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We address the problem of achieving a photonic random laser with a cloud of cold atoms, in
which gain and scattering are provided by the same atoms. The lasing threshold can be defined
using the on-resonance optical thickness b0 as a single critical parameter. We predict the threshold
quantitatively, as well as power and frequency of the emitted light, using two different light transport
models and the atomic polarizability of a strongly-pumped two-level atom. We find a critical b0 on
the order of 300, which is within reach of state-of-the-art cold-atom experiments. Interestingly, we
find that random lasing can already occur in a regime of relatively low scattering.

PACS numbers: 42.25.Dd,42.55.Zz

Random lasing occurs when the optical feedback due
to multiple scattering (or ”radiation trapping”) in a gain
medium is strong enough so that gain in the sample vol-
ume overcomes losses through the surface. Since its theo-
retical prediction by Letokhov [1], great efforts have been
made to experimentally demonstrate this effect in differ-
ent kinds of systems [2, 3, 4, 5], as well as to understand
the fundamentals of random lasing [6, 7]. State-of-the-art
random lasers [8] are usually based on condensed matter
systems and they share a number of common features.
Feedback is provided by a disordered scattering medium,
while gain is provided by an active material, lying in the
host medium or inside the scatterers. In general, scatter-
ing and gain are related to different physical entities.

Another system that can be considered for achieving
random lasing is a cold atomic vapor, using magneto-
optical traps. Radiation trapping [9] as well as lasing
[10, 11] have been demonstrated in such a medium. One
advantage is the ability to easily characterize and model
the microscopic properties of the medium, which can be
extremely valuable to fully understand the physics of ran-
dom lasers. However, in such system, the ability to com-
bine gain and multiple scattering at the same time is not
obvious, as both should be provided by the same atoms.
The purpose of this Letter is to address this issue quanti-
tatively. Note that even though new interesting features
appear when coherent feedback is involved [12], we will
consider only incoherent (intensity) feedback.

Let us first remind the Letokhov’s threshold in the gen-
eral case, before applying it to an atomic system. We
consider a homogenous, disordered and active medium
of size L. The random lasing threshold is governed by
two characteristic lengths: the scattering mean free path
ℓsc [13, 14] and the linear gain length ℓg (ℓg < 0 in the
case of absorption). In the diffusive regime, defined as
L ≫ ℓsc, the lasing threshold is reached when the un-
folded path length, L2/lsc, becomes larger than the gain
length. More precisely, the critical length is given by

[1, 15]

Leff > βπ
√

ℓsc ℓg/3 , (1)

where β is a numerical factor that depends on the geom-
etry of the sample (β = 1 for a slab, β = 2 for a sphere),
and Leff = ηL is the effective length of the sample, tak-
ing into account the extrapolation length [13]. Another
important length scale is the extinction length, as mea-
sure by the forward transmission of a beam through the
sample, T = e−L/ℓex . The extinction length is related to
the other lengths by ℓ−1

ex = ℓ−1
sc − ℓ−1

g .
Let us consider now a homogeneous atomic vapor,

constituted by atoms of polarizability α(ω) at density
ρ, submitted to a homogeneous pump field. The ex-
tinction length at frequency ω is then given by ℓ−1

ex =
ρk × Im[α(ω)] and ℓ−1

sc = ρk × k3/6π × |α(ω)|2 [16]
(k = ω0/c is the wave number of the associated opti-
cal transition). We define a dimensionless atomic po-
larizability α̃ such that α = α̃ × 6π/k3, and omit the
dependence on ω in the following. We shall use the on-
resonance optical thickness, which is an intrinsic param-
eter of the cloud and reads b0 = ρσ0L, where σ0 = 6π/k2

is the resonant scattering cross-section (without pump
laser). Using these quantities, Eq. (1) reduces to

ηb0 >
βπ

√

3|α̃|2 (|α̃|2 − Im(α̃))
. (2)

Moreover, we have η = 1 + 2ξ/
[

b0|α̃|2 + 2(β − 1)ξ
]

with
ξ ≃ 0.71 for L > ℓsc [17, 18]. Note that deeply in the
diffusive regime (L ≫ ℓsc), η ∼ 1.

Eq. (2) is the first result of this Letter. It shows,
in the diffusive regime, the existence of a threshold of
random lasing as soon as the medium exhibits gain, i.e.

|α̃|2 − Im(α̃) > 0. This threshold is given by a critical
on-resonance optical thickness, expressed as a function
of the atomic polarizability only. Interestingly, the con-
dition Im(α̃) < 0, corresponding to a transmission larger
than one, i.e. single-pass amplification, is not a necessary
condition.
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The previous result is general and does not depend on
a particular pumping mechanism or atomic model. Let
us now specify a gain model that will allow numerical
evaluations of the lasing threshold and of the features
of the emitted light. We shall use the simplest case of
strongly-pumped two-level atoms (that exhibits ”Mollow
gain”), for which the normalized atomic polarizability at
frequency ω can be written analytically (assuming a weak
”probe” intensity) [19],

α̃(δ, ∆, Ω) = −1

2

1 + 4∆2

1 + 4∆2 + 2Ω2

× (δ + i)(δ − ∆ + i/2) − Ω2δ/(2∆ − i)

(δ + i)(δ − ∆ + i/2)(δ + ∆ + i/2)− Ω2(δ + i/2)
.

(3)

In this expression, ∆ = (ωp−ω0)/Γ is the normalized de-
tuning between the pump frequency ωp and the atomic
transition ω0 of linewidth Γ, δ = (ω−ωp)/Γ is the normal-
ized detuning between the considered ”probe” frequency
and the pump, and Ω is the Rabi frequency, normalized
by Γ, associated with the pump-atom interaction. For a
strong enough pumping power, this atomic polarizability
allows for single-pass gain, when Im(α̃)¡0 [11, 19].

For each couple of pumping parameters {∆, Ω}, the use
of the polarizability (3) into the threshold condition (2)
allows to calculate the critical on-resonance optical thick-
ness b0 as a function of δ. Then, the minimum of b0 and
the corresponding δ determine the optical thickness b0cr

that the cloud must overcome to allow lasing, and the fre-
quency δRL of the random laser at threshold. The result
is presented in Fig. 1 for a spherical geometry (β = 2).
The result for b0cr is independant of the sign of ∆ and we
only show the region ∆ > 0. The minimum optical thick-
ness that allows lasing is found to be b0cr ≈ 200 and is
obtained for a large range of parameters, approximately
along the line Ω ≈ 3∆. The optimum laser-pump detun-
ing is near the gain line of the transmission spectrum,
i.e. δRL ∼ sign(∆)

√
∆2 + Ω2 (a small shift compared

to the maximum gain condition is due to the additional
constraint of combined gain and scattering).

The obtained critical optical thickness is achievable
with current technology [20], showing that random las-
ing is possible in a system of cold atoms with Mollow
gain. As this result has been obtained using the diffusion
approximation, the condition L/ℓsc = b0|α̃|2 ≫ 1 must
be satisfied. This is not the case in the full range of ran-
dom lasing parameters that we have found. For example,
with ∆ ≈ 1 and Ω ≈ 3, the critical optical thickness is
almost minimum, b0cr = 213, but L/ℓsc ≈ 0.44. In this
case, the threshold defined by Eq. (1) is at best unjusti-
fied, at worst wrong. In order to identify in Fig. 1 the
region in which the approach should be valid, we have
hatched the area corresponding to L/ℓsc < 3. Note that
random lasing is still expected in this region, but for a
larger on-resonance optical thickness, that would allow
to fullfill the diffusive condition. The minimum optical
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FIG. 1: Threshold of random lasing based on Mollow gain
[19], calculated for each pumping parameters ∆ (detuning)
and Ω (Rabi frequency) with Eqs. (2,3). Only the ∆ > 0
part is represented. (a) Critical optical thickness b0cr to allow
lasing. (b) Detuning δRL of the random laser from the pump
frequency. The black area corresponds to a forbidden region
(no gain). The hatched part corresponds to parameters for
which the diffusion approximation is not reliable.

thickness in the region of parameters compatible a priori

with the diffusion approximation is 347, and is located in
the vicinity of {∆ = 1, Ω = 1.2}.

This first evaluation demonstrates the need for a more
refined transport model. In the following, we use the ap-
proach introduced in Ref. [21], that is based on the radia-
tive transfer equation (RTE). The RTE is a Boltzmann-
type transport equation [22], that has a larger range of
validity with respect to the ratio L/ℓsc than the diffusion
equation [23].

Letokhov’s diffusive theory [1, 15] and the RTE-based
theory [21] of random lasing both rely on a modal expan-
sion of the solution of the transport equation. In order to
compare the predictions of both models, we focus on the
slab geometry (β = 1) since the modal expansion of the
RTE is well known in this case [17] (to our knowledge,
no simple expansion is available for a sphere in the RTE
approach). The modal approach consists in looking for
solutions of the form

Ψs(z,u, t) = φκ,s(u) exp(iκz) exp(st) , (4)

where Ψ(z,u, t) is the specific intensity (z is the distance
from the slab surface and u denotes a propagation di-
rection). For a given real κ, s(κ) and φκ,s form a set of
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eigenvalues and eigenfunctions of the RTE. If one denotes
by s0(κ) the eigenvalue corresponding to the mode with
the longest lifetime in the passive system, a laser instabil-
ity appears when s0(κ) > 0 in the presence of gain. The
lasing threshold is defined by the condition s0(κ) = 0.
For isotropic scattering, this eigenvalue has an analytical
expression valid for κ ℓsc < π/2 [17, 21]:

s0(κ)

κ c
=

1

κ ℓg
−

(

1

κ ℓsc
− 1

tan(κ ℓsc)

)

(5)

where c is the energy velocity. For a slab of width
L, the dominant mode corresponds to κ = π/Leff =
π/(L + 2ξℓsc). In practice, this determination of κ is
meaningful as long as ξ = 0.71 can be taken as a con-
stant (independent on L), which is the case for L > ℓsc.
This condition sets the limit of accuracy of the modal
RTE approach.

The diffusive result is recovered from the RTE ap-
proach in the limit κℓsc ≪ 1 [23]. A first order expansion
of Eq. (5) yields:

s
(DA)
0 (κ)

κ c
=

1

κ ℓg
− κ ℓsc

3
, (6)

where the superscript (DA) stands for diffusion approxi-

mation. The threshold condition s
(DA)
0 (κ = π/Leff) = 0

leads to Eq. (1), with β = 1.
The comparison between the RTE and diffusive ap-

proaches deserves two comments. Firstly, the gain con-
tribution to s0(κ) (first term in Eqs. (5-6)) is the same in
both models. Secondly, the scattering contribution (sec-
ond term in Eqs. (5-6)) is larger in the RTE model by
a factor of at most 1.13 (when L ∼ ℓsc). Thus, the cor-
rection introduced by the RTE model, compared to the
diffusion approximation, is relatively small, as it corre-
sponds to an increase of η b0cr of at most a few percents.
This means that the diffusive model gives accurate results
down to L ∼ ℓsc, and that in cold atoms systems, random
lasing can occur even in a regime of low scattering.

In Fig. 2, we compare the minimum optical thick-
ness obtained with both models for the slab geometry
and with the diffusive model for the sphere geometry.
To put forward the domain of validity in each case, we
plot the results as a function of L/ℓsc. As expected, in
the range L > ℓsc the threshold predicted by the RTE
for the slab geometry is only slightly larger than the one
given by the diffusion approximation, so that the two
curves can hardly be distinguished. For the sphere ge-
ometry, we dashed the part corresponding to the domain
where the diffusive model is a priori not reliable, i.e.

L/ℓsc < 3. Nevertheless, by generalizing the conclusion
obtained with the slab geometry, we reasonably expect
the threshold to be located between 250 and 300.

Let us now turn to a first characterization of such a
random laser. An important quantity to be investigated
is the emitted power as a function of the pumping power.
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FIG. 2: Critical optical thickness for different geometries and
transport model. The lower, red curve corresponds to the slab
geometry (width L), with RTE model (continuous line) and
diffusive model (open circle). The upper, blue curve corre-
sponds to the sphere geometry (diameter L), with the diffu-
sive model. The part with L/ℓsc < 3 is dashed, as the model
may not be reliable.

In the stationary regime (continuous pumping) we nu-
merically solve the optical Bloch equations for a strongly-
pumped two-level atom (without using the weak ”probe”
approximation that leads to Eq. (3)) to obtain the po-
larizability at the lasing frequency, including the gain
saturation induced by the random laser intensity. Above
threshold, the laser intensity, described by its normal-
ized Rabi frequency ΩRL, is determined by cancelling s0

(that would be positive without gain saturation). The
obtained intensity is analogous to the intra-cavity inten-
sity of a standard laser, and thus does not correspond to
the emitted intensity. As gain should compensate losses,
the emitted power PRL is proportional to the gain cross-
section, i.e. PRL ∝

(

|α̃|2 − Im(α̃)
)

|ΩRL|2.
From an experimental point of view, it is particu-

larly relevant to compare the emitted laser power with
the pump-induced fluorescence, in order to know if the
laser signal can be extracted from the background fluo-
rescence. In figure 3 we plot the corresponding ratio as a
function of the squared normalized pump Rabi frequency,
for a pump detuning ∆ = 1. This ratio is estimated as

PRL

PFluo
=

(

|α̃|2 − Im(α̃)
)

|ΩRL|2

sp/ (1 + sp)
, (7)

where sp = 2|Ω|2/(1 + 4∆2) is the pump saturation
parameter. To obtain Eq. (7), we assume that both
pump and laser intensities are homogeneously distributed
across the whole system. We also consider only the op-
timum random laser frequency, thus neglecting the spec-
tral width of the random laser or any interaction between
different random laser frequencies. Hence we neglect sev-
eral effects as mode competition and inelastic scattering
of the laser light. Nevertheless we think that the order or
magnitude of the ratio laser-to-fluorescence powers can
be realistic for actual experiments. We note that, for
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FIG. 3: Continuous line: Emitted random laser power nor-
malized to the pump fluorescence power, as a function of the
pump intensity. Dashed line: Normalized laser detuning δRL.
The random medium is a spherical cloud of two level atoms
with an on-resonance optical-thickness b0 = 650.

the chosen set of parameters, this ratio is more than 5%
and hence laser emission should be measurable. Another
interesting prediction of this model is that the laser emis-
sion frequency shifts as the pump intensity is increased
[Fig. 3]. This corresponds to the shift of the maximum
gain of the Mollow polarizability.

In summary, we have established the possibility of
achieving random lasing in a cloud of cold atoms. The
random laser threshold is described by a single critical
parameter, the on-resonance optical thickness b0. In the
particular case of a gain mechanism based on a strongly-
pumped two-level atom (Mollow gain), our model pre-
dicts a critical b0 ∼ 300. Such an optical thickness is
achievable in current cold-atoms experiments [20]. We
have also determined the basic features of the emitted
light above threshold, showing that the random laser be-
havior should be measurable.

Another interesting result is that, due to the large gain,
lasing can be obtained with a low feedback (low amount
of scattering, i.e. L ∼ ℓsc). This regime is similar to that
encountered in certain semiconductor lasers with a very
poor cavity, and is different from the working regime of
random lasers realized to date. Such a cold-atom ran-
dom laser may have peculiar properties, that makes it a
very interesting tool in the field of light propagation in
disordered amplifying media. This new regime could be
numerically investigated by RTE-based simulations [23].

Finally, let us stress that the model developed here has
several limitations, so that the numbers should be consid-
ered as first-order estimates. Firstly, we have considered
monochromatic pumping, thus neglecting inelastic scat-
tering from the pump. The inelastically-scattered pho-
tons may have a non-negligible influence on the atomic
response, as shown in [24]. Secondly, the RTE model
needs to be extended to a sphere geometry, and to a
medium with inhomogeneous density in order to calcu-
late a more accurate threshold. We also outline that the

case of the Mollow gain was chosen for the sake of sim-
plicity, whereas other gain mechanisms might be more
adapted for the search of random lasing, such as Raman
gain or parametric gain [11]. Each gain mechanism has
its advantages and drawbacks, but the degrees of freedom
they offer, together with the first estimates presented
here, make us confident that the experimental realiza-
tion of a cold-atom random laser is possible with current
state-of-the-art technology.
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