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Abstract

Within the context of learning sequences of basic
tasks to build a complexr behavior, a method is pro-
posed which uses a hierarchical set of incrementally
learning agents. Fach one has to respect a particular
perceptive constraint. To do so, an agent must choose
either to execute basic tasks or to call another agent
in order to use its decision-making competences, ac-
cording to its perception. The learning procedure of
each agent is achieved by a reinforcement learning in-
spired algorithm based on an heuristic which does not
need internal parameters. A validation of the method
is given, using a stmulated Khepera robot. A hierar-
chical set of 4 agents is created. FEach one is dedicated
to the exploitation of particular perceptive data. They
use § basic tasks in order to achieve a goal-reaching
behavior which s formulated by a high level strategy
composed of logical rules using perceptive primitives.

1 Introduction.
1.1 Development context.

Within the framework of mobile robotics, it is of-
ten difficult to establish a relationship between the
data perceived by the robot and the behavior it must
achieve according to its input data.

Indeed, the perceptive data may be very noisy or
may not be interpreted easily, so that modelling the
mapping between perception and behavior could be a
very difficult task. Reinforcement learning methods [1]
have been widely used in that context [2],[3], mainly
because they do not need a prior knowledge about the
process model. Moreover, they theoretically achieve
incremental learning and they can cope with a possi-
ble inertia of the system. But finding suitable internal
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parameters for those algorithms is not intuitive and
may be a difficult task [4]. Besides, it is not easy to
find a compromise between the stability and the ro-
bustness of the algorithm and its incremental charac-
teristic. Finally, given that the reinforcement methods
need to sufficiently explore the perception space before
finding a quite good solution, learning to fit a complex
behavior in a reasonable lapse of time turns to be im-
possible without finding out some characteristics of
the process, leading to a problem with a significantly
decreased perception space. A solution could be to
divide the whole task into coordinated sub-tasks [5],
each one being easier to learn than the complex behav-
ior. However, the problem is turned into another one:
choosing to execute a precise sub-task is often tricky,
especially if the choice depends on the perceptual data
of the agent. In that case, applying a simple switching
is not generally sufficient; the agent has to learn to de-
cide which sub-task is to be executed according to its
input data. Moreover, when a failure in the learning
process occurs, one has to know if the cause of the mis-
take is due to a misleading choice of a sub-task or to an
internal deficiency of the elected sub-task unit. In the
last eventuality, it could be necessary to modify this
unit to make it avoiding the same mistake. So, it must
have the capacity to learn at anytime it is used: this is
an important focus of incremental learning methods.

1.2 Characteristics of the algorithm.

The proposed algorithm has some hard links with
the reinforcement learning concept: it is a trial /failure
method, it does not need a prior knowledge of the pro-
cess model, it copes with the temporal credit assign-
ment problem and it is incremental. However, it is not
based on an optimization method, but on the respect
of binary perceptive constraints.

The framework of the algorithm is the collective
learning of a hierarchical set of agents which aim is
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Figure 1: Diagram showing the links between one of
the agents A; and its environment.
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Figure 2: Hierarchical organization of the agents.

to respect their proper constraint given by a binary
feedback signal (fig. 1). In order to achieve their goal,
each agent may call another agent which is lower in
the hierarchy or may decide to execute one of the basic
behaviors fixed by the user before the learning process

begins.

At each time, the chained decisional process is ini-
tiated by a master agent, ending with the execution

of a basic behavior (fig. 2).

Each agent has to learn to decide according to its
current perception. To do so, an internal representa-
tion of the influence of its choices (leading to the exe-
cution of a basic task) on its perception is built on-line
by the meaning of an oriented graph which nodes are
assoclated with a particular choice and a precise per-
ceptive area. Each node has an internal binary value
related to its quality according to the respect of the
constraints of the agent. This value is obtained by
a backpropagation of the values linked to the ending
nodes of the graph (nodes associated with a failure)
using a consistency law derivated from the minimax
algorithm [6]. Here, an analogy is made with a two
player game in which the agent must use some actions
so that the response of the dynamic system (its oppo-
nent) never leads it to a losing state, that is to say a
perceptive state in which the agent does not respect
its constraints.

When a failure is given by the feedback signal of
an agent whereas the other lower level agents have
fulfilled theirs constraints, the first one attributes the
mistake to its decision.

1.3 Validation of the algorithm.

The algorithm will be applied to a general goal-
seeking problem in which the obstacle avoidance is
performed by a wall-following behavior. To do so,
the mobile robot Khepera [7] simulator written par
O.Michel [8], running on Unix-like operating systems,
will be utilized, which allows to test the robustness of
the algorithm in a very noisy perceptive data context.
The incremental capability and the learning rapidity
of the algorithm will be shown.

2 Description of the algorithm.
2.1 Context and notations.

The set of learning agents Sa = {41, Aa,..., An}
receives a data stream which can be modelled by a
vector X = (Xl,XZ,...,X”); each agent may use
the whole or a limited set of the elements of X; this
sub-set is noted X4,. Each element of this vector is
a bounded value. Besides, the set of agents may use
a fixed set of basic behaviors B = {By, B, ..., B, }.
At each time, the result of the decision taken by the
master agent Ay is the final execution of an element
of B.

For each agent A;, a prior knowledge is introducted
before the learning process, which fixes the set of
choices (call another agent or execute a basic task)
Sa, = {Cll, .. .,C’f} the agent can make to fulfill its
constraints given at each time by a binary feedback
signal r4, . Each decision Cf“ of S4, is associated to
a branchlng priority PP, which is a positive integer.

The learning process of A; consists of an on-line
building of a mapping between the X 4, data and the
elements of S4,. To do this, A; utilizes perceptual
areas 7F | each one linked to an element Cf of Sa,.

Each ZF is a continuous space generated par the
whole set of possible ch. It is divided into a set of

5i€{1,.

boxes Box? A *» made up accordingly to the follow-

ing set of equatloHS'

Vee{l,....,l} Ujeqr, Boxzyk:Zf

Vi €{L,..., 1} Njeqr, 5y Boxl, =0

Boal, = {Xck - (Xék,...,Xfo)/
Vge{l,. }mzk<X] <MJ }

Thus, each box Box & is parameterized by ngk cou-
ples of values (m] . Mjk) which are the boundary val-

ues for each perceptive signal used when CF is called.
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Figure 3: Decision-making of an agent A;

Each box is associated with a binary quality q{k €
{0, 1}, which is the estimated quality of the decision
made by the agent A; to call CF.

Having received the set of the [ signals Xx, A; can

know precisely Which boxes Boxf . are fired, therefore

which quality qZ % is associated to each one of the possi-
ble choices. So, ‘the decision linked to the best quality
can be taken (ﬁg. 3).

2.2 Creating the perceptive graph

The objective is to evaluate the impact of a choice
among the C¥ on the evolution of the perception sig-
nal X4, received by the agent A;. To do so, while a
failure signal is not sent, the agent is associated to a
perceptive state Pa,(Xa,(t)) = (J1,...,J1) where each
jr 1s an integer which is defined by the relationship
Xck € Bozl%.. When a failure is detected by the way
of ra,, the agent is in the special state P.,.,..

Thus, the agent A; has a finite number of states, in-
cluding an ending state P.,,. The dynamics of the sys-
tem makes the agent move from one state to another,
according to his choice made among the elements of
Sa,;. This evolution is handled by the on-line building
of a graph (fig. 4) which node Np are associated to
a particular perceptive state already reached by the
agent. The nodes are linked to a quality ¢4,(Xa,). A
special node is associated with the state P.,.,..

If the agent is not in the state P, the effect of the
decision of using C¥ is the transition from the state
Pa,(X4,) to the transitory state Por(Xeon) linked to
the quality ¢ox (Xor) = qf"}c Then, the reaction of the
dynamics of the system when executing C* modifies
the perception X4, , allowing the agent to move to

another perceptive state at time t’ (arc linking Pgx
and Py, (Xa,(t')) ).

Minimizing
layer

Maximizing Choice C;
layer

Figure 4: Detail of the graph associated to the learning
process of the agent A;. The current perceptive state
is Pa,. The past experience of the agent allows it to
detect the transition to 3 different perceptive states
from P4, when the choice C} is made. The qualities
are shown by some 4 and -, fitting the consistency law
derived from the minimax algorithm.

2.3 Consistency law.

The problem which consists on taking a decision ac-
cording to the fulfillment of constraints with a given
dynamics of the system may be seen as a two play-
ers game: the agent A; and the dynamics. The aim
of the agent is to never reach the losing state P, ,
which quality ¢p,,, is 0. To do so, we use the minimax
algorithm: the minimax searching tree is the percep-
tual graph and the evaluation function values are the
qualities.

The consistency law applied for each node of the
graph is given by the following two relationships. The
first one is dealing about the perceptive nodes Np |
whereas the second one is applied to the transitory
nodes Np associated to a decision-making when the
perceptive state of the agent is Np:

= 1
anp = | max | Lawd (1)

= 2
o = v, edmiaqs) (1N .
Where Child(Np) is the set of the children of Np in
the graph and Child(Np) is the set of the children of
Np.

2.4 Using the consistency law to learn.

As soon as an arc from a node Ng to a node Np, is
created while the dynamics makes the perceptual data
of the agent evolve, C'hild(Npg) is modified, therefore
the consistency relationship could be broken. In that
case, the value of the quality of Ng is forced in order to
respect the equation (2). If g, is modified, the value
of the quality associated with the father Np could
be consequently modified due to the equation (1). A



sequence of modifications may then happen, leading
to a backpropagation of the prior modification. This
ends as soon as the consistency law is fulfilled by the
qualities of all the nodes.

2.5 Global learning algorithm.

Step 1- Retrieval of the node Np linked to the
perceptive state of the agent: Pa,(Xa,(t)). If it does
not exist, create it and create the nodes Ng associated
to the choices C’,i.

Step 2- Decision-making: choice of Cypar among
the elements of S4,, which associated quality is max-
imal. If two or more elements of S4, have the same
maximal quality, those which priority is maximal are
chosen.

Step 3- Execution of Cynay (transitory node Np
) and retrieval of the feedback signal r4,, while the
perceptive state remains unchanged and no failure due
to A; is detected. If another agent is utilized, the same
algorithm is recursively called for it.

Step 4- Retrieval of the current perceptive node
Np. If the arc from Np to Nj does not exist, create
it and use the consistency law on this arc.

At each time, the first call to this algorithm is car-
ried out for the master agent Aj.

3 Validation experiments.
3.1 Context of the experiments.

The experiments have been carried out with the
help of the Khepera simulator. Khepera (fig. 5) is a
small mobile robot developed at Ecole Polytechnique
Fédérale de Lausanne (EPFL) which has a circular
shape featuring 55 mm in diameter. It possesses 8
infrared sensors s, ..., sg, allowing the measurement
of distances in a short range from about 1 cm to 5 cm
and the values they give ranges from 0 (no obstacle
found) to 1024 (an obstacle is very near).

The Khepera simulator reproduces the imperfec-
tions of the sensors, so that it has been noticed that
the experimental results deduced from the real and
the simulated Khepera are very close.

In the following experiments, the simulated robot
is controlled by receiving the values of the linear speed
ls1 and lsy of its two wheels. These values ranges from
-10 to 10, corresponding to a maximal speed of about
40 mm/s.

The objective is to build a goal-seeking behavior,
making the hypothesis that the absolute coordinates

Figure 5: The miniature mobile robot Khepera.

| Behavior | meaning | ls1 | 32 |
By Move forward 3 3
By Move to the right 2 0
B; Move to the left 0 2
By Turn on the right 2 -2
Bs Turn on the left -2 2

Table 1: Basic behaviors utilized in the experiments.
The ls; and lss values come without any unit.

of both the goal and the robot are supposed to be
precisely known at each time. The obstacle avoidance
is performed by a wall following behavior, divided into
two sub-tasks: follow the wall on the left and follow
the wall on the right.

The agent possesses 4 input signals: X =
(diest, diorward, drignt, @). « is the angle between
the robot direction and the goal. The value of
the angle is supposed to be known at each time.
diept = max(s1, $2), dforward = Max(ss, s4), dright =
max(ss, $¢)

Five basic behaviors have been chosen, which are
linked to a couple (Is1,ls2): B = {B1, Ba, B3, Bs, Bs}.
Their specification is given by table 1.

The robot possesses three internal binary feedback
signals: BUMP, FWL and FWR. BUMP is equal to
1 if the robot has bumped into an obstacle, else it 1s
equal to 0. FWL (resp. FWR) is equal to 0 if the dj. s
(resp. drignt ) value has remained smaller 10 for more
than 30 learning steps.

3.2 High level goal-seeking algorithm.

The goal-seeking strategy followed by the robot is a
high-level algorithm in which three contexts are con-
sidered: “reach the goal”, “follow the wall on the left”
and “follow the wall on the right”.

[reach the goal]
If the goal is behind the robot and it can go forward,
B 1s executed.



If the robot is near from an obstacle and the goal is
on the same direction, it switches to a context [follow the
wall]

[follow the wall on the right (resp.left)]

If (the goal is on the left (resp. right) side of the robot
and it can go on the left (resp. right) without colliding) or
(the goal is behind the robot and it can go forward without
colliding), it switches its context to [reach the goal].

FElse the agent associated to a “follow the wall on the
right (resp. left)” behavior is utilized.

3.3 Specification of the learning agents.

The algorithm described in the last paragraph
shows that the strategy of the robot uses its perceptive
data. The learning process focuses on their manage-
ment. Both the hierarchical set of the learning agents
and their internal constraints, using BUMP, FWR and
FWL, are given by fig. 6. There are two master agents
Aj and A}, which respectively accomplish the “follow
the wall on the right” and “follow the wall on the left”
tasks. As and Af agents must avoid obstacles respec-
tively by moving on the left and by moving on the
right. The perceptive areas associated to these four
agents are three dimensional continuous spaces gen-
erated by (diest, dforward, drignt); they are regularly
divided into 4 x 4 x 4 = 64 boxes.

The quality of the box fired in the perceptive area
of the agent A, associated to the choice of Bg is used
by the robot to know if it can turn on the left without
colliding (see paragraph 3.2). In the same way, the
quality of the box fired in the perceptive area of the
agent A% associated to the choice of By is used by
the robot to know if it can turn on the right without

colliding.
3.4 Learning protocol.

A learning process, which consists of trials/failures
steps, is developed in the environment given by fig. 7.
A trial ends when a failure is detected by one of the
agents or when the goal is reached. As a first stage of
the global learning, the low level agents A5 and A} are
utilized independently without taking the high level
algorithm into account. To do this, the position of the
robot is randomly initialized in the free space of the
environment at the beginning of the trial, which ends
when BUMP turns to 1 or when 500000 consecutive
learning steps have been accomplished without any
failure. As a second stage of the learning process,
Ajand A} are utilized, using Ay and Af, obtained at
the end of the first stage. The position of the robot is
initialized near a wall. At the end of the second stage,

Al AT
!BUMP&FWD

!BUMP&FWG

A2 A2

B5 B4

Figure 6: Hierarchical set of agents used by Khepera.

the 4 agents are utilized in the context of the global
goal-seeking algorithm described in paragraph 3.2 .

3.5 Results.

10 learning attempts have been done for A;. All
the attempts were successful, ending after 35 up to
42 trials. Fig.8 shows the evolution of the number of
consecutive learning steps without failure. It is no-
ticed that the duration of a trial is a function of the
number of nodes (fig. 9). It simply means that as
soon as the agent has a wide perceptive experience, it
is able to respect its constraints with making very few
mistakes. According to the perceptive areas division
process (see paragraph 3.3), the maximal number of
nodes for all the agents is 64 4+ 3 x 64 + 1 = 257. This
number is nearly reached at the end of the learning
stage. As a consequence, we have noticed that the fail-
ures that come within the learning process of master
agent A; using As are not the result of a mistake made
by As: they all are due to misleading decisions taken
by A;. The learning period of A; has successfully
ended after 25 up to 33 trials. When all the agents
have successed in their own learning stage, they are
used by the global goal-reaching algorithm. The final
result is given by fig. 7. Here, it must be underlined
that the wall-following behavior task accomplished by
Ay and A} was not immediately perfect. Indeed, they
have been facing new perceptive situations due to the
switchings between the three different contexts. After
the trial 10, no failure has been detected up to the
finishing trial 20.

4 Discussion and future work.

The learning method and the algorithm allow a hi-
erarchical set of agents to incrementally learn. Ac-
cording to its perception, the aim of each of the agents
is respect its internal binary constraints. To do so, it
must decide to execute a basic task or to call another
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Figure 7: Goal-reaching behavior in the Khepera sim-
ulator environment.
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Figure 8: Evolution of the number of consecutive
learning steps without a failure of the agent A,.

agent, which is lower in the hierarchy, to let it choose
by itself.

Using a simulated Khepera robot which aim is to
learn a safe goal-reaching behavior, it has been shown
that the hierarchical set of agents created for this task
are able to learn at any time they are utilized. Thus,
although they principally learn during their own learn-
ing stage, they can evolve if they are used in a high
level algorithm framework where they have to face new
perceptive situations. Besides, the algorithm can cope
with very noisy perceptive data produced by the infra-
red sensors of Khepera.

The quality associated to each node of these graphs
can be used to statically recognize some perceptive
situations. Moreover, it should be possible to use the
perceptive graph in a dynamic environment recogniz-
ing process: the execution of the wall-following task
generates a particular cyclic sequence of perceptive
states for the wall-following agent. So, we are think-
ing of adding new kind of nodes associated to cycles
into the graph to cope with dynamic recognition of
situations.

Nunber of iterations before failure
16406

100000
10000
1000 o e’y
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Figure 9: Relationship between the number of nodes
within the perceptive graph of As and the number of
consecutive learning steps without a failure.
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