin). The error is given by

er = (Gt +nr (28)
in which
9 Wmazx CE_]
G= [ ) 29)
= / 72 2(w)deo (30)

3.2 Implementation of the method

The updating of the parameters is carried out by minimizirggrnodified CRE. Such an inverse problem with
no additional manipulation is ill-posed. Our updating neetican be viewed as a regularization process leading
to a unique solution of the problem. The method is iterateagh iteration consisting of two steps. The first
step consists in localizing the most erroneous regions, temost erroneous structural parameters; the second
step consists in correcting the parameters belonging sethegions. The updating process is stopped when the
threshold error is reached (for further details, see [26489.

In practice, the solution of the problem described in SecBal enables one to calculagé ande.. The
value of (2 yields the relative quality (irf%) of the numerical model with respect to measurements over a
frequency range, which is used to determine whether mod#ating is necessary. The first step of the model
updating method consists in identifying which substruesunave high model error values and can be achieved
by calculating the model error of each substructBrand by choosing a level such as

2 S 2
Cer > 5%13155 Cer (31)

whereE is the set of all the substructures ani a chosen value.

During the correction process, which is the second step ehtbdel updating method, only the parameters
from these substructures are updated. The final value oé thesameters must correspond to a minimum of
e%. This problem, which is nonlinear with respect to these peters, is solved using a BFGS minimization
algorithm and the gradients of the parameters are calculatenerically. Besides, for each variation of the
parameters, the mass, stiffness and damping matricesasgembled. Once the correction has been made, the
model error¢? is recalculated. If the new value is less than a given letel updating process is terminated;
otherwise, a new iteration consisting of a localizatiorpsted a correction step is performed.
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3.3 Discretization of the problem

The discrete form of the modified error is written with resperthe vectors (denoteflU}, {V'} and{W})

of the nodal values of the displacement fieldsV andW. In the case of a single excitation, the measured
displacements are normalized by the amplitude of the foeotov, so that only the amplitudes of the displace-
ments appear in the expression of the error meagiwr@hus, Equation 23 depends on the displacements alone.
Consequently, one has

TN AV AW)) = T~ VIT(K] + T [CU — V) + =5 AU~ WY MU — W}
+1rj{HU VT GHIU - U} (32)
inwhich{U —V} and{U — W} denote{U } — {V'} and{U } — {IW} respectively. Moreoveti] is a projection

operator which, when applied to a vector'}, yields the values of that vector at the sensors. The mgg|x
guantifies the error in the measurements. In our case, wetheddllowing expression [42]:

1G] = 2(0 + Tw?[e]) + — L[] (33)

where[m], [k] and|c| are respectively the reduced mass, stiffness and dampiticesaof the system at the
measurement points. In addition, the soluti¢tV {, {V'}, {W}) must be admissible, i.e. it must verify

(K] +iw[CP{V} — * MW} = {F} (34)

{F} is the vector of the excitation forces. The minimizationué errore? under the admissibility constraints
is obtained by introducing Lagrange multipliers, whichdsdo the resolution of a system of linear equations
given by

AJ(Y} = (B} (35)
where[A], {Y'} and{B} are written as
11 SRR (o)) R, ¥ G
A= 125 + 7e?le]) 5 (K] - iwlC) 0 (36)
“[K] — iw[C] W2[M] K] + iw[C] — w?[M]
{-v)
vi=|{-w) (37)
)
——1"[GI{U}
(B} = 0 (39
(F)



4 Calculation of the crack’s depth

The CRE updating method described in the previous sectiables one to identify the crack’s position within a
particular element of the shaft. Then, the calculation efdtack’s depth may be carried out using the following
strategy. Considering Equations 15, 16 and 17, the stiffmeatrix K., modified by the transverse crack
is expressed at the crack’s location as a function of the inoersional crack’s depth = %. Therefore, the
identification of the crack’s depth is achieved by minimgitne errorei in the crack’s depth with respect to
the nondimensional crack depth

(Kcrack,ij - Kident,ij)2 (39)

8
=1

2 _
%—Z

=13

whereK.,qck,;; andK;qens ;5 denote the theoretical and identified flexibility coeffiderespectively.

5 Numerical studies

In this section, in order to verify the suitability of the pased approach, we will present eight numerical ex-
ample cases with different damage locations and crack.siz@s position and size of the crack for each case
is defined in Table 1.
These eight cases were chosen to demonstrate the robustrieesrack identification method with respect to
the crack’s depth and location. The crack sizes in the eigéts may be rearranged as follows:

e small crack depths: Cases 3, 6 and 7;

e intermediate crack depths: Cases 1 and 5;

e large crack depths: Cases 2, 4 and 8.
It is well-known that an eigenfrequency is unaffected if tnack is located at a node of the associated mode
(i.e. at the center of the beam for the second vertical anadwtal modes, and at one-third or two-thirds of
the beam for the third vertical and horizontal modes). Ineotd illustrate the robustness of the identification
method when the crack is located near a node, Case 1 conceraskasituated at a node of the third vertical
and horizontal modes (at one-third of the beam) and Case@ o1 a crack situated at the node of the second
vertical and horizontal modes (at the center of the beam¥e€4d, 5, 6 and 7 concern a crack located near a
node of the fourth vertical and horizontal modes. Finalyy, €ase 3, the crack is located near one end of the
beam.
Moreover, since damage identification can be more or le$gwlif depending on the information available
(e.g. the number, locations and directions of the sensorsgieopresence of noise in the measurements), the
robustness of the method was studied under all of these Ingpes. First of all, the effectiveness of the method
was investigated for the eight cases by considering seadlatong the beam and in the two transverse direc-
tions, both without noise and with 5% noise. Then, damagstiiilgation was carried out for Cases 1 and 2
considering only five sensors along one direction and foigenlevels (0%, 5%, 10% and 20%).
The objective of all these numerical examples was to dematesthat damage detection and the identification
of the crack’s size and position can be obtained with adequigcision even if the crack is small and located
near a node. Moreover, it should be noted that the higheserevel (20%) was added to the simulations and
that less than 5% of the displacements were measured.
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Case Crack’s location (element) Nondimensional cracktidept

1 10 0.5
2 15 0.7
3 28 0.3
4 7 1.0
5 7 0.5
6 7 0.2
7 7 0.1
8 5 0.8

Table 1: Specific data for Casédo 8

For each study, we first calculated the experimental datesponding to the forced response of the cracked
beam to a solicitation. The beam considered in this sectia® described in Section 2. The geometrical and
physical parameters of the beam, the frequency range amuaperties of the solicitation applied to the beam
are summarized in Table 2.

The discrepancy between the experiments and the data etiteiom an initial model associated with a crack-
free beam is high and can be observed by plotting the vericdlhorizontal displacements of the crack-free
and cracked beams for various crack depths and locatioas-(gare 4). As explained by various researchers in
the last few decades [37,43—46], the presence of the crdckes the stiffness of the structure and, therefore,
the natural frequencies of the original crack-free beamsiddly, an increase in the nondimensional crack
depth decreases the natural frequencies of the beam (sexdmple, Cases 4 and 5 in Figure 4). The main
changes in the natural frequencies occur in the verticalenbmtause of the beam’s height and its influence on
the crack, as indicated in Equation 16. The frequencies mehanged when the crack is located at a node of
the associated mode (for example, at the center of the beathg@econd vertical and horizontal modes, see
Case 2 in Figure 4), and the decrease in the natural freqegrscmore pronounced when the crack is located at
the antinodal points of the associated mode shape (for deamipthe center of the beam for the first and third
vertical and horizontal modes, and at one-third or twodhiof the beam for the second vertical and horizontal
modes; see the comparison between Case 2 and Cases 4-5ri@ £igiMoreover, the presence of the crack
induces changes not only in the natural frequencies, batialhe antiresonant frequencies [11]. Therefore, a
change in natural frequencies and antiresonances is theoaorfirst step in the detection of a crack, as well as
in the identification of both the crack’s depth and its logati

In each study, the model error was rather high. Then, thdizateon step was performed and all local
errors were calculated. The most erroneous element of e beorresponding to the highest local error, was
determined. The updating process was carried out by vayitgthe parameter associated with this element.
In the end, the errors were significantly reduced.

First, we considered Casédo 8 with sensors located all along the beam and displacemerdasured! in the
two transverse directions. The measurements were assunedroise-free. Table 3 gives the modified and
model errors for all these cases. Since the model error whsrr&igh, we started with the localization step.
Figure 5 shows the local errors along the length of the bearthéoeight cases. One can see that since the most
erroneous element corresponded to the location of the dhaclocalization step was successful in all cases.
Following the updating process, the errors (given in Table&e relatively small.
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Young'’s modulusE (Pa) 2 x 101

Shear modulus: (Pa) 7.1 x 10%°
Density g/m?) 7,800
Poisson’s ratia/ 0.3
Radius of the cross sectiom] 0.05
Length (n) 1
Damping coefficienty 0.66
Damping coefficien3 1.2 x 1076
Frequency ranger¢d/s) [100 25,000]
Discretization of the frequency rangeu(l/ s) 20
Location and directions of the excitation Nodlehorizontal and vertical
Amplitude (V) of the excitation 1/v/2

Table 2: Geometrical and physical parameters of the beaquéncy range of the study and nature of the
excitation

Case % noise (&' 2! 2/ e2/
1 0 0.92 1.40  0.108  0.109
2 0 1.53 2.24 0.109 0.111
3 0 0.68 0.92 0.108  0.110
4 0 3.66 4.98 0.110 0.112
5 0 0.94 1.40 0.109  0.110
6 0 0.28 0.40  0.108 0.110
7 0 0.14 0.18 0.108  0.110
8 0 2.42 3.41 0.107  0.108

Table 3: Errors (in %) before (subscriptand after (subscripf) the updating process for Cask# 8 with no
measurement noise

Then, the crack’s size was obtained by minimizing the emahie crack’s deptlaﬁ (defined in Equation 39)
with respect to the nondimensional crack depth ratioThe assumed and estimated nondimensional crack
depths match perfectly in the eight cases, as shown in Tal#lethis stage of the study, one may point out that
the crack model considered in this paper is a simplified m@aih a regular cross section and a transverse
crack with its front axis in the X-direction) which is genllyaaccepted and used for the validation of model
updating methods. Had the crack’s shape at the cross sdx@mdifferent or the cross section irregular, the
identification of the crack’s size would have been erronedtiswever, the crack’s location would have been
correctly identified because the crack modifies only théngtsfs properties of the cracked cross section.
Since experimental data are usually affected by measutenoése, we studied the influence of various
noise levels on the method. The random noise was distriburigdrmly in space and over the frequency range.
Table 5 shows the results for the eight previous cases,ithswith 5% random measurement noise. Again,

13



Local errors

10

Beam element > Case

Figure 5: Local errors in the 30 elements (normalized to tlgbdst value) for the eight cases with no measure-
ment noise

N

=
©

=
o

=
I

=
[N

o
fos)

Crack depth error
=

o
for}

o
~

0.2

\ Ve
0 N <

0O 01 02 03 04 05 06 07 08 09 1
Nondimensional crack depthu

N ~ L ]

Figure 6: Error in the crack’s depth for the eight cases widhmeasurement noise

14



Case Assumed  Estimatedu Error (%) Estimated. Error (%)
(without noise) (without noise) (with% noise) (with5% noise)

1 0.5000 0.5001 0.02 0.5156 3.12
2 0.7000 0.7001 0.02 0.7059 3.12
3 0.3000 0.3002 0.02 0.2968 1.07
4 1.0000 1.0002 0.02 1.0200 2

5 0.5000 0.5002 0.04 0.5163 3.26
6 0.2000 0.2002 0.1 0.2267 13.35
7 0.1000 0.1003 0.3 0.1343 34.3
8 0.8000 0.8000 0 0.8087 1.09

Table 4: Comparison of assumed vs. identified nondimenk@maak depthy, for Casesl to 8

Case % noise (&' %’ 2/ e2!
1 5 1.35 2.07 0.41 1.30
2 5 1.95 2.76 0.42 1.31
3 5 0.83 1.60 0.43 1.31
4 5 5.32 6.18 0.41 1.31
5 5 1.45 211 0.41 1.31
6 5 0.62 1.41 0.41 1.31
7 5 0.48 1.33 0.42 1.31
8 5 3.39 4.17 0.40 1.31

Table 5: Errors (in %) before (subscriptand after (subscripf) the updating process for Caseso 8 with
measurement noise

for each case, the model error was rather large and yet tlaéidation step was successful (see Figure 7). The
errors following the updating process are given in Table Be Gan observe that the model error increases with
the nondimensional crack depth ratiaas well as with the level of measurement noise.

The nondimensional crack depth estimated from the cracthdepor function defined in Equation 39 correctly
matched the assumed nondimensional crack depth in all egges as shown in Table 4. However, one can
observe that noise in the measurements can make the idatidificof the size of small cracks more difficult
(see Cases 6 and 7 in Table 4).

Usually, measurements can be performed only at a few serisanse direction, and are unfortunately very
noisy. In order to show the robustness of the method, we disasaculate Cases 1 and 2 with only five sensors
(located at Nodes, 11, 16, 21 and26), in one direction and with various levels of measuremetigaoThe
noiseless case was also considered so results with anduvitbse could be easily compared. Table 6 shows
the results obtained after one localization step followsethie updating process. Figures 8(a) and 9(a) illustrate
the local errors in the 30 elements (hormalized to the highasie). In all cases, the final identification of the
crack’s location appears to be in agreement with the assymsition of the crack.
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Local errors

Figure 7: Local errors in the 30 elements (normalized to &ngdst value) for the eight cases with, random
measurement noise

Then, the determination of the nondimensional crack degth ebtained by minimizing the crack depth error
function. The results are given in Table 7. Figures 8(b) afin) Blustrate the evolutions of the error in the
crack’s depth. Even though the difference between the astithand assumed nondimensional crack depths
increases with the noise level, these results can be caaditiebe reasonably good. This proves that with 10%
and 20% noise the crack’s location obtained is perfect aadrthximum errors in the estimation of the crack’s
size are about 7% and 13% respectively.

Finally, the comparisons of the Frequency Response Furgc{iBRFSs) in the vertical direction obtained
using the estimated crack parameters (i.e. the crack’sitscand nondimensional depth after minimization,
indicated with red dotted-dashed lines) with the measuntsngenerated from the assumed theoretical crack
locations and depths (black solid line) are shown in Figdr@go 13 and 14 to 17 for Case 1 and Case 2
respectively. For each case, the four figures correspondltalations with four random noise levels (0%, 5%,
10% and 20%) affecting the assumed FRFs. Perfect agreeramedn the estimated and assumed vertical
FRFs is clearly observed in most of the frequency range. Taekefree vertical FRF (black dashed lines)
is shown to indicate the initial configuration used for theEC®odating method. It appears clearly that the
estimated vertical amplitudes are very close to their dctalues, even though 20% noise was added to the
numerical simulations and less than 5% of the displacenveaits measured.

6 Conclusion

This research deals with the nondestructive detectionamfks in a simply-supported beam. The cracked beam
is modeled by taking into account the flexibility due to thegemce of the open transverse crack and by reduc-
ing the second moment of area of the element at the craclasidoc
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case noise%) 2t 2! 2/ e2/
1 0 0.86 1.07  0.075 0.076
1 5 0.96 1.25 0.30 0.53
1 10 1.13 1.58 0.58 1.04
1 20 1.56 2.38 1.11 1.98
2 0 1.63 1.96  0.076 0.077
2 5 1.71 2.08 0.30 0.53
2 10 1.83 2.31 0.58 1.03
2 20 217 2.94 1.12 1.98

Table 6: Errors (in %) before (subscriptand after (subscripf) the updating process for casesnd?2 with
sensors irb displacements and with various levels of noise

case noise%) Assumedu Estimated: Error (%)

1 0 0.5000 0.5001 0.02
1 5 0.5000 0.5164 3.28
1 10 0.5000 0.5340 6.8
1 20 0.5000 0.5662 13.24
2 0 0.7000 0.7001 0.01
2 5 0.7000 0.7084 1.2
2 10 0.7000 0.7170 2.43
2 20 0.7000 0.7343 4.9

Table 7: Comparison of the assumed and identified non-dimesiscrack depthu for casesl and 2 with
sensors irh displacements and with various levels of noise
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Figure 8: Local errors in the 30 elements (normalized to tighdst value) and evolution of the error in the
crack’s depth for Case 1 with noisy measurements and onlyfivié sensors in one direction
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Figure 10: Comparison of the frequency response functivedi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and tdated model (red dotted-dashed lines), obtained at
Elements for Case 1 without noise
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Figure 11: Comparison of the frequency response functivedi€al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and tdated model (red dotted-dashed lines), obtained at
Element5 for Case 1 withb% random noise
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Figure 12: Comparison of the frequency response functigagi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and thdated model (red dotted-dashed lines), obtained at
Element5 for Case 1 with10% random noise
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Figure 13: Comparison of the frequency response functigagi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and thdated model (red dotted-dashed lines), obtained at
Element5 for Case 1 witl20% random noise
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Figure 14: omparison of the frequency response functioesti¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and tdateg model (red dotted-dashed lines), obtained at
Element5 for Case 2 without noise
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Figure 15: Comparison of the frequency response functivedi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and tdated model (red dotted-dashed lines), obtained at
Element5 for Case 2 withb% random noise
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Figure 16: Comparison of the frequency response functigagi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and thdated model (red dotted-dashed lines), obtained at
Element5 for Case 2 with10% random noise
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Figure 17: Comparison of the frequency response functigagi¢al direction) for the cracked model (solid
line), the reference healthy model (dashed lines) and thdated model (red dotted-dashed lines), obtained at
Element5 for Case 2 witl20% random noise
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The damage assessment technique, based on the CRE updetimagimnd a crack depth error function, was de-
veloped in order to identify the crack’s location and its domensional size. The effectiveness of the proposed
method is demonstrated through numerical simulationswivg different crack locations and nondimensional
crack depths. These examples show that the identificatidgheo€rack’'s parameters can be carried out with
satisfactory precision even when the crack is located neayde of a vertical or horizontal mode or when
the nondimensional crack depth is small. Moreover, theseltsedemonstrate the robustness of the technique
when 20% uniformly distributed noise is added to the simaitet and less than 5% of the displacements are
measured.

The results obtained with this robust damage detection ¢ooibining a model error estimator and model
updating procedure (proposed by Ladeveze and co-workdr2[]), and the use of antiresonant frequencies
(proposed by Dilena and Morassi [11]) are encouraging. Theqalure for determining the crack’s location
and depth appears to be both simple and general. Future wdikecus on assessing the effectiveness and
limitations of the method based on more complex illusteatxamples (3D structures with beam networks).
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