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Abstract

A method for modal analysis of non-linear and non-conservative mechanical systems is
proposed. In particular, dry-friction non-linearities are considered although the method is
not restricted to these. Based on the concept of complex non-linear modes, eigensolutions
are written as generalized Fourier series and the eigenproblem is then formulated in the
frequency-domain. An alternating frequency-time domain method is used for the calcula-
tion of implicit non-linear forces. A two degrees-of-freedom example featuring dry-friction
illustrates the method and highlights the effects of dissipation on modal parameters. The
stabilizing effects of friction in presence of negative damping in the system are also addressed.

Then an application on a large-scale non-linear system consisting of a turbomachinery
blade, with dry-friction interfaces is proposed. In the latter, an original framework for
the description of two-dimensional frictional motions by complex variables is proposed and
applied, in particular, to a Dahl model. Effects of friction parameters and models on the
blade’s modal characteristics are investigated.

Keywords: Non-linear modes; Fourier methods; two-dimensional friction; Dahl model;
bladed disks

1 Introduction

Non-linear modes provide a mathematical and practical framework for the vibration analysis of
non-linear mechanical systems. Theoretical origins of this concept lies in Rosenberg’s works [1]
while many further developments have then been proposed [2, 3, 4, 5]. In this wake, various
methods of analysis (e.g., normal form [6], multiple scales [7], averaging [8, 9] or harmonic
balance [3, 10, 11]) have been used for the derivation of non-linear normal modes. However,
this has undoubtedly received little interest from engineers in the industrial community; very
likely because these developments often focus on small-size systems and/or rather academic non-
linearities. There seems to be a consensus on this issue [12] and having recourse to numerical
methods for non-linear modal analysis would probably help reducing this gap between academic
and industrial communities. Hence, dealing with large-size systems and generic (including non-
smooth) non-linearities appears to be the main challenge of any numerical methods non-linear
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modal analysis. Recently, several attempts to apply numerical methods to non-linear modal
analysis have been made. Among others, one can mention a numerical extension of the invariant
manifold approach proposed in [13], the class of asymptotic-numerical methods [14, 15] or,
recently, a shooting method combined with a continuation procedure [16]. However, the types
of non-linearities considered are still mostly limited geometric or polynomial forms, in particular
dissipative non-linearities are seldom studied.

This paper addresses this dual issue in a sense that a numerical method for non-linear modal
analysis is proposed, which is applicable to large-scale systems and to generic non-conservative
non-linearities. First, an original concept of complex non-linear modes is proposed by extension
of previous definitions [1, 4] but also by analogy with complex linear modes. This provides
a general framework for the treatment of non-linear non-conservative systems (for which the
associated autonomous systems are not representative) in terms of vibration modes. Then, the
non-linear complex eigenproblem is derived based on a definition of eigenfunctions as general-

ized Fourier series which fundamental frequency corresponds to the complex eigenvalue. This
transformation of the autonomous non-conservative dynamical system’s equations of motion
from the time-domain to the frequency-domain is done using a Fourier-Galerkin projection. It
can also be regarded as a generalization of harmonic balance methods. Motivations for us-
ing Fourier methods in the proposed approach rely, in particular, on their ability to deal with
non-smooth non-linear functions (see for example [17, 18] or recently [19]). In addition an al-
ternating frequency-time domain scheme [20] is used to transform the non-linear forces in the
frequency-domain.

Following the theoretical developments, an academic example, based on a two degrees-
of-freedom system with a dry-friction non-linearity, is proposed to validate and illustrate the
method. Several results and comparisons with time-domain analyses and forced responses are
proposed. Also, the potential stabilizing effects of friction damping are studied.

The second example concerns the dynamics of turbomachinery bladings with dry-friction
interfaces and illustrates the application of the proposed numerical method on a large-scale sys-
tem with non-smooth non-linearities. Also, studying the dynamics of such systems in terms
of non-linear modes, or more generally in a framework that is different from traditional forced
response analyses [21, 22, 19], can be regarded as a subject in itself. Actually, latter approaches,
however efficiently applied in industrial design processes [23, 24, 25], carry fundamental restric-
tions. First, other types of vibratory phenomena – such as self-excited vibration (synchronous
or non-synchronous) and aeroelastic instabilities [26, 27] – cannot be addressed by these forced
response approaches. Second, during design processes, assessment of damping performances in
contact-friction interfaces is not straightforward with forced response analyses since forcing pa-
rameters are generally not exactly known; many parametric studies are often required to achieve
a proper design. In this context, modal approaches, such as the one proposed here, are par-
ticularly relevant and can help overcoming these issues. Indeed, assessment of friction effects
on modal characteristics is straightforward as are parametric analyses. Also, non-linear modal
analysis would undoubtedly be suitable in dealing with self-excited vibration phenomena.

Furthermore, insights on friction models and on the treatment of two-dimensional frictional
motion are given on this example. First, while the Coulomb model is very popular in many ap-
plications, it can sometime be poorly representative of the experimental reality. In this context,
more sophisticated models would improve the representativeness of structural dynamics mod-
elling regarding tribological phenomena. A comparison between Coulomb and Dahl [28] models
on the considered application is then proposed. Second, the issue of two-dimensional motions
in frictional interfaces is tackled. Description of surface motions is proposed using complex
variables and this novel approach noticeably simplifies the developments.

The paper is organised into five sections; the two first are dedicated to definitions and
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formalism of the complex non-linear modal analysis method. The third illustrates it on a two
degrees-of-freedom example with a friction non-linearity. The fourth section is then dedicated
to the afore-mentioned industrial application and precedes concluding remarks.

2 Complex non-linear modes

In this first section, a extended definition of non-linear modes is proposed. It is, in essence,
related to previous definitions by Rosenberg [1], Szemplinska-Stupnicka [3] or Shaw and Pierre [4]
but is also inspired by the definition of complex modes for linear systems. A complex non-linear
mode of motion is then defined as an oscillation of the autonomous system with (potentially)
a phase difference between its degrees of freedom. This phase difference is the main difference
between complex and normal modes since the notion of unison does not appear any more. As
second order dynamical systems are considered, the motion takes place on a two-dimensional
subspace defined in the system’s phase space and is energy-dependent. Finally, and still by
analogy with linear complex modes, the eigenvalues of the characteristic equation can be defined
in the form

λ = −β + jω. (1)

In Eq. (1), ω = ω0

√

1 − ζ2 is the damped natural angular frequency, ω0 the natural angular
frequency and ζ = β/ω0 defines the modal damping ratio.

This completing definition to non-linear modes, which essentially boils down to considering a
frequency / damping–energy dependency, appears useful and relevant for practical applications
which involve non-linear dissipative systems which cannot be analysed by considering their un-
derlying conservative form. A previous work by the authors [9], in which a Bouc-Wen hysteretic
oscillator is studied using an averaging formalism and applied to energy pumping, illustrates the
pertinence of this definition.

In the following, a two degrees-of-freedom system with a friction non-linearity (see Fig. 1a)
will be considered. Its equations of motion are

m1 m2

k1 k2 kd

z

(a)

x2

fNL

(b)

Figure 1. Guiding example: (a) Oscillator with two degrees of freedom with a friction damper and (b)
hysteresis cycle for elastic Coulomb model.

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (2a)

m2ẍ2 + k2(x2 − x1) + fNL(x2, z) = 0 (2b)

The non-linear restoring force is modelled by means of an elastic Coulomb friction model

fNL = kd (x2 − z) (3a)
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for which the implicit variable z reprensents the displacement of the (massless) contact point
and is calculated in order the force not to exceed the limit Coulomb force µN . Hence we can
introduce an additional differential equation, goverging this friction restoring force:

ż =

{

0 while |fNL| < µN

ẋ2 if |fNL| = µN
(3b)

An example of hysteresis cycle, representative of this elastic Coulomb model, is shown in Fig. 1b.
Before going further into the methodology of non-linear modal analysis, we put forward

a characteristic feature of the non-linear modes of such a dissipative system, which is that
trajectories are no longer lines or curves normal to iso-energy curves but closed curves. Fig. 2
shows the trajectories of the system for fixed values of these friction parameters. These responses
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Figure 2. Trajectories of the complex non-linear modes for different amplitudes of vibration

are calculated with the method described beneath. At low levels, the trajectory looks like a
straight line due to sticking contact and the system is almost linear. When the energy level
increases, non-linear effects appear. These lead to a curvature of the trajectories on the one
hand and to their “opening” (because of the non-linear dissipation) on the other hand. A
phase difference appears between degrees-of-freedom. These effects cannot be taken into account
through the analysis of the conservative system.

3 Complex non-linear eigenproblem in the frequency-domain

Following this definition of complex non-linear modes, the complex non-linear eigenproblem
will be formulated in the frequency-domain. The developments are based on the definition of
eigenfunctions in the form of generalized Fourier series. A Fourier-Galerkin procedure is then
naturally used to derived the characteristic equation in the frequency-domain. A generic for-
mulation is obtained which is then reduced by considering systems with frequency-independent
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non-linearities (such as dry-friction). An alternating frequency-time domain scheme is finally
used for the derivation of non-linear forces in the frequency domain.

In the following, consider an autonomous dynamical system described by the second order
differential equation

mẍ + f(x, ẋ) = 0 (4)

where m is the mass matrix and f is the vector of non-linear internal forces, dependent on
displacements and velocities. Besides conservative terms, this problem includes potentially dis-
sipative terms in f . The purpose is to calculate the modes (in the sense given in section 2) of
this non-linear and non-conservative system.

3.1 Complex eigensolutions as generalized Fourier series

Given the complex eigenvalue defined by Eq. (1), we define two new time scales η = βt and
τ = ωt. While the latter is fast and refers to the time scale of oscillations, the first is slow and
corresponds their envelope modulation (variations of amplitude) due to non-conservative effects.
Then, the complex eigensolutions are expanded as

x(t) ∼ x(η, τ) =
∞

∑

p=0

∞
∑

n=−∞

x̂p,ne−pη+jnτ . (5)

The assumed form of Eq. (5) can be regarded as a generalized Fourier series and aims at
being representative of damped (i.e. pseudo-periodic) oscillations which naturally occur for
autonomous non-conservative systems.

Then, if associated with the inner product

〈g, h〉 =
1

2π

∫ ∞

0

∫ 2π

0

g(η, τ)h̄(η, τ)dτdη, (6)

the set of functions

Φ =
{

φp,n(η, τ) = e−pη+jnτ : [0,∞] × [0, 2π] → C
}∞

p,n=−∞
(7)

defines an orthogonal base for the class of pseudo-periodic functions. The Fourier components
are then given by

x̂p,n =
〈x, φp,n〉

‖φp,n‖2
(8)

The distinction between the two times scales η and τ and their independence in the series (5)
enables each oscillating harmonic to have its own rate of slow variation.

The following paragraph concerns the derivation of the complex non-linear eigenproblem
associated with this general form of eigensolutions. A degenerated form of eigensolutions and
eigenproblem is then introduced for systems with a linear dependency between the two time
scales.

3.2 Derivation of the complex non-linear eigenproblem

Thanks to Eq. (5), velocities and accelerations are formulated in the frequency-domain

ẋ(t) ∼ ẋ(η, τ) =
∂x(η, τ)

∂η

dη

dt
+

∂x(η, τ)

∂τ

dτ

dt
=

∞
∑

p=0

∞
∑

n=−∞

(−pβ + jnω) x̂p,ne−pη+jnτ (9a)
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ẍ(t) ∼ ẍ(η, τ) =
∂ẋ(η, τ)

∂η

dη

dt
+

∂ẋ(η, τ)

∂τ

dτ

dt
=

∞
∑

p=0

∞
∑

n=−∞

(−pβ + jnω)2 x̂p,ne−pη+jnτ (9b)

Substituting Eqs. (5), (9a) and (9b) in Eq. (4) gives

m

∞
∑

p=0

∞
∑

n=−∞

(−pβ + jnω)2 x̂p,nφp,n + f





∞
∑

p=0

∞
∑

n=−∞

x̂p,nφp,n, β, ω



 = 0. (10)

Then, by means of the inner product of Eq. (6), a Fourier-Galerkin projection can be applied
to Eq. (10). This leads to the complex frequency-domain weak form of the initial equation of
motion:

∀(p, n) ∈ N × Z, (−pβ + jnω)2 mx̂p,n +
〈f , φp,n〉

‖φp,n‖2
= 0. (11)

The algebraic system defined by Eq. (11) is the eigenproblem associated with the proposed
definition of complex non-linear modes. Also, while the previous developments consider infinite
series in Eqs. (5), (9a) and (9b), an approximation of these is considered for applications by
means of truncations: (p, n) ∈ [0, . . . , Np] × [−Nn, . . . , Nn].

The previous formulation of the eigenproblem is general due to the independence of time
scales. We are now interested in the particular class of systems which characteristics of dissi-
pation are independent of the frequency. For such systems, a linear dependency of attenuation
to frequency (β ∝ ω) can be stated and the attenuation of a given frequency will hence be the
same as for its harmonics. This assumption enables the generalized Fourier series of Eq. (5) to
be degenerated, taking p = |n| and eliminating one sum,

x(η, τ) =
N

∑

n=−N

x̂ne−|n|η+jnτ . (12)

The Fourier base becomes

Φr =
{

φn(η, τ) = e−nη+jnτ : [0,∞] × [0, 2π] → C
}∞

n=−∞
(13)

and using the same inner product Eq. (6), the eigenproblem reduces to

∀n ∈ [−N, . . . , N ] ,
(

−|n|2β + jnω
)2

mx̂n +
〈f , φn〉

‖φn‖2
= 0. (14)

Eqs. (11) or (14) are solved using a Newton-like solver in which, the terms 〈f , φn〉, i.e. the
non-linear terms of Eq. (4) in the frequency domain, have to be calculated. This is done by
means of an alternating frequency-time domain method adapted to the proposed formulation.

3.3 Non-linear forces calculation

For generic non-linearities, the frequency-domain components of the non-linear forces f(x, ẋ)
cannot generally be derived in closed form. To overcome this issue, an alternating frequency-
time domain scheme is used. That is, at a given iteration of the Newton-like solver, the following
process takes place.

1. Given {x̂n}n=−N,...,N , the displacements and velocities are obtained in the time domain
using Eqs. (12) and (9a),
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2. The time-domain form of f(x, ẋ) then results from applying a non-linear operator (which
depends on the considered non-linearity) to these displacements and velocities;

3. A projection on the Fourier harmonics is then carried out: 〈f , φn〉,∀n ∈ [−N, . . . , N ].

The interested reader might point out that such a process would, in practice, introduce some
difficulties in particular due to the forms of Fourier series in Eq. (12) and of the inner product,
Eq. (6), which contains an integral over infinity.

To overcome this issue, one solution is to use the AFT procedure on the underlying periodic
forms of displacements and velocities and using the associated inner product. Hence, if these
underlying periodic displacements and velocities are

x̃(β, τ) =
N

∑

n=−Nh

x̂nejnτ and ˙̃x(β, τ) =
N

∑

n=−Nh

jnωx̂nejnτ , (15)

the inner product is

〈g, h〉T =
1

2π

∫ 2π

0

g(η, τ)h̄(η, τ)dτ, (16)

and the previous AFT scheme can be applied as is. In doing so, all variables (displacements,
velocities and forces) are periodic (instead of pseudo-periodic) during the time-domain step of
the calculation. While not mandatory, this modification of AFT scheme is actually consistent
with the assumption that the non-conservative terms are not frequency-dependent since this
implies that the decrease of non-linear forces is the same as the decrease of other variables.

In the system defined by Eqs. (11) or (14), the number of unknowns is of course superior (by
two) to the number of equations. To overcome this under-determination, one need to define a
set of two free variables (or parameters) which governs all remaining dependent variables. This
is performed by defining a mode normalization.

3.4 Mode normalization

The mode normalization procedure essentially consists in defining a so-called modal amplitude.
This can be done either with respect to the total energy of the system or with respect to a chosen
coordinate. Here, the last approach is used; a control coordinate is chosen and the amplitude of
one of its harmonics defines the modal amplitude

q = qℜ + jqℑ. (17)

It has two components real and imaginary since the mode is complex. Then each eigenvector is
normalized such as

∀n ∈ [−N, . . . , N ] , x̂n = ψℜ
n qℜ + jψℑ

n qℑ. (18)

The complex eigenproblem (11) can then be solved with a continuation process on the modal
amplitude q. This complex modal amplitude actually represents the two-dimensional subspace
on which the motion takes place.

4 Application on a two degrees-of-freedom system with dry-friction

In this section, the complex non-linear modal analysis method is illustrated on the guiding ex-
ample of Fig. 1a which is mathematically described by Eqs. (2). In a second step, a comparison
with a direct time-integration will be proposed to validate the method. For validation purposes,
all the frequency-domain analyses shown beneath have been computed with fifteen harmonics.
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Thus the approximation brought by the truncation of Fourier series is minimized while the com-
putational efficiency increases. In practical applications (large-scale systems), fewer harmonics
can be retained to achieve a satisfying compromise between accuracy and computational costs.

4.1 Analysis of modal characteristics

Fig. 3 shows the evolution of the eigenfrequency and modal damping in function of the modal
amplitude for the first mode of the system. The asymptotic states with stuck friction point
(z = 0) and without friction (fNL = 0 or kd = 0) are shown as dashed and dash-dotted lines.
As the modal amplitude increases, the transition between stick and slip leads to a decrease of
the eigenfrequency. In the intermediate slip-area (amplitude around 0.06), the modal damping
reaches its maximum value. This last result is typical for systems with friction whose maximum
efficiency (in terms of damping) is obtained in partial slip areas.
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Figure 3. Eigenfrequency and modal damping as functions of the modal amplitude; ( ) non-linear
mode, ( ) and ( ) asymptotic behaviours with z = 0 and fNL = 0 respectively.

Figs. 4 represent the two-dimensional manifolds for this mode; the displacement and velocity
of the second degree of freedom are plotted as functions of the first one’s and the evolution of
the non-linear force is lastly shown. This typical geometrical illustration of non-linear modes
clearly highlights the effects of non-linearity in comparison with the equivalent linear mode. One
could in particular notice that, although surfaces of non-linear modes are tangent to those of
linear modes in small amplitudes, the transition from stick to slip states of the contact point
generates drastic and non-smooth changes in these surfaces both in shape and orientation. This
gives information about the importance of non-linear effects as the modal amplitude changes.
Change in orientation (or phase) is due to dissipative effects whereas changes in shape are due
to the non-smoothness of this friction non-linearity and to a complicated dynamical behaviour
occurring during alternating phases of stick and slip of the friction point.

8



−0.1
−0.05

0
0.05

0.1

−2

−1

0

1

2
−0.1

−0.05

0

0.05

0.1

 

x
1

dx
1
/dt

 

x 2

(a)

−0.1
−0.05

0
0.05

0.1

−2

−1

0

1

2
−3

−2

−1

0

1

2

3

x
1

dx
1
/dt

dx
2/d

t

(b)

−0.1
−0.05

0
0.05

0.1

−2

−1

0

1

2

−2

−1

0

1

2

x
2

dx
2
/dt

f N
L

(c)

Figure 4. Manifolds of first mode: (a) and (b), displacement and velocity of 2-nd DOF and (c) evolution
of non-linear force; transparent surfaces refer to the corresponding linear mode.
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4.2 Mode stability in presence of negative damping

Next, the effects of introducing a linear negative damping ratio in parallel to the first spring k1

(see Fig. 1a) are investigated. This linear damping (of viscous-type here) brings a destabilizing
effect which, depending on the state of the system, can be compensated by damping brought
by friction. More specifically, when a negative destabilizing damping is introduced, the complex
linear modes will feature eigenvalues with a positive real part and will hence be unstable. With
friction, an assessment of modal damping of the non-linear modes will enable the global stability
of a mode to be estimated. Also, limit cycles can be obtained.
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Figure 5. Case of a negative viscous damping (1%): eigenfrequency and modal damping as functions
of the modal amplitude; ( ) non-linear mode, ( ) and ( ) asymptotic behaviours with z = 0 and
fNL = 0 respectively.

For example, Fig. 5 shows the evolution of eigenfrequency and modal damping in presence of
a 1% negative damping. It is noticeable that for low or high modal amplitudes (corresponding to
asymptotic configurations of stick or total slip) the mode is unstable (modal damping is negative).
Conversely, in the intermediate zone of modal amplitude (and partial slip), the modal damping
is positive, which means that the mode is stable.

With the view on confirming these predictions of stability, a comparison has been made
between the results of a direct integration of the free system under various initial displacement
conditions and the results given by non-linear modal analysis in terms of limit cycles. This
comparison validates the proposed method for the calculation of free responses.

Fig. 6 gathers these results:

1. Low level initial condition: non-linear modal analysis predicts instability as well as direct
integration does. Indeed, the oscillations increase from the initial value, reach a limit cycle
(which corresponds to modal damping equals to zero) which is stable. This cycle is an
attractor as marked in Fig. 5.
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Figure 6. Predictions of stability; ( ) non-linear modes and ( ) direct time-integration with initial
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2. Intermediate level initial condition: modal analysis predicts a stable solution. Indeed,
modal damping is positive in this range of amplitudes and direct integration shows that
the level decreases from the initial condition and becomes stable on the limit cycle given
by the non-linear modes.

3. High level initial condition: non-linear modal analysis predicts no stable solution. This is
confirmed by time-integration since the system diverges.

4.3 Forced responses

Lastly, the use of non-linear modes to predict forced response is investigated. While the su-
perposition principle does not hold for non-linear systems, non-linear modal superposition ap-
proaches have been investigated by several authors based on the so-called single non-linear mode

method [3, 29, 11, 30]. On the considered two degrees-of-freedom example, subject to an har-
monic external force p of angular frequency Ω, modal superposition was however not applied
but the response near the resonance was approximated by a single harmonic contribution

x(t) = Re
{

ψ(q)qejΩt
}

. (19)

Substituting, Eq. (19) in Eqs. (2) and pre-multiplying by the eigenvector ψ leads to a modal
equation

(

µ(q)(ω(q) − Ω2) + 2jβ(q)ω(q)
)

q = ψ∗(q)p (20)

in which µ(q) = ψ∗(q)mψ(q) is the generalized mass and λ(q) = −β(q) + iω(q) is the complex
eigenvalue. While the set of modal parameters {λ,ψ} functions of modal amplitude q are
obtained from a multi-harmonic analysis, only the fundamental harmonic was retained for the
forced response synthesis. Details on the synthesis procedure can be found in Ref. [30].

Fig. 7 illustrates this forced response synthesis nearby the first resonance of the two degrees-
of-freedom system for several values of the forcing amplitude and shows a comparison with
responses obtained by time integration. The dash curve is the so-called backbone curved, which
corresponds to q in function of ω. While correlation is satisfying in this case even with this
single mode / single harmonic contribution, convergence can be improved in general cases by
considering higher order terms and other modes.

Further studies on forced response synthesis by non-linear modes would be interesting but
are out of the scope of the paper. The interested reader might refer to previously mentioned
references for further details.

5 Effects of friction in turbomachinery blades dynamics

This section describes an application of the proposed non-linear modal analysis method to an
industrial case-study. This consists in studying the dynamics of a compressor blade with dry-
friction at its root joint. In turbomachinery bladed-disks assemblies, dry-friction at blade root
attachments is undoubtedly a major source of damping and its assessment still remains a complex
issue [24, 31] which is difficult to address in design processes. The non-linear modal analysis
approach proposed in this paper can, in this context, provide a valuable tool for analysing friction
and contact effects in mechanical assemblies.

5.1 Model description

The finite element mesh the blade considered is shown in Fig. 8a and the first torsion mode,
which deformed shape is represented in Fig. 8b, is studied. From this FE model a Craig-Bampton
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Figure 7. Forced responses synthesis with non-linear modes and comparison with time integration:
solid lines, frequency responses obtained by non-linear modes for different levels of excitation; ( ),
backbone curve predicted by the non-linear modes; markers (◦, �, ▽, ♦), responses obtained by time
integration for each forcing amplitude.

reduced order model was built for which a set of 2× 24 nodes at the contact interfaces plus one
node (which acts as a control coordinate) at the tip trailing edge were retained. A set of normal
modes (generalized degrees of freedom) was included in order to achieve a satisfying convergence
of the reduced order model.

5.2 Friction models and two-dimensional motions description

Dry-friction is essentially a two-dimensional phenomenon. In many applications [32, 33, 34],
description of surface motions and calculation of friction forces are performed by considering two
(initially uncoupled) directions of motion and friction forces are determined by combining these,
generally through analytical treatments. An alternative is here proposed which consists in using
complex numbers to describe tangential motions. In this way, friction laws even if defined for
one-dimensional motions can be used in a straightforward manner for two-dimensional motions.
Hence, if uT,1 and uT,2 represent displacements in the two tangential directions, the associate
complex form

uT = uT,1 + juT,2 (21)

also represents this two-dimensional tangential displacement. Similar notations are used for
other quantities. As an example, if we consider the elastic Coulomb model described previously
by Eqs. (3), this definition is still valid using the complex notation and absolute values are simply
replaced by modulus. With this complex framework, practically any friction law (defined for
one-dimensional motions) can be used as is or with little changes for two-dimensional motions.

Of interest is also to investigate on the use of friction models more representative of the
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Figure 8. Compressor blade; (a) finite element mesh with retained nodes, (b) deformed shape of target
mode with fixed contact interface.

tribological phenomena. In this context, one objective is to account for microscopic motions
(microslip) using macroscopic modelling (node-to-node contact) approaches. As this is generally
not possible with a Coulomb model, a Dahl model [28] which is more sophisticated was used
and compared with the Coulomb one. The Dahl model is a differential model governed by a
differential equation

dr

dδ
= σ

(

1 −
r

Fc

sgn(δ̇)

)α

(22)

in which, r stands for the restoring force, δ is the relative tangential displacement, Fc refers to the
limit Coulomb force. The parameter σ is an equivalent stiffness coefficient and α determines the
shape of the stress-strain curve. Fig. 9a shows examples of hysteresis cycles in one-dimensional
motion for a Dahl model. This Dahl model, even if defined for one-dimensional motions, can
be directly used in two-dimensional cases if complex variables are considered. Fig. 9b illustrates
trajectories of Dahl restoring force for a two-dimensional motion of the form

δ = δ1 cos t + jδ2 sin t (23)

for increasing values of |δ1 + jδ2|. The limit force Fc is equal to 1 and trajectories are clearly
limited with this value (unit circle).

5.3 First results and convergence

In this paragraph, we show the first results on the case-study of the blade with friction at its root
and discuss the convergence of the method. Fig. 10 shows the evolution of modal parameters
(frequency and damping) in function of the modal amplitude. The elastic Coulomb model was
used here. Several results are displayed, each corresponding to a given number of harmonics
retained in the analysis.

First, concerning the modal parameters, the behaviour is quite similar (however smoother)
to that in the two degrees-of-freedom model in terms of change of the natural frequency and
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Figure 9. Friction force for a Dahl model; (a) Hysteresis cycles for ( ) α = 1 and ( ) α = 3 for a one
dimensional tangential motion, (b) Trajectories of Dahl restoring force (for α = 1) for a two-dimensional
tangential motion.

in the modal damping ratio. For low vibration amplitudes, there is very little slip and the
natural frequency remains quite constant while the modal damping rate is almost zero; which
corresponds to the asymptotic state for fixed (stuck) interfaces. In an intermediary amplitude
range, the natural frequency diminishes while the damping rate increases to its maximum level; it
is in this intermediary zone of sliding that friction damping is most effective. When the vibratory
amplitude increases so more, it was observed that the damping rate gradually diminishes while
the natural frequency still decreases asymptotically towards a sliding interfaces state.

Second, convergence of the non-linear modal analysis method is investigated on this partic-
ular example. As the basic approximation of the method is the truncation of the Fourier series,
accuracy of the solution will naturally increase as the number of terms (harmonics) in the series
increases. In Fig. 10, results for calculation from one to seven harmonics are represented. While
one harmonics is clearly insufficient, convergence seems to be reached beyond three harmonics
and the curves corresponding to five and seven harmonics are barely distinguishable. Conver-
gence on time histories for several degrees-of-freedom was also checked and similar conclusions
were found. Consequently, in the following, three harmonics were retained in order to achieve
a good compromise between accuracy and computational costs. Also, in contrast with the two
degrees-of-freedom system studied in section 4, few harmonics are necessary to achieve a satis-
fying convergence on this example. This is mostly because, due to its larger scale, this system
is globally less non-linear than the latter, while the non-linearity is the same.

5.4 Comparison of friction models and details on surface motions

Results from non-linear modal analysis with elastic Coulomb friction model and Dahl model (for
α = 1 or 2) are shown and compared in Fig. 11. While the global trends and values of modal
parameters are quite similar between these models, the most significant difference is concerns the
modal damping. Dahl models leads to higher values of modal damping. Also, the Dahl model
with α = 2 gives a smoother shape to the damping curve and dissipation due to friction is also
more important in small amplitude. These few remarks on the influence of friction models on
non-linear modal parameters demonstrate in particular the importance of modelling microslip
behaviours in such dynamical simulations.

In addition, Figs. 12 show maps of tangential displacements in the two sides of the blade root
(for 24 contacts nodes, arranged in 3 columns of 8 as in the finite elements mesh) for selected
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Figure 10. Non-linear modal analysis results and convergence; change in the natural frequency and in
modal damping depending on modal amplitude; (–◦–) one harmonic, (–�–) three harmonics, (–▽–) five
harmonics, (–♦–) seven harmonics, ( ) no slip.

values of the modal amplitude and corresponding to the calculation with the Dahl model with
α = 1. Changes in tangential motions at friction interfaces are noticeable, in particular in the
region of moderate modal amplitude. Indeed, comparing Figs. 12b and 12a, it seems that, as
modal amplitude increases, the distribution of tangential motion gets arranged such that the
displacements of all points are in the same direction. Finally, tangential motions seem to evolve
less between these two last states (Fig. 12b and 12c). It is also noticeable that the distribution
of slip in the two sides is globally similar (concerning the sliding nodes, not the direction of
sliding) whatsoever the modal amplitude is.

5.5 Example of parametric study

One of the advantages of the non-linear modal analysis method proposed here is that assess-
ment of non-linear damping is straightforward. Hence, on the considered example, the intrinsic
dissipation efficiency of the frictional joint is known without any assumption on the excitation
being required. This also makes parametric studies quite easy to undertake and their results to
interpret, thus helping significantly the designer.

As an example, we can study the sensitivity of friction damping with respect to the coefficient
of friction. On the same example, in Fig. 13 we show the change in modal data (natural frequency
and modal damping) for several friction coefficient values using the Dahl model. First, it can be
seen that the lower the friction coefficient is, the lower the sliding threshold will be. Second, the
difference between the limit values of this threshold is quite large, which highlights the sensitivity
of damping mechanisms to changes in the contact parameter. However, it can also be seen that
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Figure 11. Effects of friction model on modal parameters; ( ) Coulomb model, ( ) and ( × )
Dahl model with α = 1 and α = 2 respectively, ( ) no slip.

maximum damping rate remains practically constant.
Such parametric studies, which are necessary in the design process of turbomachinery blad-

ings (as for friction damping devices), are quite easy to undertake and the results are also easy
to interpret with the presented approach since the level of uncertainty is reduced to a mini-
mum. In particular, the proposed modal approach makes it possible to evaluate the sensitivity
of the damping properties with respect to any design (or environment) parameters without any
assumptions on the excitation. In the future, considering other environment variables, such as
fretting-wear [35, 36], as additional modal parameters can be interesting.

6 Conclusions

A non-linear modal analysis method has been proposed; it is based on the concept of complex
non-linear modes and on a frequency-domain formulation of the eigenproblem associated with
the non-conservative autonomous dynamical system. The eigensolutions are thought in the
form of generalized Fourier series which allows the treatment of non-conservative non-linearities.
Although the developments focus on the case of systems with frequency-independent dissipative
terms, the general form of the generalized Fourier series should be applicable to other class of
systems.

Thus, beyond frequencies and mode shapes, this method supplies modal damping rates which,
as other modal quantities, depend on the energy of the system. This approach appears particu-
larly relevant for systems featuring dissipative non-linearities and which cannot be represented
by an equivalent conservative (non-linear) system. Examples addressed in this work mostly deal
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Figure 12. Maps of tangential displacements; (a) modal amplitude 0.19 and scale ×1000, (b) modal
amplitude 0.29 and scale ×250, (c) modal amplitude 0.59 and scale ×100.

with friction non-linearities but the method is applicable to any generic type of non-linearities.
Large-scale systems can also be treated as demonstrated in an industrial application dealing
a turbomachinery compressor blade with dry-friction at its root interface. On this example,
a detailed description of the treatment of two-dimensional frictional motion through complex
variables is given for two particular friction models, namely Coulomb and Dahl ones.

Within this framework, many future investigations and developments can be considered
among which:

• analyses of stability and bifurcations;

• coupling of non-linear dynamics with other contact issues such as the effects of fretting-
wear which can be efficiently analysed if represented as an additional modal parameter;

• in the scope of turbomachinery applications, multi-physic coupling and non-linear aero-
mechanical analyses can be imagined.
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