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Rotational dynamics of a soft filament: wrapping transition and propulsive forces
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We analyze experimentally the shape of a long elastic filament rotating in a viscous liquid. We
identify a continuous but sharp transition from a straight to an helical shape, resulting from the
competition between viscous stresses and elastic forces. This induced helicity generates a propulsive
force along the axis of rotation. In addition, we show that the shape transition is associated with
an unstable branch in the force-torque relation, confirming the numerical predictions of Manghi
et al. [13]. A linearized model of the fluid-structure interaction is proposed to account for all the
features of the non-linear filament dynamics.

Many cells use the beating of elastic filaments to swim
or to pump fluids [1]. Prominent examples are the swim-
ming of sperm cells which propel themselves by excit-
ing propagative deformations along a single flagellum [2],
and the pumping of liquid by the helical motion of cilia
on embryo nodal cells [3]. Since the pioneering work of
Taylor in the early 50s, the observation of these fasci-
nating biological machines has inspired numerous stud-
ies on the fluid-structure interaction of flexible filaments
with viscous flows. Moreover, recent advances in the con-
struction of complex colloidal assembly [4, 5] and in the
coupling of biological machines to artificial microstruc-
tures [7] should allow man-made swimmers to catch up
with microorganisms. A promising example has already
been proposed by Dreyfus et.al. who have quantitavely
studied the propulsion of the first artificial flexible micro-
swimmer [6]. So far, special attention has been paid to
the thrust produced by the periodic and planar oscilla-
tions of an isolated flagella [6, 8, 9, 10, 11, 12]. However,
in the last two years, a set of numerical and theoretical
works [13, 14] has been devoted to another propulsion
mechanism, the rotation of a single tilted flexible rod.

In this paper we present an experimental realization
of this system. We show that, increasing the angular ve-
locity, ω, the filament undergoes a sharp but continuous
shape transition from a linear to an helical shape tightly
wrapped around the rotation axis. We show that this
collapse of the flexible rod is solely ruled by the interplay
between the elastic forces and the viscous drag acting
on it. The relation between the filament shape, the ax-
ial force and the rotation torque acting on the filament
is investigated using a high resolution imaging method
and described quantitatively thanks to a simple model of
the fluid-structure interaction. We also give experimental
evidence that a torque-controlled rotation should lead to
strongly non linear and unstable filament dynamics [13].

We rotate a flexible filament immersed in a transparent
plexiglas tank (dimensions 20 x 20 x 20 cm3) filled with
pure glycerin. The shear viscosity, η, of the glycerin has
been systematically measured prior to each experiment.
We did not measure any change due to possible tempera-

FIG. 1: Top left: front and side view of a rotating filament.
Right: reconstructed 3D shape of the filament (solid line) and
slope at the anchoring point (dashed line). Bottom left: pro-
jection of the filament shape in the (x, y) plane perpendicular
to the rotation axis (solid line) and slope at the anchoring
point (dashed line).

ture or hygroscopic variations: η = 1 Pa.s. The filaments
are made of a low modulus polyvinylsiloxane elastomer.
Glass capillary tubes are filled with a mixture of poly-
mer and curing agent containing dispersed iron carbonyl
particles intended to match the density of glycerin. Once
the polymer is cured the glass capillary is broken to re-
cover a cylindrical elastic rod of radius a = 435 µm, which
length varies from 2 cm to 10 cm. The Young’s modulus
E = 0.7 MPA of each rod was measured by dynamical
mechanical analysis. The filaments are then attached to
the axis of an electric motor delivering a discrete set of
rotation speeds ranging from 0.01 to 10 rpm through a
gear box. In all our experiments, the motor axis and
the filament at rest make an angle θ of 15◦. We simul-
taneously take pictures of the rotating filaments in two
perpendicular directions with a 6 MPixels digital camera
(Nikon D70). Eventually, we use a correlation algorithm
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FIG. 2: Polar angle in the (x, y) plane (circles) and distance
to the axis (diamonds) of the free end of the filament as a
function of the dimensionless angular velocity Sp. Solid lines
are solutions of the linearized deformation equation. Dashed
lines: analytical solution in the low and high Sp limits, see
main text. On top, corresponding shapes of the rotating fil-
ament (superimposed pictures at different times within a pe-
riod).

to detect the coordinates of the two corresponding pro-
jected profiles, which allows for the determination of the
full 3D shape of the distorted rods with a submillimeter
accuracy, Figure 1. After a transient regime the rotating
filament reaches a stationary shape and undergoes a rigid
body rotation. The shortest rods are hardly deformed by
the viscous flow even when the rotation speed is increased
by 3 orders of magnitude. They rapidly adopt a slightly
chiral shape close to the initial straight and tilted con-
formation. The rods with intermediate lengths display a
continuous but sharp transition from an almost straight
to an helical shape when increasing the angular velocity,
figure 2. The longest rods are significantly bent by the
viscous drag; after a long transient regime (∼ 1 hour),
they are tightly wrapped around the rotation axis even
at the slowest rotation speed. In all that follows, we re-
strain our attention only to the final stationary shapes.

To go beyond the above qualitative observations, the
dimensionless distance to the rotation axis, d(L)/L and
the polar angle φ(L) of the rod end are plotted in fig-
ure 2 as a function of the non dimensional rotation speed
Sp ≡ ωη⊥L4/κ. Sp is commonly referred to as the sperm
number, it compares the period of angular rotation to the

FIG. 3: Sketch of the filament deformations in the (x,z) and
(y,z) planes illustrating the definition of the displacement
field r(s) = (r1(s), r2(s)). Solid lines: filament shape in 3D.
Dashed lines: undeformed filament. Dotted lines: projections
of the filament on the (x,z) and (y,z) planes.

elasto-viscous relaxation time, τ = η⊥L4/κ, of the bend-
ing mode of wavelength L [9, 15], where κ = πEa4/4 is
the bending modulus of the filament and η⊥ is the drag
coefficient for normal motion. First of all, it is worth
noticing that all the experimental data collapse on the
same master curve, which implies that the deformation
of the rods results from the competition between viscous
and elastic forces.

At low Sp, the polar angle φ(L) increases linearly with
ω whereas d(L)/L remains constant over more than two
decades. Above Sp ≈ 10, the variation of the polar angle
becomes much weaker. Conversely, the distance to the
rotation axis drops down to a very small value. Surpris-
ingly, a quantitative description of this wrapping tran-
sition can be performed ignoring both geometrical non-
linearities and long-range hydrodynamic coupling. To
determine the filament shape we compute the elastic and
the viscous forces acting on the flexible rod. Using a local
drag description the viscous force is

fv = (η‖ − η⊥)(t.v)t + η⊥v, (1)

with t the tangent vector, η⊥ = 4πη/
[

log(L/a) + 1

2

]

and η‖ = 2πη/
[

log(L/a) − 1

2

]

the drag coefficients in
the slender body approximation [16]. The elastic force
fe derives from the bending energy functional writ-
ten within the small deformations approximation E =
1

2

∫

κ(∂2

sr)
2 ds, with s the curvilinear coordinate. r(s) =

(r1(s), r2(s)) is the displacement field normal to the
undeformed filament, see Figure 3. Ignoring the in-
compressibility constraint which would only add extra
nonlinear contributions to the linearized elastic force:
fe = −κ∂4

sr, the filament shape can then be exactly com-
puted by solving the force balance equation fe = −fv

in the frame rotating at ω around the z axis. Intro-
ducing the penetration length of the bending modes
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l(ω) ≡ [κ/(η⊥ω cos θ)]1/4 this equation can be written
in the compact form:

l4(ω)∂4

sr1 = −r2 − s tan θ, (2)

l4(ω)∂4

sr2 = r1. (3)

with the torque and force free conditions at s = L:
∂2

sr(L) = ∂3
sr(L) = 0 and the geometrical constraints

on the rotation axis: r(0) = ∂sr(0) = 0. The excellent
agreement between the theoretical and the measured ge-
ometrical parameters plotted in Figure 2 demonstrates
that this simplified approach correctly captures the main
features of the filament dynamics. Although this linear
equation can be solved analytically, the form of the ex-
act solution is so complex that it is not really insight-
ful. We rather detail here the two asymptotic regimes
Sp ∼ [L/l(ω)]4 ≪ 1 and Sp ∼ [L/l(ω)]4 ≫ 1 correspond-
ing to almost straight and tightly wrapped rods respec-
tively. In the limit of large l(ω) (low speeds), the solution
of the two above equations is:

r1 = −
L tan θ

120
Sp

[

20 (s/L)2 − (10s/L)3 + (s/L)5
]

(4)

r2 = O(Sp2) . (5)

It then follows that the rotation mostly bends the fil-
ament in the flow direction, the distance d(L) is thus
expected to remain constant at low speed. Conversely,
since the filament responds linearly to the viscous flow,
the wrapping angle φ ∼ r1(L)/(L sin θ) increases lin-
early with Sp: φ = (11/120)Sp. These two predic-
tions thus correctly capture the main features of two
experimental observations reported in Figure 2. In the
limit of small l(ω) (high speeds), Eqs. 2 and 3 reduce to
r2(s) = −s tan θ and r1 = 0. This immediately tells us
that the filament is now completely aligned along the ro-
tation axis in this high speed regime. More precisely, the
flow induces a strong bending of the filament but the cur-
vature is only localized in a region of length l(ω) near the
anchoring point on the z axis. This explains the surpris-
ing collapse seen in our experimental pictures, Figure 2.
Our second main objective is now to assess the impact of
this rotation-induced wrapping on the (propulsive) axial
force F created by the flow and on the torque required
to enforce the stationary rotation.

We first focus our attention on the variation of the
axial force in an angular velocity-controlled experiment.
Our accurate filament detection algorithm enables us to
measure axial force F =

∫

fv(s) · ez ds values as low as
3 nN. Contrary to what would be observed with a rigid fil-
ament, we systematically measure a non zero axial force.
Moreover the direction of the force is independent of the
sign of the angular velocity. This can be understood by
looking at the symmetry of the deformed filaments. A
positive (resp. negative) ω induces left- (resp. right-
) handed helical stationary deformations to the initially
straight flexible rods. Besides it is well known that a
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FIG. 4: Propulsive force normalized by the elastic force as
a function of Sp for three different filament lengths (trian-
gles: L= 48 mm, squares: L=52.5 mm, circles: L= 96 mm).
Dotted lines: Theoretical predictions in the low and high Sp
limits given by Eq 6 and (F/Fe ∼ Sp1/2) respectively. Solid
line: Force computed from the profiles obtained by solving
Eqs. 2and 3.

left- (resp. right-) handed chiral object rotating in the
clockwise (resp. anticlockwise) direction experiences an
upward (resp. downward) viscous force. We can thus an-
ticipate that the axial force F should increase quadrat-
ically with ω at least in the low Sp limit. Dimensional
analysis then implies that F should scale as FeSp2, where
we define the elastic force Fe ≡ κ/L2. To go beyond this
scaling prediction we can compute the total force know-
ing the filament shape in the low Sp limit thanks to our
simplified linear model (Eq. 4):

F =

(

1 −
η‖

η⊥

)

sin2 θ cos θFe

18
Sp2 + O(Sp3). (6)

This expression is in excellent agreement with our ex-
perimental findings for sperm numbers smaller than 10,
Figure 4. This figure shows that F continuously increases
with the dimensionless angular speed and reveals a sec-
ond power-law regime in the other asymptotic limit. For
Sp > 10, the force scales as F ∼ FeSp1/2. We notice
that the crossover between the two power-law behaviors
occurs in the narrow range of Sp where the filament starts
bending towards the z-axis.

Besides, we have shown that the elastic deformations
of the filament are localized over a length l(ω) in the
tightly wrapped conformations. Hence, a simple scaling
analysis predicts that the axial force experienced by the
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FIG. 5: Normalized propulsive force vs normalized torque
for three different filament lengths (triangles: L= 48 mm,
squares: L=52.5 mm, circles: L= 96 mm). Solid line: Force-
Torque relation obtained according to our linearized model.

filament should scale as F ∼ ηωl2(ω), or equivalently

F/Fe ∼ Sp1/2, which is observed in Figure 4.
We now come to our last and important results. We

have also systematically computed the viscous torque,
T , acting on the flexible rods, from the 3D shape recon-
struction: T =

∫

[fv · ez] d(s)ds, with d(s) the distance
from the z axis. In the stationary state the measured
viscous torque is equal to the torque delivered by the
motor. Hence, we can deduce the evolution of the ax-
ial force in a torque-driven experiment from this mea-
sured torque. The axial force normalized by the elastic
force is plotted versus T/Te in Figure 5, with the elastic
torque Te ≡ κ/L. Contrary to what is observed for the
force-velocity relation the axial force is a non monotonic
function of the applied torque. We stress on the surpris-
ing decrease of the force with T for T ∼ 0.2Te. This
counterintuitive behavior is actually observed for sperm
numbers for which the filament collapses on the z axis.
A decreasing branch in the torque-force diagram implies
that a torque-driven filament would undergo a discon-
tinuous structural transition. This confirms the observa-
tions made by Manghi et al. in Stokesians numerical sim-
ulations [17]. Eventually we also emphasize the remark-
able robustness of our simple modeling in accounting for
the fluid-structure interaction. This linear model yields
again an excellent prediction of these strongly nonlinear

variations of the force with the driving torque (Figure 5).

From a design perspective, the self-induced helicity of
an elastic flagellum could be an efficient strategy to drive
artificial swimmers. On the one hand, operating at a
constant rotational speed ensures a very stable swim-
ming speed. On the other hand, choosing a working point
close to the discontinuous shape transition would allow
for strong accelerations triggered by a slight variation of
the torque command. An interesting issue which goes be-
yond the scope of this paper deals with the efficiency of
such a propulsive mechanism, both in the pumping and
the swimming regimes [18].

H. Stone and R. Netz are gratefuly acknowledged for
stimulating discussions. We thank N. Champagne, E.
Läık and L. Gani for help with the experiments.

While we were completing this work, we became aware
of a very similar study from K. Breuer’s group [19].
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