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A pseudo active kinematic constraint for a biological living soft

tissue: an effect of the collagen network

Christian Bourdarias∗, Stéphane Gerbi† and Jacques Ohayon‡

Abstract

Recent studies in mammalian hearts show that left ventricular wall thickening is an important
mechanism for systolic ejection and that during contraction the cardiac muscle develops significant
stresses in the muscular cross-fiber direction. We suggested that the collagen network surrounding
the muscular fibers could account for these mechanical behaviors. To test this hypothesis we develop
a model for large deformation response of active, incompressible, nonlinear elastic and transversely
isotropic living soft tissue (such as cardiac or arteries tissues) in which we include a coupling effect
between the connective tissue and the muscular fibers. Then, a three-dimensional finite element
formulation including this internal pseudo-active kinematic constraint is derived. Analytical and
finite element solutions are in a very good agreement. The numerical results show this wall thickening
effect with an order of magnitude compatible with the experimental observations.

Keywords : Constitutive law, Finite element method, Living tissue, Hyperelasticity, Nonlinear partial
differential equations, Anisotropic material.

1 Introduction

It is known that the transverse shear along myocardial cleavage planes provides a mechanism for a
normal systolic wall thickening [14]. Indirect evidences indicate that the characteristics of the passive
extracellular connective tissue in the myocardium is an important determinant of ventricular function
([15], [23], [7]). An appropriate constitutive law for the myocardium should therefore incorporate the
most important features of its microstructure. A sound theoretical formulation for material laws of the
active myocardium is essential for an accurate mechanical analysis of the stresses in the ventricular wall
during the whole cardiac cycle. The wall stress distribution is one of the main factors governing the
myocardial energetic [25], the coronary blood flow [3], the cardiac hypertrophy [23], and the fetal heart
growth [19]. To date we do not have any reliable technique to evaluate the stress in the cardiac muscle,
therefore, mechanical models are useful in cardiology to assess the functional capacities of the human
heart. Several numerical models using a finite element (FE) analysis have been performed to simulate
the left ventricular performance ([13], [29]). The mechanical behavior of the connective tissue is often
assumed isotropic [20]. This last assumption is not in agreement with the experimental results obtained
on a sample of active myocardial rabbit tissue. Lin and Yin [15] showed that, during an active equibiaxial
stretch test, there are significant stresses developed in the cross-fiber direction (more than 40% of those
in the fiber direction) that cannot be attributed to nonparallel muscle fibers (MF).
Therefore, the purposes of this paper are to: (i) suggest a realistic pseudo-active kinematic law coupling
the passive connective tissue to the muscle fibers, which may explain the developed tension in the cross-
fiber direction observed by Lin and Yin ([15]), (ii) formulate an active three-dimensional material law for a
nonlinear hyperelastic and incompressible continuum medium, which takes care of these coupling effects,
(iii) derive the related three-dimensional finite element (FE) formulation, and (iv) test the accuracy of
the proposed numerical method.
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2 Microstructure of the cardiac tissue

2.1 Muscle fiber organization

Anatomical observations have shown that the cardiac muscle tissue has a highly specialized architecture
[26]. This structure is composed primarily of cardiac muscle cells, or myocytes, that are 80 to 100 µm
in length and are roughly cylindrical with cross-sectional dimensions of 10 to 20 µm. These cells are
arranged in a more or less parallel weave that we idealize as “muscle fibers” (MF). We shall denote the
local direction of this group of cells by the unit vector f and refer to it also as the local “fiber” direction
with the understanding that individual continuous MF do not really exist. Experimental measurements
have shown that the MF direction field defines paths on a nested family or toroidal surfaces of revolution
in the wall of the heart [26]. These results show a continuously changing orientation f of the MF through
the wall, circumferential near the midwall and progressively more inclined with respect to the equatorial
plane when moving toward either the epicardium or the endocardium.

2.2 The cardiac connective tissue organization

Myocytes and coronary blood vessels are embedded in a complex extracellular matrix which consists of
collagen and elastin, mainly. Caulfield and Janicki [2] used the scanning electron microscope (SEM) to
reveal the basic organization of this connective tissue network. Their studies on the connective tissue of
mammalian heart muscle give the description of the extracellular structures and their arrangement relative
to cardiac muscle cells. They described the three following classes of connective tissue organization: (i)
interconnections between myocytes, (ii) connections between myocytes and capillaries and, (iii) a collagen
weave surrounding group of myocytes. When viewed by SEM, groups of myocytes can be seen to be
encompassed by a rather prominent meshwork of fibrillard collagen, and short collagen struts attach the
myocytes subjacent to this meshwork to it.

Figure 1: Collagen network surrounding the myocytes.

3 Constitutive law in continuum mechanics

3.1 Coupling between muscle fibers and collagen network

Extrapolations from muscle fiber arrangement to myocardial stress are realistic when also taking account
the effect of the connective tissue. We believe that a part of that connective tissue, surrounding group of
myocytes, is responsible for active tension developed in the perpendicular direction of the muscle fibers
running on the tangential plane of the ventricular wall.
Based on the previous SEM observations, we proposed a connective tissue organization illustrated on
Figure 1. We assumed that the myocytes are roughly cylindrical and that groups of myocytes are
surrounded by inextensible collagen networks. So, during the contraction, the myocytes diameter increases
and because the collagen network is inextensible, the adjacent muscle cells become closer. Thus the
pseudo-active kinematic relation between the muscle fiber and cross-fiber extension ratios (noted λf and
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λcf , respectively) is h(λf , λcf ) = 0 with:

h(λf , λcf ) = 1 − λcf + (π − 2)(1 − λ
−1/2
f )

a

D
(1)

with D = 4a+ d where a is the initial myocyte radius and d is the distance between the two cells.

f

cf

cf’

a

d

D

D’

passive state

active state

fiber

B)

A)

Figure 2: Schematic illustration of the internal pseudo-active kinematic constraint induced by the collagen
network surrounding the myocytes. A) Before contraction. B) After or during contraction.

3.2 Constitutive law for the myocardium under internal pseudo-active kine-

matic constraint

To be consistent with our mathematical formulation, the letter Φ is used for non elastic gradient tensor
and the letter F is used for elastic gradient tensor. The activation of the muscle fibers changes the
properties of the material and at the same time contracts the muscle itself. To have a continuous elastic
description during the activation of the myocardium, we used an approach similar to the one proposed
by Chadwick [4], Ohayon and Chadwick [20], Taber [27]. From its passive zero-stress state P , the free
activation of the muscle fibers is modeled by the following two transformations (Fig.2): the first one
(from state P to virtual state A0) changes the material properties without changing the geometry, and
the second one (from A0 to A) contracts the muscle without changing the properties of the material.
Thus, the former is not an elastic deformation and is described by the gradient tensor ΦPA0

= I where
I is the identity matrix. In that first transformation, only the strain energy function is modified using
an activation function β, which may depend on the cardiac cycle time and some ionic concentration
(calcium for instance). The second transformation is an elastic deformation caused only by the active
tension delivered by the fibers and takes care of the internal kinematic constraint (Eq.(1)). This last
transformation is described by the gradient tensor FA0A. Thus the transformation from state P to state
A is a non elastic transformation (ΦPA = ΦPA0

FA0A), but can be treated mathematically as an elastic
one because ΦPA = FA0A. Finally, external loads are applied to state A deforming the body through
into C (Fig. 3).
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Figure 3: Description of the active rheology approach.

The change of the material properties of the myocardium during the cardiac cycle is described by a
parameter-dependent strain-energy function per unit volume of state P noted W (EPH):

W (EPH) = −
1

2
pH(I3(EPH) − 1) +W ∗(EPH) + δAH Wpseudo

active
(EPH) (2)

with
W ∗(EPH) = Wpas(EPH) + β W f

act(EPH) (3)

where EPH is the Green’s strain tensor at an arbitrary state H calculated from the zero strain state P
(the state H could be one of the states A0, A or C shown in figure 3), pH is the Lagrangian multiplier
resulting of the incompressibility constraint detΦPH = 1 (see [8, 16, 12]), I3(EPH) is the determinant of
the right Cauchy-Green strain tensor CPH (CPH = 2EPH + I), Wpas represents the contribution of the

surrounding collagen matrix and of the passive fiber components, W f
act arise from the active component

of the embedded muscle fibers, and β is an activation parameter equal to zero at end-diastolic state and
equal to one at end-systolic state (0 ≤ β ≤ 1). The scalar δAH is equal to one if state H is the state A

and zero if the two states H and A are distinct. The term W f
act(EPH) gives the variation of the muscle

fibers properties during the cardiac cycle. The pseudo-active strain energy function expressed in the last
term of the right hand side of the Eq.(2) is introduced in order to satisfy the kinematic condition (Eq.(1))
and is given by:

Wpseudo

active
(EPH) = −

1

2
qH h(EPH) (4)

The scalar qH introduced in Eq.(4) serves as an additional indeterminate Lagrange multiplier which
contributes to the pseudo-active stresses at state H in fiber and the cross-fiber directions, and h(EPH)
is the function defined in Eq.(1), which may be rewritten as:

h(EPH) = 1 − I
1/2
6 + (π − 2) (1 − I

−1/4
4 )

a

D
(5)

where I4 and I6 are two strain invariants given by I4(EPH) = fP ·CPH ·fP and I6(EPH) = f⊥P ·CPH ·f⊥P in
which the fiber and the perpendicular fiber directions (this last one corresponding to the direction of the
collagen struts) are respectively characterized in state P by the unit vectors fP and f⊥P . In an arbitrary
deformed state H , the direction of these two unit vectors are noted fH and f ′H and are respectively defined
by:

fH =
ΦPH · fP

‖ ΦPH · fP ‖
and f ′H =

ΦPH · f⊥P
‖ ΦPH · f⊥P ‖

.

The tensor CPH is the right Cauchy-Green strain tensor (CPH = 2EPH + I = ΦT
PHΦPH ). The

superscript ‘T ’ is used for the transpose matrix and ‖ · ‖ stands for the euclidian norm. Note that I4
and I6 are directly related respectively to the fiber and cross-fiber extension ratios (we have I4 = λ2

f and

I6 = λ2
cf ). In our notations λf is related to the fiber direction fH and λcf to the cross-fiber direction
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f ′H (Figure 2). We treat the myocardium as a homogeneous, incompressible, and hyperelastic material
transversely isotropic with respect to the local muscle fiber direction.
In this study, the passive strain-energy function is [15]

Wpas(EPH) = Cp
1 (eQ − 1) (6)

with Q = Cp
2 (I1 − 3)2 + Cp

3 (I1 − 3)(I4 − 1) + Cp
4 (I4 − 1)2 (7)

For the active strain-energy we modified the function found by Lin and Yin [15] by substracting the
“beating term” Ca

5 :

Wact(EPH) = Ca
1 (I1 − 3)(I4 − 1) + Ca

2 (I1 − 3)2 + Ca
3 (I4 − 1)2 + Ca

4 (I1 − 3) (8)

where Cp
i , i = 1, · · · , 4 and Ca

i , i = 1, · · · 4 are material constants and I1 is the first principal strain
invariant given by I1(EPH) = trCPH .
The beating term is defined as the part of the active strain-energy function responsible for the change of
geometry when the muscle is activated and submited to no external loading. To incorporate the beating
behavior, the parameter-dependent beating tension β T (0) was applied in the deformed fiber direction.
In our approach, the active loaded state C of the myocardial tissue is obtained in two steps. In the first
step and at a given degree of activation β, we derived and quantified the internal pseudo-active stresses
by looking the free contraction configuration of the tissue (state A, Figure 3). Then, in a second step
we applied the loads on the active myocardial tissue under the internal pseudo-active stresses previously
found.

Step 1: determination of the free contraction state A- During the cardiac cycle and at a given
degree of activation β, the Cauchy stress tensor in state A (noted τA) is given by:

τA = −pAI + ΦPA
∂W ∗ (EPA)

∂EPA
ΦT

PA + βT (0)fA ⊗ fA + τ
pseudo

active
A (9)

with τ
pseudo

active
A = ΦPA

∂Wpseudo

active
(EPA)

∂EPA
ΦT

PA (10)

where the symbol ⊗ denotes the tensor product. The postulated mechanical coupling law (Eq.(5)) induces,
during the contraction, a pseudo-active stress tensor:

τ
pseudo

active
A = T f

A fA ⊗ fA + T cf
A f ′A ⊗ f ′A (11)

These two stress tensor components T f
A and T cf

A are activation-dependent and behave as some internal
tensions in the fiber and cross-fiber directions of unit vectors fA and f ′A, respectively. These pseudo-active
tensions are defined by:

T f
A = 2

∂Wpseudo

active

∂I4
‖ ΦPA · fP ‖2 ; T cf

A = 2
∂Wpseudo

active

∂I6
‖ ΦPA · f⊥P ‖2 (12)

Step 2: determination of the physiological active loaded state C- These previously found internal
pseudo-active tensions T f

A and T cf
A were introduced in the expression of the stress tensor at loaded state

C. Therefore, at a given degree of activation β, the Cauchy stress tensor in the physiological state C
(noted τC) is given by:

τC = −pCI + ΦPC
∂W ∗ (EPC)

∂EPC
ΦT

PC +
(

βT (0) + T f
A

)

fC ⊗ fC + T cf
A f ′C ⊗ f ′C (13)

The suggested constitutive law for the active myocardium (Eqs.(2)-(13)) allows to simulate the left
ventricle behavior during the whole cardiac cycle. Thus, in this law: (i) the anisotropic behavior is
incorporated in the expressions of passive, active and pseudo-active strain energy functions by the terms
I4 and I6, (ii) the kinematic contraction is accounted for by a beating tension β T (0) in the fiber direction,
(iii) the change of properties is expressed by the active strain energy term βWact, and (iv) the coupling
effect between the collagen network and the MF is accounted for by the two internal pseudo-active tensions
T f

A and T cf
A in the fiber and cross fiber directions fC and f ′C , respectively.
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4 Variational formulation and finite element method

The undeformed body state P contains a volume V bounded by a closed surface A, and the arbitrary
deformed body state is, as before, noted H . The corresponding position vectors, in cartesian base unit
vectors, are R = Y ReR and r = yrer , respectively. However, we write the equations with suitable
curvilinear systems of world coordinates noted ΘA in the reference configuration (state P ) and θα in the
deformed configuration (state H): see Fig. A in appendix A. In this paper we use the same conventional
notations (Table 1 in appendix A) for vectors, tensors and coordinates systems than Costa et al. [6, 7],
where:

- Capital letters are used for coordinates and indices of tensor components associated to state P, and
lower case letters are related to state H .

- G and g are the base vectors in states P and H , respectively, for which parenthetical superscript

indicates the associated coordinate system (for example G
(x)
I = ∂R/∂XI = R

(x)
,I and g

(x)
i =

∂r/∂xi = r
(x)
,i ).

The Lagrangian formulation of the virtual works principle is given by ([6, 16])

∫

V

P IJ
H Φ·α

J ∇I(δuα) dV =

∫

V

ρ(bα − γα)δuα dV + (1 − δAH)

∫

A2

s.δu dA (14)

where P IJ
H are the components of the second Piola-Kirchhoff stress tensor at state H , PH , referred to

the base tensor G
(x)
I ⊗ G

(x)
J , Φ·α

I = ∂θα/∂XI are the components of the gradient tensor ΦPH in the

base tensor g
(θ)
α ⊗ G(x)I , δu = δuαg(θ)α is an arbitrary admissible displacement vector, ∇I(δuα) =

∂δuα/∂X
I − g

(θ)
α,I · g(θ)βδuβ are the components of the covariant differentiation vector δu in the base

vectors g(θ)α (i.e. ∇I(δu) = ∇I(δuα)g(θ)α). The previous differentiation is done with respect to the
locally orthonormal body coordinates ( XI , I = 1, 2, 3) which coincide with the local muscle fiber

direction in state P . The material density in the undeformed body state P is ρ, b = bαg
(θ)
α is the body

force vector per unit mass, γ = γαg
(θ)
α is the acceleration vector, s is the surface traction per unit area of

A, and A2 is the part of A not subject to displacement boundary conditions.The Lagrangian formulation
for incompressibility is given by

∫

V

(

det g
(x)
IJ − 1

)

p∗ dV = 0 (15)

where the metric tensor g
(x)
IJ is defined in table 1, and p∗ is an arbitrary admissible pressure. Lastly the

Lagrangian formulation for the additional pseudo-active kinematic constraint is given by

δAH

∫

V

h(I4, I6) q
∗ dV = 0 (16)

for all admissible q∗. Eqs.(14)-(15) -(16) represent the variational formulation of a system of nonlinear
partial differential equations. For an incompressible medium (detΦPH = 1), the relation between the
second Piola-Kirchoff stress tensor PH and the Cauchy stress tensor τH is ([16])

PH = Φ−1
PH . τH . (Φ−1

PH)T (17)

A complete expression of the components of PH in both states H = A and H = C are given in appendix

B. The surface traction per unit of undeformed area of A, s = sαg
(θ)
α , is a known loading boundary

which could be written using physical Cauchy stress.

4.1 Finite element approximation

Through this paper, we use a three dimensional finite element with Lagrange trilinear interpolation for
the displacements and uniform Lagrangian multipliers to compute an approximate solution of Eqs.(14)-
(15)-(16) on a rectangular mesh (see Fig. 4.1), where we neglect the acceleration and body forces (b = 0,
γ = 0). This element is commonly used and is relevant for the finite element approximation of this type
of problem where kinematics constraints must be satisfied (for more details see [18, 9, 10, 11, 5, 22]).
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Figure 4: Q1 −Q0 element for displacements, pressure and pseudo-active Lagrange multiplyer.

Let (ξK) the Lagrangian normalized finite element coordinates (Figure A), the deformed geometric coor-
dinates θα in element e are interpolated as

θα =

8
∑

n(e)=1

ψn(e)(ξ1, ξ2, ξ3) θ
α
n(e) (18)

where ψn(e) is the base function associated with the local node n(e) and θα
n(e) is the α-coordinate of the

local node n of element e.

Let Ω
n(e)
∆ be the connectivity matrix defined by

Ω
n(e)
∆ =

{

1 if ∆(n(e), e) = ∆
0 otherwise

(19)

The FE approximation of Eqs.(14)-(15)-(16) is

∑

e

8
∑

n(e)=1

Ω
n(e)
∆

∫

Ve

P IJ
H Φ·α

J ∇I(ψn(e)) dV = (1 − δAH)
∑

e

8
∑

n(e)=1

Ω
n(e)
∆

∫

A2e

sα ψn(e) dA (20)

∀e ,

∫

Ve

(

det g
(x)
IJ − 1

)

dV = 0 (21)

∀e , δAH

∫

Ve

h(I4, I6) dV = 0 (22)

with ∆ = 1, · · · ,∆max, α = 1, 2, 3, where Ve is the volume of the element e, A2e
is the part of Ae

(boundary of the element e) non subject to displacement conditions.

4.2 Finite element solution method

We proceed in two steps. The first one consists in the determination of the pseudo- active stresses T f
A

and T cf
A as functions of the activation parameter β ∈ [0, 1] by looking for the state A (δAH = 1). We

solve the system (20)-(21)-(22) with zero right hand side for (20) (free active contraction) and P IJ
A given

by Eq.(26) . The unknowns of this nonlinear system of equations are (θα
∆, pA(e), qA(e)) with α = 1, 2, 3,

∆ = 1, · · · ,∆max and e = 1, . . . , emax where emax is the total number of elements involved in the mesh.
We derive T f

A and T cf
A for a given β according to Eq.(12). Then in a next step we can compute any

physiological active loaded state C solving the system (20)-(21) with δAH = 0 and P IJ
C given by Eq.(27).

To solve the sytem in both cases we use the Powell method [21] implemented in the package minpack

[17].
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5 Results and discussion

This section is devoted to the numerical simulation of two types of material:

• a thin sample of living myocardium for which a cartesian coordinate is used,

• an active thick-walled cylinder for which cylindrical coordinate is used.

For these two simple configurations the exact displacements are solutions of a nonlinear system and can
be computed with a high degree of accuracy. A very good agreement between the exact and the computed
solutions of the finite element nonlinear system (20)-(21)-(22) is obtained. More precisely in all the cases
the L2 norm of the error is less than 10−09.

5.1 Case of a thin sample of living myocardium

We simulated the loading of a thin sample of living myocardium (1.0 × 1.0 × 0.1 cm3) in which the MF
are uniformly oriented in one direction. The coefficients involved in the strain energy-function are those
of Lin and Yin [15]: Cp

1=0.292 kPa, Cp
2=0.321, Cp

3=-0.260, Cp
4=0.201, Ca

1 =-3.870 kPa, Ca
2 =4.830 kPa,

Ca
3 =2.512 kPa and Ca

4 =0.951 kPa. For the beating tension, a good agreement between the previous
experimental results and our theoretical solution is obtained for T (0)=0.6 kPa. Nevertheless, the control
simulation was performed with a/D=0.2 and T (0)=35 kPa. This higher value of T (0) is more adapted to
the description of the left ventricular performance [19].

Influence of the collagen network on the systolic wall thickening- The free contraction test is
performed with no external displacement or force on the boundaries of the sample, but just in activating
the tissue. In this simulation we used the following activation function : β(s) = sin2(πs). Compare to the
case where the kinematic constraint is not taken into account, one can see an increase of the cross-fiber
extension ratio which is in the tangential plane of the ventricular wall (Figure 5). At the end-systolic
state (i.e. when β = 1), this ratio goes from the value 1.25 if we neglect the coupling effect, to 1.45 when
considering the kinematic constraint induced by the collagen. So, the connective tissue could account
for 16 % of normal end-systolic wall thickness. This increase is clearly dependent of the geometrical
parameter ratio a/D and the maximal beating tension T (0).
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Figure 5: Free contraction test with β(s) = sin2(πs): effect of the pseudo-active kinematic constraint.
The empty and full symbols indicate that the coupling effect is acting or not, respectively. The fiber and
cross-fiber directions are noted (f), (cf) and (cf ’) and are defined in figure 2. Arrows show the curve
modification when the pseudo-active kinematic constraint behaves.

Influence of the collagen network on the pseudo-active tension- Table 1 shows the effect of the
geometrical parameter a/D and the maximal active tension T (0), on the fiber and cross-fiber stresses
(noted σ11 and σ22, respectively). These effects were given in the case of an equibiaxial extension loading
(λf = λcf = 1.2) of an activated sample of myocardium (β = 1). These two stresses increase with
T (0), but are not very sensitive to the geometrical ratio a/D. We can observe also, that by neglecting
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the interaction between the collagen network and the MF: (i) the cross-fiber stress is not affected by
the amplitude of the beating tension, and (ii) the stress ratio σ22/σ11 decreases when T (0) increases.
These results mean that the usual strain-energy functions considered for the myocardium are not able
to generate any transverse pseudo-active tension. Moreover, the results obtained for the uniaxial tests of
an active or a passive sample, with or without the effect of the collagen on the MF, are shown in Figure
6. Because the coupling effect between the collagen and the MF is an active mechanism, the passive
stress-strain relations are not affected by the kinematic constraint. The mechanical properties of the
active tissue, in the fiber and cross-fiber directions, become comparable when the coupling effect acts.

Table 1: Effect of active tension T (0) and geometrical parameter a/D

a/d
X

X
X

X
X

X
X

X
X

X
X

X
XX

T0 (KPa)
5 15 25 35 45

σ22/σ11 (%) 50.92 53.73 57.65 60.25 61.90

0.10

σ22 (KPa) 5.94 11.44 17.78 24.32 30.88

σ22/σ11 (%) 51.44 54.56 58.60 61.30 63.01

0.15

σ22 (KPa) 5.97 11.48 17.80 24.31 30.84

σ22/σ11 (%) 51.94 55.33 59.47 62.25 64.04

0.20

σ22 (KPa) 6.00 11.51 17.79 24.25 30.73

σ22/σ11 (%) 36.78 19.88 13.62 10.36 8.36

No kinematic constraint

σ22 (KPa) 4.32 4.32 4.32 4.32 4.32
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Figure 6: Active and passive uniaxial extension tests: effect of the pseudo-active kinematic constraint.
The empty and full symbols indicate that the coupling effect is acting or not, respectively. The fiber and
cross-fiber directions noted (f) and (cf) are defined in figure 2. Arrows show the curve modification when
the pseudo-active kinematic constraint behaves.
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5.2 Case of an active thick-walled cylinder

We simulate the mechanical behaviour of an active artery under physiological blood pressure Pint. This
artery is modelled by a thick-walled cylinder with internal radius Rint = 2 mm, external radius Rext =
3.5 mm and height L = 2 cm. We assume that the medium is made of a hyperelastic anisotropic material
with fibers oriented in the circumferential direction. This simulation does not take into account all the
complexity of the structure of an artery, so the following results must be viewed as a first approach and
we focus on some qualitative aspects, particularly the wall thickening effect.

fiber

internal pressure P i

simplified model

Figure 7: a simplified model for the spatial organization of the collagen fibrils. The fibrils are oriented
in the z-direction (cf) and in the right part of the figure we suggest that the fibers are oriented in the
circumferential direction

In 1902, Bayliss suggested that the distension of the vessel by blood pressure could act as a mechanical
stimulus to the vascular smooth muscle cells, thereby contributing to their tone [1]. However, conclusive
experimental support for this concept was available only recently. We now know that the degree of vascu-
lar distension appears to be a factor of importance in determining vascular tone. We used the suggested
constitutive law to model a hypothetical autoregulation mechanism.
For this simulation, the active fiber tension as well as the rheological change are in phase with the pul-
satile pressure, and we use as input data the following functions: β(s) = sin2 πs with Pint = 8+10 sin2 πt
(Fig. 8). The resulting variations of the thick-walled cylinder radii are presented in Figures 10-11 for this
autoregulation law based on fluid pressure. The autoregulation is defined as the relationship between the
activation function β(s) and the pulsatile blood pressure Pint. Very interestingly, the results show that
the kinematics of the arterial wall may be more sensitive to the change of mechanical properties than to
the blood pressure. In other words, it appears that if there is no kinematic constraint due to the fibrils,
the internal and external radii increase when the blood pressure decreases. In fact, during this decrease
of pressure, we assume that the material becomes more compliant. Thus, the wall kinematics is mainly
driven by the change of rheology. Furthermore, although the pressure and activation are in phase, you
can create with this autoregulation law some delay in the kinematic response. Therefore we believe that
the pressure-activation interaction is a fundamental mechanism which must be well modeled to describe
accurately the behaviour of the arterial wall under physiological or pathological conditions [28, 24].
On the other hand, when the kinematic constraint is activated, we observe that the interior radius still
decreases but less than previously, due to the residual constraints T f

A and T cf
A (see Fig. 10). The more im-

portant effect is observed for the exterior radius (Fig. 11), due to a greater residual constraints T f
A and T cf

A

and the absence of exterior stress. The global result is a wall thickening effect and a contraction in the
z-direction due to the incompressibility condition (see Fig. 9)
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Figure 8: Pressure and tonus as a function of the degree of activation
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Figure 9: height of the cylinder as a function of the degree of activation
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Figure 10: interior radius of the cylinder as a function of the degree of activation
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Figure 11: exterior radius of the cylinder as a function of the degree of activation

6 Conclusion

This study shows that the connective tissue skeleton in the normal and pathological left ventricle may
have a large influence on the cardiac performance. A new constitutive law has been developed for large
deformations of an incompressible hyperelastic, and anisotropic living myocardium. This work is based
on the idea that the connective tissue is physically coupled to the muscle fibers which seems reasonable
with regard to the available observations. Nevertheless, additional experimental works must be done in
order to support this assumption and to study thoroughly the spatial organization of the myocardial
collagen fibrils under normal and pathological conditions.

A Coordinate systems

Y3

Y1 �1�3
�2 Y2 Fiber

X1X3X2�1�2 �3

Figure 12: Coordinate systems (adapted from Costa et al. [6]).
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Table 2: Notations for the coordinate systems used to formulate the finite element method (adapted from
Costa et al. [6]). (I) Rectangular cartesian reference coordinates, (II) Curvilinear world coordinates, (III)
Normalized finite element coordinate, (IV) Locally orthonormal body/fiber coordinates (adapted from
Costa et al. [6]).

State Indices Coord.
Covariant Contravariant

Metric tensors
basis vectors basis vectors

P R,S Y R eR eR δRS δRS

(I)
C r, s yr er er δrs δrs

P A, B ΘA G
(θ)
A =

∂R

∂ΘA
G(θ)A G

(θ)
AB G(θ)AB

(II)

C α, β θα g
(θ)
α =

∂r

∂θα
g(θ)α g

(θ)
αβ g(θ)αβ

(III) P K, L ξK G
(ξ)
K =

∂R

∂ξK
G(ξ)K G

(ξ)
KL G(ξ)KL

P I, J XI G
(x)
I =

∂R

∂XI
G(x)I G

(x)
IJ = δIJ G(x)IJ = δIJ

C g
(x)
I =

∂r

∂XI
g

(x)I
g
(x)
IJ g(x)IJ

B Second Piola-Kirchoff stress tensor at states A and C

In the case of the free contraction state A, using Eqs.(4)-(13)-(10)-(17), we can write the components

P IJ
A of the second Piola-Kirchoff stress tensor PA in the state A base tensor (G

(x)
I ⊗ G

(x)
J )A under the

form:

P IJ
A = −pA g

(x)IJ + 2G(x)IJ W ∗

1 + (2W ∗

4 − qA h4) f
(x)I
P f

(x)J
P

+β T (0)f
(x)I
A f

(x)J
A − qA h6 f

⊥(x)I
P f

⊥(x)J
P

while in the case of the active loaded state C, using Eq.(9)-(17), the components P IJ
C of PC in the state

C base tensor (G
(x)
I ⊗ G

(x)
J )C are

P IJ
C = −pC g

(x)IJ + 2G(x)IJ W ∗

1 + 2W ∗

4 f
(x)I
P f

(x)J
P

+(β T (0) + T f
A) f

(x)I
C f

(x)J
C + T cf

A f
′(x)I
C f

′(x)J
C

where W ∗

i =
∂W ∗

∂Ii
=
∂Wpas

∂Ii
+ β

∂W f
act

∂Ii
+ δAH

∂Wpseudo

active

∂Ii
i = 1, 4 (23)

and hi =
∂h(I4, I6)

∂Ii
i = 4, 6 (24)

f
(x)I
P , f

⊥(x)I
P are respectively the components of the unit vectors fP , f⊥P in the base (G

(x)
I , I = 1, 2, 3)

and f
(x)I
H , f

′(x)I
H with H = A or C, are respectively the components of the unit vectors fH , f ′H in the base
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(g
(x)
I , I = 1, 2, 3). The metric tensors G(x)IJ , g(x)IJ are defined in table 1.

Following the definition of the locally orthonormal body/fiber coordinate system we have f
(x)I
P = δ1I and

f
⊥(x)I
P = δ2I . On the other hand the vectors fH and f ′H are respectively defined through:

fH =
ΦPH fP

‖ ΦPH fP ‖
=

f
(x)I
P g

(x)
I

‖ f
(x)I
P g

(x)
I ‖

and f ′H =
ΦPHf⊥P

‖ ΦPHf⊥P ‖
=

f
⊥(x)I
P g

(x)
I

‖ f
⊥(x)I
P g

(x)
I ‖

(25)

thus f
(x)I
H =

δ1I

‖ g
(x)
1 ‖

and f
′(x)I
H =

δ2I

‖ g
(x)
2 ‖

and we get finaly:

P IJ
A = −pA g

(x)IJ + 2G(x)IJ W ∗

1 + (2W ∗

4 − qA h4) δ
1Iδ1J

+β T (0) δ1Iδ1J

‖ g
(x)
1 ‖2

− qA h6 δ
2Iδ2J (26)

and

P IJ
C = −pC g

(x)IJ + 2G(x)IJ W ∗

1 + 2W ∗

4 δ
1Iδ1J

+(β T (0) + T f
A)

δ1Iδ1J

‖ g
(x)
1 ‖2

+ T cf
A

δ2Iδ2J

‖ g
(x)
2 ‖2

(27)
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