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We address the problem of achieving a photonic random laser with a cloud of cold atoms, in
which gain and scattering are provided by the same atoms. The lasing threshold can be defined
using the on-resonance optical thickness b0 as a single critical parameter. We predict the threshold
quantitatively, as well as power and frequency of the emitted light, using two different light transport
models and the atomic polarizability of a strongly-pumped two-level atom. We find a critical b0 on
the order of 300, which is within reach of state-of-the-art cold-atom experiments. Interestingly, we
find that random lasing can already occur in a regime of relatively low scattering.

PACS numbers: 42.25.Dd,42.55.Zz

Random lasing occurs when the optical feedback due
to multiple scattering in a gain medium is strong enough
so that gain in the sample volume overcomes losses
through the surface. Since its theoretical prediction by
Letokhov [1], great efforts have been made to experimen-
tally demonstrate this effect in different kinds of systems
[2, 3, 4, 5], as well as to understand the fundamentals
of random lasing [6, 7]. The broad interest of this topic
is driven by potential applications (see [8] and references
therein) and by its connections to the subject of An-
derson localization [9]. State-of-the-art random lasers
[8] are usually based on condensed matter systems, and
feedback is provided by a disordered scattering medium,
while gain is provided by an active material lying in the
host medium or inside the scatterers. In general, scatter-
ing and gain are related to different physical entities.

Another system that can be considered for achieving
random lasing is a cold atomic vapor, using magneto-
optical traps, where radiation trapping [10] as well as
lasing [11, 12] have been demonstrated. One advantage
is the ability to easily model the microscopic response
of the system components, which can be extremely valu-
able to fully understand the physics of random lasers.
However, in such system, the ability to combine gain and
multiple scattering at the same time is not obvious, as
both should be provided by the same atoms. The pur-
pose of this Letter is to address this issue quantitatively.
Note that even though new interesting features appear
when coherent feedback is involved [13], we will consider
only incoherent (intensity) feedback.

Let us first remind the Letokhov’s threshold in the gen-
eral case, before applying it to an atomic system. We
consider a homogenous, disordered and active medium
of size L. The random lasing threshold is governed by
two characteristic lengths: the scattering mean free path
ℓsc [14, 15] and the linear gain length ℓg (ℓg < 0 in the
case of absorption). In the diffusive regime, defined as
L ≫ ℓsc, the lasing threshold is reached when the un-
folded path length, L2/ℓsc, becomes larger than the gain

length. More precisely, the threshold is given by [1, 16]

Leff > βπ
√

ℓsc ℓg/3 , (1)

where β is a numerical factor that depends on the geom-
etry of the sample (β = 1 for a slab, β = 2 for a sphere),
and Leff = ηL is the effective length of the sample, tak-
ing into account the extrapolation length [14]. Another
important length scale is the extinction length, as mea-
sured by the forward transmission of a beam through the
sample, T = e−L/ℓex . The extinction length is related to
the other lengths by ℓ−1

ex = ℓ−1
sc − ℓ−1

g .
Let us consider now a homogeneous atomic vapor, con-

stituted by atoms of polarizability α(ω) at density ρ,
submitted to a homogeneous pump field. The extinc-
tion length and the scattering mean free path are related
to their corresponding cross-section σ by ℓ−1

ex,sc = ρ σex,sc,
with σex(ω) = k0×Im[α(ω)] and σsc(ω) = k4

0/6π×|α(ω)|2
[17]. As we consider only quasi-resonant light, we use
only the wave-vector k0 = ω0/c with ω0 the atomic fre-
quency. We also define a dimensionless atomic polariz-
ability α̃ such that α = α̃ × 6π/k3

0 (we omit the depen-
dence on ω in the following). As it is an intrinsic param-
eter of the cloud, it is convenient to use the on-resonance
optical thickness b0 = ρσ0L, where σ0 = 6π/k2

0 is the
resonant scattering cross-section (without pump laser).
Using these quantities, Eq. (1) reduces to

ηb0 >
βπ

√

3|α̃|2 (|α̃|2 − Im(α̃))
. (2)

Moreover, we have L/ℓsc = b0|α̃|2 and η = 1 +
2ξ/ [L/ℓsc + 2(β − 1)ξ] with ξ ≃ 0.71 for L > ℓsc [18, 19].
Note that deeply in the diffusive regime (L ≫ ℓsc), η ∼ 1.

Eq. (2) is the first result of this Letter. It shows,
in the diffusive regime, the existence of a threshold of
random lasing as soon as the medium exhibits gain, i.e.

|α̃|2−Im(α̃) > 0. This threshold is given by a critical on-
resonance optical thickness, expressed as a function of the
atomic polarizability only. Interestingly, the condition
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Im(α̃) < 0, corresponding to single-pass amplification
(T > 1), is not a necessary condition.

The previous result is general and does not depend on
a particular pumping mechanism or atomic model. Let
us now specify a gain model that will allow numerical
evaluations of the lasing threshold and of the features
of the emitted light. We shall use the simplest case of
strongly-pumped two-level atoms, for which the normal-
ized atomic polarizability at frequency ω can be written
analytically (assuming a weak “probe” intensity) [20],

α̃(δ, ∆, Ω) = −1

2

1 + 4∆2

1 + 4∆2 + 2Ω2

× (δ + i)(δ − ∆ + i/2) − Ω2δ/(2∆ − i)

(δ + i)(δ − ∆ + i/2)(δ + ∆ + i/2)− Ω2(δ + i/2)
.

(3)

In this expression, ∆ = (ωp−ω0)/Γ is the normalized de-
tuning between the pump frequency ωp and the atomic
transition ω0 of linewidth Γ, δ = (ω−ωp)/Γ is the normal-
ized detuning between the considered “probe” frequency
and the pump, and Ω is the Rabi frequency, normalized
by Γ, associated with the pump-atom interaction. For a
strong enough pumping power, this atomic polarizabil-
ity allows for single-pass gain, when Im(α̃)¡0. This gain
mechanism is referred as “Mollow gain” [12, 20] and cor-
responds to a three-photon transition (population inver-
sion in the dressed-state basis).

For each couple of pumping parameters {∆, Ω}, the use
of the polarizability (3) into the threshold condition (2)
allows to calculate the critical on-resonance optical thick-
ness b0 as a function of δ. Then, the minimum of b0 and
the corresponding δ determine the optical thickness b0cr

that the cloud must overcome to allow lasing, and the fre-
quency δRL of the random laser at threshold. The result
is presented in Fig. 1 for a spherical geometry (β = 2).
The result for b0cr is independent of the sign of ∆ and we
only show the region ∆ > 0. The minimum optical thick-
ness that allows lasing is found to be b0cr ≈ 200 and is
obtained for a large range of parameters, approximately
along the line Ω ≈ 3∆. The optimum laser-pump detun-
ing is near the gain line of the transmission spectrum,
i.e. δRL ∼ sign(∆)

√
∆2 + Ω2 (a small shift compared

to the maximum gain condition is due to the additional
constraint of combined gain and scattering).

The obtained critical optical thickness is achievable
with current technology [21], showing that random las-
ing is possible in a system of cold atoms with Mollow
gain. As this result has been obtained using the diffusion
approximation, the condition L/ℓsc = b0|α̃|2 ≫ 1 must
be satisfied. This is not the case in the full range of ran-
dom lasing parameters that we have found. For example,
with ∆ ≈ 1 and Ω ≈ 3, the critical optical thickness is
almost minimum, b0cr = 213, but L/ℓsc ≈ 0.44. In this
case, the threshold defined by Eq. (1) is at best unjusti-
fied, at worst wrong. In order to identify in Fig. 1 the
region in which the approach should be valid, we have
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FIG. 1: Threshold of random lasing based on Mollow gain
[20], calculated for each pumping parameters ∆ (detuning)
and Ω (Rabi frequency) with Eqs. (2,3). Only the ∆ > 0
part is represented. (a) Critical optical thickness b0cr to allow
lasing. (b) Detuning δRL of the random laser from the pump
frequency. The black area corresponds to a forbidden region
(no gain). The hatched part corresponds to parameters for
which the diffusion approximation is a priori not reliable.

hatched the area corresponding to L/ℓsc < 3. Note that
random lasing is still expected in this region, but for a
larger on-resonance optical thickness, that would allow
to fulfill the diffusive condition. The minimum optical
thickness in the region of parameters compatible a priori

with the diffusion approximation is 347, and is located in
the vicinity of {∆ = 1, Ω = 1.2}.

This first evaluation demonstrates the need for a more
refined transport model. In the following, we use the ap-
proach introduced in Ref. [22], that is based on the radia-
tive transfer equation (RTE). The RTE is a Boltzmann-
type transport equation [23], that has a larger range of
validity with respect to the ratio L/ℓsc than the diffusion
equation [24].

Letokhov’s diffusive theory [1, 16] and the RTE-based
theory [22] of random lasing both rely on a modal expan-
sion of the solution of the transport equation. In order to
compare the predictions of both models, we focus on the
slab geometry (β = 1) since the modal expansion of the
RTE is well known in this case [18] (to our knowledge,
no simple expansion is available for a sphere in the RTE
approach). The modal approach consists in looking for
solutions of the form

Ψs(z,u, t) = φκ,s(u) exp(iκz) exp(st) , (4)
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where Ψ(z,u, t) is the specific intensity (z is the distance
from the slab surface and u denotes a propagation di-
rection). For a given real κ, s(κ) and φκ,s form a set of
eigenvalues and eigenfunctions of the RTE. If one denotes
by s0(κ) the eigenvalue corresponding to the mode with
the longest lifetime in the passive system, a laser instabil-
ity appears when s0(κ) > 0 in the presence of gain. The
lasing threshold is defined by the condition s0(κ) = 0.
For isotropic scattering, this eigenvalue has an analytical
expression valid for κ ℓsc < π/2 [18, 22]:

s0(κ)

κ c
=

1

κ ℓg
−

(

1

κ ℓsc
− 1

tan(κ ℓsc)

)

(5)

where c is the energy velocity. For a slab of width L, the
dominant mode corresponds to κ=π/Leff =π/(L+2ξℓsc).
In practice, this determination of κ is meaningful as long
as ξ = 0.71 can be taken as a constant (independent on
L), which is the case for L > ℓsc. This condition sets the
limit of accuracy of the modal RTE approach.

The diffusive result is recovered from the RTE ap-
proach in the limit κℓsc ≪ 1 [24]. A first order expansion
of Eq. (5) yields:

s
(DA)
0 (κ)

κ c
=

1

κ ℓg
− κ ℓsc

3
, (6)

where the superscript (DA) stands for diffusion approxi-

mation. The threshold condition s
(DA)
0 (κ = π/Leff) = 0

leads to Eq. (1), with β = 1.
The comparison between the RTE and diffusive ap-

proaches deserves two comments. Firstly, the gain con-
tribution to s0(κ) (first term in Eqs. (5-6)) is the same in
both models. Secondly, the scattering contribution (sec-
ond term in Eqs. (5-6)) is larger in the RTE model by
a factor of at most 1.13 (when L ∼ ℓsc). Thus, the cor-
rection introduced by the RTE model, compared to the
diffusion approximation, is relatively small, as it corre-
sponds to an increase of η b0cr of at most a few percents.
This means that the diffusive model gives accurate results
down to L ∼ ℓsc, and that in cold atoms systems, random
lasing can occur even in a regime of low scattering.

In Fig. 2, we compare the minimum optical thick-
ness obtained with both models for the slab geometry
and with the diffusive model for the sphere geometry.
To put forward the domain of validity in each case, we
plot the results as a function of L/ℓsc. As expected, in
the range L > ℓsc the threshold predicted by the RTE
for the slab geometry is only slightly larger than the one
given by the diffusion approximation, so that the two
curves can hardly be distinguished. For the sphere ge-
ometry, we dashed the part corresponding to the domain
where the diffusive model is a priori not reliable, i.e.

L/ℓsc < 3. Nevertheless, by generalizing the conclusion
obtained with the slab geometry, we reasonably expect
the threshold to be located between 250 and 300.
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FIG. 2: Critical optical thickness for different geometries and
transport model. The lower, red curve corresponds to the slab
geometry (width L), with RTE model (continuous line) and
diffusive model (open circle). The upper, blue curve corre-
sponds to the sphere geometry (diameter L), with the diffu-
sive model. The part with L/ℓsc < 3 is dashed, as the model
may not be reliable.

Let us now turn to a first characterization of such
a random laser. An important quantity to be investi-
gated is the emitted power as a function of the pumping
power. In the stationary regime (continuous pumping)
we numerically solve the optical Bloch equations for a
strongly-pumped two-level atom (without using the weak
“probe” approximation that leads to Eq. (3)) to ob-
tain the polarizability at the lasing frequency, includ-
ing the gain saturation induced by the random laser
intensity. Above threshold, the laser intensity in the

medium I
(in)
RL ∝ |ΩRL|2 is determined by the condition

s0(κ, |ΩRL|2) = 0 (s0 would be positive without gain
saturation). The obtained intensity is analogous to the
intra-cavity intensity of a standard laser, and thus does

not correspond to the emitted power P
(out)
RL . At equilib-

rium, gain compensates losses, and P
(out)
RL is equal to the

generated power, related to the gain cross-section σg, i.e.

P
(out)
RL ∝ σg|ΩRL|2 with σg = σ0

(

|α̃|2 − Im(α̃)
)

.

In order to know if the laser signal can be extracted
from the background fluorescence, it is particularly rele-
vant to compare the emitted laser power with the pump-
induced fluorescence PFluo ∝ σ0|Ω|2/(1 + 4∆2 + 2|Ω|2).
From this, we compute the ratio

P
(out)
RL

PFluo
=

|ΩRL|2
|Ω|2

(

|α̃|2 − Im(α̃)
) (

1 + 4∆2 + 2|Ω|2
)

.

(7)
We plot the result in Fig. 3 as a function of |Ω|2, for
a pump detuning ∆ = 1. To obtain Eq. (7), we as-
sume that both pump and laser intensities are homoge-
neously distributed across the whole system. We also
consider only the optimum random laser frequency, thus
neglecting the spectral width of the random laser or any
interaction between different random laser frequencies.
Hence we neglect several effects as mode competition [25]
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FIG. 3: Continuous line: Emitted random laser power nor-
malized to the pump fluorescence power, as a function of the
pump intensity. Dashed line: Normalized laser detuning δRL.
The random medium is a spherical cloud of two level atoms
with an on-resonance optical-thickness b0 = 650.

and inelastic scattering of the laser light. Nevertheless
we think that the order or magnitude of the ratio laser-
to-fluorescence powers can be realistic for actual experi-
ments, at least as long as only one mode of the laser is
active [25]. For the chosen set of parameters, this ratio is
more than 5% and hence laser emission should be measur-
able. Its distinction from the pump-induced fluorescence
can be made by looking at the spectrum of the emitted
light. Another interesting prediction of this model is that
the laser emission frequency shifts as the pump intensity
is increased [Fig. 3]. This corresponds to the shift of the
maximum gain of the Mollow polarizability.

In summary, we have established the possibility of
achieving random lasing with cold atoms. The random
laser threshold is described by a single critical parameter,
the on-resonance optical thickness b0. In the particular
case of a gain mechanism based on a strongly-pumped
two-level atom (Mollow gain), our model predicts a crit-
ical b0 ∼ 300. Such an optical thickness is achievable
in current cold-atoms experiments, e.g. by using crossed
dipole traps [21]. We have also determined the basic fea-
tures of the emitted light above threshold, showing that
the random laser emission should be measurable.

Another interesting result is that, due to the large gain,
lasing can be obtained with a low feedback (low amount
of scattering, i.e. L ∼ ℓsc). This regime is similar to that
encountered in certain semiconductor lasers with a very
poor cavity, and is different from the working regime of
random lasers realized to date. Such a cold-atom ran-
dom laser may have peculiar properties, that makes it a
very interesting tool in the field of light propagation in
disordered amplifying media. This new regime could be
numerically investigated by RTE-based simulations [24].

Finally, let us stress that the model developed here has
several limitations, so that the numbers should be consid-
ered as first-order estimates. Firstly, we have considered
monochromatic pumping, thus neglecting inelastic scat-
tering from the pump. The inelastically-scattered pho-
tons may have a non-negligible influence on the atomic

response, as shown in [26]. Secondly, the RTE model
needs to be extended to a sphere geometry, and to a
medium with inhomogeneous density and/or pumping.
This would require a full numerical solution of coupled
RTEs for the pump and probe beams [22]. We also out-
line that the case of the Mollow gain was chosen for the
sake of simplicity, whereas other gain mechanisms might
be more adapted for the search of random lasing, such as
Raman gain or parametric gain [12]. Each gain mecha-
nism has its advantages and drawbacks, but the degrees
of freedom they offer, together with the first estimates
presented here, make us confident that the experimental
realization of a cold-atom random laser is possible with
current technology.
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