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 asserting that if a, b, c are fixed coprime integers with min(a, b, c) > 1 such that a 2 +b 2 = c r for a certain odd integer r > 1, then the equation a x + b y = c z has only one solution in positive integers with min(x, y, z) > 1. Co-operation man-machine is needed for the proof.

The problem

Let a, b, c be fixed coprime integers with min(a, b, c) > 1. In 1933, Mahler [START_REF] Mahler | Zur Approximation algebraischer Zahlen I: Über den grössten Primteiler binären Formen[END_REF] developed a p-adic equivalent of the Thue-Siegel method to prove that the equation ( 1)

a x + b y = c z
has finitely many solutions (x, y, z) in positive integers. His method is ineffective in the sense that it gives no indication on the number of possible solutions for a fixed triple (a, b, c). Such an information has been obtained only in particular instances. Thus, Sierpiński [START_REF] Sierpiński | On the equation 3 x + 4 y = 5 z[END_REF] showed that (2, 2, 2) is the unique solution in positive integers to the equation 3 x + 4 y = 5 z . In the same journal, Jeśmanowicz [START_REF] Jeśmanowicz | Some remarks on Pythagorean numbers[END_REF] conjectured the unicity of the solution to Eq. (1) in case (a, b, c) is a Pythagorean triple. This conjecture is still open, despite the efforts of many authors.

In analogy to Jeśmanowicz's conjecture, Terai [START_REF] Terai | The diophantine equation a x + b y = c z[END_REF] stated that Eq. (1) always has at most one solution in positive integers. Simple examples disproving this statement have been found by Cao [START_REF] Cao | A note on the diophantine equation a x + b y = c z[END_REF], who attempted to remedy the situation by adding the hypothesis max(a, b, c) > 7. It turns out that this condition is not sufficient to entail the thought-for unicity. A family of counterexamples have been pointed out by Le [START_REF] Le | A conjecture concerning the pure exponential equation a x + b y = c z[END_REF], who also stated the following variant of Terai's conjecture.

Conjecture 1.1. For given coprime integers a, b, c > 1, the Diophantine equations (1) has at most one solution in integers x, y, z > 1.

Much work has been devoted to the case when Eq. ( 1) has a solution of the form (2, 2, r), with r greater than 1 and odd. This implies in particular that c is odd and exactly one of a, b is even. For the sake of definiteness, suppose that a is even and therefore b is odd. Most of the recent results concerns the case a ≡ 2 (mod 4), b ≡ 3 (mod 4). The conjecture is established in this case under one of the following additional hypotheses:

(α) (Terai [START_REF] Terai | Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations[END_REF]) b ≡ 3 (mod 8), b ≥ 30a and a d = -1, where d > 1 is a divisor of b and a d denotes the Jacobi symbol, (β) (Cao [4]) c is a prime power, (γ) (Cao-Dong [START_REF] Cao | On the Terai-Jeśmanowicz conjecture[END_REF]) b ≥ 25.1a, (δ) (Le [START_REF] Le | A conjecture concerning the pure exponential equation a x + b y = c z[END_REF]) c > 3 • 10 27 and r > 7200. Further partial confirmations of the conjecture are referred to in the papers cited above.

Contrary to what it is claimed in [START_REF] Le | A conjecture concerning the pure exponential equation a x + b y = c z[END_REF], the last result quoted above does not imply that the conjecture holds with the exception of finitely many pairs (c, r). One of the aims of this paper is to prove that indeed there are at most finitely many values for which the conjecture can be refuted. On the way we shall prove other results for the positive solutions to the Diophantine simultaneous equations ( 2) As a consequence of our deliberations, improvements on the results (α)-(δ) are obtained. Our proofs approach these cases from a different perspective and are much shorter than the published ones, although they involve a harder computational component. We give here a rough description of our procedure. In the hypotheses of our work, c is a sum of two coprime squares. We generate all such decompositions for c up to 4 • 10 10 with the help of Cornacchia's algorithm (see [START_REF] Nitaj | L'algorithme de Cornacchia (French)[END_REF] and [START_REF] Basilla | On the solution of x 2 + dy 2 = m[END_REF] for very simple proofs of its correctness). We notice that, when compared to the obvious method (for c fixed and 1 ≤ u < √ c test whether c -u 2 is a square), for our range of values Cornacchia's algorithm is more than ten times faster. This description is vague; details are given in the third section, after we recall classical facts, some of them going back at least to Lagrange. Additional information on the putative solutions of the Diophantine system (2) are given in Section 3. Section 4 contains the proofs of our main results, among which are the following. The last part of the paper is devoted to improvements of bounds on the parameters associated to a putative solution to system [START_REF] Basilla | On the solution of x 2 + dy 2 = m[END_REF]. They are meant to shrink the search domains for the components of a solution to a manageable size according to the present-day technology.

a 2 + b 2 = c r , a 2 + b y = c z , where (3) 
Although Terai's conjecture remains open, we have pushed the analysis further than ever before; and there is significant hope that our results can be improved by either complementing them with brand new ideas or dedicated computations.

Arithmetic restrictions

We use a result of Lagrange (1741), Leçons sur le calcul des fonctions, which makes recurrent appearance in the study of Diophantine equations, as well as in the theory of finite fields, Chebyshev polynomials and many other areas of mathematics. For the sake of completeness, we sketch its proof.

Lemma 2.1. Let X and Y two commuting indeterminates and let n ≥ 1 be a positive integer. Then

X n + Y n = ⌊n/2⌋ j=0 c n,j (-XY ) j (X + Y ) n-2j ,
where the c n,j are nonnegative integers which are defined recursively by c n,j = 0 if j < 0 or j > ⌊n/2⌋, c 1,0 = 1, c 2,0 = 1, c 2,1 = 2, and c n+1,j = c n,j + c n-1,j-1 for n ≥ 2. More precisely,

c n,j = (n -j -1)! n (n -2j)! j! .
Proof. The result is obvious for n ≤ 2, including the initial values c 1,0 = 1, c 2,0 = 1, c 2,1 = 2. The general case can be obtained by induction from the formula

X n+1 + Y n+1 = (X n + Y n )(X + Y ) -XY (X n-1 + Y n-1 ),
which implies the recursive relation

c n+1,j = c n,j + c n-1,j-1 for n ≥ 2.
By completely working out the details, one can get the closed form for the coefficients c n,j .

In the present situation, using Corollary 3.3 below, we get expressions for a, b and b y/2 . Corollary 2.2. The values of a and b satisfy a = ±u (r-1)/2 j=0 c r,j (-c) j (4v 2 ) (r-1)/2-j , b = ±v (r-1)/2 j=0 c r,j c j (-4v 2 ) (r-1)/2-j and a = ±u 1 (z-1)/2 j=0 c z,j (-c) j (4v 2 1 ) (r-1)/2-j , b y/2 = ±v 1 (z-1)/2 j=0 c z,j c j (-4v 2 1 ) (z-1)/2-j .

From the last formula it follows that b y/2 ≡ ±v 1 zc (z-1)/2 (mod v 3 1 ), in particular

p | v 1 =⇒ v p (v 1 ) ≥ y/2 ≥ 3 if gcd(p, z) = 1.

Bounds for a, b, c

From our standard hypotheses on a, b, c stated in Eq. ( 2) and (3) it follows that c ≡ 5 (mod 8). As it is well-known (see, e.g., Lemma 3.2 below), the first equation from [START_REF] Basilla | On the solution of x 2 + dy 2 = m[END_REF] implies that there exist positive integers u and v such that

(4) c = u 2 + v 2 .
By [START_REF] Cao | A note on the diophantine equation a x + b y = c z[END_REF], we also may suppose that c has at least two prime divisors. Then it is easily seen that one has c ≥ 85.

Other useful facts are given by the next result, proved in several places, for instance in [START_REF] Le | A conjecture concerning the pure exponential equation a x + b y = c z[END_REF]. Lemma 3.1. With the above notation and hypotheses, let (x, y, z) be a solution to (1) with (x, y, z) = (2, 2, r). Then x = 2, y ≡ 2 (mod 4), y ≥ 6 and z is odd.

We shall repeatedly use the well-known structure of integers satisfying the first equation from (2). Lemma 3.2. If X, Y and Z are coprime positive integers such that

X 2 + Y 2 = Z n ,
where n is an odd integer and X is even, then there exist coprime positive integers u and v, with u even and v odd, and

λ 1 , λ 2 ∈ {-1, 1} such that X + Y √ -1 = λ 1 ε n , ε = u + vλ 2 √ -1, Z = u 2 + v 2 . Moreover, if ε = |ε| e θ √ -1/2 then X = Z n/2 | cos(nθ/2)|, Y = Z n/2 | sin(nθ/2)|.
The former part is proved as in Mordell's book [17, pp.122-123]; the later assertion is an obvious consequence of the preceding formulas.

In the present case, using the relations a 2 + b 2 = c r and a 2 + b y = c z , we get exponential expressions for a, b and b y/2 .

Corollary 3.3. There are positive integers

u, v, u 1 , v 1 , with u, u 1 even and v, v 1 odd, such that c = u 2 + v 2 = u 2 1 + v 2 1 and a = 1 2 |ε r + εr | = c r/2 | cos(rξ)|, b = 1 2 |ε r -εr | = c r/2 | sin(rξ)| and a = 1 2 |ε z 1 + εz 1 | = c z/2 | cos(zξ 1 )|, b y/2 = 1 2 |ε z 1 -εz 1 | = c z/2 | sin(zξ 1 )|, where ε = u + v √ -1, ε 1 = u 1 + v 1 √ -1, tan ξ = v/u, and tan ξ 1 = v 1 /u 1 .
Let us come back to the notation of the above lemma and put ε = e iθ/2 and

α := ε/ε = u 2 -v 2 + 2uv √ -1 u 2 + v 2 e θ √ -1 .
Since α is a root of the irreducible integer polynomial

(u 2 + v 2 )T 2 -2(u 2 -v 2 )T + u 2 + v 2 , whose Mahler's measure is equal to u 2 + v 2 , the absolute logarithmic height of α is h(α) = 1 2 log(u 2 + v 2 ) = 1 2 log Z.
We also have

min{X, Y } ≥ Z n/2 π min k ′ ∈Z |nθ -k ′ π|.
Let k be an integer such that min k ′ ∈Z |nθ -k ′ π| = |nθ -kπ| and put

Λ = n log α -k log(-1). Then min{X, Y } ≥ Z n/2 π |Λ| and min{X, Y } ≥ 0.99 Z n/2 min{|Λ|, 0.001},
where Λ is a linear form in two logarithms of algebraic numbers.

3.1.

A first application of linear forms. In a number field K embedded in the complex field, containing a root of unity ζ = e iπ/m , where m is maximal, and a number α of modulus one which is not a root of unity, a linear form Λ = n log α -ikπ as above can be written as

Λ = n log α -mk log ζ.
We remark that changing α into a suitable αζ ℓ if necessary we can assume that | log α| ≤ π/(2m). We may work under this hypothesis without changing the notation because h(ζ ℓ α) = h(α).

On using the main result of Laurent-Mignotte-Nesterenko [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d'interpolation[END_REF], it is possible to prove that [START_REF] Cao | On the Terai-Jeśmanowicz conjecture[END_REF] z > 55000 implies a > c z/(2 3) .

√
On using relations a 2 + b y = c z and c = u 2 1 + v 2 1 , by a computation of a suitable continued fraction we verify that [START_REF] Cao | An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture[END_REF] for 85 ≤ c < 4 • 10 10 , z > 10 implies a > c z/(2 3) .

√
Similarly, from a 2 + b 2 = c r and c = u 2 + v 2 for some integers u, v which may be different from u 1 , v 1 , we obtain [START_REF] Chen | On the equation s 2 + y 2p = α 3[END_REF] for 85 3) .

≤ c < 4 • 10 10 , r > 10 implies b > c r/(2 √ 
This information is exploited in conjunction with the following remarks. 3) .

≥ c r/λ then yr < λz. c) If µ 1 > 0, µ 2 > 0 are such that µ 1 µ 2 ≤ 2y then a ≥ c z/µ 1 and b ≥ c r/µ 2 cannot simultaneously hold. In particular, a < c z/(2 √ 3) or b < c r/(2 √ 
Proof. a) From a ≥ c z/µ and a 2 + b 2 = c r it readily follows that c 2z/µ < c r . b) If b ≥ c r/λ then c yr/λ ≤ b y < c z .
c) The first assertion follows directly from a) and b). The last part follows from this because y ≥ 6 by Lemma 3.1.

Using this lemma, we could rule out the small values of r and z (precisely, those with 2 < r < z < 10) and prove that c cannot be comparatively small. After around two weeks of computation we could verify the following result. 

3.2.

A second application of linear forms. From now on we consider c > 4 • 10 10 without further explicitly mentioning it. In order to improve the bounds on r and z obtained in the previous subsection, we apply a very recent result of Laurent [START_REF] Laurent | Linear forms in two logarithms and interpolation determinants II[END_REF]. Lemma 3.6. Consider a nonzero linear form

Λ = b 1 log α 1 -b 2 log α 2 ,
where α 1 and α 2 are nonzero algebraic numbers, both different from 1, and b 1 and b 2 are positive integers. Put

D = [Q(α 1 , α 2 ) : Q]/[R(α 1 , α 2 ) : R]. Let K be an integer ≥ 3, L an integer ≥ 2, R 1 , R 2 , S 1 , S 2 positive integers.
Let ρ and µ be real numbers with ρ > 1 and

1/3 ≤ µ ≤ 1. Put R = R 1 + R 2 -1, S = S 1 + S 2 -1, N = KL, g = 1 4 - N 12RS , σ = 1 + 2µ -µ 2 2 , b = (R -1)b 2 + (S -1)b 1 2 K-1 k=1 k! -2/(K 2 -K)
.

Let a 1 , a 2 be positive real numbers such that

a i ≥ ρ | log α i | -log |α i | + 2D h(α i ),
for i = 1, 2. Suppose that:

(I) Card α r 1 α s 2 ; 0 ≤ r < R 1 , 0 ≤ s < S 1 ≥ L, (II) Card rb 2 + sb 1 ; 0 ≤ r < R 2 , 0 ≤ s < S 2 > (K -1)L
and also that (III)

K(σL -1) log ρ -(D + 1) log N -D(K -1) log b -gL (Ra 1 + Sa 2 ) > c(N),
where

c(N) = 2 N log N! N -N +1 e N + (e -1) N . Then |Λ ′ | ≥ ρ -µKL
, where

Λ ′ = Λ • max LSe LS|Λ|/(2b 2 ) 2b 2 , LRe LR|Λ|/(2b 1 ) 2b 1 . 
In our case α 1 = α (up to a power of for r ≥ 771.

√ -1 ), α 2 = √ -1, b 1 = r or z,
Taking into account Lemma 3.4b), one concludes that r ≤ 769. Now, combining Lemma 3.4a) and Lemma 3.4c), we see that if the system has a solution then r ≤ 769 and z ≤ 983. The detailed argument is the following: we apply Laurent's result twice, a first computation for z ≥ 985 gives an upper bound for µ 2 which combined with part a) implies r ≥ 641; then a second computation for r ≥ 641 gives an upper bound for µ 1 with µ 1 µ 2 < 12, and part c) leads to a contradiction. Thus z ≤ 983. Moreover, it is easy to check that the greater c, the better our estimates, so that the conclusion holds for all c > 4 • 10 10 .

Arguing in the same way, we can establish tighter bounds for r and z, provided a higher lower bound on y is available. 

r ≤ π/ξ -1 =⇒ b ≥ v c (r-1)/2 ≥ v c.
In particular, one gets b ≥ v c (r-1)/2 whenever r ≤ uπ/v -1.

Proof. The hypothesis 3 ≤ r ≤ π/ξ -1 implies that ξ ≤ π/4 and 3ξ ≤ rθ ≤ π -ξ, and therefore sin(rξ) ≥ sin ξ = v/ √ c. For the last part, note that the hypothesis r ≤ π/ξ-1 holds if r ≤ uπ/v-1 because 0 < ξ < tan ξ = v/u. Despite its innocuous appearance, lemma just proved plays an important role in subsequent reasonings. Thus, v ≤ 925 implies u/v > 216 (recall our standing hypothesis c > 4 • 10 10 ) and then the previous lemma gives b ≥ v c (r-1)/2 ≥ c r/3 (since 3 ≤ r). Having in view Lemma 2.1, it follows that one always has b ≥ v. Therefore, b ≥ 925.

More importantly, with the help of Lemma 3.8 we shall derive a strikingly sharp bound for the quotient y/z. Lemma 3.9. We always have In particular, it always holds y < 1778.

b ≥ π r + 1 1 + π 2 (r + 1)
Proof. From our previous study we know that

(8) b ≥ c (r-1)/2 ≥ c if (r + 1)v < πu, v otherwise.
Notice that (r + 1)v ≥ πu implies

c ≤ 1 + (r + 1) 2 π 2 v 2 , so that in all cases b satisfies b ≥ π r + 1 1 + π 2 (r + 1) 2 -1/2 √ c.
Now we consider the upper bounds for y. From 8 we get

c ≤ b if (r + 1)v < πu, v 2 + (r+1) 2 π 2 v 2 otherwise. Hence, c ≤ 1 + (r + 1) 2 π 2 b 2 .
Using the inequality b y < c z one gets

(9) y < z 2 + log (1 + (r + 1) 2 /π 2 ) log b .
If y ≤ 10 the second estimate of the lemma is trivial, hence we suppose y ≥ 14. Then r < 462, and after a simple computation we get the stated inequality.

When y is greater than 600 we know from Lemma 3.7 that r ≤ 263 and the third estimate follows. The last one is deduced by using the fact that b is at least 925 and z is less than 540 whenever y is at least 600.

3.4. Estimates on a. Our next goal is to obtain some estimates on a. Put b = c λ . The information we have up to know allows us to conclude that 1/2 -(log 1800)/ log c < λ < r/2. We use this knowledge to prove the following.

Lemma 3.10. Put a = b (y-λ ′ )/2 . Then λ ′ is positive and satisfies

λ ′ > log c log b z -r -10 -22 > 2 r 2 -10 -22 .
Proof. From the second equation in (2) we get 

c z (1 -c -z+r ) < b y < c z
λ ′ > 1 λ z -r -10 -22 ,
and in particular

λ ′ > 2 r 2 -10 -22 > 0.

Main results

Recall the result of Corollary 3.2: we have seen that

c = u 2 + v 2 = u 2 1 + v 2 1
for some positive integers, with u, u 1 even and v, v 1 odd, and that

a = 1 2 |ε r + εr | = 1 2 |ε z 1 + εz 1 |, b = 1 2 |ε r -εr |, b y/2 = 1 2 |ε z 1 -εz 1 |, where ε = u + v √ -1 and ε 1 = u 1 + v 1 √ -1.
It follows that, up to a sign, a, b and b y/2 are values of binary linear recursive sequences. If (u, v) = (u 1 , v 1 ) then the term b y/2 has no primitive divisors, so that on checking tables of binary Lucas sequences having terms without primitive divisors given in [START_REF] Bilu | Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte[END_REF] and [START_REF] Abouzaid | Les nombres de Lucas et Lehmer sans diviseurs primitifs[END_REF] we recover Cao's result [START_REF] Cao | A note on the diophantine equation a x + b y = c z[END_REF] mentioned in Introduction.

Theorem 4.1. If c is a prime power then the system (2) has no solutions subject to restrictions from (3). Now we are in a position to prove that the conjecture holds perhaps with the exception of finitely many pairs (c, r).

Subtracting the two equations from (2) results in the Diophantine equation [START_REF] Jeśmanowicz | Some remarks on Pythagorean numbers[END_REF] b y -b 2 = c z -c r .

Since 6 ≤ y and 5 ≤ z, for fixed exponents (y, r, z) one gets an algebraic curve of positive genus. The absolute irreducibility and the genus of the curve defined by Eq. ( 10) are given by a theorem of Davenport, Lewis and Schinzel [START_REF] Davenport | Equations of the form f (x)g(y)[END_REF].

Lemma 4.2. Let f (X) and g(Y ) be polynomials with integral coefficients of degree n > 1 and respectively m > 1. Let D(λ) = disc(f (X) + λ) and E(λ) = disc(g(Y ) + λ). Suppose there are at least n/2 distinct roots of D(λ) = 0 for which E(λ) = 0. Then f (X) -g(Y ) is irreducible over the complex field. Further, the genus of the curve f (x) -g(y) = 0 is positive except possibly when m = 2 or m = n = 3. Apart from these possible exceptions, the equation f (x) -g(y) = 0 has at most finitely many integral solutions.

Stickelberger's formula [START_REF] Stickelberger | Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper[END_REF] (cf. [START_REF] Swan | Factorization of polynomials over finite fields[END_REF]) for the discriminant of a trinomial gives disc(b y -b 2 + λ) = -λ y y/2 λ y/2-1 -2(y -2) y/2-1 2 , disc(c z -c r + λ) = (-1) z(z-1)/2 λ r-1 z z λ z-r -(z -r) z-r r r , so that the last quoted result applies.

Combining these classical facts with some of our results in the previous sections, we obtain the main result of the paper. Proof. For each fixed pair of odd numbers (r, z), 1 < r < z, any solution to the system (2) subject to (3) corresponds to an integer point on a curve [START_REF] Jeśmanowicz | Some remarks on Pythagorean numbers[END_REF] of positive genus. By Siegel's seminal paper [START_REF] Siegel | Über einige Anwendungen diophantischer Approximationen[END_REF], such an equation has only finitely many integral solutions. According to Lemma 3.7, in any compatible system (2) one has r < 770 and z ≤ 983. Moreover, y is bounded from above by 1800 (see Lemma 3.9). Therefore, a compatible system (2) gives rise to finitely many nonrational plane curves, each of which can have only finitely many integer points.

The case when c is the successor of a perfect square has received a lot of attention by people working on Terai's conjecture (cf. [START_REF] Cao | An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture[END_REF] and the references therein). Our next result improves on all published results on this case. Proof. We argue by reduction to absurd. Assume that c = u 2 + 1, and consequently b = ± (r-1)/2 j=0 c r,j c j (-4) (r-1)/2-j . Suppose that (x, y, z) is a solution to the simultaneous equations (2) satisfying all the conditions from (3). From Lemma 3.2 applied for n = r we know that a

+ ib = η 1 (u + η 2 i) r with η 1 , η 2 ∈ {±1}, thus a ≡ ±ru (mod u 3 ), b ≡ ± 1 - r 2 u 2 (mod u 4 ),
and it follows that

c z = a 2 + b y ≡ r 2 u 2 + 1 - 1 2 r(r -1) y u 2 ≡ 1 + z u 2 (mod u 4 ),
that is, 1 2 r(r -1) y + z ≡ r 2 (mod u 2 ). On noting that the left-hand side of this relation is greater than the right-hand side (because y ≥ 6), one obtains the first inequality from the chain (11)

u 2 + r 2 ≤ 1 2 r(r -1) y + z < 1 2 r 2 y.
The second inequality holds since z < r y/2. Indeed, c ry/2 = (a 2 + b 2 ) y/2 > a 2 + b y = c z . Since in this case u 2 ≥ 4 • 10 10 , Eq. ( 11) readily contradicts the bounds r < 770 and y < 1800 already obtained.

We are now in a position to prove Terai's conjecture when b is a prime power. The proof relies on the observation that b is of the form ±vU r , where

U r = U r (α, β) = α r -β r α -β
is the rth Lucas number associated to the pair (α,

β) = (u + v √ -1, u - v √ - 1 
). In a subsequent proof we shall use the fact that a = ±u Ũr , with Ũr = Ũr ( α, β) = αr -βr α -β the rth Lehmer number associated to the pair ( α,

β) = (u + v √ -1, -u + v √ -1). Recall that a prime divisor of U r , respectively Ũr , is called primitive if it does not divide (12) (α -β) 2 U 1 • • • U r-1 = -4v 2 U 1 • • • U r-1 , respectively (13) 
( α2 -β2 ) 2 Ũ1 • • • Ũr-1 = -16u 2 v 2 Ũ1 • • • Ũr-1 .
Bilu, Hanrot and Voutier [START_REF] Bilu | Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte[END_REF] showed that for n > 30, every nth Lucas and Lehmer number has a primitive divisor. Moreover, they and Abouzaid [START_REF] Abouzaid | Les nombres de Lucas et Lehmer sans diviseurs primitifs[END_REF] have given the complete list of n and (α, β), respectively ( α, β), for which U r (α, β) or Ũr ( α, β) does not have a primitive divisor. Theorem 4.5. If b is a prime power then the system (2) has no solutions subject to restrictions from (3).

Proof. Let p be an odd prime and s a positive integer such that b = p s . Having in view the result just proved, we conclude that if the system (2) has a solution satisfying (3), then p divides v. Therefore, either U r = 1 or its only prime divisor p is not primitive (see Eq. ( 12)). Checking the relevant tables from [START_REF] Bilu | Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte[END_REF] and [START_REF] Abouzaid | Les nombres de Lucas et Lehmer sans diviseurs primitifs[END_REF], one finds that one necessarily has r = 3, 5, 7 or 13. Moreover, when r = 3, c would result even, in contradiction to (3). For r = 5, all the candidates for (α, β) do not yield an integer value for v, while for r = 7 or 13 the resulting value for u is not integer.

To the best of our knowledge, the literature contains nothing of the kind of our next result. Theorem 4.6. If a is a prime power then the system (2) has no solutions subject to restrictions from (3).

Proof. As explained before, we use the equality a = ±u Ũr , with u ≥ 2. We proceed as in the previous proof, reasoning about the Lehmer pair ( α, β) instead of the Lucas pair (α, β). Since the differences are insignificant, the details can be safely left to the reader.

Further results

In subsequent reasonings we shall need to know that v 1 = 1. This fact follows from the following. Lemma 5.1. With the notation of the previous section we have the two following results:

min{u 1 /v 1 , v 1 /u 1 } ≤ 0.01 =⇒ r ≤ 659 and z ≤ 845 and min{u 1 /v 1 , v 1 /u 1 } ≥ 0.001856. In particular, min{u 1 , v 1 } ≥ 372.
Proof. With the notation

ε 1 = u 1 + iv 1 = |ε|e iξ 1 and ξ ′ 1 = π/2 -ξ 1 , the corresponding linear form is Λ = z(2iξ 1 ) -k(iπ/2) = z(-2iξ ′ 1 ) -k ′ (iπ/2
) and when ξ 1 or ξ ′ 1 is small we can get much better estimates in the application of Laurent's lower bound. Technically: we can take a much larger radius of interpolation and we obtain the above upper bounds for r and z.

The proof of the second result is elementary. We have a = c z/2 | cos(zξ

1 )| = c z/2 | sin(zξ ′ 1 )|. Hence the condition (z + 1)ξ 1 < π/2 implies | cos(zξ 1 )| ≥ cos(π/2 -ξ 1 ) = sin ξ 1 = v 1 √ c , where 0 < ξ 1 < tan ξ 1 = v 1 /u 1 . It follows that v 1 u 1 < π 2 × 846 = 0.001856733 . . . =⇒ a > c z/2-1 ≥ c r/2 .
Since a 2 + b 2 = c r , this is a contradiction that proves the lower bound v 1 /u 1 ≥ 0.001856. A similar reasoning leads to the inequality u 1 /v 1 ≥ 0.001856. Now, since u 2 1 + v 2 1 > 4 • 10 10 , a simple computation gives min{u 1 , v 1 } ≥ 372.

In a similar way we can prove partially analogous results concerning the pair (u, v). The following remarks are helpful when trying to further reduce the number of candidate pairs (y, z).

Remark 1. When r divides z, we may remove the multiples of 3 from this list because Mignotte and Pethő [START_REF] Mignotte | On the Diophantine equation x px = y qy[END_REF] have proved that if there are points with both coordinates greater than 1 on the curve

X m -X = Y n -Y , then gcd(m, n) = 1.
Remark 2. A deep result of Darmon and Mérel [START_REF] Darmon | Winding quotients and some variants of Fermat's last theorem[END_REF], according to which the equation X n + Y n = Z 2 has no solutions in nonzero integers when n ≥ 4, implies that gcd(y, z) ≤ 3 always holds.

Our last result is a bit surprising because it shows that the hypothesis b > a from the main results of [START_REF] Terai | Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations[END_REF], [START_REF] Cao | On the Terai-Jeśmanowicz conjecture[END_REF] (see (α) and respectively (γ) in Introduction) and [START_REF] Le | A conjecture concerning the exponential diophantine equation a x +b y = c z[END_REF] is never fulfilled (the reader is warned that in Le's paper b denotes the unique even number among a and b). In particular, y ≤ 634.

Proof. When y ≤ 10 one has c > 10 y because c > 4 • 10 10 . For the same reason, c > 2.2 y when y is between 14 and 30. It is much harder to obtain similar inequalities for higher values of y. We now prove that it always holds c > 2.1716 y . As seen above, v 1 has a prime divisor p. Recall that in Lagrange's formula given in Lemma 2.1 the coefficients for n odd are

c n,j = (n -j -1)! n (n -2j)! j! ,
where 0 ≤ j ≤ (n -1)/2, and the quotient (n -j -1)!/j! is an integer. It follows that we have

v p (c n,j ) ≥ v p (n) -v p (n -2j)! > v p (n) - n -2j p -1 ≥ v p (n) - n -2j 2 .
As p divides v 1 , it does not divide c and therefore

v p (c z,j c(-4v 2 1 ) (z-1)/2-j ) = v p (c z,j ) + (z -1 -2j)v p (v 1 ) ≥ v p (z) - 1 2 (z -1 -2j) + (z -1 -2j)v p (v 1 ) ≥ v p (z) + 1 2 (z -1 -2j)v p (v 1 ) > v p (z) for 0 ≤ j < (z -1)/2. Corollary 2.2 yields y v p (b) = 2 v p (z) + v p (v 1 ) .
Having in view the upper bounds for z given in Lemma 3.7, we see that for y ≥ 34 it holds v 3 (z) ≤ 5, and v p (z) ≤ 3 for p ≥ 5. Consequently, for p = 3 one obtains c > v 2 1 ≥ 3 y-10 ≥ 3 y(1-5/17) > 2.1716 y . For p ≥ 5 one has c > p y-6 ≥ 5 y-6 > 3 y-10 , so that the claim that c > 2.1716 y is true for any solution of the system (2) satisfying conditions [START_REF] Bilu | Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte[END_REF].

Denote provisionally µ = b 2 /c r . Then c z > b y implies that µ y/2 < c z-ry/2 ≤ c -2 < 2.1716 -2y . The inequalities relating y and z are proved in three steps. First, we show that we always have y ≤ 2z +12. Next, we disprove the equalities y = 2z +8 and y = 2z +12 by combining information already available with some more computations. Similar arguments are employed to show that one can not have y = 2z + 4 for y ≥ 34, while y = 2z follows from the result of 

Hence

  r, z > 1 are odd, a ≡ 2 (mod 4), b ≡ 3 (mod 4), and gcd(a, b) = 1.

Theorem 1 . 2 .

 12 If the Diophantine equation X x + Y y = Z z has a solution with X = a ≡ 2 (mod 4), Y = b ≡ 3 (mod 4), Z = c, x = 2, y = 2 and z = r odd, where gcd(a, b) = 1, then this is the only solution in positive integers, with the possible exception of finitely many values (c, r). Theorem 1.3. If a or b is a prime power then the system (2) has no solutions subject to restrictions from (3).

Lemma 3 . 4 .

 34 Assume both conditions (2) and (3) are fulfilled. Then: a) If for some µ > 0 one has a ≥ c z/µ then 2z < µr. b) If for some λ > 0 one has b

Lemma 3 . 5 .

 35 Assume the system of equations (2) has solutions satisfying (3). Then c > 4 • 10 10 .

and b 2

 2 = k. (To work with the linear form associated to the relation a 2 + b y = c z we only need to take above b 1 = z instead of b 1 = r.) For c = 4 • 10 10 + 5, we choose the parameters as follows: L = 8, ρ = 7.7, µ = 0.56, K = ⌈mLa 1 a 2 ⌉, R 1 = 4, S 1 = 2, R 2 = ⌈ √ mLa 2 ⌉, and S 2 = ⌈(1 + (K -1)L)/R 2 ⌉, where m = 0.1166, and we get |Λ| > c -0.2113r for r ≥ 771,

Lemma 3 . 7 . 3 . 3 .

 3733 If the Diophantine system (2) has solutions satisfying (3) then in all cases r ≤ 769 and z ≤ 983. Moreover y ≥ 10 =⇒ r ≤ 539 and z ≤ 759, y ≥ 14 =⇒ r ≤ 461 and z ≤ 681, y ≥ 18 =⇒ r ≤ 419 and z ≤ 647, y ≥ 22 =⇒ r ≤ 395 and z ≤ 627, and y ≥ 602 =⇒ r ≤ 263 and z ≤ 539. Elementary lower bounds on b. Let ε = u + iv = |ε|e iξ , where c = u 2 + v 2 , with u even, and |ε| = √ c. Then tan ξ = v/u and b = 1 2 |ε r -εr | = c r/2 | sin(rξ)|, with r ≥ 3. In this subsection we derive lower bounds on b from lower bounds on v. Lemma 3.8. With the above notation, one has

and since z ≥ r + 2

 2 this implies z log c + log(1 -c -2 ) < y log b < z log c, while the first equation in (2) and the definition of λ ′ imply (y -λ ′ ) log b < r log c. Hence z log c -10 -21 < r log c + λ ′ log b, and therefore 2 ≤ z -r < 10 -22 + λ ′ log b log c 10 -22 + λ ′ λ, by the definition of λ. In other words

Theorem 4 . 3 .

 43 If the Diophantine equation X x + Y y = Z z has a solution with X = a ≡ 2 (mod 4), Y = b ≡ 3 (mod 4), Z = c, x = 2, y = 2 and z = r odd, where gcd(a, b) = 1, then this is the only solution in positive integers, with the possible exception of finitely many values (c, r).

Theorem 4 . 4 .

 44 If in the representation for c derived from Lemma 3.2 one has v = 1, then the system (2) has no solutions subject to restrictions from (3).

Lemma 5 . 2 . 2 ( 3 .

 5223 The following implication holds min{u/v, v/u} ≤ 0.01 =⇒ r ≤ 553 and z ≤ 705. If the Diophantine system (2) has solutions satisfying (3) with b ≥ c (r-1)/which is true if v(r + 1) < πu) then y ≥ 6 =⇒ r ≤ 101 and z ≤ 299. Moreover, again under the hypothesis b ≥ c (r-1)/2 , y ≥ 10 =⇒ r ≤ 47 and z ≤ 227, y ≥ 14 =⇒ r ≤ 31 and z ≤ 209, Proof. I. Chen [7] very recently proved that for any prime satisfying the restrictions 7 < p < 10 7 and p = 31 there are no coprime integers A, B, C satisfying A 2 + B 2p = C This confirms Terai's conjecture in case z is multiple of 3 and y has a prime divisor p > 7, p = 31. The only values of the y-component in a solution of Eqs. (2)-(3) not covered by Chen's result are listed having in view Proposition 5.5.

Proposition 5 . 5 .

 55 If system (2) has solutions subject to restrictions from (3) then a > 4.608 b, c > 3 y-10 and y ≤ 2z + 4. Moreover y ≤ 2z -4 f or y ≥ 34 and y ≥ 602 =⇒ r ≤ 149 and z ≤ 319.

  , a = b µ -1 -1 > b √ 2.1716 4 -1 > 4.608 b.Since a 2 < c z-2 and c > 10 10 we have b y > (1-10 -20 )c z , and the inequality c > 2.1716 y implies b > 2.171 z .

From 2 .1

 2 the relation b y < c z , we get y = 2z + 4 =⇒ b < c 1/2-2/y . Besides we know that b< c (r-1)/2 =⇒ u < (r + 1)v/π =⇒ c < (1 + (r + 1) 2 /π 2 )v 2 .Put b = vb ′ -then b ′ is a positive integer. The above facts implyy = 2z + 4 =⇒ c < 1 bNow we consider v 1 . We have v 1 < u 1 π/(2(z + 1)/w 0 , where w 0 | gcd(z, v 2 1 ) and b = w 1 b ′′ , where b ′′ is a positive integer.If b ′ = 1, a short computer verification shows that w 1 < 9 for y ≥ 38. Since w 1 is an odd integer greater than 1, one has w 1 ∈ {3, 5, 7}. But we know that b is not a power of a prime, hence b ′ ≥ 3, with b ′ ≥ 5 when w 1 = 3. Using now b ′ ≥ 3 another computer verification leads to w 1 ∈ {3, 5} and w 1 = 3 for y ≥ 102. Now we apply again Laurent's result but with the much better lower bound c > 3 y-10 (better for y ≥ 34 than c > 4 • 10 10 ) and we get for example y ≥ 102 =⇒ r ≤ 181 and z ≤ 373, y ≥ 302 =⇒ r ≤ 157 and z ≤ 329, y ≥ 602 =⇒ r ≤ 149 and z ≤ 319. Comparing the previous estimates we conclude that we always have y ≤ 634.

  Darmon and Mérel mentioned in Remark 2. Here are the details.The bound y ≤ 2z + 12 is trivially satisfied for y ≤ 22, and for y ≥ 22 we have seen that r < 396, so that ≤ 2z + 12. To show that the equality in this relation never holds, one argues similarly to the case y = 2z + 4 for y ≥ 34 detailed below. Then one repeats the reasoning to show that y = 2z + 8, so that we always have y ≤ 2z + 4. Suppose that y = 2z + 4 for some y ≥ 34. Theorem 5.4 implies y ≥ 38 and we verify by a computation with linear form estimates that y ≥ 38 =⇒ r ≤ 239.

	y < 2z +	log 1 + 396 2 /π 2 log 2.171	< 2z + 12.5,
	which implies y		
	The upper bound		
	y < z 2 +	log (1 + (r + 1) 2 /π 2 ) log b	,

combined with the lower bound b > 2.171 z , leads to y < 2z + log (1 + (r + 1) 2 /π 2 ) log 2.171 .
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The remaining estimates result from computation with the help of lower bounds on linear forms.

It is very likely that actually there are no solutions to (2) under the conditions stated in (3). This is the case under the hypothesis of the next result.

Theorem 5.4. The system (2) has no solutions (r, y, z) subject to restrictions (3) in which z is divisible by 3 and y = 6, 10, 14, 18, 30, 42, 50, 54, 62, 70, 90, 98, 126, 150, 162, 186, 210, 250, 270, 294, 310, 350, 378, 434, 450, 486, 490, 558, 630.