
HAL Id: hal-00343090
https://hal.science/hal-00343090v1

Submitted on 28 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unconventional Programming Paradigms (UPP’04)
Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, Olivier Michel

To cite this version:
Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, Olivier Michel (Dir.). Unconventional Pro-
gramming Paradigms (UPP’04). Springer Berlin, 2005, 978-3-540-27884-9 (version papier), 978-3-540-
31482-0 (version numérique). �10.1007/11527800�. �hal-00343090�

https://hal.science/hal-00343090v1
https://hal.archives-ouvertes.fr


U
n

c
o

n
v

e
n

t
i

o
n

a
l

 
P

ro
g

ra
m

m
in

g
 P

a
ra

d
ig

m
s European Commission -

US National Science Foundation 

Strategic Research Workshop

Unconventional 

Programming

P a r a d i g m s
Mont Saint -Michel ,  France,

1 5 - 1 7  S e p t e m b e r  2 0 0 4

Workshop Report 



�✂✁☎✄✝✆✞�✂✁✠✟☛✡☞✄✌✄✎✍✑✏✓✒☛✔✖✕

✗ ✘ ✘ ✙✛✚✢✜

✣✥✤✂✦★✧✩✤✫✪✭✬✠✤✫✮✰✯✱✧✩✤✳✲✵✴✷✶✹✸✺✧✵✻✼✸✽✲✿✾ ✾ ✯❀✤❁✻ ✶❂✲✿✸✽✲✿❃❄✯❅✻✼✾ ❆
❇❉❈❋❊❍●■●❑❏▼▲❖◆❖❏✱P☛❊❍▲✛◗✩❘❙❏✱P❚❏❅❊❍❯✱❱✱❈✭❲✱P✱P▼❳❨❏✱P✰❩❭❬❪❯❴❫✵❏▼❵❜❛✎❯❝❬❅◆❍❯❞❊❍❡✫❡✫❢■▲❖◆✫❛❣❊❍❯❞❊❤◗❍❢✐◆❍❡✿P

❥❧❦✵♠✠❥❧♥✩♦q♣❀r❋s❝♣❀t✈✉✛♣①✇☎②❍③✞③❍④
⑤ ♣✵⑥⑧⑦✞⑨❤s⑩♦❋❶❍❷❸⑨❤s❞♠❹⑥❺❷❑❻✱❼❽♣❀❾➀❿❨➁❨✇❝❶➂⑨❽❻①♣

➃ ✇❅➄❤❶➂⑨❽❷❑➅❀♣①➆❺✉➈➇



 



Preface

Unconventional approaches of programming have long been developed in various
niches and constitute a reservoir of alternative avenues to face the programming
crisis. These new models of programming are also currently experiencing a re-
newed period of growth to face specific needs and new application domains.
Examples are given by artificial chemistry, declarative flow programming, L-
systems, P-systems, amorphous computing, visual programming systems, musi-
cal programming, multi-media interaction, etc. These approaches provide new
abstractions and new notations or develop new ways of interacting with pro-
grams. They are implemented by embedding new and sophisticated data struc-
tures in a classical programming model (API), by extending an existing language
with new constructs (to handle concurrency, exceptions, open environment, ...),
by conceiving new software life cycles and program execution (aspect weaving,
run-time compilation) or by relying on an entire new paradigm to specify a
computation.

The practical applications of these new programming paradigms prompt re-
searches into the expressivity, semantics and implementation of programming
languages and systems architectures, as well as into the algorithmic complexity
and optimization of programs.

The purpose of this workshop is to bring together researchers from the vari-
ous communities working on wild and crazy ideas in programming languages to
present their results, to foster fertilization between theory and practice, as well
as to favor the dissemination and growth of new programming paradigms.

Apart from two invited talks, the contributions are dispatched into 5 tracks:

– Bio-inspired Computing
– Chemical Computing
– Amorphous Computing
– Autonomic Computing
– Generative Programming

The organizing committee
Summer 2004



Organization

UPP’04 is part of a series of strategic workshops to identify key research chal-
lenges and opportunities in Information Technology. For more information about
this initiative, see http://www.ercim.org/EU-NSF/

Organizing Committee

Jean-Pierre Banâtre Irisa/Université de Rennes I
Jean-Louis Giavitto LaMI/Université d’Evry
Pascal Fradet Inria Rhône-Alpes
Olivier Michel LaMI/Université d’Evry

Track Leaders

George Păun Bio-Inspired Computing
Peter Dittrich Chemical Computing
Daniel Coore Amorphous Computing
Manish Parashar Autonomic Computing
Pierre Cointe Generative Programming

Sponsoring Institutions

– Supported by the European Commissions Information Society Technologies
Programme, Future and Emerging Technologies Activity, and the US Na-
tional Science Foundation, Directorate for Computer and Information Sci-
ence and Engineering.

– Organized by Ercim with additional support from Inria, Université d’Evry
Val d’Essonne, Université de Rennes I, Microsoft Research, Lami, Irisa,
Genopole, and Cnrs.



Table of Contents

Invited Talk

Languages for Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Luca Cardelli

Bio-Inspired Computing

Track presentation: Bio-Inspired Computing Paradigms (Natural
Computing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
George Păun

Problem Solving by Evolution One of Nature’s Unconventional
Programming Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thomas Bäck, Ron Breukelaar, Lars Willmes

Molecular Computations Using Self-Assembled DNA Nanostructures
and Autonomous Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
John H. Reif, Thomas H. LaBean, Sudheer Sahu, Hao Yan, Peng Yin

P systems: A Modelling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Marian George

Chemical Blending with Particles, Cells, and Artificial Chemistries . . . . . . 26
Christof Teuscher

Membrane Computing: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
George Păun

P Systems: Some Recent Results and Research Problems . . . . . . . . . . . . . . . 43
Oscar H. Ibarra

Cellular Meta-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Gabriel Ciobanu

Invited Talk

From Quantum Computing to Quantum Programming . . . . . . . . . . . . . . . . 60
Philippe Jorrand



IV

Amorphous Computing

Abstractions for Directing Self-Organising Patterns . . . . . . . . . . . . . . . . . . . . 70

Daniel Coore

Abstractions for Code Reuse in ECOLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Dean D. Holness

Programming an Amorphous Computational Medium . . . . . . . . . . . . . . . . . 87

Jacob Beal

Computations in Space and Space in Computations . . . . . . . . . . . . . . . . . . . 95

Olivier Michel, Jean-Louis Giavitto, Julien Cohen, Antoine Spicher

Chemical Computing

Programming Reaction-Diffusion Processors . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Andrew Adamatzky

From Prescriptive Programming of Solid-State Devices to Orchestrated
Self-Organization of Informed Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Klaus-Peter Zauner

Relational Growth Grammars - a Graph Rewriting Approach to
Dynamical Systems with a Dynamical Structure . . . . . . . . . . . . . . . . . . . . . . 122

Winfried Kurth, Ole Kniemeyer, Gerhard Buck-Sorlin

A New Programming Paradigm Inspired by Artificial Chemistries . . . . . . . 131

Wolfgang Banzhaf, Christian Lasarczyk

High-order Chemical Programming Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Jean-Pierre Banâtre, Pascal Fradet, Yann Radenac

Autonomic Computing

Enabling Autonomic Applications: Models and Infrastructure . . . . . . . . . . . 148

Manish Parashar, Zhen Li, Hua Liu, Cristina Schmidt, Vincent

Matossian, Nanyan Jiang

Grassroots Approach to Self-Management in Large-Scale Distributed
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Ozalp Babaoglu Ozalp Babaoglu, Márk Jelasity, Alberto Montresor



V

Autonomic Runtime System for Large Scale Parallel and Distributed
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Huoping Chen, Byoung uk Kim, Jingmei Yang, Salim Hariri, Manish

Parashar

Generative Programming

Generative Programming from a DSL Viewpoint . . . . . . . . . . . . . . . . . . . . . . 176
Charles Consel

Generative Programming from an AOP/CBSE Perspective . . . . . . . . . . . . . 181
Mira Mezini, Klaus Ostermann

Overview of Generative Software Development . . . . . . . . . . . . . . . . . . . . . . . . 189
Krzysztof Czarnecki

Generative Programming from a Post Object-Oriented Programming
Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Shigeru Chiba

Generative Programming from an OOP/AOP Viewpoint . . . . . . . . . . . . . . . 209
Pierre Cointe



VI



 

 

 

Languages for Systems Biology 
 

Luca Cardelli 

Microsoft Research 

 

I propose to study languages that can precisely and concisely represent biological processes 

such as the one described below. I give a very specific example, for concreteness and for 

shock value. But the range of phenomena and problems that fit in this endeavor is much 

larger. The domain is that of systems biology [13], which aims to represent not only cellular-

level phenomena, such as the one below, but also phenomena at the level of tissues, organs, 

organisms, and colonies. Descriptive formalisms are needed to represent and relate many 

levels of abstraction. 

The given example concerns the “algorithm” that a specific virus follows to reproduce. It 

is a sequence of steps that involve the dynamic merging and splitting of compartments, the 

transport of materials, and the transcription and interpretation of digital information. The 

algorithm is informally described in English below. What are appropriate languages and 

semantic models that can accurately and concisely describe such an algorithm, at a high level 

of abstraction but in its entirety? Formal modeling (e.g., at the level that can drive a simulator) 

is becoming of central importance in biology, where complex processes need to be analyzed 

for hypothesis testing. The area is increasing concerned with the discrete, although stochastic 

and perturbation-proof, processing of information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Semliki Forest Virus Infection and Reproduction ([1] p.279) 

 
Figure 1. A virus is too big to cross a cellular membrane. It can either punch its RNA through the 

membrane or, as in this example, it can enter a cell by utilizing standard cellular endocytosis 

machinery. The virus consists of a capsid containing the viral RNA (the nucleocapsid). The 

�����

����

	
�

���

	
�

���

����

���������

����������

����������

��������

�������

	
�
�
�
�
�
�

�

����������

����

����

�����

��������

	������� ������

	���������

��������

 ��!"���#

����

������

�������

������

�����������$

1



 

 

nucleocapsid is surrounded by a membrane that is similar to the cellular membrane (in fact, it is 

obtained from it “on the way out”). This membrane is however enriched with a special protein that 

plays a crucial trick on the cellular machinery, as we shall see shortly. The virus is brought into the 

cell by phagocytosis, wrapped in an additional membrane layer; this is part of a standard transport 

pathway into the cell. As part of that pathway, an endosome merges with the wrapped-up virus. At 

this point, usually, the endosome causes some reaction to happen in the material brought into the 

cell. In this case, though, the virus uses its special membrane protein to trigger an exocytosis step 

that deposits the naked nucleocapsid into the cytosol. The careful separation of internal and 

external substances that the cell usually maintains has now been subverted. The nucleocapsid is in 

direct contact with the inner workings of the cell, and can begin doing damage. First, the 

nucleocapsid disassembles itself, depositing the viral RNA into the cytosol. This vRNA then 

follows three distinct paths. First it is replicated (either by cellular proteins, or by proteins that 

come with the capsid), to provide the vRNA for more copies of the virus. The vRNA is also 

translated into proteins, again by standard cellular machinery. Some proteins are synthesized in the 

cytosol, and form the building blocks of the capsid: these self-assemble and incorporate a copy of 

the vRNA to form a nucleocapsid. The virus envelope protein is instead synthesized in the 

Endoplasmic Reticulum, and through various steps (through the Golgi apparatus) ends up lining 

transport vesicles that merge with the cellular membrane, along another standard transport 

pathway. Finally, the newly assembled nucleocapsid makes contact with sections of the cellular 

membrane that are now lined with the viral envelope protein, and buds out to recreate the initial 

virus structure outside the cell. 

 

Are existing languages and semantic models adequate to represent these kinds of 

situations? Many classical approaches are relevant, but I believe the current answer must be: 

definitely not. Biologists are busy inventing their own abstact notations [8][9][10]. There are, 

of course, some proposals from computing as well [2][3][5][6][7]. The systems to be 

described are massively concurrent, heterogeneous, and asynchronous (notoriously the hardest 

ones to cope with in programming), with stochastic behavior and high resilience to drastic 

changes of environment conditions. What organizational principles make these systems work 

predictably? [11][12] 

Answers to these questions should be of great interest to computing, for the organization 

of complex software systems. But that may come later: the proposal here is exclusively to 

model biological systems in order to understand how they work. The fundamental connection 

to computing (shared by systems biologists) is that many levels of organization are much 

more akin to software systems than to physical systems, both in hierarchical complexity and 

in algorithmic-like information-driven behavior. Hence the emphasis on the central role that 

languages may play. 

 

References 

[1] B.Alberts, D.Bray, J.Lewis, M.Raff, K.Roberts, J.D.Watson. Molecular Biology of the Cell. Third 

Edition, Garland. 

[2] L.Cardelli. Brane Calculi – Interactions of Biological Membranes. 

http://research.microsoft.com/Users/luca/Papers/Brane%20Calculi.pdf. 

[3] V.Danos and C.Laneve. Formal Molecular Biology. Theoretical Computer Science, to Appear. 

[4] R.Milner. Communicating and Mobile Systems: The ππππ-Calculus. Cambridge University Press, 1999. 

[5] C.Priami. The Stochastic pi-calculus. The Computer Journal 38: 578-589, 1995. 

[6] C.Priami, A.Regev, E.Shapiro, and W.Silverman. Application of a stochastic name-passing calculus to 

representation and simulation of molecular processes. Information Processing Letters, 80:25-31, 2001. 

2



 

 

[7] A.Regev, E.M.Panina, W.Silverman, L.Cardelli, E.Shapiro. BioAmbients: An Abstraction for 

Biological Compartments. Theoretical Computer Science, to Appear. 

[8] K. W. Kohn: Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair 

Systems. Molecular Biology of the Cell, 10(8):2703-34, Aug 1999. 

[9] H. Kitano: A graphical notation for biochemical networks. BIOSILICO 1:169-176, 2003. 

[10] Systems Biology Markup Language. http://www.sbml.org 

[11] Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature. 

1999 Dec 2;402(6761 Suppl):C47-52. 

[12] McAdams HH, Arkin A.: It's a noisy business! Genetic regulation at the nanomolar scale. Trends 

Genet. 1999 Feb;15(2):65-9.  

[13] 4
th

 International Conference on Systems Biology. http://icsb2003.molecool.wustl.edu 

3



Bio-Inspired Computing Paradigms
(Natural Computing)

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 7014700 Bucureşti, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

In some sense, the whole history of computer science is the history of a series
of continuous attempts to discover, study, and, if possible, implement computing
ideas, models, paradigms from the way nature – the humans included – com-
putes. We do not enter here into the debate whether or not the processes taking
place in nature are by themselves “computations”, or we, homo sapiens, inter-
pret them as computations, but we just recall the fact that when defining the
computing model which is known now as Turing machine and which provides
the standard by now definition of what is computable, A. Turing (in 1935 - 1936)
explicitly wanted to abstract and model what a clerk in a bank is doing when
computing with numbers. One decade later, McCullock, Pitts, Kleene founded
the finite automata theory starting from modelling the neuron and the neural
nets; still later, this led to the area called now neural computing. Genetic algo-

rithms and evolutionary computing/programming are now well established (and
much applied practically) areas of computer science. One decade ago, the history
making Adleman’s experiment of computing with DNA molecules was reported,
proving that one can not only get inspired from biology for designing comput-
ers and algorithms for electronic computers, but one can also use a biological
support (a bio-ware) for computing. In the last years, the search of computing
ideas/models/paradigms in biology, in general in nature, became explicit and
systematic under the general name of natural computing1.

This important trend of computer science is not singular, many other areas of
science and technology are scrutinizing biology in the hope – confirmed in many
cases – that life has polished for billions of years numerous wonderful processes,
tools, and machineries which can be imitated in domains completely separated
from biology, such as materials and sensor technology, robotics, bionics, nan-
otechnology.

1 As a proof of the popularity of this syntagm, it is of interest to point out that there
are conferences with this topic explicitly included in their scope, a new journal with
this name is published by Kluwer, a new series of the renown Theoretical Computer

Science journal published by Elsevier is devoted to natural computing, a new series
of books published by Springer-Verlag and a column in the Bulletin of the European

Association for Theoretical Computer Science also have this name.

4



In order to see the (sometimes unexpected) benefits we can have in this
framework, it is instructive to examine the case of genetic algorithms. Roughly
speaking, they try to imitate the bio-evolution in solving optimization problems:
the space of candidate solutions for a problem are encoded as “chromosomes”
(strings of abstract symbols), which are evolved by means of cross-overing and
point mutation operations, and selected from a generation to the next one by
means of a fittness mapping; the trials to improve the fitness mapping continue
until either no essential improvement is done for a number of steps, or until a
given number of iterations are performed. The biological metaphors are numer-
ous and obvious. What is not obvious (from a mathematical point of view) is
why such a brute force approach – searching randomly the space of candidate
solutions, with the search guided by random cross-overings and point mutations
– is as successful as it happens to be (with a high probability, in many cases, the
Genetic Algorithms provide a good enough solution in a large number of applica-
tions). The most convincing “explanation” is probably “because nature has used
the same strategy in improving species”. This kind of bio-mystical “explanation”
provides a rather optimistic motivation for related researches.

A special mentioning deserves another “classic” area included nowadays in
natural computing, namely neural computing. In short, the challenge is now to
learn something useful from the brain organization, from the way the neurons
are linked; the standard model consists of neuron-like computing agents (finite
state machines, of very reduced capabilities), placed in the vertices of a net, with
numerical weights on edges, aiming to compute a function; in a first phase, the
net is “trained” for the task to carry out, and the weights are adjusted, then the
net is used for solving a real problem. Pattern recognition problems are typical to
be addressed via neural nets. The successes (and the promises) are comparable
with those of genetic algorithms, without having a similarly wide range of ap-
plications. However, the brain remains such a misterious and efficient machinery
that nobody can underestimate the progresses in any area trying to imitate the
brain. (It also deserves to mention the rather interesting detail that Alan Tur-
ing himself, some years after introducing Turing machines, had a paper where
he proposed a computing device in the form of a net of very simple computing
units, able to learn, and then to solve an optimization problem – nothing else
than neural computing avant la lettre. Unfortunately, his paper remained un-
published and was only recently reevaluated; see http://www.AlanTuring.net

and [10] for details.)

Coming back to the history making Adleman’s experiment mentioned above
[1], it has the merit of opening (actually, confirming, because speculations about
using DNA as a support for computations were made since several decades, while
theoretical computing models inspired from the DNA structure and operations
were already proposed in eighties, see, e.g., [6]) a completely new research vista:
we can not only get inspired from biology for designing better algorithms for
electronic computers, but we can also use a biological support (a bio-ware) for
computing. Specifically, Adleman has solved in a lab, just handling DNA by
techniques already standard in bio-chemistry, a computationally hard problem,

5



the well-known Hamiltonian Path problem (whether or not in a given graph
there is a path which visits all nodes, passing exactly once through each node).
The problem is NP-complete, among those considered intractable for the usual
computers,but Aldeman has solved it in linear time (the number of lab operations
carried out was linear in terms of the number of nodes). The graph used in the
experiment had only 7 nodes, a toy-problem by all means, while the actual
working time was of seven days, but the demo (in terms of [5]) was convincing:
we can compute using DNA!

It is important to note the fundamental novelty of this event: the objective
was no longer to improve the use of standard electronic computers, as it was
the goal of neural and evolutionary computing, but to have a principially new
computer, based on using bio-molecules, in a bio-chemical manner. The great
promise is to solve hard problems in a feasible time, by making use of the mas-
sive parallelism made possible by the very compact way of storing information
on DNA molecules (bits at the molecular level, with some orders of efficiency
over silicon supports). In this way, billions of “computing chips” can be accom-
modated in a tiny test tube, much more than on silicon. The possible (not yet
very probable for the near future. . . ) “DNA computer” also has other attractive
features: energetical efficiency, reversibility, evolvability.

Another component of this general intellectual enterprise is membrane com-
puting, which starts from the general observation that the cell is the smallest
living thing, and at the same time it is a marvellous tiny machinery, with a com-
plex structure, an intricate inner activity, and an exquisite relationship with its
environment – the neighboring cells included. Then, the challenge is to find in the
structure and the functioning of the cell those elements useful for computing. Dis-
tribution, parallelism, non-determinism, decentralization, (non)synchronization,
coordination, communication, robustness, scalability, are only a few keywords
related to this challenge. For instance, a problem which cannot be easily solved
in terms of silicon engineering, but which was misteriously and very efficiently
solved by nature at the level of the cell is related to the coordination of processes,
the control pathways which keep the cell alive, without a high cost of coordina-
tion (in parallel computing the communication complexity is sometimes higher
than the time and space complexity). Then, interesting questions appear in con-
nection with the organization of cells into tissues, and this is also related to the
way the neurons cooperate among them.

Similar issues are addressed by several other recent research directions
belonging to natural computing, for instance, trying to learn computing
ideas/models/paradigms from the way certain colonies of insects are organized
and work together, the way bacteria populations develop in a given environment,
the way flocks of birds maintain their “organization”, the (amazing) way ciliates
unscramble their chromosomes after reproduction, and so on. Most of these areas
still wait for producing a demo, many of them are still in the stage of “crafts-
manship”, with ad-hoc ideas involved in ad-hoc models/tools handling ad-hoc

problems, but the whole approach is both intellectually appealling and practi-

6



cally promising (sometimes through “by-products”, useful for biology, medicine,
robotics, etc).

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science, 226 (November 1994), 1021–1024.

2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology

of the Cell, 4th ed., Garland Science, New York, 2002.
3. J.A. Anderson, An Introduction to Neural Networks, The MIT Press, Cambridge,

MA, 1996.
4. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Computations

in Living Cells, Springer-Verlag, Berlin, 2004.
5. J. Hartmanis, About the Nature of Computer Science, Bulletin of the EATCS, 53

(June 1994), 170–190.
6. T. Head, Formal Language Theory and DNA: An Analysis of the Generative Ca-

pacity of Specific Recombinant Behaviors, Bulletin of Mathematical Biology, 49
(1987), 737–759.

7. J.H. Koza, J.P. Rice, Genetic Algorithms: The Movie, MIT Press, Cambridge,
Mass., 1992.

8. Gh. Păun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

9. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Berlin, 1998.
10. C. Teuscher, Alan Turing. Life and Legacy of a Great Thinker, Springer-Verlag,

Berlin, 2003.

7



Problem Solving by Evolution: One of Nature’s

Unconventional Programming Paradigms

Thomas Bäck12, Ron Breukelaar1, Lars Willmes2

1 Universiteit Leiden, LIACS, P.O. Box 9512, 2300 RA Leiden, The Netherlands
{baeck,rbreukel}@liacs.nl

2 NuTech Solutions GmbH, Martin Schmeißer Weg 15, 44227 Dortmund, Germany
{baeck,willmes}@nutechsolutions.de

Abstract. Evolving solutions rather than computing them certainly
represents an unconventional programming approach. The general method-
ology of evolutionary computation has already been known in computer
science since more than 40 years, but their utilization to program other
algorithms is a more recent invention. In this paper, we outline the ap-
proach by giving an example where evolutionary algorithms serve to
program cellular automata by designing rules for their evolution. The
goal of the cellular automata designed by the evolutionary algorithm is a
bitmap design problem, and the evolutionary algorithm indeed discovers
rules for the CA which solve this problem efficiently.

1 Evolutionary Algorithms

Evolutionary Computation is the term for a subfield of Natural Computing that
has emerged already in the 1960s from the idea to use principles of natural
evolution as a paradigm for solving search and optimization problem in high-
dimensional combinatorial or continuous search spaces. The algorithms within
this field are commonly called evolutionary algorithms, the most widely known
instances being genetic algorithms [6, 4, 5], genetic programming [7, 8], evolution
strategies [11, 12, 14, 13], and evolutionary programming [3, 2]. A detailed intro-
duction to all these algorithms can be found e.g. in the Handbook of Evolutionary
Computation [1].

Evolutionary Computation today is a very active field involving fundamental
research as well as a variety of applications in areas ranging from data analysis
and machine learning to business processes, logistics and scheduling, technical
engineering, and others. Across all these fields, evolutionary algorithms have
convinced practitioners by the results obtained on hard problems that they are
very powerful algorithms for such applications. The general working principle of
all instances of evolutionary algorithms today is based on a program loop that
involves simplified implementations of the operators mutation, recombination,
selection, and fitness evaluation on a set of candidate solutions (often called a
population of individuals) for a given problem. In this general setting, mutation
corresponds to a modification of a single candidate solution, typically with a
preference for small variations over large variations. Recombination corresponds

8



to an exchange of components between two or more candidate solutions. Selection
drives the evolutionary process towards populations of increasing average fitness
by preferring better candidate solutions to proliferate with higher probability
to the next generation than worse candidate solutions. By fitness evaluation,
the calculation of a measure of goodness associated with candidate solutions
is meant, i.e., the fitness function corresponds to the objective function of the
optimization problem at hand.

This short paper does not intend to give a complete introduction to evo-
lutionary algorithms, as there are many good introductory books on the topic
available and evolutionary algorithms are, meanwhile, quite well known in the
scientific community. Rather, we would like to briefly outline the general idea to
use evolutionary algorithms to solve highly complex problems of parameterizing
other algorithms, where the evolutionary algorithm is being used to find optimal
parameters for another algorithm to perform its given task at hand as good as
possible. One could also view this as an inverse design problem, i.e., a prob-
lem where the target design (behavior of the algorithm to be parameterized) is
known, but the way to achieve this is unknown. The example we are choosing
in this paper is the design of a rule for a 2 dimensional cellular automaton (CA)
such that the cellular automaton solves a task at hand in an optimal way. We
are dealing with 2 dimensional CAs where the cells have just binary states, i.e.,
can have a value of one or zero. The behavior of such a CA is fully characterized
by a rule which, for each possible pattern of bit values in the local neighborhood
of a cell (von Neumann neighborhood: the cell plus its four vertical and hori-
zontal direct nearest neighbors; Moore neighborhood: the cell plus its 8 nearest
neighbors, also including the diagonal cells), defines the state of this cell in the
next iteration of the CAs evolution process. In the next section, we will explain
the concept of a CA in some more detail. Section 3 reports experimental results
of our approach with a 5 by 5 CA where the goal is to find rules which evolve
from a standardized initial state of the CA to a target bit pattern, such that the
rule rediscovers (i.e., inversely designs) this bit pattern. Finally, we give some
conclusions from this work.

2 Cellular Automata

According to [15] Cellular Automata (CA) are mathematical idealizations of
physical systems in which space and time are discrete, and physical quantities
take on a finite set of discrete values. The simplest CA is one dimensional and
looks a bit like an array of ones and zeros of a width N . The first position of the
array is linked to the last position. In other words, defining a row of positions
C = {a1, a2, ..., aN} where C is a CA of width N , then every an with 1 ≤ n ≤ N
is connected to its left and right neighbors.

The neighborhood sn of an is defined as the local set of positions with a
distance to an along the connected chain which is no more than a certain radius
(r). This for instance means that s2 = {a148, a149, a1, a2, a3, a4, a5} for r = 3 and

9



N = 149. Please note that for one dimensional CA the size of the neighborhood
is always equal to 2r + 1.

There are different kinds of methods to change the values of a CA. The val-
ues can be altered all at the same time (synchronous) or at different times
(asynchronous). Only synchronous CA were considered for this research. In
the synchronous approach at time step t each value in the CA is recalculated
according to the values of the neighborhood using a certain transition rule
Θ : {0, 1}2r+1 → {0, 1}, si → Θ(ai). This rule can be viewed as a one-on-one
mapping that defines an output value for every possible set of input values, the
input values being the ‘state’ of a neighborhood. The state of an at time t is
written as at

n, the state of sn at time t as st
n and the state of the whole CA C at

time t as Ct so that C0 is the initial state (IC) and at+1
n

= Θ(st
n
). This means

that Ct+1 can be found by calculating at+1
n using Θ for all 1 ≤ n ≤ N . Given

Ct = {at
1, ..., a

t

N
}, Ct+1 can be defined as {Θ(at

1), ..., Θ(at

N
)}.

Because an ∈ {0, 1} the number of possible states of sn equals 22r+1. Because
all possible binary representations of m where 0 ≤ m < 22r+1 can be mapped to
a unique state of the neighborhood, Θ can be written as a row of ones and zeros
R = {b1, b2, ..., b22r+1} where bm is the output value of the rule for the input
state that maps to the binary representation of m − 1. A rule therefore has a
length that equals 22r+1 and so there are 22

2r+1

possible rules for a binary one
dimensional CA. This is a huge number of possible rules (if r = 3 this sums up
to about 3, 4 · 1028) each with a different behavior.

The two dimensional CA used in this paper do not differ much from the one
dimensional CA discussed so far. Instead of a row of positions, C now consist
of a grid of positions. The values are still only binary (0 or 1) and there still is
only one transition rule for all the cells. The number of cells is still finite and
therefore CA discussed here have a width, a height and borders.

The big difference between one dimensional and two dimensional CA is the
rule definition. The neighborhood of these rules is two dimensional, because there
are not only neighbors left and right of a cell, but also up and down. That means
that if r = 1, sn would consist of 5 positions, being the four directly adjacent
plus an. This neighborhood is often called “the von Neumann neighborhood”
after its inventor. The other well known neighborhood expands the Neumann
neighborhood with the four positions diagonally adjacent to an and is called
“the Moore neighborhood” also after its inventor.

Rules can be defined in the same rows of bits (R) as defined in the one
dimensional case. For a Neumann neighborhood a rule can be defined with 25 =
32 bits and a rule for a Moore neighborhood needs 29 = 512 bits. This makes
the Moore rule more powerful, for it has a bigger search space. Yet, this also
means that searching in that space might take more time and finding anything
might be a lot more difficult.

This research was inspired by earlier work in which transition rules for one
dimensional CA were evolved to solve the Majority Problem [9, 10]. The ge-
netic algorithm used here is a fairly simple algorithm with a binary representa-

10



tions of the rules, mutation by bit inversion, proportional selection, and without
crossover.

In the next section experimental results on the bitmap problem are reported.

3 Using Evolutionary Algorithms to Program Cellular

Automata

In preliminary experiments we tried different sizes of CA, but decided to concen-
trate on small square bitmaps with a width and a height of 5 cells. To make the
problem harder and to stay in line with earlier experiments the CA has uncon-
nected borders. To make the problem even more challenging the von Neumann
neighborhood was chosen instead of the Moore neighborhood and therefore the
sn consist of 5 cells (r = 1) and a rule can be described with 25 = 32 bits.
The search space therefore is 232 = 4294967296. A bitmap of 32 b/w pixels
would have the same number of possibilities, therefore this experiment is very
challenging to say the least.

After testing different initial states, the ‘single seed’ state was chosen and
defined as the state in which all the positions in the CA are 0 except the position
(⌊width/2⌋, ⌊height/2⌋) which is 1. The theory being that this ‘seed’ should
evolve or grow into the desired state in the same way as a single seed in nature
can grow into a flower.

Fig. 1. The bitmaps used in the pattern generation experiment.

For this experiment only mutation was applied as an evolutionary operator.
Mutation is performed by flipping every bit in the rule with a probability Pm.
In this experiment Pm = 1/{number of bits in a rule} = 1/32 = 0.03125.

In trying to be as diverse as possible five totally different bitmaps were chosen,
they are shown in figure 1. The algorithm was run 100 times for every bitmap
for a maximum of 5000 generations. The algorithm was able to find a rule for all
the bitmaps, but some bitmaps seemed a bit more difficult than others. Table 1
shows the number of successful rules for every bitmap. Note that symmetrical
bitmaps seem to be easier to generate than asymmetric ones.

Although this experiment is fairly simple, it does show that a GA can be
used to evolve transition rules in two dimensional CA that are able to generate
patterns even with a simple von Neumann neighborhood. Figure 2 shows the
behavior a few successful transition rules generated by the GA (in each row, the
evolution of the CA is shown from left to right). Note that different transition
rules can end up in the same desired state and have totally different iteration
paths.

11



Ongoing experiments with larger CAs suggest that they do not differ much
from these small ones, although the restrictions on what can be generated from
a single-seed state using only a von Neumann neighborhood seem to be bigger
when the size of the CA increases.

Table 1. Number of successful rules found per bitmap.

Successful rules
Bitmap (out of a 100)

“square” 80

“hourglass” 77

“heart” 35

“smiley” 7

“letter” 9

Fig. 2. This figure shows some iteration paths of successful transition rules.

4 Conclusions

The aim of the experiment reported in this paper was to demonstrate the ca-
pability of evolutionary algorithms, here a fairly standard genetic algorithm, to
parameterize other methods such as, specifically, cellular automata. From the
experimental results reported, one can conclude that this kind of inverse design
of CAs is possible by means of evolutionary computation in a clear, straight-
forward, and very powerful way. The results clearly indicate that real world

12



applications of CAs could also be tackled by this approach, and the unconven-
tional programming of CAs by means of EAs is not only a possibility, but a
useful and efficient method to parameterize this kind of algorithm.

References

1. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of
Evolutionary Computation. Institute of Physics Publishing and Oxford University
Press, Bristol/New York, 1997.

2. David B. Fogel. Evolutionary Computation – Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, New York, 1995.

3. L. Fogel, Owens A., and M. Walsh. Artificial Intelligence through Simulated Evo-
lution. John Wiley & Sons, 1966.

4. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

5. David E. Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, 2002.

6. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

7. John R. Koza. Genetic Programming: On the Programming of Computers by Nat-
ural Selection. MIT Press, Cambridge, MA, 1992.

8. John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen
Yu, and Guido Lanza. Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers, 2003.

9. M. Mitchell and J.P. Crutchfield. The evolution of emergent computation. Techni-
cal report, Proceedings of the National Academy of Sciences, SFI Technical Report
94-03-012, 1994.

10. M. Mitchell, J.P. Crutchfield, and P.T. Hraber. Evolving cellular automata to
perform computations: Mechanisms and impediments. Physica D, 75:361–391,
1994.

11. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

12. Ingo Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.
13. Hans Paul Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
14. H.P. Schwefel. Numerische Optimierung von Computer–Modellen mittels der Evo-

lutionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser,
Basel, 1977.

15. S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics,
55, 1983.

13



Molecular Computations Using Self-Assembled DNA Nanostructures and

Autonomous Motors

John H. Reif ∗, Thomas H. LaBean, Sudheer Sahu, Hao Yan and Peng Yin

Abstract Self-assembly is the spontaneous self-ordering of substructures into superstruc-

tures driven by the selective affinity of the substructures. DNA provides a molecular scale

material for programmable self-assembly, using the selective affinity of pairs of DNA strands

to form DNA nanostructures. DNA self-assembly is the most advanced and versatile sys-

tem that has been experimentally demonstrated for programmable construction of patterned

systems on the molecular scale. The methodology of DNA self-assembly begins with the

synthesis of single-strand DNA molecules that self-assemble into macromolecular building

blocks called DNA tiles. These tiles have sticky ends that match the sticky ends of other

DNA tiles, facilitating further assembly into larger structures known as DNA tiling lattices. In

principle, DNA tiling assemblies can form any computable two or three-dimensional pattern,

however complex, with the appropriate choice of the tiles’ component DNA. Two-dimensional

DNA tiling lattices composed of hundreds of thousands of tiles have been demonstrated ex-

perimentally. These assemblies can be used as scaffolding on which to position molecular

electronics and robotics components with precision and specificity. This programmability ren-

ders the scaffolding have the patterning required for fabricating complex devices made of

these components. We overview the evolution of DNA self-assembly techniques from pure

theory, through simulation and design, and then to experimental practice. We will begin

with an overview of theoretical models and algorithms for DNA lattice self-assembly. Then

we describe our software for the simulation and design of DNA tiling assemblies and DNA

nanomechanical devices. As an example, we discuss models and algorithms for the key

problem of error control in DNA lattice self-assembly, as well as the computer simulation

of these methods for error control. We will then briefly discuss our experimental laboratory

demonstrations, including those using the designs derived by our software. These experi-

mental demonstrations of DNA self-assemblies include the assembly of patterned objects at

the molecular scale, the execution of molecular computations, and freely running autonomous

DNA motors.

∗Contact address: Department of Computer Science, Duke University, Box 90129, Durham, NC

27708-0129. E-mail: reif@cs.duke.edu.

14



1 Introduction
Self-assembly is the spontaneous self-ordering of substructures into superstructures driven

by the selective affinity of the substructures. This paper focuses on a method for self-

assembly known as DNA self-assembly, where DNA provides a molecular scale material

for effecting this programmable self-assembly, using the selective affinity of pairs of DNA

strands to form DNA nanostructures. Self-assembling nanostructures composed of DNA

molecules offer great potential for bottom-up nanofabrication of materials and objects with

smaller features than ever previously possible [13, 28, 33]. The methodology of DNA self-

assembly begins with the synthesis of single-strand DNA molecules that self-assemble into

macromolecular building blocks called DNA tiles. These tiles have sticky ends that match the

sticky ends of other DNA tiles, facilitating further assembly into larger structures known as

DNA tiling lattices. In principle, DNA tiling assemblies can be made to form any computable

two- or three-dimensional pattern, however complex, with the appropriate choice of the tiles’

component DNA.

DNA self-assembly is an emerging subfield of nanoscience with the development of its

theoretical basis and a number of moderate to large-scale experimental demonstrations. Re-

cent experimental results indicate that this technique is scalable. Periodic 2D DNA lattices

have been successfully constructed with a variety of DNA tiles [14, 22, 43, 48]. These lat-

tices are composed of up to hundreds of thousands of tiles. Molecular imaging devices such

as atomic force microscopes and transmission electron microscopes allow visualization of

these self-assembled two-dimensional DNA tiling lattices. These assemblies can be used as

scaffolding on which to position molecular electronics and other components such as molec-

ular sensors with precision and specificity. The programmability lets this scaffolding have

the patterning required for fabricating complex devices made of these components. Potential

applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and

programmable/autonomous molecular machines.

In addition to manufacturing DNA lattices, DNA has also been demonstrated to be a use-

ful material for molecular computing systems [1, 3, 6, 19, 21] and mechanical devices [17,

20, 36, 50]. In particular, the self-assembly of DNA tiles can also be used as a powerful com-

putational mechanism [15, 27, 39, 42], which in theory holds universal computing power [40].

See [25] for a more detailed survey of current experimental work in self-assembled DNA

nanostructures. Also, see [26] and [28] for comprehensive surveys of the larger field of DNA

computation (also known as biomolecular computation).

In this paper, we overview the evolution of DNA self-assembly techniques from pure the-

ory, through simulation and design, and then to experimental practice. The rest of the paper

is organized as follows. In Section 2, we overview the theoretical work in self-assembly. In

Section 3, we describe software for the simulation and design of DNA nanostructures and

motors. As a concrete example, in Section 4 we discuss error control, which we feel is a

major theoretical and practical challenge remaining in the area of DNA self-assembly. Finally,

in Section 5 we give a brief discussion of experimental practice in DNA nanostructures.

2 The Theory of Self-Assembly
This section overviews the emerging theory of self-assembly.

Domino Tiling Problems. The theoretical basis for self-assembly has its roots in Domino

Tiling Problems (also known as Wang tilings) as defined by Wang [37]. For comprehensive

text, see [9]. The input is a finite set of unit size square tiles. The sides of each square

are labeled with symbols over a finite alphabet. Additional restrictions may include the initial

placement of a subset of the these tiles, and the dimensions of the region where tiles must

be placed. Assuming an arbitrarily large supply of each tile, the problem is to place the tiles,

without rotation (a criterion that cannot apply to physical tiles), to completely fill the given

region so that each pair of abutting tiles have identical symbols on their contacting sides.

Turing-universal and NP-Complete Self-assemblies. Domino tiling problems over an

15



infinite domain with only a constant number of tiles were first proved by Berger to be un-

decidable [7]. This and subsequent proofs [7, 29] rely on constructions where tiling pat-

terns simulate single-tape Turing machines or cellular arrays [40]. Winfree later showed that

computation by self-assembly is Turing-universal [40] and so tiling self-assemblies can the-

oretically provide arbitrarily complex assemblies even with a constant number of distinct tile

types. Winfree also demonstrated various families of assemblies which can be viewed as

computing languages from families of the Chomsky hierarchy [39]. It has been proved that

Domino tiling problems over polynomial-size regions are NP-complete [16]. Subsequently,

[39], [10, 11], and [15] proposed the use of self-assembly processes (in the context of DNA

tiling and nanostructures) to solve NP-complete combinatorial search problems such as SAT

and graph coloring.

Program-size Complexity of Tiling Self-assemblies. The programming of tiling assem-

blies is determined simply by the set of tiles, their pads, and sometimes the choice of the initial

seed tile (a special tile from which the growth of the assembly starts). A basic issue is the

number of distinct tile types required to produce a specified tile assembly. The program size

complexity of a specified tiling is the number of distinct tiles (with replacement) to produce

it. Rothemund and Winfree showed that the assembly of an n × n size square can be done

using Θ(log n/ log log n) distinct tiles and that the largest square uniquely produced by a tiling

of a given number of distinct tiles grows faster than any computable function [30]. Adleman

recently gave program size complexity bounds for tree shaped assemblies [3].

Massively Parallel Computation by Tiling. Parallelism reveals itself in many ways in

computation by self-assembly. Each superstructure may contain information representing a

different calculation (global parallelism). Due to the extremely small size of DNA strands, as

many as 1018 DNA tiling assemblies may be made simultaneously in a small test tube. Growth

on each individual superstructure may also occur at many locations simultaneously via local

parallelism. The depth of a tiling superstructure is the maximum number of self-assembly re-

actions experienced by any substructure (the depth of the graph of reaction events), and the

size of a superstructure is the number of tiles it contains. Likewise we can define the number

of layers for a superstructure. For example, a superstructure consisting of an array of n ×m
tiles, where n > m has m layers. Tiling systems with low depth, small size, and few layers

are considered desirable, motivating the search for efficient computations performed by such

systems. Reif was the first to consider the parallel depth complexity of tiling assemblies and

gave DNA self-assemblies of linear size and logarithmic depth for a number of fundamental

problems (e.g., prefix computation, finite state automata simulation, and string fingerprinting,

etc.) that form the basis for the design of many parallel algorithms [27]. Furthermore, [27]

showed that these elementary operations can be combined to perform more complex compu-

tations, such as bitonic sorting and general circuit evaluation with polylog depth assemblies.

Linear Self-Assemblies. Tiling systems that produce only superstructures with k layers,

for some constant k, are said to use linear self-assembly. [27] gave some simple linear tiling

self-assemblies for integer addition as well as related operations (e.g., prefix XOR summing of

n Boolean bits). Seeman’s group demonstrated the first example of DNA computation using

DNA tiling self-assembly [21], as described in Section 5. These linear tilings were refined in

[44] to a class of String tilings that have been the basis for further DNA tiling experiments in

[46] described in Section 5.

Kinetic Models of Tiling Self-assembly Processes. Domino tiling problems do not

presume or require a specific process for tiling. Winfree first observed that self-assembly

processes can be used for computation via the construction of DNA tiling lattices [38]. The

sides of the tiles are assumed to have some methodology for selective affinity, which we

call pads. Pads function as programmable binding domains, which hold together the tiles.

Each pair of pads have specified binding strengths. The self-assembly process is initiated

by a singleton tile (the seed tile) and proceeds by tiles binding together at their pads to form

aggregates known as tiling assemblies. The preferential matching of tile pads facilitates the

16



further assembly into tiling assemblies. Using the kinetic modeling techniques of physical

chemistry, Winfree developed a kinetic model for the self-assembly of DNA tiles [41]. Fol-

lowing the classical literature of models for crystal assembly processes, Winfree considers

assembly processes where the tiling assembly is only augmented by single tiles (known in

crystallography as monomers) which bind to the assembly at their tile pads [38]. The likeli-

hood of a particular tile binding at (or dissociating from) a particular site of the assembly is

assumed to be a fixed probability dependent on that tile’s concentration, the respective pad’s

binding affinity, and a temperature parameter. In addition, Adleman developed stochastic

differential equation models for self-assembly of tiles and determined equilibrium probability

distributions and convergence rates for some 1-dimensional self-assemblies [2, 4]. His model

allowed for binding between subassemblies and assumed a fixed probability for tile binding

events independent of the size of tile assemblies. Since the movement of tile assemblies may

depend on their size (and thus mass), this model might in the future be refined to make the

probability for tile binding events dependent on the size of tile assemblies.

Optimization of Tiling Assembly Processes. There are various techniques that may

promote assembly processes in practice. One important technique is the tuning of the param-

eters (tile concentration, temperature, etc.) governing the kinetics of the process. Adleman

considers the problem of determining tile concentrations for given assemblies and conjec-

tures this problem is ♯P-complete [3]. Various other techniques may improve convergence

rates to the intended assembly. A blockage of tiling assembly process can occur if an incor-

rect tile binds in an unintended location of the assembly. While such a tile may be dislodged

by the kinetics of subsequent time steps, it still may slow down the convergence rate of the

tiling assembly process to the intended final assembly. To reduce the possibility of blockages

of tiling assembly processes, Reif proposed the use of distinct tile pads for distinct time steps

during the assembly [27]. [27] also described the use of self-assembled tiling nano-frames to

constrain the region of the tiling assemblies.

3 Simulation and Design Software
Software for Kinetic Simulation of Tiling Assembly Processes. Winfree developed

software for discrete time simulation of the tiling assembly processes, using approximate

probabilities for the insertion or removal of individual tiles from the assembly [41]. These

simulations gave an approximation to the kinetics of self-assembly chemistry and provided

some validation of the feasibility of tiling self-assembly processes. Using this software as

a basis, our group developed an improved simulation software package (sped up by use

of an improved method for computing on/off likelihood suggested by Winfree) with a Java

interface for a number of example tilings, such as string tilings for integer addition and XOR

computations. In spite of an extensive literature on the kinetics of the assembly of regular

crystalline lattices, the fundamental thermodynamic and kinetic aspects of self-assembly of

tiling assemblies are still not yet well understood. For example, the effect of distinct tile

concentrations and different relative numbers of tiles is not yet known; probably it will require

an application of Le Chatelier’s principle.

Software for Kinetic Simulation of Nanomechanical Devices. We have developed a

software to simulate autonomous nanomechanical DNA devices driven by ligase and restric-

tion enzymes in a solution system. This software does discrete time simulation of the ligation

and restriction events on the DNA duplex fragments of the nanomechanical device. The ap-

proximate probabilities of ligation is calculated based on the concentrations of individual DNA

fragments present in the solution system. These simulations can provide insight to the kinet-

ics of such nanomechanical systems. We have used this software to simulate a DNA walker

and a universal DNA Turing machine.

Software for Design of DNA Lattices and Nanomechanical Devices. A major compu-

tational challenge in constructing DNA objects is to optimize the selection of DNA sequences

so that the DNA strands can correctly assemble into desired DNA secondary structures. A

17



commonly used software package, Sequin, was developed by Seeman, which uses the sym-

metry minimization algorithm. Sequin, though very useful, only provides a text-line interface

and generally requires the user to step through the entire sequence selection process. Our

lab recently developed a software package, TileSoft, which exploits an evolution algorithm

and fully automates the sequence selection process. TileSoft also provides the user with a

graphical user interface, on which DNA secondary structure and accompanying design con-

straints can be directly specified and the optimized sequence information can be pictorially

displayed. TileSoft is initially designed to solve optimization problem for a set of multiple

tiles, but can also be used to design individual DNA objects, such as DNA nanomechanical

devices.

4 Error Control in DNA Tiling Assemblies
A chief challenge in DNA tiling self-assemblies is the control of assembly errors. This is

particularly relavant to computational self-assemblies, which, with complex patterning at the

molecular scale, are prone to a quite high rate of error, ranging from approximately between

0.5% to 5%, and the key barrier to large-scale experimental implementation of 2D computa-

tional DNA tilings exhibiting patterning is this significant error rate in the self-assembly pro-

cess. The limitation and/or elimination of these errors in self-assembly is perhaps the single

most important major challenge to nanostructure self-assembly.

There are a number of possible methods to decrease errors in DNA tilings:

(a) Annealing Temperature Optimization. This is a well known technique used in hybridiza-

tion and also crystallization experiments. It can be used to decrease the defect rates at the

expense of increased overall annealing time duration. In the context of DNA tiling lattices, the

parameters for the temperature variation that minimize defects have not yet been determined.

(b) Error Control by Step-wise Assembly. Reif suggested the use of serial self-assembly

to decrease errors in self-assembly [26].

(c) Error Control by Redundancy. There are a number of ways to introduce redundancy

into a computational tiling assembly. In [24] we describe a simple method that can be devel-

oped for linear tiling assemblies: we replace each tile with a stack of three tiles executing the

same function, and then add additional tiles that essentially ‘vote’ on the pad associations

associated with these redundant tiles. This results in a tiling of increased complexity but still

linear size. This error resistant design can easily be applied to the integer addition linear

tiling described above, and similar redundancy methods may be applied to higher dimension

tilings.

Work in 2003 by Winfree provided a method to decrease tiling self-assembly errors without

decreasing the intrinsic error rate of assembling a single tile, however, his technique resulted

in a final assembled structure that is four times the size of the original one [45].

Recently we have developed improved methods for compact error-resilient self-assembly

of DNA tiling assemblies and analyzed them by probabilistic analysis, kinetic analysis and

computer simulation; and plan to demonstrate these error-resilient self-assembly methods

by a series of laboratory experiments. Our compact error-resilient tiling methods do not

increase the size of the tiling assembly. They use 2-way overlay redundancy such that a

single pad mismatch between a tile and its immediate neighbor forces at least one further

pad mismatch between a pair of adjacent tiles in the neighborhood of this tile. Theoretical

probabilistic analysis and empirical studies of the computer simulation of Sierpinsky Triangle

tilings have been used to validate these error-resilient 2-way overlay redundancy tiling results;

the analysis shows that the error rate is considerably reduced.

5 Experimental Progress
Self-assembled DNA Tiling Lattices. Seeman first pioneered DNA structure nanofabri-

cation in the 1980s by assembling a multitude of DNA nanostructures (such as rings, cubes,

and octahedrons) using DNA branched junctions [18, 31, 32]. However, these early DNA

nanostructures were not very rigid. Later, rigid and stable DNA nanostructures (known as

18



tiles) were developed. Typically they contain multiple DNA anti-parallel crossovers. Individual

DNA tiles interact by annealing with other specific tiles via their ssDNA pads to self-assemble

into desired superstructures known as DNA tiling lattices. These lattices can be either: non-

computational, containing a fairly small number of distinct tile types in a periodic pattern; or

computational, containing a larger number of tile types with more complicated association

rules which perform computation during lattice assembly.

Periodic 2D DNA lattices have been successfully constructed with a variety of DNA tiles,

for example, double-crossover (DX) DNA tiles [43], rhombus tiles [22], and triple-crossover

(TX) tiles [14]. Our lab recently developed a “waffle”-like DNA lattice composed of a novel type

of DNA tiles [48]. In addition, we have recently developed a new method for the assembly of

aperiodic patterns [47]. This directed nucleation assembly technique uses a synthetic input

DNA strand that encodes the required pattern, and specified tiles assemble around this input

DNA strand, forming the required 1D or 2D lattice pattern.

The self-assembly of DNA tiles can also be used as a powerful computational mech-

anism [15, 27, 39, 42], and Winfree showed that two dimensional DNA tiling lattices can

in theory be used to perform universal computation [39]. In collaboration with Seeman’s

lab, we have experimentally demonstrated a one-dimensional algorithmic self-assembly of

triple-crossover DNA molecules (TX tiles), which performs a 4-step cumulative XOR com-

putation [21]. In addition, we have recently demonstrated the first parallel computation with

DNA tile self-assembly [46], exploiting the “string tile” model proposed by Winfree [44]. In our

experimental implementation, the DX tiles, each encoding a whole entry of a bit wise XOR

operation, associated with each other randomly in a parallel fashion, generating a molecular

look-up table.

DNA Robotics. Existing DNA nanomechanical devices can exhibit motions such as

open/close [34, 35, 50], extension/contraction [5, 8, 17], and rotation [20, 36]. These mo-

tions are mediated by external environmental changes such as the addition and removal of

DNA fuel strands [5, 8, 17, 34, 35, 36, 50] or the change of ionic strength of the solution [20].

Our lab has recently constructed a robust sequence-dependent DNA nanomechanical actu-

ator and have incorporated it into a 2D parallelogram DNA lattice [22]. The actuator can be

switched reversibly between two states, mediated by the addition and removal of fuel DNA

strands. In addition, we have achieved in our lab the construction of a unidirectional DNA

walker that moves autonomously along a linear DNA track [49].

6 Conclusion
The self-assembly of DNA is a promising emerging method for molecular scale construc-

tions and computations. We have overviewed the area of DNA tiling self-assemblies and

noted a number of open problems. We have discussed the potential approaches for error-

control in self-assembly techniques for DNA computation; particularly the use of error-resilient

modified tiling methods. We have identified some technological impacts of DNA assemblies,

such as using them as platform for constructing molecular electronic and robotic devices.

Important future work includes further investigating potential broader technological impacts

of DNA lattices. Many applications of DNA lattices rely on the development of appropriate

attachment methods between DNA lattice and other nanoparticles, which itself is a key chal-

lenge in DNA based nanoscience.

Acknowledgement
This work was supported by DARPA/AFSOR Contract F30602-01-2-0561, NSF ITR Grant

EIA-0086015, DARPA/NSF Grant CCR-9725021, NSF QuBIC Grant EIA-0218376, and NSF

QuBIC Grant EIA-0218359

References
[1] L. Adleman. Science, 266:1021, 1994.

[2] L. Adleman. Technical Report 00-722, USC, 2000.

19



[3] L. Adleman et al. In 34th ACM STOC, page 23. ACM Press, 2002.
[4] L. Adleman et al. Linear self-assemblies: equilibria, entropy, and convergence rates.

manuscript.
[5] P. Alberti and J. Mergny. PNAS, 100:1569, 2003.
[6] Y. Benenson. et al. Nature, 414:430, 2001.
[7] R. Berger. Memoirs of the American Mathematical Society, 66, 1966.
[8] L. Feng et al. Angew. Int. Ed., 42:4342, 2003.
[9] S. Grunbaum et al. Tilings and Patterns H Freeman and Company.

[10] N. Jonoska et al. In Proceedings of IEEE ICEC’97, page 261, 1997.
[11] N. Jonoska et al. Computing with Bio-Molecules, theory and experiments, page 93,

1998.
[12] T. H. LaBean et al. In DNA Based Computers 5, page 123, 2000.
[13] T. H. LaBean. Introduction to Self-Assembling DNA Nanostructures for Computation and

Nanofabrication. World Scientific, 2002.
[14] T. H. LaBean et al. JACS, 122:1848, 2000.
[15] M. G. Lagoudakis et al. In DNA Based Computers 5, page 141, 2000.
[16] H. Lewis et al. Elements of the Theory of Computation. Prentice-Hall.
[17] J. Li et al. Nanoletter, 2:315, 2002.
[18] F. Liu, et al. Biochemistry, 38:2832, 1999.
[19] Q. Liu et al. Nature, 403:175, 2000.
[20] C. Mao et al. Nature, 397:144, 1999.
[21] C. Mao et al. Nature, 407:493, 2000.
[22] C. Mao et al. JACS, 121:5437, 1999.
[23] J. H. Reif. Biomol. Computing, New Generation Computing, 2002.
[24] J. H. Reif. In 29th ICALP, Mlaga, Spain, page 1, 2002.
[25] J. H. Reif et al. Lecture Notes in Computer Science, 2054:173, 2001.
[26] J. H. Reif. In First International Conference on Unconventional Models of Computation,

Auckland, New Zealand, page 72, 1998.
[27] J. H. Reif. In DNA Based Computers 3, 1997.
[28] J. H. Reif. special issue on Bio-Computation, Computer and Scientific Engineering Mag-

azine, IEEE Computer Society, page 32, 2002.
[29] R. Robinson. Inventiones Mathematicae, 12:177, 1971.
[30] P. W. K. Rothemund et al. In the 32nd ACM STOC, page 459, 2000.
[31] N. Seeman et al. J. Vac. Sci. Technol., 12:4:1895, 1994.
[32] N. C. Seeman. Angew. Chem. Int. Edn Engl., 37:3220, 1998.
[33] N. C. Seeman. Nature, 421:427, 2003.
[34] F. Simmel et al. Physical Review E, 63:041913, 2001.
[35] F. Simmel et al. Applied Physics Letters, 80:883, 2002.
[36] H. Y. et al. Nature, 415:62, 2002.
[37] H. Wang. Bell Systems Technical Journal, 40:1, 1961.
[38] E. Winfree. In DNA Based Computers 1, page 187, 1995.
[39] E. Winfree. In DNA Based Computers 1, page 199, 1995.
[40] E. Winfree, et al. In DNA Based Computers 2, page 191, 1996.
[41] E. Winfree. PhD thesis, California Institute of Technology, 1998.
[42] E. Winfree. Technical Report 1988.22, Caltech, 1998.
[43] E. Winfree et al. Nature, 394:539, 1998.
[44] E. Winfree et al. In DNA Based Computers 6, page63, 2000.
[45] E. Winfree et al. In DNA Based Computers 9, 2003.
[46] H. Yan et al. JACS, 125:47, 2003.
[47] H. Yan et al. PNAS, 100:8103, 2003.
[48] H. Yan et al. Science, 301:1882, 2003.
[49] P. Yin et al. 2004. In preparation.
[50] B. Yurke et al. Nature, 406:605, 2000.

20



� ✁✄✂☎✁✝✆✟✞✡✠☛✁✌☞✎✍✏✠☛✑✓✒✔✞✡✕✖✕✘✗✖✙✛✚✜✕✢✍✣✙✛✚✥✤✛✍✦✚✧✞

★✪✩✬✫✮✭✯✩✱✰✔✲✴✳✶✵✘✷✬✫✹✸✬✳✶✵

✺✼✻✹✽✿✾✖❀❂❁❄❃✦✻✹❅✱❁❇❆✘❈✄❉✟❆❊❃✦✽●❋●❁❄✻✹❀■❍✬❏▲❑▼✻▲❅●❏▲✻❊◆✶❍✱❖P✻✹◗❘✻▲❙❯❚❲❱✌❅●❑▼❳❨✻✹❀❄❩❂❑❬❁❪❭
❫❴✻✹❵❊✻▲❅❛❁✌❉✟❆❊❋✬❀❂❁❜◆✿❝❞❆✖❀❂❁❄❆❊❡❢✻▲❙▼❙▼❆✧❍✱❁❂❀❄✻▲✻✮❁❜◆❢❍✱❖P✻✹◗✦✻✹❙❣❚✶◆❢❍❢❤✼✐✘✺❥❝❞◆P❱❴❦

❧❇♠♦♥❊♣✱q❛r✘s❊♥❊♣✱q❨t❊✉✱✈❨✇①♠❂✇✢♣❛q❊②③♠⑤④❛✈⑥♠♦⑦❊⑧

★✔✷✱⑨✮⑨✮✷❶⑩✶❷✼✳❶✵❘❸❶✫✹❹❺⑨❥✵✖✰✶✸●✭❣✰❶✵✖✵✖✫▲❹✼❻✌✵✖✫✹✵❼✭❽✰❶❹✮❾✶✭❣✫✹✵✘❿➁➀✿➂☎➀✶✭❽✷✬➃❽✷✬✸●➂✬➄❢✩✬❹✼✳⑥✩❨➅✬✵❘➀⑥✵✘✵✖✰➆⑨✮✳❶✷✬➇❶❹✹✩✱✰❶❿❶❹
✷✱➈➊➉❲➂●⑨✹✳✶✭✯➋✖✩✱➃❥➌♦✵✬➍ ✸❶➍❽➄❞➎✴✩✱✵❊❿✶✩✱➃❽➇❶❹▲➏✡✩✬✰❶❿✪✫✹✵✘✩✬➃✌➌♦✵✬➍ ✸❶➍❽➄➑➐③✵✖✷●✰❶✩✱✫▲❿❢✷☎➎✴✩✱➒❼✭❣✰⑥➋✢✭➓➏✡✵✘✰✶✸✬✭❽✰✶✵✘✵✖✫▲❹❼❹✮✭❣✰⑥➋✢✵✬➍
➔✬✷●✳✶✰→➅●✷✬✰↔➣↕✵✘➇✶➉➙✩✱✰✶✰➛❹❺⑨✮➇❶❿❢✭❽✵✘❿↔➋✖✵✖➃❽➃❣➇✶➃✯✩✱✫✦✩✬➇❢⑨✮✷●➉➜✩✱⑨✮✷●✰✎✩✬✰❶❿→➝✡➃❽✩✬✰➛❷✝➇✶✫✹✭❽✰✶✸✔❹❄⑨✹➇❶❿❢✭❽✵✘❿✎➉➜✷✬✫✮➞
❾✶✳✶✷✬✸●✵✖✰✶✵❊❹❺➂❢❹✘➍✘★✔✷●✫✮✵❴✫✮✵❊➋✢✵✘✰●⑨✹➃❣➂●➄✘❹✮✵✖➅●✵✖✫▲✩✱➃●✩●➋❜⑨✹✭❣➅●✵➊✫✹✵✘❹✮✵✘✩✱✫▲➋▲✳✦✩✱✫✹✵✘✩●❹③✭❽✰✧➋✢✷●➉✥❾❶➇❢⑨✮✵✘✫✟❹✹➋✢✭❽✵✖✰❶➋✖✵➊✳❶✩❨➅●✵
✵✖➉➜✵✖✫✹✸✬✵❊❿☎✭❽✰❶❹✮❾✶✭❣✫✹✵✘❿➁➀✿➂✓➀✶✭❽✷✬➃❽✷✬✸●➂➠➟❯➡●➡✢➢⑤➍

❷✼✳✶✵❼✭❽✰P⑨✮✵✘✫✹✩●➋❜⑨✮✭❽✷✬✰➁➀⑥✵✖⑨❄❻❴✵✘✵✖✰➆➀✶✭❽✷✬➃❽✷✬✸✬➂➙✩✬✰❶❿☎➋✖✷✬➉➜❾✶➇❢⑨✹✵✖✫↕❹✹➋✢✭❽✵✖✰❶➋✖✵❼✭✯❹❥✩✣⑨❄❻✌✷✥❻✌✩❨➂➜❾✶✫✹✷❢➋✢✵✘❹✹❹✘➄
➀⑥✷✬⑨✮✳➤✩✬✫✮✵❊✩✬❹➙➀①✵✖✰✶✵✖❸✶⑨✮✭❽✰✶✸➥➈➦✫✮✷●➉➧⑨✹✳✶✭✯❹✖➍✌➨→✵→❻❥✭❣➃❽➃✴✫✮✵✖➈➦✵✖✫➙❸❶✫▲❹❺⑨☎⑨✮✷➩➋✢✷✬➉➜❾✶➇✶⑨✹✩❛⑨✹✭❣✷●✰❶✩✱➃❼➀✶✭❽✷✬➃❽✷✬✸✬➂
❻❥✳✶✭❽➋▲✳✪❹✮✳✶✷❛❻↕❹✡✳✶✷❛❻➫➀❶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✱➃✝➉✥✷❢❿❢✵✘➃❽❹✡✫✮✷●➇❢⑨✮✵❊❿✛✭❣✰→➋✢✷✬➉➜❾✶➇✶⑨✮✵✖✫✴❹✮➋✖✭❣✵✘✰❶➋✢✵❲✩✱✫✹✵✣❿❢✵✢❸❶✰❶✵✘❿✪✩✬✰❶❿
➇❶❹❺✵❊❿➁⑨✮✷✥⑨✮✳✶✵✦➀①✵✖✰❶✵✢❸✶⑨↕✷✬➈✟➀✶✭❽✷✬➃❽✷✬✸●➂✬➍
★✔✷✬➃❽✵✘➋✖➇✶➃❽✩✬✫↕➀✶✭❽✷✬➃❽✷✬✸●➂✓✳❶✩✬❹✡➇✶✰❶➋✖✷❛➅✬✵✖✫✹✵✘❿✛✩➙➉❲➇✶➃❣⑨✮✭❣⑨✮➇❶❿❢✵❲✷✱➈➭➀✶✭❽✷✬➃❽✷✬✸●✭❽➋✘✩✱➃③❿✶✩✱⑨✹✩✓✩✬✰❶❿✛❾✶✫✹✷✬❾①✵✖✫✮➞

⑨✮✭❽✵✘❹✓➌➯❹❺➇❶➋▲✳➲✩●❹✦✸✬✵✘✰✶✷✬➉➜✵➙❹✮✵✘➳P➇✶✵✖✰⑥➋✢✵✘❹▲➏❜➄✝➀✶➇❢⑨✣⑨✹✳✶✵✘❹✮✵✓✩✱✫✹✵➙✰✶✷✱⑨✣✵✘✰✶✷✬➇❶✸✬✳✎⑨✮✷✔➇✶✰⑥❿❢✵✖✫▲❹❄⑨▲✩✱✰❶❿↔✩✬✰❶❿
✭❣✰P⑨✮✵✘✫✮❾❶✫✮✵✖⑨☎➀✶✭❽✷✬➃❽✷✬✸✬✭✯➋✖✩✬➃✡❹✮➂✿❹❺⑨✮✵✘➉➙❹✖➍✌➝↕➃❽➃❼➀✶✭❽✷✬➃❽✷✬✸●✭❽➋✘✩✱➃✡❹✮➂❢❹❄⑨✹✵✖➉➙❹☎➋✖✷✬✰❶❹✮✭✯❹❄⑨☎✷✬➈✣✵✖➃❽✵✖➉➜✵✖✰P⑨▲❹✓❻❥✳✶✭✯➋▲✳
✭❣✰P⑨✮✵✘✫✹✩●➋❜⑨❊➍✝➝➵⑨❄❻✌✷✔❻✌✩❨➂✎✩✱❾✶❾✶✫✹✷●✩●➋▲✳→➃❽✵✘✩●❿❢✭❽✰✶✸✛⑨✮✷❛❻✼✩✱✫▲❿✶❹❘➇✶✰❶❿✶✵✖✫▲❹❄⑨▲✩✱✰❶❿❢✭❽✰✶✸✛⑨✹✳✶✵✘❹✮✵☎❹✮➂✿❹❺⑨✮✵✘➉➙❹✦✭❽❹
❾✶✫✮✷●❾⑥✷P❹❺✵❊❿➑⑩❢➸✿✰✶✷❛❻❥➃❽✵✘❿❢✸●✵✴❿❢✭✯❹✹➋✢✷❛➅✬✵✘✫✮➂➙➀⑥✩✬❹✮✵✘❿➆✩✱✫✹✷✬➇✶✰❶❿➆❿✶✩✱⑨✹✩❛➞⑤➉➜✭❣✰❶✭❣✰✶✸⑥➄❢❻❥✳✶✭✯➋▲✳➁✵✖➺P⑨✹✫✹✩●➋❜⑨↕❹✮✭❣✸●✰✶✭❯➈➓➞
✭❽➋✘✩✱✰P⑨✣❾❶✩❛⑨✮⑨✮✵✘✫✮✰❶❹✴➈➦✫✹✷✬➉➻✳✿➇✶✸✬✵✓✩✬➉✥✷●➇✶✰P⑨✹❹❘✷✬➈✌✵✖➺✿❾①✵✖✫✹✭❽➉✥✵✘✰P⑨✹✩✱➃❴❿✶✩❛⑨▲✩✶➄✝✩✬✰❶❿→❹✮✭❽➉✧➇✶➃✯✩❛⑨✹✭❣✷●✰❢➞❪➀⑥✩✬❹✮✵✘❿
✩✱❾✶❾✶✫✹✷●✩●➋▲✳③➄✿❻❥✳✶✭✯➋▲✳☎⑨✹✵✘❹❺⑨✹❹❥➅✿✭✯✩❲✵✖➺❢❾⑥✵✘✫✮✭❽➉➜✵✖✰P⑨✹❹❥❿❢✭❣➼❞✵✖✫✹✵✖✰P⑨↕✳✿➂P❾①✷✱⑨✹✳✶✵✘❹✮✭✯❹✦➟❯➡✘➽✱➢⑤➍✶➝➾➋✢✫✹➇❶➋✢✭✯✩✱➃➑❾✶✫✹✷✬➀✶➞
➃❣✵✘➉➚✭❽✰➜⑨✮✳✶✭✯❹■➋✢✷●✰P⑨✮✵✢➺✿⑨➭✭✯❹❇⑨✮✳❶✩✱⑨➊✫✹✵✘❹✮✵✘✩✱✫▲➋▲✳✧✸●✫✮✷●➇✶❾❶❹❇✩✱✫✹✵❥✩✱➀✶➃❽✵✼⑨✮✷✦✵✖➺✶➋▲✳❶✩✱✰✶✸●✵➊⑨✹✳✶✵✖✭❽✫■➉➜✷❢❿❢✵✖➃✯❹■✩✬✰❶❿
➋✢✫✹✵✘✩❛⑨✹✵➆➋✖✷✬➉➜➉➜✷✬✰✶➃❽➂➥✩●➋✖➋✢✵✘❾❢⑨✮✵❊❿➩❿❶✩❛⑨✹✩→✫✹✵✖❾①✷●❹✮✭❯⑨✹✷✬✫✹➂➪➌➯➶❢➹✼★✪➐➵➟ ➘✬➴❛➢↕✫✹✵✖❾❶✫✮✵❊❹❺✵✘✰●⑨▲❹❲✩↔❹❺⑨✹✩✬✰❶❿✶✩✱✫▲❿
✷✬❾①✵✖✰✔❹❺✷✬➈➓⑨❄❻✌✩✬✫✮✵❼➈➦✷✬✫❥➉➜✷❢❿❢✵✘➃❣➃❽✭❣✰❶✸➜✩✬✰❶❿✛✩✱✰❶✩✬➃❣➂❢❹✮✭❽❹▲➏❜➍
➷ ✷✬➉➜❾✶➇❢⑨▲✩❛⑨✮✭❽✷✬✰⑥✩✱➃P➉✥✷❢❿❢✵✘➃❽❹✄➇❶❹✮✵✘❿✧✭❣✰✣➀❶✭❣✷●➃❣✷●✸✬➂✦✩✱✫✹✵■➀❶✩●❹❺✵❊❿✦✷✬✰✥➋✢✷✬✰P⑨✹✭❣✰✿➇✶✷●➇❶❹③➉➙✩❛⑨✹✳✶✵✖➉➙✩✱⑨✮✭✯➋✖✩✱➃

✩✱❾✶❾✶✫✹✷●✩●➋▲✳✶✵✘❹✘➄❨➀✶➇❢⑨➊✩✬➃❽❹✮✷❘✷✬✰➜❿❢✭❽❹✹➋✢✫✹✵✢⑨✹✵❥➉➜✵✢⑨✮✳❶✷✿❿❶❹✖➍✱➬❂✰✥⑨✹✳✶✭❽❹■❻❴✷●✫✮➸✦✷●✰✶➃❣➂✧⑨✮✳✶✵↕❹✮✵✘➋✖✷✬✰❶❿✥✩✱❾❶❾✶✫✮✷P✩✬➋▲✳
❻❥✭❣➃❽➃❼➀①✵✎✭❣➃❽➃❣➇⑥❹❄⑨✹✫✹✩✱⑨✮✵✘❿③➄■➈➦✷✬✫➁⑨✮✳❶✵✪➈➦✷✬✫✹➉➜✵✖✫➁❻❴✵☎➮❄➇❶❹❄⑨✛✫✹✵✢➈➦✵✖✫☎⑨✮✷➱➟❯➡❊✃❛➢⑤➍❴❷✼✳✶✵✎✩✱✫✹✵✘✩➛✷✬➈✦❿✶✭❽❹✹➋✢✫✹✵✢⑨✹✵
➉✥✷❢❿❢✵✘➃❣➃❽✭❽✰✶✸❘✭❽❹➭➳P➇✶✭❣⑨✮✵❥➅●✵✖✫✹➂✣❿❢✭❣➅●✵✖✫▲❹❺✵✼✩✱✰⑥❿✧❻✌✵✼✷✬✰✶➃❽➂✣✫✹✵✖❾①✷✬✫✮⑨❇✳❶✵✖✫✹✵✌❹✮✷✬➉➜✵✼✷✱➈⑥⑨✮✳✶✷P❹❺✵❥✩✱❾❶❾✶✫✮✷P✩✬➋▲✳✶✵❊❹
❻❥✳✶✵✖✫✹✵✴⑨✮✳✶✵✦➀①✵✖✰✶✵✖❸✶⑨✹❹✡✩✱✫✹✵✴❻✌✵✖➃❽➃❣➞❪✵❊❹❄⑨▲✩✱➀✶➃❽✭❽❹✮✳✶✵❊❿➑➍
✲✴✵✖✰✶✵✣✫✹✵✖✸●➇✶➃✯✩❛⑨✮✷●✫✮➂➙✰❶✵✢⑨❄❻✌✷✬✫✹➸✿❹↕✳❶✩❨➅✬✵❘➀①✵✖✵✖✰➠➉✥✷❢❿❢✵✘➃❣➃❽✵✘❿✛➇⑥❹❺✭❽✰✶✸✓✳✿➂✿➀✶✫✹✭❽❿✛❐❇✵✢⑨✹✫✮✭✝✰✶✵✢⑨✡✫✹✵✖❾❶✫✮✵✖➞

❹❺✵✘✰●⑨▲✩❛⑨✹✭❣✷●✰❶❹↕❻❥✳✶✭✯➋▲✳➠❹✮✵✖✵✘➉❒⑨✹✷☎➀①✵✥➋✖➃❣✷P❹❺✵✘✫❥⑨✮✷☎⑨✮✳✶✵✥➀✶✭❽✷✬➃❽✷✬✸●✭❽❹❺⑨✹❹✘❮❶✭❽✰P⑨✮➇✶✭❣⑨✮✭❽✷✬✰✔⑨✹✳❶✩✱✰→✷✱⑨✹✳✶✵✖✫❼➸P✭❽✰❶❿✶❹
✷✱➈➭➉➜✷✿❿✶✵✖➃✯❹↕➇❶❹✮✵✘❿➆➈➦✷●✫↕⑨✮✳❶✵❲❹✹✩✱➉➜✵✦❾✶➇✶✫✹❾⑥✷P❹❺✵➁➌➦✵✖➃❽✵✘➋✢⑨✮✫✹✭❽➋✘✩✱➃✝➋✖✭❣✫▲➋✢➇❶✭❯⑨▲❹✖➄①➹❴✷✿✷●➃❣✵❊✩✱✰✛✰✶✵✢⑨❄❻✌✷✬✫✹➸❢❹✖➄⑥❿❢✭❯➈➓➞
➈➦✵✖✫✹✵✖✰P⑨✮✭✯✩✱➃↕✵❊➳P➇❶✩❛⑨✹✭❣✷●✰❶❹✹➏✪➟❯➡❛❰❊➢⑤➍➊★✔✵✢⑨▲✩✱➀①✷✬➃❽✭❽➋✛❾⑥✩❛⑨✮✳✿❻✼✩❨➂❢❹➜✳❶✩❨➅✬✵✔➀①✵✖✵✘✰➪✩✱➃✯❹❺✷➲➋✖✷✬✰❶❹✮✭❽❿✶✵✖✫✹✵✘❿➩❻❥✭❯⑨✹✳
⑨✮✳✶✵✧❹✹✩✱➉➜✵✣➉➜✷❢❿❢✵✘➃❽❹❲➟ Ï✱➢✄✩✱✰❶❿➆⑨✹✷✿✷✬➃✯❹↕❿❢✵✘✩✬➃❣✭❽✰✶✸✓❻❥✭❣⑨✮✳✔✳✿➂✿➀✶✫✹✭❽❿✔❐❇✵✖⑨✮✫✹✭③✰✶✵✖⑨❼❹❺❾①✵✘➋✖✭❯❸①➋✖✩❛⑨✹✭❣✷●✰❶❹❥✳❶✩❨➅●✵
➀⑥✵✘✵✖✰✎❾✶✫✮✷❢❿❢➇⑥➋✢✵✘❿➩➟❯➡❊Ï❛➢⑤➍①❐❇✵✖⑨✮✫✹✭❇✰✶✵✢⑨✦➉➜✷❢❿❢✵✖➃✯❹✴✳❶✩❨➅✬✵❲➀⑥✵✘✵✖✰✎✭❣✰P⑨✮✫✹✷❢❿❢➇❶➋✖✵✘❿✪✭❽✰✪⑨✹✳✶✭✯❹✦➋✢✷✬✰P⑨✹✵✢➺✿⑨✴➀①✵✢➞
➋✖✩✱➇⑥❹❺✵✼✷✱➈⑥⑨✮✳✶✵✘✭❣✫❴✩✱❾✶❾✶✫✹✷✬❾❶✫✮✭✯✩❛⑨✹✵✌❹✮✵✖➉➙✩✱✰P⑨✹✭❽➋✘❹✖➄❊⑨✮✳❶✵✖✭❽✫■✭❣✰P⑨✹➇✶✭❯⑨✹✭❣➅●✵✼✸✬✫▲✩✱❾✶✳✶✭✯➋✖✩✬➃✿✫✮✵✘❾✶✫✮✵❊❹❺✵✘✰P⑨✹✩❛⑨✹✭❣✷●✰❲✩✬✰❶❿
⑨✮✳✶✵✘✭❣✫✴➋✖✩✱❾⑥✩✱➀✶✭❽➃❣✭❣⑨✮✭❽✵✘❹❥➈➦✷✬✫✡➉➙✩✱⑨✮✳✶✵✘➉➜✩✱⑨✮✭✯➋✖✩✬➃✝✩✱✰❶✩✬➃❣➂❢❹✮✭❽❹↕➃❣✵❊✩✬❿❢✭❽✰✶✸➜⑨✮✷➁❹❄⑨✹➇❶❿❢➂✿✭❣✰❶✸✓➅❛✩✱✫✹✭❣✷●➇❶❹✼❾✶✫✹✷✬❾①✵✖✫✮➞
⑨✮✭❽✵✘❹✣➌♦➀⑥✷●➇✶✰❶❿❢✰✶✵❊❹✮❹✘➄❶➃❽✭❽➅✬✵✖✰❶✵✘❹✹❹✖➄❶➶P➞⑤✭❽✰P➅❛✩✬✫✮✭✯✩✱✰P⑨✹❹✘➄✶❷✌➞⑤✭❣✰✿➅❛✩✱✫✹✭❽✩✬✰P⑨✹❹▲➏❼➟ Ï❛➢⑤➍❶➝❼❹❥➀✶✭❽✷✬➃❽✷✬✸✬✭✯➋✖✩✬➃➑❾✶✫✹✷✿➋✖✵✘❹✹❹❺✵❊❹
➋✖✩✱✰➙➀①✵❼➋✖✷✬✰❶❹✮✭✯❿❢✵✖✫✹✵✘❿➜✩❛⑨✌➉➙✩✱✰✿➂✧➃❽✵✖➅●✵✖➃✯❹■✷✱➈✝❿✶✵✢⑨✹✩✬✭❣➃❪➄●❐❇✵✖⑨✮✫✹✭❶✰✶✵✖⑨➊➉➜✷❢❿❢✵✖➃✯❹❴✩✬➃❣➃❽✷❛❻❥✭❽✰✶✸❘➈➦✷✬✫✹➉➙✩✱➃✶➅●✵✖✫✮➞

21



✭❯❸⑥➋✘✩❛⑨✹✭❣✷●✰✔✷✱➈✟➈➦✷✬✫✹➉➜✩✬➃✝➉➜✷❢❿❢✵✖➃✯❹❥✳❶✩❨➅●✵✦➀⑥✵✘✵✖✰✔➇❶❹✮✵✘❿✔✩●❹↕✩✓➋✖✷✬➉➜❾✶➃❽✵✖➉➜✵✖✰P⑨↕⑨✹✷➙❻❴✷●✫✮➸PÐ❶✷❛❻➫➉✥✷❢❿❢✵✘➃❽❹
⑨✮✳❶✩✱⑨✡➋✖✩✱✰➆✫✹✵✖❾✶✫✹✵✘❹✮✵✖✰P⑨❥✰✶✵✘❹❺⑨✮✭❽✰✶✸➙✩✱✰⑥❿☎✷●✫✹❿❢✵✘✫✮✭❽✰✶✸✥✷✱➈❇❾✶✫✹✷✿➋✖✵✘❹✹❹❺✵❊❹❘➟ Ñ✱➽✱➢⑤➍
➶P⑨✹✩✱⑨✮✵✘➋▲✳⑥✩✱✫✮⑨✹❹❘✳❶✩❨➅●✵✥➀①✵✖✵✘✰➛✵✖➉➜❾✶➃❽✷❛➂✬✵❊❿→✩●❹✦✩✛✸✬✵✖✰❶✵✖✫▲✩✱➃■✩✱❾❶❾✶✫✮✷P✩✬➋▲✳➠⑨✮✷✪➉➜✷❢❿❢✵✖➃❽➃❽✭❣✰✶✸✪❷Ò➋✢✵✘➃❣➃

➉➜✩✱⑨✮➇✶✫▲✩❛⑨✹✭❣✷●✰☎✭❽✰➆⑨✮✳✶✵✴⑨✮✳✿➂✿➉✧➇⑥❹✖➄❢❻❥✳✶✭✯➋▲✳➆✭❽❹❥✩✬✰➁✭❽➃❣➃❽➇❶❹❺⑨✮✫▲✩❛⑨✹✭❣➅●✵✴✵✖➺✶✩✱➉➜❾✶➃❽✵❼✷✬➈✝⑨✮✳❶✵✣✩✬➋✖➋✖➇✶➉✧➇❶➃❽✩✱⑨✮✭❽✷✬✰
✷✱➈✣✵✢➺❢❾①✵✖✫✹✭❣➉➜✵✘✰●⑨▲✩✱➃✴❿✶✩❛⑨▲✩➛✭❣✰P⑨✹✷➥➃✯✩✱✫✹✸✬✵✪❿❢✭✯❹✮➋✖✷✬✰✶✰❶✵✘➋❜⑨✹✵✘❿Ó❿✶✩✱⑨✹✩●❹❺✵✖⑨✹❹➠➟❬❰❊➢⑤➍✼❷✼✳✶✵➠➉➙✩✱✭❽✰Ó➀①✵✖✰✶✵✖❸✶⑨✹❹
➀⑥✵✘✭❣✰✶✸➁❮ ⑨✹✷✧❿❢✭❽✫✮✵❊➋❜⑨➊✰❶✵✖❻Ó✵✢➺❢❾①✵✖✫✹✭❣➉➙✩✬✰●⑨▲✩❛⑨✹✭❣✷●✰③➄✱⑨✹✷✣➇✶✰❶➋✖✷❛➅✬✵✖✫➊✸●✩✱❾⑥❹➭✭❣✰✓⑨✮✳✶✵✴❿✶✩❛⑨▲✩✬❹✮✵✢⑨✘➄✬⑨✮✷✣❾❶✫✮✷❛➅✿✭✯❿❢✵
✰✶✵✖❻Ó❻✼✩❨➂❢❹➭⑨✮✷✧⑨✮✳✶✭❽✰✶➸✓✩✬➀⑥✷●➇❢⑨✌✩✬✰❶❿➙➅✿✭❽❹✮➇❶✩✬➃❣✭❽Ô✖✵✴❿✶✩❛⑨▲✩✶➄✱⑨✹✷❲❹✮✵✖✫✹➅✬✵✡✩●❹❴✩✧➃❣✭❽✰✶➸➜➀①✵✢⑨❄❻✌✵✖✵✖✰➁❹✮➋✖✭❣✵✘✰●⑨✹✭❯❸①➋
❾❶✩✱❾①✵✖✫▲❹❥✩✱✰❶❿☎⑨✮✷➙✳❶✭❣✸●✳✶➃❣✭❽✸✬✳P⑨↕❿❢✭❣➼①✵✘✫✮✵✘✰❶➋✢✵❊❹✼➀⑥✵✖⑨❄❻❴✵✘✵✖✰✛✳✿➂✿❾⑥✷✬⑨✮✳✶✵❊❹❺✵❊❹✖❮③➟❬❰❊➢⑤➍
❐■✫✹✷✿➋✖✵✘❹✹❹➭✩✱➃❽✸✬✵✘➀✶✫✹✩❘✩✬✰❶❿➜❹❄⑨✹✷✿➋▲✳⑥✩✬❹❺⑨✮✭✯➋✼Õ❞➞⑤➋✘✩✱➃✯➋✢➇✶➃❽➇❶❹■✩✬✫✮✵❥➇❶❹✮✵✘❿✥⑨✹✷✦➉➜✷✿❿✶✵✖➃✶⑨✹✳✶✵✡➀①✵✖✳⑥✩❨➅P✭❽✷✬➇❶✫➭✷✱➈

❹❺✷❢➋✢✭✯✩✱➃❢✭❽✰❶❹✮✵✘➋✢⑨✹❹❥➟ Ñ●❰❊➢❶✩✬✰❶❿❲➀✶✭❣✷●➉➜✷✬➃❽✵✘➋✢➇❶➃❽✩✬✫✟❾❶✫✮✷❢➋✢✵❊❹✮❹✮✵✘❹✼➟ Ñ✬Ö❛➢❪➍✱❷✼✳✶✵❊❹❺✵✼➉➜✷❢❿❢✵✖➃✯❹❇❾✶✫✹✷❛➅✿✭❽❿❢✵❥✩✴➇❶❹✮✵✢➈➦➇✶➃
➈➦✷✬✫✹➉➜✩✬➃❣✭✯❹✮➉➪➈➦✷✬✫✄➇✶✰❶❿❢✵✘✫✹❹❺⑨✹✩✬✰❶❿❢✭❽✰✶✸✼⑨✮✳❶✵➊✫✹✵✖➃✯✩❛⑨✮✭❽✷✬✰⑥❹❺✳✶✭❽❾❘➀⑥✵✖⑨❄❻❴✵✘✵✖✰✦✭❽✰❶❿❢✭❽➅✿✭❽❿❢➇⑥✩✱➃✬➀①✵✖✳⑥✩❨➅P✭❽✷✬➇❶✫③✷✱➈✿⑨✮✳❶✵
➋✢✷✬➉➜❾①✷✬✰✶✵✘✰P⑨✹❹■✩✬✰❶❿✥⑨✮✳✶✵❼❿❢➂✿✰❶✩✱➉➜✭✯➋✼➀⑥✵✘✳❶✩❨➅✿✭❣✷●➇✶✫■✷✱➈①⑨✮✳❶✵✡❹❺➂❢❹❺⑨✮✵✘➉➆➍⑥❮ ❷✼✳❶✵✖➂❲➋✖✷✬➉❲➀✶✭❣✰❶✵↕➋✢✷✬➉➜❾✶➇✶⑨✮✵✖✫
❹❺✭❽➉✧➇✶➃✯✩❛⑨✹✭❣✷●✰③➄✶★✪✩✬✫✮➸●✷❛➅➜➋▲✳⑥✩✱✭❽✰✛✩✬✰❶✩✱➃❽➂❢❹❺✭✯❹✼✩✱✰❶❿➁➉➜✵✘✩✬✰❢➞➯❸⑥✵✖➃✯❿➁➉➜✵✖⑨✮✳✶✷❢❿✶❹✌➈➦✷●✫↕✩✱✰❶✩✬➃❣➂❢❹✮✭❽❹✘❮③➟ ÑP❰❊➢⑤➍
× ✰→⑨✹✳✶✵✓✷✬⑨✮✳✶✵✘✫✦✳❶✩✱✰❶❿➛➋✖✷✬➉➜❾✶➇❢⑨✹✵✖✫✧❹✹➋✢✭❽✵✖✰⑥➋✢✵➙➀①✵✖✰✶✵✖❸✶⑨✮✵❊❿➛✩✛➃❣✷✬⑨✧✭❣✰✎⑨✹✳✶✵✓❾❶✩●❹❄⑨✦➈➦✫✹✷✬➉➻➀✶✭❣✷●➃❯➞

✷✬✸✬➂✧✭❣✰➜✷✬✫▲❿❢✵✘✫✄⑨✹✷✣❿❢✵✖➅●✵✖➃❽✷✬❾✥✰✶✵✖❻Ø➋✢✷●✰❶➋✢✵✘❾❢⑨✹❹✘➄✱✩✱➃❽✸✬✷●✫✮✭❣⑨✮✳❶➉➜❹✘➄✱✩✱❾❶❾✶✫✮✷P✩✬➋▲✳✶✵❊❹✖➄✘⑨✮✳❶✵✖✷✬✫✹✭❽✵✘❹✘➍✬➶✿✷✱➈➓⑨❄❻✼✩✱✫✹✵
✵✖✰✶✸●✭❣✰✶✵✘✵✖✫✹✭❣✰❶✸✓➋✢✷✬➉➜➉❲➇✶✰✶✭❣⑨❄➂➁➋✖✩✬✰✔➃❣✵❊✩✱✫✹✰✔✩➙✸✬✫✹✵✘✩✱⑨✡❿❢✵✘✩✬➃✝✩✱➀①✷✬➇❢⑨❼➀✶➇✶✭❽➃❽❿❢✭❽✰✶✸☎❹✮➂❢❹❄⑨✹✵✖➉➙❹❥➈➦✫✹✷✬➉❒⑨✮✳❶✵
➀✶✫✮✷P✩✬❿❢✵✘✫✧➋✢✷●✰❶➋✢✵✘❾❢⑨✹❹❲❹❺➇❶✫✮✫✹✷✬➇✶✰⑥❿❢✭❣✰❶✸✔➀✶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✬➃➊➋✢✵✘➃❣➃❴❾✶✫✮✷●✸✬✫▲✩✱➉➙❹✣✩✬✰❶❿✎⑨✮✳✶✵➆❹❄⑨✹✫✹✩✱⑨✮✵✘✸✬✭❽✵✘❹❘⑨✹✳✶✵✖➂
➇❶❹❺✵✣⑨✮✷➙✫✹✷✬➀✶➇❶❹❺⑨✮➃❽➂➁✩●➋✖➋✖✷✬➉➜❾✶➃❽✭❽❹✮✳✔➋✢✷✬➉➜❾✶➃❽✵✢➺➁⑨✹✩●❹❺➸❢❹↕❹✮➇❶➋▲✳✔✩✬❹↕❿✶✵✖➅✬✵✘➃❣✷●❾✶➉➜✵✖✰P⑨✘➄❶✳✶✵✘✩✬➃❣✭❽✰✶✸✓✩✱✰⑥❿✛✫✮✵✖➞
✸✬✵✖✰❶✵✖✫▲✩❛⑨✮✭❽✷✬✰✝➍✶➝➾➋✢✷✬➃❽✷✬✰✿➂✓✷✬➈❇➋✖✵✖➃❽➃❽❹✡➋✢✷✿✷✬❾①✵✖✫▲✩❛⑨✹✵✘❹✌⑨✮✷➜➈➦✷●✫✮➉❒✩➜➉✧➇✶➃❣⑨✮✭✯➋✢✵✘➃❣➃❽➇✶➃✯✩✱✫↕✷●✫✮✸P✩✱✰✶✭✯❹❺➉Ù➇❶✰❶❿❢✵✖✫
⑨✮✳✶✵✎❿❢✭❣✫✹✵✘➋✢⑨✮✭❽✷✬✰➪✷✬➈✣✩➥➋✢✷●➉➜➉✥✷●✰Ó✸✬✵✘✰✶✵✢⑨✹✭❽➋➠❾✶✫✮✷●✸✬✫▲✩✱➉✛➍■➝Ú❹❺❻✼✩✱✫✹➉Û✷✬➈✣➀⑥✵✘✵✘❹➆➋✢✷✿✷✬❾①✵✖✫▲✩❛⑨✹✵✘❹➜⑨✹✷
➋✢✷✬✰⑥❹❄⑨✹✫✮➇❶➋✢⑨❼✩✓✳❶✭❣➅●✵✬➍⑥Ü➊✰✶✸✬✭❽✰✶✵✘✵✖✫▲❹❥✵✖✰✿➅✿✭❽❹✮✭❽✷✬✰✔➀✶➇✶✭❽➃✯❿❢✭❣✰❶✸➁❹✮✵✖➃❣➈➓➞❪✷●✫✮✸P✩✱✰✶✭❽Ô✖✭❽✰✶✸➙✰✶✵✖⑨❄❻❴✷●✫✮➸❢❹✘➄❶➋✢✫✹✵✘✩✱⑨✮✭❽✰✶✸
➅❨✩●❹❄⑨➜❿❢✭✯❹❄⑨✹✫✮✭❽➀✶➇❢⑨✹✵✘❿➲❹✮✵✖✰❶❹✮✷✬✫✥❹❺➂❢❹❺⑨✮✵✘➉➜❹✘➄✄✩✬✰❶❿➛✵✘➅✬✵✖✰➥✳❶✩✱✫✹✰✶✵✘❹✹❹✮✭❣✰✶✸✔➀❶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✱➃❴➋✢✵✖➃❽➃✯❹❲✩●❹✧✩✪✰❶✵✖❻
➋✢✷✬➉➜❾✶➇✶⑨✹✩❛⑨✹✭❣✷●✰❶✩✱➃❥❹✮➇✶➀❶❹❺⑨✮✫▲✩❛⑨✹✵✬➍➭❷✼✳✶✵✘❹✮✵➆✵✢➺✶✩✱➉➜❾✶➃❽✵✘❹✥✫▲✩✱✭✯❹❺✵☎➈➦➇✶✰❶❿✶✩✬➉✥✵✘✰P⑨✹✩✱➃↕➳P➇✶✵❊❹❄⑨✹✭❣✷●✰❶❹❲➈➦✷✬✫✥⑨✮✳❶✵
✷✬✫✹✸●✩✱✰❶✭❣Ô❊✩❛⑨✮✭❽✷✬✰➜✷✬➈✄➋✢✷●➉✥❾❶➇❢⑨✮✭❽✰✶✸❲❹✮➂❢❹❄⑨✹✵✖➉➙❹✘⑩①❮ Ý↕✷❛❻➪❿✶✷✧❻✌✵✡✵✖✰❶✸✬✭❽✰✶✵✖✵✘✫❴✫✹✷✬➀✶➇⑥❹❄⑨✌➀⑥✵✘✳❶✩❨➅✿✭❣✷●➇✶✫■➈➦✫✹✷✬➉
⑨✮✳✶✵✥➋✢✷✿✷✬❾①✵✖✫▲✩❛⑨✹✭❣✷●✰✔✷✱➈■➅❛✩✬❹❺⑨❼✰✿➇✶➉❲➀⑥✵✘✫✹❹✡✷✱➈■➇✶✰✶✫✹✵✖➃❽✭✯✩✱➀✶➃❽✵✧❾❶✩✬✫❺⑨▲❹✖➄❶⑨✮✳❶✩✱⑨✴✩✬✫✮✵✣✭❽✰P⑨✮✵✘✫✹➋✖✷✬✰✶✰✶✵❊➋❜⑨✹✵✘❿✔✭❽✰
➇✶✰✶➸✿✰✶✷❛❻❥✰③➄❊✭❣✫✹✫✹✵✖✸✬➇❶➃❽✩✬✫✘➄✢✩✬✰❶❿❘⑨✮✭❽➉➜✵✢➞⑤➅❛✩✱✫✹➂P✭❽✰✶✸↕❻✼✩❨➂❢❹✹Þ●❮✬➟ Ñ✱✃✱➢❪➍❨Ü■➉➜✵✘✫✮✸●✭❣✰✶✸✼⑨✹✵✘➋▲✳✶✰❶✷✬➃❽✷✬✸✬✭❽✵✘❹✘➄✖❹✮➇❶➋▲✳✧✩●❹
★✪Ü➊★✪❹❴❿❢✵✖➅✿✭✯➋✢✵❊❹✖➄✬✩✬✫✮✵❥➉➙✩✬➸P✭❽✰✶✸✣✭❣⑨➊❾①✷●❹✹❹❺✭❽➀✶➃❽✵❥⑨✮✷✧➀✶➇✶➃❽➸●➞⑤➉➙✩✱✰✿➇❢➈♦✩●➋❜⑨✮➇❶✫✮✵❥➉➜✭❽➃❣➃❽✭❣✷●✰❶❹■✷✬➈❞⑨✮✭❽✰P➂➜➋✢✷●➉✥➞
❾✶➇❢⑨✮✭❽✰✶✸✡✩✬✸✬✵✘✰●⑨▲❹➑❻❥✭❣⑨✮✳✧❹✮✵✖✰❶❹✮✷✬✫▲❹③✩✬✰❶❿✦✩✬➋✢⑨✮➇❶✩✱⑨✮✷✬✫▲❹✘➄✢✩✱✰❶❿❘✵✘➉✧➀①✵✘❿❘⑨✹✳✶✵✘❹✮✵■✭❽✰●⑨✹✷↕➉➙✩❛⑨✹✵✖✫✹✭❽✩✬➃❽❹③✩✬✰❶❿✴⑨✮✳❶✵
✵✖✰✿➅✿✭❣✫✹✷✬✰✶➉➜✵✘✰●⑨❊➍✶➨✎✵✦❻❴✷●➇✶➃❽❿➆➃❽✭❣➸●✵✦⑨✮✷➙➀❶➇✶✭❣➃✯❿✛✰✶✷❛➅●✵✖➃③✩✱❾❶❾✶➃❣✭✯➋✖✩✱⑨✮✭❽✷✬✰❶❹❥➈➦✫✮✷●➉ß⑨✮✳❶✵✘❹✮✵✦⑨✮✵❊➋▲✳✶✰✶✷✬➃❽✷✬✸●✭❣✵❊❹
➞❇❾❶✫✮✷●✸✬✫▲✩✱➉➜➉➙✩✱➀✶➃❽✵↕➉➙✩❛⑨✹✵✖✫✹✭❽✩✬➃❽❹✘➄P❹✮➉➙✩✱✫✮⑨✌❿❢➇⑥❹❄⑨❊➄✿❹✮✵✖➃❣➈➓➞⑤✫✮✵❊➋✢✷✬✰✶❸❶✸✬➇✶✫✹✭❽✰✶✸✣✫✹✷✬➀①✷✱⑨✹❹✘➄❢❹❺✵✘➃❯➈➓➞❂✩✬❹✹❹✮✵✖➉✧➀❶➃❣✭❽✰✶✸
✰❶✩✱✰✶✷P❹❄⑨✹✫✮➇⑥➋❜⑨✮➇❶✫✮✵❊❹❥➞▲➄❶⑨✹✷☎➇✶✰✶✵❊✩✱✫✮⑨✮✳➠⑨✮✳✶✵➁❮ ➋✖✷✬➉➜❾✶➇❢⑨▲✩❛⑨✮✭❽✷✬✰⑥✩✱➃✟✰❶✩❛⑨✹➇✶✫✮✵●❮⑥✷✬➈➊➀✶✭❽✷✬➃❽✷✬✸●✭❽➋✘✩✱➃✝❹✮➂❢❹❄⑨✹✵✖➉➙❹↕➞
➋✢✵✖➃❽➃✯❹✖➄①⑨✮✭✯❹✹❹❺➇✶✵❊❹✖➄①✷✬✫✹✸●✩✬✰❶❹✘➄⑥❹✮✷✿➋✖✭❽✩✬➃❇✭❣✰❶❹✮✵✘➋✢⑨✹❹✡➞↕✩✱✰❶❿✪⑨✮✷➆✭❣✰❢➈➦➇⑥❹❺✵❲⑨✮✳✶✵❊❹❺✵➜✩✱❾❶❾✶➃❣✭✯➋✖✩✱⑨✮✭❽✷✬✰❶❹✴✩✱✰⑥❿➠➋✢✷●➉✥➞
❾✶➇❢⑨✹✩✱⑨✮✭❽✷✬✰❶✩✬➃✼❾❶✩✱✫▲✩✬❿❢✭❽✸✬➉➙❹✧❻❥✭❯⑨✹✳➥⑨✹✳✶✵✛➉✧➇❶➋▲✳➩✰✶✵✖✵❊❿❢✵✘❿➥✫✮✷●➀✶➇❶❹❺⑨✮✰✶✵❊❹✮❹✘➄✟❹✹➋✖✩✬➃❽✩✬➀✶✭❽➃❣✭❣⑨❄➂✬➄❇✩✱➀✶✭❽➃❽✭❯⑨❄➂↔⑨✹✷
❿❢✵✘✩✬➃❶❻❥✭❣⑨✮✳➙➇✶✰❶➋✖✵✖✫✮⑨✹✩✬✭❣✰P⑨❄➂✬➄✬✰✶✷✬✭✯❹❺➂➜✩✱✰⑥❿✥❿✶➂P✰⑥✩✱➉➜✭❽➋↕✵✖✰✿➅✿✭❣✫✹✷✬✰✶➉➜✵✘✰●⑨➭⑨✹✳❶✩❛⑨❴✭❽❹➊❾✶✫✮✵❊❹❺✵✘✰P⑨➊✭❣✰➙✰⑥✩❛⑨✮➇❶✫✹✩✬➃
❹❺➂❢❹❺⑨✮✵✖➉➙❹✘➍
➝ß✰✿➇✶➉✧➀①✵✖✫➜✷✬➈↕❾✶✫✮✷●✸✬✫▲✩✱➉➜➉➜✭❣✰❶✸✪❾❶✩✱✫▲✩✬❿✶✭❣✸●➉➜❹✧✳❶✩❨➅✬✵☎✵✖➉➜✵✖✫✹✸✬✵❊❿➲✩❛⑨❲⑨✮✳✶✵➆✭❣✰P⑨✹✵✖✫▲❹❺✵❊➋❜⑨✮✭❽✷✬✰➥✷✱➈

➋✢✷✬➉➜❾✶➇✶⑨✮✵✖✫✄❹✮➋✖✭❣✵✘✰❶➋✢✵➭❻❥✭❣⑨✮✳✦➀✶✭❽✷✱➞❂➋▲✳✶✵✘➉✥✭✯➋✖✩✬➃❛❾✶✫✹✷✿➋✖✵✘❹✹❹❺✵❊❹✖➍ ➷ ✵✘➃❣➃❣➞⑤➀❶✩✬❹✮✵✘❿❼❾✶✫✹✷✬✸✬✫▲✩✱➉➜➉➜✭❽✰✶✸✼❾❶✩✱✫▲✩✬❿❢✭❽✸✬➉
✳❶✩✬❹➭➀①✵✖✵✘✰➙✭❣✰P⑨✹✫✮✷❢❿❢➇❶➋✖✵✘❿✥✭❽✰✥✷●✫✹❿✶✵✖✫❇⑨✮✷✣➋✖✷✬✰❶❹❺⑨✮✫✹➇❶➋✢⑨➊❹❄⑨✹✫✮➇❶➋✢⑨✮➇✶✫✹✵✘❹➭⑨✮✳❶✩✱⑨■✳✶✵✘✩✬➃❢⑨✮✳✶✵✘➉➙❹❺✵✘➃❣➅●✵✘❹✘➄✬❹❺✳❶✷❛❻✼➞
✭❣✰✶✸➙✩❲✳✶✭❽✸✬✳✛➋✖✩✱❾⑥✩✬➋✢✭❣⑨❄➂➜⑨✮✷✥❻❥✭❣⑨✮✳❶❹❺⑨✹✩✬✰❶❿✛➋✖✩❛⑨▲✩✬❹❺⑨✮✫✹✷✬❾✶✳❶✭❽➋↕➈♦✩✱✭❽➃❣➇✶✫✹✵✘❹✌✷✬➈✟❹✮➂✿❹❺⑨✮✵✘➉➙❹❴➀❶➇✶✭❣➃❣⑨❥⑨✮✳⑥✩❛⑨❥❻✌✩❨➂
➟❯➡●➡✢➢⑤➍➊➝↕➉➜✷✬✫✹❾✶✳✶✷●➇❶❹☎➋✖✷✬➉➜❾✶➇❢⑨✹✭❣✰❶✸➲❾❶✩✱✫▲✩✬❿✶✭❣✸●➉➧➋✢✷●✰❶❹✮✭❽❿❢✵✘✫✹❹☎✩✱❾✶❾✶✫✹✷●✩●➋▲✳✶✵✘❹✥➈➦✷●✫✓❾✶✫✹✷✬✸●✫✹✩✬➉✥➉➜✭❽✰✶✸
✩✔➉➜✵✘❿❢✭❽➇✶➉Ú✷✱➈❥✫✹✩✬✰❶❿❢✷●➉✥➃❽➂→❿✶✭❽❹❺⑨✮✫✹✭❣➀❶➇❢⑨✮✵❊❿➛➋✢✷✬➉➜❾✶➇✶⑨✮✭❽✰✶✸✪❾❶✩✬✫❺⑨✹✭❽➋✖➃❣✵❊❹✦❻❥✳✶✵✖✫✹✵➙⑨✹✳✶✵☎➋▲✳❶✩✬➃❣➃❽✵✖✰✶✸●✵➙✭❽❹
⑨✮✷✪❾✶✫✹✷❢❿❢➇❶➋✖✵➙❾✶✫✮✷●✸✬✫▲✩✱➉➙❹❼⑨✮✳❶✩✱⑨✧✸✬✵✘✰✶✵✖✫▲✩❛⑨✹✵➙❾✶✫✹✵✘❿❢✭✯➋❜⑨▲✩✱➀✶➃❽✵➙➀⑥✵✘✳❶✩❨➅✿✭❣✷●➇✶✫❘➈➦✫✹✷✬➉Ú➃❣✷❢➋✖✩✬➃❣➃❽➂→❿✶✵✢❸❶✰✶✵❊❿
✭❣✰P⑨✮✵✘✫✹✩●➋❜⑨✹✭❣✷●✰❶❹✦➟ Ñ✬✃❛➢⑤➍❶❷✼✳✶✵✧✲✴✫✹✷❛❻❥✭❣✰❶✸➜❐❇✷●✭❣✰P⑨↕➐✝✩✬✰✶✸✬➇⑥✩✱✸✬✵➙➌❪✲❘❐➊➐✄➏❘➟ à❛➢⑤➄ × ✫✹✭❣✸P✩✱➉➜✭✝➶✿✳❶✩✬❾⑥✵❲➐✝✩✱✰✶➞
✸✬➇❶✩✬✸✬✵✣➌ × ➶✶➐✄➏❥➟ Ñ✱➴✱➢❪➄P✩✱✰❶❿➙❐➭✩✬✭❣✰P⑨✹✩✬➀✶➃❽✵↕❐■✫✹✷✬✸✬✫▲✩✱➉➜➉➜✭❽✰✶✸✥➟ Ö❨➢❞✩✱✫✹✵❥✵✢➺✶✩✱➉➜❾✶➃❽✵✘❹➊✷✱➈➑❾✶✫✹✷✬✸●✫✹✩✬➉✥➉➜✭❽✰✶✸
➉✥✵❊➋▲✳❶✩✱✰❶✭❽❹✮➉➙❹➜➈➦✷✬✫✓❾❶✫✮✷❢❿❢➇❶➋✖✭❣✰❶✸➛✸✬➃❽✷✬➀❶✩✬➃✡❹❺✵✘➃❯➈➓➞⑤✷✬✫✹✸●✩✬✰✶✭❽Ô✘✩❛⑨✹✭❣✷●✰➥➇❶❹✮✭❽✰✶✸➛➃❣✷❢➋✘✩✱➃✡➋✖✷P✷●❾⑥✵✘✫✹✩✱⑨✮✭❽✷✬✰③➍❴➝

22



➃❽✩✬✰✶✸✬➇❶✩✬✸✬✵●➄⑥➋✖✩✬➃❣➃❽✵✘❿→★➠✲✦➶❞➄❞✭❽✰❶❹❺❾❶✭❣✫✹✵✘❿➠➀P➂✛➀✶✭❽✷✬➃❽✷✬✸●✭❽➋✘✩✱➃✟❾✶✫✹✷✿➋✖✵✘❹✹❹❥⑨✹✫✹✩✬✰❶❹❄➈➦✷●✫✮➉➙✩✱⑨✮✭❽✷✬✰❶❹❼✩✱✰❶❿➠➇❶❹❺✵❊❿
⑨✮✷❘❹❺✭❽➉✧➇✶➃✯✩❛⑨✹✵❴➀❶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✱➃●❾✶✫✹✷✿➋✖✵✘❹✹❹❺✵❊❹✝❻❥✳❶✷●❹✮✵❴❹❺⑨✹✩❛⑨✹✵✌❹✮❾❶✩●➋✢✵➊➉❲➇❶❹❺⑨❇➀①✵✼➋✢✷✬➉➜❾✶➇✶⑨✮✵✘❿↕➮❄✷✬✭❽✰P⑨✮➃❽➂✦❻❥✭❯⑨✹✳
⑨✮✳✶✵➁✸✬➃❽✷✬➀❶✩✬➃➊❹❄⑨▲✩❛⑨✹✵✓✷✱➈❥⑨✹✳✶✵➁❹✮➂❢❹❄⑨✹✵✖➉Ú✳❶✩✬❹✧➀⑥✵✘✵✖✰➛✭❽✰●⑨✹✫✮✷❢❿❢➇⑥➋✢✵✘❿➥✩✬❹✣✩✔➇❶✰✶✭❯➈➦➂✿✭❽✰✶✸➠❾⑥✩✱✫▲✩✬❿❢✭❽✸✬➉➻✷✱➈
❹❺✵✘➅✬✵✖✫▲✩✱➃➑➋✖✷✬➉➜❾✶➇❢⑨▲✩❛⑨✮✭❽✷✬✰⑥✩✱➃➑➉➜✵✘➋▲✳❶✩✬✰✶✭✯❹❺➉➙❹✦➟❣➡❊Ñ❨➢⑤➍
× ⑨✮✳✶✵✘✫✴➉➜✷●✫✮✵❲➈➦✷✬✫✹➉➙✩✱➃❇➉➜✷✿❿✶✵✖➃✯❹❼✷✬➈✌➋✖✷✬➉➜❾✶➇❢⑨▲✩❛⑨✮✭❽✷✬✰→➀❶✩✬❹✮✵✘❿→✷✬✰→✰❶✩❛⑨✹➇✶✫✹✵❲✳❶✩❨➅●✵❲➀①✵✖✵✘✰→❾❶✫✮✷✬➞

❾⑥✷P❹❺✵❊❿➑➍❊✲❘✩✬➉✥➉➙✩✣➟ ➘❛➢P✩✱✰❶❿ ➷ Ý❼➝✡★á➟ ➽✱➢P✫✮✵✘❾✶✫✮✵❊❹❺✵✘✰P⑨➑⑨❄❻❴✷❥❾✶✫✹✷✬✸●✫✹✩✬➉➜➉✥✭❽✰✶✸✼❾❶✩✬✫✹✩●❿❢✭❣✸●➉➙❹❞✭❣✰❶❹✮❾✶✭❽✫✮✵❊❿
➀P➂✛➀✶✭❽✷✱➞❂➋▲✳✶✵✘➉✥✭✯➋✖✩✬➃✝❾✶✫✹✷❢➋✢✵❊❹✮❹✮✵✘❹↕➈➦✷✿➋✖➇❶❹✮✭❣✰✶✸☎✷✬✰✪➉❲➇✶➃❯⑨✹✭❽❹✮✵✢⑨✴⑨✮✫▲✩✱✰⑥❹❄➈➦✷●✫✮➉➙✩❛⑨✹✭❣✷●✰❶❹✘➍❶➣↕✵✘❻➚➋✢✷●➉✥❾❶➇❢⑨✹✩✱➞
⑨✮✭❽✷✬✰❶✩✬➃■❾❶✩✱✫▲✩✬❿✶✭❣✸●➉➜❹✣✭❣✰❶❹✮❾✶✭❽✫✮✵❊❿✎➀P➂✎➎❼➣❼➝ß❾✶✫✹✷❢➋✢✵❊❹✮❹✮✵✘❹❘✳❶✩❨➅●✵➙✸✬✵✘✰✶✵✖✫▲✩❛⑨✹✵✘❿↔✩✱❾✶❾❶➃❣✭✯➋✖✩✱⑨✮✭❽➅✬✵✔➟ ✃✱➢❴✷●✫
➉✥✷●✫✮✵✥⑨✹✳✶✵✖✷●✫✮✵✖⑨✮✭✯➋✖✩✱➃■✩✬❾✶❾✶✫✹✷●✩●➋▲✳✶✵✘❹✥➟ Ñ✬➘❛➢⑤➄➊➟❣➡✘➘❛➢⑤➍➑➒➭✵✖✫✹➂✪✫✹✵✘➋✖✵✖✰P⑨✮➃❽➂✔⑨✮✳❶✵➙✫✮✷●➃❣✵➜✷✱➈❥➋✢✷●➉➜❾❶✩✱✫✮⑨✮➉➜✵✖✰P⑨▲❹
✭❣✰➩➀✶✭❣✷●➃❣✷●✸✬➂✎✳❶✩✬❹❲➀①✵✖✵✖✰â➋✢✷●✰❶❹❺✭✯❿❢✵✘✫✮✵❊❿↔➀P➂➛➅●✵✖✫✹✭❣✷●➇❶❹✣➉➜✷❢❿❢✵✘➃❣➃❽✭❣✰❶✸→✩✱❾❶❾✶✫✮✷P✩✬➋▲✳✶✵❊❹✖➍✄➹❴✭❽✷●✩✬➉✧➀✶✭❽✵✖✰P⑨▲❹
➋✖✩✱➃✯➋✢➇❶➃❣➇❶❹✦➟ Ñ✱à✱➢❪➄➑❮ ❹✮➇✶✭❯⑨▲✩✱➀✶➃❽✵❘➈➦✷✬✫❥✫✹✵✖❾❶✫✮✵❊❹❺✵✘✰●⑨✹✭❣✰❶✸❲➅❛✩✱✫✹✭❽✷✬➇❶❹✼✩✬❹✮❾①✵✘➋❜⑨▲❹✼✷✱➈❇➉➜✷✬➃❽✵✘➋✢➇❶➃❽✩✬✫✌➃❽✷❢➋✖✩✬➃❣✭❽Ô✘✩✱⑨✮✭❽✷✬✰
✩✱✰❶❿❲➋✢✷✬➉➜❾❶✩✬✫❺⑨✹➉➜✵✖✰P⑨✹✩✬➃❣✭❽Ô✘✩✱⑨✮✭❽✷✬✰③❮❨✩✱✰❶❿❲➉➜✵✖➉❲➀✶✫✹✩✬✰✶✵❴➋✖✷✬➉➜❾✶➇❢⑨✹✭❣✰❶✸➜➟ Ñ❢➡✖➢❪➄❨✩✱✰➜✩✱➀⑥❹❄⑨✹✫✹✩●➋❜⑨✄➉➜✷❢❿❢✵✘➃➯➄❛✭❽✰
⑨✮✳✶✵✼➈➦✫▲✩✱➉➜✵✖❻✌✷✬✫✹➸✦✷✱➈⑥➈➦✷✬✫✹➉➙✩✱➃❢➃✯✩✱✰✶✸●➇❶✩✱✸●✵✘❹✘➄❊✷✬➈❶⑨✹✳✶✵↕➋✢✵✘➃❣➃❶✩✬✰❶❿❲✭❯⑨▲❹❇➈➦➇✶✰❶➋✢⑨✮✭❽✷✬✰❶✩✬➃❣✭❣⑨❄➂✦➞✄❹✮✭❣➉➜✭❽➃❽✩✬✫❇❻❥✭❯⑨✹✳
➐→❹✮➂❢❹❄⑨✹✵✖➉➙❹❼➟❣➡❊Ö❛➢⑥➞▲➄❢✩✱✫✹✵➭➮❄➇❶❹❺⑨✼⑨❄❻❴✷❲✵✢➺✶✩✱➉➜❾✶➃❽✵✘❹❴✷✱➈③➉➜✷❢❿❢✵✖➃✯❹✼❿❢✵✘✩✬➃❣✭❽✰✶✸❲❻❥✭❯⑨✹✳➁➋✢✷●➉➜❾❶✩✱✫✮⑨✮➉➜✵✖✰P⑨▲❹❴✩✱⑨
⑨✮✳✶✵✣➋✖✵✖➃❽➃❣➇✶➃✯✩✱✫❥➃❽✵✖➅●✵✖➃❪➍
★✔✵✖➉❲➀✶✫✹✩✬✰✶✵✧➋✖✷✬➉➜❾✶➇❢⑨✹✭❣✰✶✸➁✭❣✰P⑨✹✫✮✷❢❿❢➇❶➋✖✵✘❹↕⑨✮✳✶✵➜➋✢✷●✰❶➋✢✵✘❾❢⑨❼✷✬➈➊❐➪❹❺➂❢❹❺⑨✮✵✘➉➜❹✘➍❞★✔✵✖➉❲➀✶✫✹✩✬✰✶✵✘❹❼✩✱✫✹✵

✩✱➉➜✷✬✰✶✸❲⑨✮✳❶✵✦➉➜✩✬✭❣✰✛✵✘➃❣✵✘➉✥✵✘✰P⑨✹❹✼✷✱➈✟⑨✮✳❶✵✦➃❣✭❽➅✿✭❣✰✶✸➙➋✖✵✖➃❽➃❽❹✼❻❥✳✶✭✯➋▲✳✔❹❺✵✘❾❶✩✱✫▲✩❛⑨✹✵✡⑨✹✳✶✵✣➋✢✵✘➃❣➃❞➈➦✫✹✷✬➉❒✭❯⑨▲❹✼✵✖✰❢➞
➅P✭❽✫✹✷✬✰✶➉➜✵✖✰P⑨✦✩✱✰❶❿→❹❺❾❶➃❣✭❣⑨❘⑨✮✳✶✵➜➋✢✷●✰●⑨✹✵✖✰P⑨❘✷✱➈➊⑨✹✳✶✵➜➋✢✵✖➃❽➃➭✭❽✰●⑨✹✷➆❹✮➉➙✩✱➃❽➃➭➋✢✷✬➉➜❾❶✩✬✫❺⑨✹➉➜✵✖✰P⑨✹❹❼➀✿➂✔➉✥✵❊✩✱✰❶❹
✷✱➈■✭❽✰●⑨✹✵✖✫✹✰❶✩✱➃✟➉➜✵✖➉❲➀✶✫✹✩✬✰✶✵✘❹✘➍⑥Ü❴✩✬➋▲✳➠➋✖✷✬➉➜❾❶✩✬✫❺⑨✹➉✥✵✘✰P⑨❼➋✢✷●✰●⑨▲✩✱✭❽✰❶❹❼✭❯⑨▲❹✡✷❛❻❥✰✪✵✘✰✶Ô✖➂✿➉➜✵✘❹✴✩✱✰⑥❿✛⑨✮✳✶✵✘✭❣✫
❹❺❾①✵✘➋✖✭❽✩✬➃❣✭❽Ô✖✵❊❿↔➉✥✷●➃❣✵❊➋✢➇✶➃❽✵✘❹✘➍✄❷✼✳❶✵✖✫✹✵✢➈➦✷✬✫✹✵✬➄✟✩✔➉➜✵✖➉❲➀✶✫✹✩✬✰✶✵☎❹❺⑨✮✫✹➇❶➋❜⑨✹➇✶✫✹✵✓✳❶✩✬❹✧➀⑥✵✘✵✖✰➲✭✯❿❢✵✘✰●⑨✹✭❯❸⑥✵✘❿➲✩●❹
⑨✮✳✶✵✓➉➙✩✬✭❣✰➲➋▲✳❶✩✬✫✹✩●➋❜⑨✹✵✖✫✹✭❽❹❺⑨✮✭✯➋✥✷✱➈✼✵✖➅✬✵✘✫✮➂✎❐➾❹❺➂❢❹❺⑨✮✵✘➉á⑨✮✳⑥✩❛⑨✧✭✯❹✧❿❢✵✖❸❶✰✶✵❊❿➛✩✬❹✣✩✔✳❶✭❣✵✘✫✹✩✬✫✹➋▲✳✶✭✯➋✖✩✬➃➭✩✱✫✮➞
✫✹✩✬✰✶✸✬✵✘➉✥✵✘✰P⑨✡✷✱➈➊❿❢✭❣➼❞✵✖✫✹✵✖✰P⑨❼➉➜✵✖➉❲➀✶✫▲✩✱✰✶✵❊❹↕✵✖➉❲➀⑥✵❊❿✶❿❢✵❊❿✔✭❣✰→✩✓➇✶✰✶✭✯➳P➇✶✵✧➉➙✩✬✭❣✰✪➉➜✵✘➉✧➀✶✫▲✩✱✰✶✵✣⑨✮✳❶✩✱⑨
✭❽❿❢✵✘✰P⑨✮✭❣➈➦➂→❹✮✵✖➅✬✵✘✫✹✩✬➃✟❿✶✭❽❹❺⑨✮✭❽✰❶➋❜⑨✣✫✹✵✖✸●✭❣✷●✰❶❹✴✭❣✰⑥❹❺✭✯❿❢✵✥⑨✮✳✶✵✓❹✮➂❢❹❄⑨✹✵✖➉✛➍③Ü➊✩●➋▲✳➠✫✹✵✖✸●✭❣✷●✰➠✸✬✵✖⑨✹❹❘✩✬❹✹❹✮✭❣✸●✰✶✵✘❿→✩
❸❶✰✶✭❣⑨✮✵✓➉❲➇✶➃❯⑨✹✭❽❹✮✵✢⑨❲✷✱➈❥✷✬➀❢➮❄✵❊➋❜⑨▲❹✣✩✱✰❶❿➛✩➆❸⑥✰✶✭❯⑨✹✵☎❹✮✵✢⑨✧✷✬➈✼✫✹➇✶➃❽✵✘❹✦✵✘✭❯⑨✹✳✶✵✖✫❲➉➜✷✿❿✶✭❯➈➦➂✿✭❽✰✶✸✛⑨✮✳✶✵☎✷✬➀❢➮❄✵❊➋❜⑨✹❹
✷✬✫✧➉➜✷❛➅✿✭❽✰✶✸✔⑨✮✳❶✵✖➉ã➈➦✫✹✷✬➉ä✩✔❾✶➃✯✩✬➋✖✵✓⑨✮✷✎✩✱✰✶✷✬⑨✮✳✶✵✘✫✧✷●✰✶✵✬➍❇❷✼✳✶✵➁❹❺⑨✮✫✹➇❶➋✢⑨✮➇✶✫✹✵☎✷✬➈✡✩➠❐å❹✮➂❢❹❄⑨✹✵✖➉ã✭❽❹
➇❶❹❺➇⑥✩✱➃❽➃❣➂→✫✮✵✘❾✶✫✮✵❊❹❺✵✘✰P⑨✮✵✘❿✎✩✬❹✧✩✛⑨✮✫✹✵✖✵✓❿❢✵❊❹✮➋✖✫✮✭❽➀✶✭❽✰✶✸➆⑨✮✳✶✵☎✳✶✭❣✵✘✫✹✩✬✫✹➋▲✳❶✭❽➋✘✩✱➃■✩✱✫▲➋▲✳✶✭❣⑨✮✵❊➋❜⑨✮➇❶✫✮✵➜➀❶✩●❹❺✵❊❿→✷●✰
➉✥✵✘➉✧➀✶✫▲✩✱✰❶✵✘❹✘➍✟➝❒✰❶✩❛⑨✹➇✶✫▲✩✱➃✼✸✬✵✘✰✶✵✖✫▲✩✱➃❽✭❽❹✹✩❛⑨✹✭❣✷●✰↔✷✱➈↕⑨✹✳✶✵✔❐➚❹✮➂✿❹❺⑨✮✵✘➉ä➉➜✷✿❿✶✵✖➃❥➋✖✩✬✰➥➀①✵➁✷●➀❢⑨✹✩✬✭❣✰✶✵❊❿
➀P➂➩➋✢✷✬✰⑥❹❺✭✯❿❢✵✖✫✹✭❽✰✶✸✎❐Ù❹✮➂❢❹❄⑨✹✵✖➉➙❹➜❻❥✳✶✵✘✫✮✵➆⑨✮✳❶✵✛❹❺⑨✮✫✹➇❶➋✢⑨✮➇✶✫✹✵✛✷✱➈✴⑨✮✳✶✵✪❹✮➂❢❹❄⑨✹✵✖➉æ✭✯❹✓❿❢✵✖❸❶✰✶✵✘❿â✩✬❹➙✩✬✰
✩✱✫✹➀✶✭❯⑨✹✫✹✩✬✫✮➂➜✸●✫✹✩✬❾✶✳③➍✿Ü➊✩✬➋▲✳➁✰✶✷❢❿❢✵❘✭❣✰➁⑨✮✳❶✵✴✸●✫✹✩✬❾✶✳✓✫✹✵✖❾✶✫✹✵✘❹✮✵✖✰P⑨▲❹✌✩❲➉➜✵✖➉❲➀✶✫✹✩✬✰✶✵✬➄✿❻❥✳✶✭✯➋▲✳➆✸✬✵✢⑨▲❹✼✩✬❹❺➞
❹❺✭❽✸✬✰✶✵❊❿➠✩➆➉✧➇❶➃❯⑨✹✭❽❹✮✵✢⑨✦✷✱➈❴✷✬➀❢➮❄✵❊➋❜⑨✹❹✦✩✬✰❶❿➠✩✛❹✮✵✢⑨❘✷✱➈✌✫✮➇✶➃❽✵✘❹❼➈➦✷●✫✴➉➜✷❢❿❢✭❣➈➦➂✿✭❣✰✶✸➆⑨✹✳✶✵✘❹✮✵➜✷✬➀❢➮❄✵❊➋❜⑨✹❹❘✩✬✰❶❿
➋✢✷✬➉➜➉❲➇✶✰✶✭✯➋✖✩❛⑨✹✭❣✰❶✸➁⑨✹✳✶✵✖➉Ú✩✱➃❽✷✬✰✶✸P❹❺✭✯❿❢✵✥⑨✮✳❶✵➙✵✘❿❢✸●✵✘❹❘✷✱➈✌⑨✮✳❶✵➙✸✬✫▲✩✱❾✶✳â➟ Ñ✶➡✢➢⑤➍③❷✼✳✶✵✘❹✮✵➙✰✶✵✢⑨❄❻✌✷✬✫✹➸❢❹✴✷✱➈
➋✢✷✬➉➜➉❲➇✶✰✶✭✯➋✖✩❛⑨✹✭❣✰❶✸✥➉➜✵✘➉✧➀✶✫▲✩✱✰✶✵❊❹❥✩✱✫✹✵✦✩✱➃✯❹❺✷➜➸✿✰✶✷❛❻❥✰✔✩✬❹✌⑨✹✭❽❹✹❹❺➇❶✵✣❐Ó❹❺➂❢❹❺⑨✮✵✖➉➙❹✼➀①✵✘➋✘✩✱➇❶❹✮✵✬➄❢➈➦✫✹✷✬➉❒✩
➀✶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✬➃P❾①✷✬✭❽✰P⑨➭➅P✭❽✵✖❻✦➄❨⑨✹✳✶✵✖➂✥➋✖✩✬✰✧➀①✵❥✭❣✰P⑨✮✵✘✫✮❾❶✫✮✵✖⑨✮✵✘❿✥✩✬❹❇✩✬✰✥✩✬➀❶❹❄⑨✹✫✹✩●➋❜⑨❇➉➜✷✿❿✶✵✖➃✶✷✬➈⑥➉✧➇❶➃❯⑨✹✭❽➋✖✵✖➃❽➃❣➇❢➞
➃❽✩✬✫✟✷●✫✮✸P✩✱✰✶✭✯❹✮➉➜❹✘➍❨➬❂✰✥❹✮➇❶➋▲✳✥✷✬✫✹✸●✩✬✰✶✭❽❹✮➉➙❹✖➄❨➋✢✵✘➃❣➃✯❹➭✩✱✫✹✵❥❹❺❾①✵✘➋✖✭❽✩✬➃❣✭❽Ô✖✵❊❿✣➉➜✵✖➉❲➀⑥✵✘✫✹❹❇✷✬➈❞✩❼➉✧➇❶➃❯⑨✹✭❽➋✖✵✖➃❽➃❣➇✶➃✯✩✱✫
➋✢✷✬➉➜➉❲➇✶✰✶✭❣⑨❄➂✬➍❨❷✼✳✶✵✖➂✣➋✖✷✬➃❽➃❽✩✬➀⑥✷●✫✹✩✱⑨✮✵➭❻❥✭❣⑨✮✳✧✵❊✩✬➋▲✳✣✷✬⑨✮✳✶✵✘✫✝⑨✹✷↕➈➦✷●✫✮➉å✩✡➉✧➇✶➃❣⑨✮✭❣⑨✮➇❶❿✶✵❴✷✬➈⑥❿❢✭❣➼①✵✘✫✮✵✘✰●⑨✄⑨✮✭✯❹❄➞
❹❺➇✶✵❊❹✖➄✱✩✬✫✮✫▲✩✱✰❶✸✬✵✘❿✧✭❣✰P⑨✹✷✴✷●✫✮✸P✩✱✰❶❹✟❾①✵✖✫✮➈➦✷✬✫✹➉➜✭❣✰✶✸❘➅❛✩✱✫✹✭❽✷✬➇❶❹✄➈➦➇✶✰❶➋✢⑨✮✭❽✷✬✰❶❹✘➍✬❷✼✳✶✭✯❹➭➉➜✷❢❿❢✵✖➃❶➉➜✩❨➂✧➀⑥✵↕✩✬➃❽❹✮✷
✫✮✵✘✸●✩✱✫▲❿❢✵❊❿→✩●❹✧✩✱✰➲✩✬➀❶❹❺⑨✮✫▲✩✬➋❜⑨✹✭❣✷●✰↔✷✱➈↕✩✔❾①✷✬❾✶➇✶➃✯✩❛⑨✹✭❣✷●✰➛✷✱➈❥➀✶✭❽✷✱➞⑤✵✖✰P⑨✮✭❣⑨✮✭❽✵✘❹✧✩✱✸✬✸●✫✮✵✘✸●✩✱⑨✮✵✘❿➠⑨✮✷●✸✬✵✖⑨✮✳✶✵✘✫
✭❣✰➥✩➠➉➜✷✬✫✹✵☎➋✢✷●➉✥❾❶➃❣✵✖➺✎➀✶✭❽✷✱➞⑤➇✶✰✶✭❣⑨✘➍✟➬❂✰➲⑨✹✳✶✭✯❹✧✫✹✵✘❹✮❾⑥✵❊➋❜⑨✣⑨✹✳✶✵➆➉✥✷❢❿❢✵✘➃✌✩●❿✶❿❢✫✹✵✘❹✹❹❺✵❊❹✦✰✶✷✬⑨❲✷✬✰❶➃❣➂✎⑨✮✳❶✵
➋✢✵✖➃❽➃❽➇✶➃❽✩✬✫❼✩✬✰❶❿✛⑨✮✭✯❹✹❹❺➇✶✵✧➃❣✵✘➅✬✵✖➃✯❹✘➄❶➀✶➇❢⑨✦✩✱➃✯❹✮✷➜⑨✮✳✶✵✥➋✖✩✬❹✮✵✣✷✬➈■➅❨✩✬✫✮✭❽✷✬➇⑥❹↕➋✢✷●➃❣✷●✰✶✭❣✵❊❹↕✷✬➈■➉✥✷●✫✮✵✣➋✖✷✬➉➜❾✶➃❽✵✢➺
✷✬✫✹✸●✩✱✰❶✭❽❹✮➉➙❹❘➃❣✭❽➸✬✵☎✩✬✰P⑨✹❹✘➄✝➀①✵✖✵✘❹✧✵✢⑨▲➋✱➍ ➷ ✵✖➃❽➃❽❹❲✩✱✰❶❿↔❾①✷✬❾✶➇❶➃❽✩✱⑨✮✭❽✷✬✰❶❹✧✷✱➈❥✭❣✰⑥❿❢✭❣➅✿✭✯❿❢➇❶✩✬➃❽❹❲✩✱✫✹✵➙➇❶❹❺➇⑥✩✱➃❽➃❣➂
➈♦✩✱✫❥➈➦✫✹✷✬➉❒➀⑥✵✘✭❣✰✶✸✓❹❺⑨✹✩✬➀✶➃❽✵✬ç❶➉➜✵❊➋▲✳❶✩✱✰✶✭✯❹✮➉➜❹✼✵✘✰❶✩✱➀❶➃❣✭❽✰✶✸➙✰✶✵✘❻➱➋✖✵✖➃❽➃✄➋✢✷●➉➜❾⑥✷●✰✶✵✖✰P⑨✹❹↕✷✬✫❥✭❽✰❶❿❢✭❽➅P✭✯❿❢➇❶✩✬➃❽❹
⑨✮✷✧➀①✵✴✭❣✰P⑨✮✫✹✷❢❿❢➇❶➋✖✵✘❿➑➄●⑨✮✷❲➇✶❾①❿❶✩❛⑨✮✵❼⑨✮✳❶✵✡➃❽✭❣✰✶➸❢❹❴➀⑥✵✖⑨❄❻❴✵✘✵✖✰☎⑨✮✳✶✵✘➉Ò✷●✫➊⑨✹✷✧✫✹✵✖➉➜✷❛➅✬✵↕❹✮✷✬➉➜✵❼✵✖➃❽✵✖➉➜✵✖✰P⑨✹❹
❾✶➃❽✩❨➂✪✩➁➈➦➇✶✰⑥❿✶✩✱➉➜✵✖✰P⑨▲✩✱➃➭✫✹✷✬➃❽✵❲✭❽✰✎⑨✮✳✶✵➜✵✖➅●✷✬➃❽➇❢⑨✮✭❽✷✬✰→✷✱➈✼✩➁➀❶✭❣✷●➃❣✷●✸✬✭✯➋✖✩✱➃❇❹✮➂✿❹❺⑨✮✵✘➉è✩✬❹❘✩✬✰→✵✘✰●⑨✹✭❯⑨❄➂➠✷✱➈
✭❣✰P⑨✮✵✘✫✹✩●➋❜⑨✹✭❣✰✶✸❢é❛➋✖✷P✷●❾⑥✵✘✫✹✩✱⑨✮✭❽✰✶✸✧➋✖✷✬➉➜❾⑥✷●✰✶✵✖✰P⑨▲❹✖➍✶❷✼✳✶✵✦✩✬✫✮✵❊✩✣✷✱➈❇❐➩❹✮➂❢❹❄⑨✹✵✖➉➙❹❥✩✬❹✼✩❲➀✶✫▲✩✱✰❶➋▲✳➁✷✱➈✄✰⑥✩❛⑨❺➞
➇✶✫✹✩✬➃➊➋✢✷●➉➜❾✶➇❢⑨✮✭❽✰✶✸✛Ð❶✷●➇✶✫✹✭❽❹✮✳✶✵✘❿✎✭❽✰↔⑨✮✳✶✵☎➃❽✩●❹❄⑨✣➂●✵✘✩✱✫▲❹✴✵✘❹✮❾⑥✵❊➋✢✭✯✩✱➃❽➃❣➂→✷✬✰➛➋✢✷●➉➜❾✶➇❢⑨✹✩✱⑨✮✭❽✷✬✰❶✩✬➃■❾①✷❛❻❴✵✘✫

23



✩✬❹✮❾⑥✵❊➋❜⑨✹❹➁➟ Ñ●Ñ❨➢⑤➍✝➒➭✵✘✫✮➂✎✫✮✵❊➋✢✵✘✰●⑨✹➃❣➂↔❐➚❹✮➂❢❹❄⑨✹✵✖➉➙❹✣✳⑥✩❨➅✬✵➙➀①✵✖✵✖✰➥➇❶❹❺✵❊❿↔⑨✮✷➠➉✥✷❢❿❢✵✘➃➊⑨✹✳✶✵☎➀①✵✖✳⑥✩❨➅P✭❽✷✬➇❶✫
✷✱➈➭➉➜✵✖➉✧➀❶✫✹✩✬✰✶✵✣❾✶✫✹✷✱⑨✹✵✖✭❽✰❶❹✧➟ Ñ❨➢⑤➄❶➉➜✵✢⑨▲✩✱➀①✷✬➃❽✭❽➋✧✩✱➃❽✸✬✷✬✫✹✭❣⑨✮✳✶➉ê✩✱✰❶❿✛✷P❹✮➋✖✭❣➃❽➃❽✩✱⑨✮✷●✫✮➂➁❾✶✳✶✵✖✰❶✷✬➉➜✵✖✰❶✩➠➟❯➡❊à❛➢⑤➍
➝↕❾❶✩✬✫❺⑨✥➈➦✫✮✷●➉æ✩➠✰✿➇✶➉❲➀⑥✵✘✫➙✷✱➈↕⑨✹✷✿✷✬➃✯❹❲❾❶✫✮✷❢❿❢➇❶➋✖✵✘❿➲➈➦✷✬✫➜➅❛✩✱✫✹✭❣✷●➇❶❹✧❾❶➇✶✫✮❾①✷●❹✮✵✘❹✛➟ Ñ✱Ï✱➢❪➄✟✵✢➺❢✵✘➋✖➇❢⑨✹✩✬➀✶➃❽✵
❹❺❾①✵✘➋✖✭❯❸⑥➋✘✩❛⑨✹✭❣✷●✰❶❹✴✷✱➈✌❐ë❹✮➂❢❹❄⑨✹✵✖➉➙❹❘➇❶❹✮✭❣✰✶✸➁⑨✮✳❶✵✓❹❺✵❊➳●➇❶✵✖✰P⑨✮✭✯✩✱➃❇✫✹✵✖❻❥✫✹✭❯⑨✹✭❣✰✶✸✛❹✮✷✱➈➓⑨❄❻✼✩✱✫✹✵✣⑨✮✷✿✷●➃■★✪✩✱➇❶❿✶✵
➟❯➡✖➢③✳❶✩❨➅✬✵❘➀①✵✖✵✖✰✔✩✬➃❽❹✮✷❲❾❶✫✮✷❛➅✿✭✯❿❢✵✘❿➑➍
➨→✵➙✳❶✩❨➅●✵➜➀⑥✵✘✵✖✰↔❻❴✷●✫✮➸✿✭❽✰✶✸➆✷✬✰↔➉➜✷✿❿✶✵✖➃❽➃❣✭❽✰✶✸✔➅❛✩✱✫✹✭❣✷●➇❶❹✴➀✶✭❽✷✬➃❽✷✬✸✬✭✯➋✖✩✬➃➭❾✶✳✶✵✘✰✶✷✬➉➜✵✖✰⑥✩➆✩✬✰❶❿↔✩✱✫✹✵

✸✬✷✬✭❽✰✶✸➠⑨✮✷➠❾❶✫✮✵❊❹❺✵✘✰●⑨➙❹✮✷✬➉➜✵☎✫✹✵✘❹✮➇✶➃❣⑨✹❹❲✫✮✵✘✸●✩✱✫▲❿❢✭❽✰✶✸✔⑨✹✳✶✵➁➇⑥❹❺✵➆✷✱➈❲➌♦❾⑥✷●❾✶➇✶➃✯✩❛⑨✹✭❣✷●✰⑥➏✧❐ì❹❺➂❢❹❺⑨✮✵✘➉➜❹➜✩●❹
✩✔➉➜✷✿❿✶✵✖➃❽➃❣✭❽✰✶✸✪➃✯✩✱✰✶✸●➇❶✩✱✸●✵✬➍ × ✰✶✵➁✩✱✫✹✵✘✩➆❻❥✳✶✵✖✫✹✵➙⑨✹✳✶✭❽❹✧➉➜✷✿❿✶✵✖➃➊❻❥✭❽➃❽➃➊➀①✵➁✩✱❾❶❾✶➃❣✭❽✵✘❿↔✭✯❹❘⑨✹✳❶✩❛⑨➜➋✢✷✬✰✶➞
➋✢✵✖✫✹✰✶✭❽✰✶✸✦⑨✹✳✶✵✡➀①✵✖✳❶✩❨➅✿✭❽✷✬➇✶✫➊✷✱➈③❐■✳❶✩✬✫✹✩✬✷✬✳③❮ ❹➭✩✱✰P⑨✼➋✢✷✬➃❽✷✬✰❶✭❣✵❊❹➭❻❥✳✶✵✖✫✹✵❥⑨✹✳✶✵✡✭❽✰P⑨✮✵✖✫✹✵✘❹❺⑨➊❻✼✩✬❹❇⑨✹✷✧➉➜✷❢❿❢✵✖➃
✭❣✰❶❿✶✭❣➅✿✭✯❿❢➇❶✩✱➃✌✩✱✰P⑨✹❹✧✭❣✰➲❹✮➇❶➋▲✳➲✩✔❻✼✩❨➂✔⑨✹✳❶✩❛⑨❲⑨✮✳✶✵✓❻❥✳❶✷✬➃❽✵☎❹❺➂❢❹❺⑨✮✵✘➉➻❻❥✭❽➃❣➃✌❹❺✳❶✷❛❻Ò✩✔✫✹✵✖➃❽✭✯✩✱➀✶➃❽✵✓❹❺✵✘➃❯➈➓➞
✷✬✫✹✸●✩✱✰❶✭❽❹✹✩❛⑨✹✭❣✷●✰☎✩✱✰❶❿➁✵✢➺❢✳✶✭❽➀✶✭❣⑨❥✵✖➉➜✵✖✫✹✸✬✵✘✰●⑨✼➀①✵✖✳❶✩❨➅✿✭❽✷✬➇✶✫❊➍❢❐â❹✮➂❢❹❄⑨✹✵✖➉➙❹✼✳❶✩❨➅●✵✴✩✬➃❽❹✮✷❲➀①✵✖✵✘✰➁➇⑥❹❺✵❊❿✓⑨✹✷
❹❺❾①✵✘➋✖✭❯➈➦➂❲⑨✮✳✶✵❼✭❣✰⑥❿❢✭❣➅✿✭✯❿❢➇❶✩✬➃❯➞⑤➀❶✩✬❹✮✵✘❿✥➉➜✷❢❿❢✵✖➃❽➃❽✭❣✰✶✸❲✩✱❾✶❾✶✫✹✷●✩●➋▲✳✧⑨✹✷✣➉➜✭❽➋✖✫✮✷●➀✶✭✯✩✱➃✶✵❊➋✢✷✬➃❽✷✬✸●➂✧✩✱✰⑥❿➜✵✖➅✬✷●➃❣➇✶➞
⑨✮✭❽✷✬✰③➍✱❷✼✳✶✭✯❹➭✩✱❾❶❾✶✫✮✷P✩✬➋▲✳✣❾❶✫✮✷❛➅✿✭✯❿❢✵✘❹✄➉➜✷✿❿✶✵✖➃✯❹✟➈➦✷✬✫❇➇✶✰❶❿❢✵✘✫✹❹❺⑨✹✩✬✰❶❿❢✭❽✰✶✸❘✩✬❿✶✩✬❾❢⑨✹✩✱⑨✮✭❽✷✬✰❲✩✬✰❶❿❲✵✖➅✬✷●➃❣➇✶⑨✮✭❽✷✬✰
✩✱➉➜✷✬✰✶✸✥➋✢✷●➉✥➉❲➇✶✰✶✭❣⑨✮✭❽✵✘❹✌✷✱➈✝❹✮✵✖➃❣➈➓➞⑤✫✮✵✘❾✶➃❣✭✯➋✖✩✱⑨✮✭❽✰✶✸❲✩✬✸✬✵✘✰●⑨▲❹➊✫✹✵✖❾❶✫✮✵❊❹❺✵✘✰●⑨✹✭❣✰❶✸✣➀❶✩✬➋✢⑨✮✵✘✫✮✭✯✩✣➃❽✭❣➅✿✭❽✰✶✸✥✭❣✰➁➅P✭❽✫✮➞
⑨✮➇❶✩✬➃✝➋✢✷●➉✥❾❶➇❢⑨✹✩✱⑨✮✭❽✷✬✰❶✩✬➃➑✵✘➋✢✷P❹❺➂❢❹❺⑨✮✵✘➉➜❹✘➍

íâî✝ï✹î✝ð✶î✝ñ✡ò❞î✄ó

❤❊ô✡õ❼ô❶ö➊❅✿❚✱❀❄✻▲❑➓◆❶÷❼ô⑥❉✟❑▼❆❊❡✿✾✖❅✱❋⑥◆❶✺✴ô❶ø⑥❋●❏❜✾✘❅✱❋✪ù♦ú✘û✘û✘✐❨ü✮◆⑥❫➊✻✹ý➭❀❄❑❬❁❄❑▼❅P❵✥❝➲❩⑤❭✬❩⑤❁❄✻▲❃✦❩❴❑▼❅✛þ➜✾✖❋✿❚●✻✘◆❶ÿ❞❑▼❈❣❁❄❖
�➆❆✘❀✂✁✱❩❂❖P❆✘✽✥❆✘❅➙þ✥✻▲❃❼❡●❀❺✾✘❅●✻↕❉✟❆❊❃✦✽●❋●❁❄❑▼❅P❵✬◆❢þ✥❑▼❙❯✾✘❅●❆☎✄✝✆✟❑▼❏▲❆❛❏▲❏▲✾✬◆✟✞➯❁❺✾✖❙❬❭❛◆❶❤▲û✘✐✠✄❺❤✘❤☛✡✱ô

ú✱ô☞✞❺ô❢ö■❀❺❚●✻▲❙▼✻❜✾✖❅⑥◆✿✺❼ô✌✆✟✻▲❩❂❆☎✍✎✍▲❑➭ù♦ú✖û❊û✘✐❨ü✮◆✟✏✌✻✹ý➩✽●❀❄❆✘✽❢❆❊❩❄✾✖❙❯❩❴❈✯❆✘❀❴❁❄❖P✻✼❈❽❆✘❀❄❃✣✾✘❙▼❑✑✍❜✾✢❁❄❑❯❆✘❅➁❆✖❈✝❃✦✻▲❃✴❡✬❀❺✾✘❅P✻
✽✬❀❄❆✘❁❄✻▲❑▼❅●❩✡ù➦✾✢❁■❖❛❁❂❁❄✽✓✒ ✔✕✔❜ý➭ý➭ý❥ô ❵✘❏▲❅⑥ô ❋●❩▲ô ✻✹❩❺ü✮ô

✖ ô✘✗✬ô ❝❞ô✙✆✟✾✘❅✿✾✢❁❂❀❄✻❊◆✝ö✡ô➑❉✟❆❊❋✬❁❺✾✘❅❛❁❜◆➑✺✴ô❞ø⑥✻❲þ✥✻✹❁❺✾▲❭❛✻✹❀✥ù⑤❤☛✚✕✡✕✛❊ü✮◆✝❝➑✾✢❀❺✾✘❙▼❙▼✻▲❙➭❃✣✾✘❏❺❖P❑▼❅P✻✹❩✡❈❽❆✘❀✦❃❼❋P❙❬❁❄❑▼❩❂✻✹❁
❁❂❀❺✾✖❅P❩⑤❈❽❆✘❀❄❃✣✾✖❁❄❑▼❆✘❅➙✾✘❅P❚✧❁❄❖P✻✹❑▼❀➊✽✬❀❄❆❊❵✘❀❺✾✖❃✦❃✦❑▼❅P❵✴❩⑤❁➯❭✬❙❯✻✘◆✢✜①✻✹❏✮❖●❅P❑▼❏❜✾✘❙✶❀❄✻▲✽❢❆✖❀❂❁❴❫➊❫✣✄❪û✕✛✕✤✠✚✬◆✥✞✦✏✌❫✧✞⑤ö↕ô

✐●ô✡÷❼ô★✆✟✻✹❀❂❀❂❭❛◆✬÷❼ô✩✆✄❆❊❋✿❚✬❆❊❙➑ù⑤❤✎✚✕✡✕✚❊ü✮◆✪✜❇❖P✻➊❏✮❖●✻▲❃✦❑▼❏❜✾✘❙✿✾✘❡P❩⑤❁❂❀❺✾✖❏✹❁❇❃✣✾✖❏✮❖●❑▼❅P✻❊◆✩✜⑥✻▲❏✮❖●❅P❑▼❏❜✾✖❙P❀❄✻▲✽❢❆✘❀❂❁✟❫❴❫✣✄
❤✘❤ ✖☎✖ ◆✢✞✝✏✌❫✧✞⑤ö↕ô

✤✱ô✫�âô✬✆✟❋✬❁❄✻✹❀❺✾➛ù♦ú✘û❊û❊ú❊ü✮◆■❝➑❀❄❆❊❵✖❀❺✾✘❃✦❃✦❑▼❅P❵✪✾✔✽P✾✘❑▼❅❛❁❺✾✘❡P❙▼✻✓❏▲❆✘❃✦✽P❋●❁❄✻✮❀❜◆➭þ✭✞✦✜➵þ✥✻❜❚✬❑❣✾✪ø⑥✾✘❡⑥◆❇❝✝❖●✺
❁❄❖●✻▲❩❂❑▼❩▲ô

✮ ô❥✺❼ô③❉✟❆❛❆✘❀❄✻➁ù⑤❤☛✚☎✚✕✡❨ü✮◆✯✆✄❆✘❁❺✾✘❅●❑▼❏❜✾✘❙■❏▲❆✘❃✦✽P❋●❁❄❑▼❅●❵✥✒➑✾✓❚✬✻▲❳❨✻▲❙▼❆❊✽●❃✦✻▲❅❛❁❺✾✘❙✄✾✘✽●✽●❀❄❆❨✾✖❏✮❖✔❁❄❆✓❵❊✻✹❅P✻✹❀❺✾✢❁❄❑❯❅●❵
❑▼❅❛❁❄✻✹❀❄❏▲❆✘❅P❅●✻▲❏✹❁➭❁❄❆❊✽❢❆✘❙▼❆❊❵❊❑▼✻▲❩❴❆❊❅➙✾✖❅➜✾✖❃✦❆✘❀❄✽P❖●❆❊❋●❩➊❏✹❆❊❃✦✽P❋✬❁❄✻✹❀❜◆●þ✭✞✰✜✌◆✿❝✝❖●✺â❁❄❖P✻✹❩❂❑❯❩▲ô

✛✱ô✡❍❢ô★✱➑❈❽❀❄❆✘❅P❑➓◆✱✺✴ô✳✲✌✾✖❀❄✻▲❙➓◆★✞❺ô✬❉✟❆❊❖●✻▲❅✓ù♦ú✘û✘û❨ú❊ü✮◆✪✜⑥❆✢ý❇✾✖❀❺❚✬❩✄❀❄❑▼❵❊❆✖❀❄❆❊❋P❩✟❏▲❆❊❃✦✽✬❀❄✻▲❖P✻▲❅●❩❂❑▼❆❊❅✦❆✘❈❶❡●❑❯❆✘❙▼❆❊❵❊❑▼❏❜✾✖❙
❏✹❆❊❃✦✽P❙▼✻✵✴✬❑❬❁❪❭✟✒➑❃✦❆✱❚✬✻▲❙▼❑▼❅P❵●◆✄✻✵✴✬✻▲❏▲❋✬❁❄❑▼❆❊❅→✾✘❅✿❚✪❳✱❑▼❩❂❋✿✾✘❙▼❑✑✍❜✾✢❁❄❑❯❆✘❅➛❆✘❈❴❁❄❖✱❭✬❃✦❑▼❏✶✜ë❏▲✻▲❙▼❙❴❃✣✾✢❁❄❋●❀❺✾✢❁❄❑❯❆✘❅⑥◆
÷✌✻✹❅P❆❊❃✦✻✌❫❴✻▲❩▲ô▼◆❶❤ ✖ ù⑤❤❊❤✢ü✷✒ ú✢✐✳✡✳✤☛✄❪ú✖✐✳✚✕✛✱ô

✡✬ô✡❉❴ô✘ÿP✻✮❀❂❀❄✻✹❁❂❁❄❑➓◆❨÷❼ô❊þ➜✾✖❋●❀❄❑➓◆❛❉❴ô✕✸✶✾✘❅P❚✬❀❄❆❊❅❶◆✖✻❜❚●❩▲ô✬ù♦ú✘û✘û✘✐❨ü❂ü✮◆❊✺✫✏✌ö✡❤▲û✬◆✠✜①✻▲❅❛❁❄❖✹✞❪❅❛❁❄✻✹❀❄❅P✾✖❁❄❑▼❆❊❅P✾✘❙●þ✥✻▲✻✹❁✺✄
❑▼❅●❵❘❆❊❅❲✺✫✏✼öâ❉✟❆❊❃✦✽P❋✬❁❄❑▼❅P❵●◆Pþ✥❑▼❙❯✾✘❅●❆☎✄✝✆✟❑▼❏▲❆❛❏▲❏❜✾✱◆✟✞➯❁❺✾✖❙▼❭❛ô

✚✬ô☞✲✡ô✢÷✌✻▲❅✬❀❄❑▼❏✮❖❶◆▲❫↕ô▲❦❥❋✥✻✶❅●✻✹❀❜◆▲❦❘ô✵✼✄❆✘❩❂❩✄ù♦ú✖û❊û✱❤✢ü✮◆✠✱✽✴●✻✹❏▲❋●❁❺✾✖❡P❙▼✻✝❝❞✻✹❁❂❀❄❑❨❅P✻✮❁①❃✦❆✱❚✬✻▲❙▼❩❶❈❽❆✘❀①❁❄❖●✻✝✾✘❅✿✾✖❙❬❭●❩❂❑▼❩
❆✖❈➑❃✦✻✹❁❺✾✖❡❢❆❊❙▼❑▼❏❥✽✿✾✖❁❄❖❛ý❇✾❜❭✬❩▲◆✥✞❪❅❛❁✧✗✣❍✥✜✬✜✬✜✌◆ ✖ ✒ ✖ ✚✖✐☎✄♦✐❨û✖✐●ô

❤▲û✬ô✡❍❢ô✟÷✌✻▲❆✘❀❄❵✘✻❊◆➭✺✴ô✾✱③❳❊✾✖❅P❩▲◆✟ø✝ô✄✺❥✾❜❳✬❑❯❚✬❩❂❆❊❅Øù♦ú✖û❊û❨ú✘ü✮◆➭öÒ❡●❑▼❆❊❙▼❆❊❵✘❑❯❏▲✾✘❙▼❙❬❭➛❑▼❅P❩❂✽P❑❬❀❄✻❜❚→✽●❀❄❆❊❵✖❀❺✾✘❃✦❃✦❑▼❅P❵
❃✦❆✱❚✬✻▲❙❢❈✯❆✖❀❴❩❂✻✹❙▼❈✿✄♦❖P✻❜✾✖❙❯❑▼❅●❵✧❩⑤❭✬❩⑤❁❄✻▲❃✦❩▲◆✩�↔õ❥❍P❍✌❀ û❊ú✱◆✿❉✟❖✿✾✢❀❄❙❯✻✹❩⑤❁❄❆❊❅⑥◆P❱❥❍✬ö✡ô

❤✘❤❊ô✡❍❢ô✝÷✌✻▲❆✖❀❄❵❊✻❊◆✝✺✴ô✙✱③❳✘✾✘❅P❩▲◆③❍✶ô✝þ➜✾✢❀❄❏✮❖●✻✹❁❂❁❄✻➆ù♦ú✖û❊û ✖ ü✮◆✝ö➾❡P❑▼❆❊❙▼❆❊❵✘❑▼❏❜✾✘❙➊✽●❀❄❆✘❵✘❀❺✾✘❃✦❃✦❑▼❅●❵➙❃✦❆✱❚●✻▲❙✟❈❽❆✘❀
❩❂✻✹❙▼❈✿✄♦❖P✻❜✾✖❙❯❑▼❅●❵●◆➑ÿ❞❑❬❀❄❩⑤❁❼ö➊❉➭þ❁�✛❆✖❀✂✁✬❩❂❖●❆❊✽➁❆❊❅✔❍✱❋●❀❄❳✱❑▼❳❊✾✖❡P❙▼✻❘✾✖❅✿❚➆❍✬✻▲❙❬❈❂✄♦❫➊✻▲❵❊✻✹❅P✻✹❀❺✾✢❁❄❑❯❳❊✻✧❍✱❭✬❩⑤❁❄✻▲❃✦❩▲◆
ÿP✾✘❑❬❀❂❈➓✾❃✴❶◆●❱❥❍✬ö✡ô

❤❜ú✱ô✘✗✬ô ✄➯ø③ô❢÷✌❑❯✾❜❳✱❑▼❁❂❁❄❆✬◆❶õ❼ô✿þ✥❑❯❏❺❖P✻✹❙✟ù♦ú✘û✘û✬❤❜ü✮◆✶þ➙÷❥❍✟✒✿✾❘✽●❀❄❆✘❵✘❀❺✾✘❃✦❃✦❑▼❅●❵✴❙❯✾✘❅●❵❊❋✿✾✖❵❊✻❥❈✯❆✖❀❴❁❄❖●✻✼❁❂❀❺✾✘❅●❩⑤❈✯❆✘❀✺✄
❃✣✾✢❁❄❑▼❆❊❅P❩➭❆✖❈➑❁❄❆❊✽❢❆✘❙❯❆✘❵❊❑▼❏❜✾✖❙❞❏▲❆❊❙▼❙▼✻▲❏✹❁❄❑▼❆✘❅⑥◆✶ø⑥✾❨þ✭✞✟❁❄✻▲❏❺❖P❅●❑▼❏❜✾✘❙✶❀❄✻▲✽❢❆✘❀❂❁❜◆✥✏✌❆ ✮ ❤✵✄❪ú✖û❊û✬❤✘ô

❤ ✖ ô✘✜✌ô❄✲✼✾✢❀❆❅⑤❋⑥◆❄✞✮ôP❝❞✻✹❁❂❀❄✻❊◆❶÷❼ôP❫❴❆☎✍▲✻▲❅✱❡❢✻✹❀❄❵➜ù♦ú✖û❊û ✖ ü✮◆❶÷✌✻▲❅●✻✡✾✘❩❂❩❂✻▲❃❼❡P❙❬❭✥❑▼❅➙❏▲❑▼❙▼❑❯✾✖❁❄✻▲❩✎✒✿❃✦❆❊❙▼✻▲❏▲❋●❙❣✾✢❀✌❆✘✽✥✄
✻✮❀❺✾✖❁❄❑▼❆❊❅●❩▲◆✌✜❇❱❥❉➭❍✣❁❄✻▲❏✮❖●❅P❑▼❏❜✾✖❙❶❀❄✻▲✽❢❆✖❀❂❁❜◆❄✏❴❆❇✤☎✤✕✛✱ô

❤✹✐●ô☞✲✡ô✬❦❥❑▼❁❺✾✖❅P❆➜ù♦ú✖û❊û❊ú❊ü✮◆✶❉✟❆✘❃✦✽P❋✬❁❺✾✖❁❄❑▼❆❊❅P✾✘❙❶❩⑤❭●❩⑤❁❄✻✹❃✦❩➭❡P❑▼❆❊❙▼❆❊❵✖❭❛◆✢✏✌✾✖❁❄❋●❀❄✻✘◆P✐❨ú✘û✪✒ ú✖û ✮ ✄■ú✱❤❜û✱ô

24



❤☛✤✱ô↕ö↕ô➑ø❶❑❯❅P❚●✻▲❅●❃✣✾▲❭❛✻✹❀✧ù⑤❤☛✚ ✮ ✡❨ü✮◆✄þ➜✾✢❁❄❖P✻▲❃✣✾✢❁❄❑▼❏❜✾✘❙❇❃✦❆✱❚✬✻▲❙▼❩❼❆✖❈➊❏▲✻▲❙▼❙▼❋P❙❯✾✖❀✦❑▼❅❛❁❄✻✹❀❺✾✖❏✹❁❄❑▼❆❊❅✪❑▼❅→❚✬✻▲❳❨✻▲❙▼❆✘✽✥✄
❃✦✻✹❅✱❁❈✄✟❝➑✾✢❀❂❁✧✞❇✾✘❅P❚✭✞✺✞✾✄❄◆✥✗❊❆✘❋●❀❄❅✿✾✖❙①❆✖❈✙✜❇❖P✻▲❆✖❀❄✻✹❁❄❑▼❏❜✾✘❙❉✆✟❑▼❆❊❙▼❆❊❵✖❭❛◆①❤☛✡✩✒ ú☎✡❊û❃✄❪ú☎✚✕✚✱◆ ✖ û✘û✠✄ ✖ ❤☛✤✱ô

❤ ✮ ô☞✼✡ô⑥þ➜✾✘❅●❏❜✾➁ù♦ú✖û❊û✘✐❨ü✮◆①õ✌❅☎❁❄❖●✻✴❚✱❭●❅P✾✘❃✦❑▼❏▲❩✼❆✖❈❇❝➲❩⑤❭✬❩⑤❁❄✻▲❃✦❩▲◆✶ÿ❞❑❬❈❽❁❄❖❊�✛❆✖❀✂✁✬❩❂❖●❆❊✽☎❆❊❅➆þ✥✻▲❃✴❡✬❀❺✾✘❅●✻
❉✟❆✘❃✦✽P❋✬❁❄❑❯❅●❵●◆Pþ✥❑▼❙❯✾✘❅P❆✠✄✝✆✟❑▼❏▲❆❛❏▲❏❜✾✱◆✟✞➯❁❺✾✘❙❬❭❛◆✿ú☎✚❃✄➯✐ ✖ ô

❤☛✛✱ô☞✲✡ô⑥þ➜✾✖❁❄❩❂❋●❅P❆●◆①ö✡ô✶✺✌❆❊❑➓◆➑þ➁ô❋✏✌✾✘❵❨✾✖❩❄✾☎✁✱❑➓◆➑❍❢ô①þ✥❑▼❭❛✾✘❅P❆➁ù♦ú✘û✘û❊û❨ü✮◆✓✲❴❭✬❡✬❀❄❑❣❚☎❝❞✻✹❁❂❀❄❑③❅P✻✮❁✼❀❄✻▲✽●❀❄✻✹❩❂✻▲❅✥✄
❁❺✾✢❁❄❑▼❆❊❅✧❆✘❈❞❵✘✻▲❅P✻➊❀❄✻▲❵❊❋●❙❯✾✖❁❄❆✘❀❂❭✧❅●✻✹❁❪ý✟❆✘❀✂✁❢◆✬❝③❀❄❆❛❏✘ô✿❝➑✾✖❏▲❑❍●✿❏❥❍❛❭✬❃✦✽❢❆❊❩❂❑▼❋P❃➤❆❊❅✶✆✟❑▼❆❛❏▲❆❊❃✦✽●❋●❁❄❑▼❅P❵■❀ û❊û✱◆
�➆❆✘❀❄❙❯❚✪✄❪❍✱❏▲❑▼✻▲❅❛❁❄❑✑●P❏❊◆❄✤✩✒ ✖✕✖ ✡✠✄ ✖ ✐✕✚✬ô

❤✎✡✬ô✘✗✬ô❢þ✥❋✬❀❂❀❺✾❜❭➁ù♦ú✘û✘û❨ú✘ü✮◆✶þ➜✾✖❁❄❖●✻▲❃✣✾✖❁❄❑▼❏❜✾✖❙❏✆✄❑❯❆✘❙▼❆❊❵✘❭❛ô✢✞✷✒●ö❴❅❲❑❯❅❛❁❂❀❄❆✱❚✬❋P❏✹❁❄❑▼❆❊❅❶◆❢❍✱✽●❀❄❑▼❅P❵✘✻✹❀❜◆❄✆✟✻✹❀❄❙▼❑▼❅⑥ô
❤✎✚✬ô✡þ❑✏✌✾✘❵❊✾✘❩❄✾☎✁✱❑➓◆❊ö✡ô✖✺✼❆❊❑➓◆❨þ➁ô❊❍●✾✘❩❄✾✠✁✱❑➦◆❨❉❴ô❨❍●✾❜❳❨❆❊❑▼✻❊◆✠✲✡ô❨þ➜✾✢❁❄❩❂❋P❅●❆●◆❨❍✶ô❊þ✥❑❬❭✱✾✘❅●❆✴ù♦ú✘û✘û❨ú✘ü✮◆✱÷✌✻▲❅●❆❊❃✦❑▼❏

õ✌❡✩❅⑤✻✹❏✹❁❈✏❴✻✹❁✄❑❯❅■✗❊✾✢❳✘✾✪✒❨ö↔✽P❙❯✾✖❁❂❈❽❆✘❀❄❃➪❈✯❆✖❀❇❡P❑▼❆✘✽✿✾✖❁❄❖❛ý❇✾❜❭✴❃✦❆✱❚●✻▲❙▼❙▼❑▼❅P❵↕✾✖❅✿❚❘❩❂❑▼❃✴❋●❙❣✾✢❁❄❑▼❆❊❅⑥◆❛÷✌✻▲❅P❆✘❃✦✻
✞➯❅●❈❽❆✘❀❄❃✣✾✖❁❄❑▼❏▲❩▲◆❶❤ ✖ ✒ ú✕✤❊ú☛✄❪ú✕✤ ✖ ô

ú✖û✬ô❥❫↕ô▲✏✌✾✘❵✘✽✿✾✘❙✴ù♦ú✘û❊û✱❤✢ü✮◆➊❝➑❀❄❆❊❵✖❀❺✾✘❃✦❃✦❑▼❅P❵✔❩❂✻▲❙❬❈✿✄❪✾✖❩❂❩❂✻▲❃✴❡●❙❬❭❋✒❇❏▲❆❊❅●❩⑤❁❂❀❄❋P❏✹❁❄❑▼❅P❵✪❵✘❙❯❆✘❡✿✾✖❙❥❩❂❖✿✾✘✽❢✻☎❋P❩❂❑▼❅●❵
❡●❑▼❆❊❙▼❆❊❵✘❑❯❏▲✾✘❙▼❙❬❭✪✄♦❑▼❅P❩❂✽●❑❬❀❄✻❜❚❲❙▼❆❛❏❜✾✖❙❶❑▼❅❛❁❄✻✹❀❺✾✖❏✹❁❄❑▼❆❊❅P❩■✾✖❅✿❚❘❆✖❀❄❵❨✾✘❃✦❑❢❃✣✾✢❁❄❖P✻▲❃✣✾✢❁❄❑▼❏▲❩▲◆✬þ✭✞✰✜✌◆✬❝③❖P✺➲❁❄❖P✻✹❩❂❑❯❩▲ô

ú❛❤❊ô✡÷✌❖❶ô✿❝➑✾✖❋P❅➁ù♦ú✘û❊û❊ú❊ü✮◆❢þ✥✻▲❃✴❡✬❀❺✾✘❅P✻✌❏▲❆❊❃✦✽●❋●❁❄❑▼❅P❵✬ôPö➊❅✥❑▼❅❛❁❂❀❄❆✱❚●❋●❏✹❁❄❑▼❆❊❅⑥◆✿❍✬✽✬❀❄❑▼❅P❵❊✻✮❀❜◆✢✆✟✻✮❀❄❙❯❑▼❅❶ô
ú✘ú✱ô✡÷✌❖✡❝➑✾✖❋P❅✧ù♦ú✘û❊û✖✐❛ü✮◆✘ÿ●❀❄❆✘❃â❏▲✻▲❙▼❙▼❩①❁❄❆➊❏▲❆❊❃✦✽●❋●❁❄✻✹❀❄❩✎✒▲❃✦✻▲❃✴❡✬❀❺✾✘❅P✻③❏▲❆✘❃✦✽P❋✬❁❄❑❯❅●❵▲✄❶✾◆▼❛❋●❑❯❏❖✁✌❆✢❳❨✻✮❀❄❳✬❑▼✻✹ý❥◆

❝➑❀❄❆❛❏▲✻▲✻▲❚●❑▼❅P❵✘❩➭❆✘❈❏✜①✻▲❅❛❁❄❖■✞❪❅❛❁❄✻✹❀❄❅✿✾✢❁❄❑▼❆❊❅✿✾✖❙❶þ✥✻▲✻✹❁❄❑▼❅P❵❼❆❊❅✧✺✫✏✼ö➲❉✟❆✘❃✦✽P❋✬❁❄❑❯❅●❵●◆✬þ✥❑▼❙❯✾✘❅●❆☎✄✝✆✟❑▼❏▲❆❛❏▲❏▲✾✬◆
✞♦❁❺✾✘❙❬❭❛◆✶❤✵✄❄❤❃✤❛ô

ú ✖ ô✡÷✌❖❶ô⑥❝➑✾✘❋P❅❶◆➑÷❼ô⑥❫➊❆✕✍▲✻▲❅✱❡❢✻✹❀❄❵✬◆❞ö↕ô①❍●✾✘❙▼❆✘❃✣✾❊✾➆ù⑤❤✎✚✕✚✕✡❊ü✮◆❞✺✫✏✌ö➤❏✹❆❊❃✦✽P❋✬❁❄❑▼❅P❵■✄❴❅●✻✹ý➤❏▲❆❊❃✦✽●❋●❁❄❑▼❅P❵
✽P✾✖❀❺✾✘❚●❑▼❵❊❃✦❩▲◆✿❍✬✽✬❀❄❑❯❅●❵❊✻✹❀❜◆❄✆✟✻✹❀❄❙▼❑▼❅⑥ô

ú✢✐●ô✡þ➁ôP❝❞✻▲❙▼✻▲❵✬◆✢✞✮ô✩P✄✻▲❖⑥◆✬❫↕ô✿ö➊❙❬❁❄❃✣✾✘❅☎ù♦ú✘û❊û✱❤✢ü✮◆❢þ✥❆✱❚●✻▲❙▼❑▼❅P❵✦❡●❑❯❆✘❙▼❆❊❵❊❑▼❏❜✾✖❙❞✽●❀❄❆❛❏✹✻▲❩❂❩❂✻▲❩➊❋P❩❂❑▼❅P❵✴ý✟❆✘❀✂✁★◗✿❆❜ý
✾✖❅✿❚❲❝❞✻✹❁❂❀❄❑⑥❅●✻✹❁■❃✦❆✱❚●✻✹❙❯❩▲◆❄✆✟❑▼❆❊❑▼❅✬❈✯❆✘❀❄❃✣✾✢❁❄❑▼❏▲❩▲ô

ú☎✤✱ô✡❉❴ô❛❝③❀❄❑❯✾✘❃✦❑➓◆✬ö↕ô❛❫❴✻✹❵❊✻▲❳❢◆★✱➭ô●❍✬❖P✾✘✽●❑▼❀❄❆✬◆✳�Øô✬❍✱❑▼❙❯❳❊✻✹❀❄❃✣✾✘❅➙ù♦ú✖û❊û✬❤❜ü✮◆✬ö❴✽●✽P❙▼❑▼❏❜✾✖❁❄❑▼❆❊❅✧❆✘❈⑥✾↕❩⑤❁❄❆❛❏✮❖P✾✘❩⑤❁❄❑▼❏
❅P✾✘❃✦✻✵✄♦✽P✾✘❩❂❩❂❑▼❅P❵✔❏❜✾✖❙▼❏▲❋P❙▼❋P❩✧❁❄❆✛❀❄✻▲✽●❀❄✻✹❩❂✻▲❅❛❁❺✾✖❁❄❑▼❆❊❅➥✾✘❅P❚↔❩❂❑▼❃✴❋P❙❯✾✢❁❄❑❯❆✘❅➛❆✘❈✡❃✦❆❊❙▼✻▲❏✹❋P❙❯✾✖❀✥✽●❀❄❆❛❏▲✻▲❩❂❩❂✻✹❩▲◆
✞➯❅●❈❽❆✘❀❄❃✣✾✖❁❄❑▼❆✘❅➜❝➑❀❄❆❛❏▲✻▲❩❂❩❂❑▼❅P❵✧ø⑥✻✮❁❂❁❄✻✹❀❄❩▲◆✢✡☎✡✪✒ ú✕✤☛✄ ✖ ❤❊ô

ú ✮ ô↕ö↕ô✿❫➊✻▲❵❊✻✹❳✶◆✌✱➛❝➑✾✘❅P❑▼❅P✾✬◆✢�Øô✶❍✬❑▼❙▼❳❨✻✹❀❄❃✣✾✘❅❶◆❢ø③ô❶❉❇✾✖❀❺❚✬✻▲❙▼❙❯❑➓◆❋✱➭ô❶❍✬❖P✾✘✽●❑▼❀❄❆✓ù♦ú✖û❊û ✖ ü✮◆❋✆✟❑▼❆❨ö➊❃✴❡P❑▼✻▲❅❛❁❄❩✎✒
✾✖❅➜✾✖❡P❩⑤❁❂❀❺✾✘❏✮❁❄❑❯❆✘❅➜❈✯❆✖❀❴❡●❑▼❆❊❙▼❆❊❵✘❑❯❏▲✾✘❙➑❏▲❆✘❃✦✽✿✾✖❀❂❁❄❃✦✻✹❅✱❁❄❩✌ù➓❩❂❋P❡P❃✦❑❬❁❂❁❄✻❜❚Pü✮ô

ú☎✛✱ô❥✺❼ô■❍✬❋●❃✦✽●❁❄✻✹❀❜◆❇÷❼ô✧✆✟❙❯✾✘❅●❏✮❖P✾✖❀❺❚✶◆➭✺✴ô✣✆✄❀❄❆❛❆✘❃✦❖P✻❜✾✘❚Óù♦ú✘û❊û✱❤✢ü✮◆➊ö➊❅✱❁❄❩❲✾✘❅P❚➛✾✘❵✘✻▲❅❛❁❄❩✎✒➊✾✪✽✬❀❄❆❛❏▲✻▲❩❂❩
✾✖❙▼❵❊✻▲❡✬❀❺✾✛✾✘✽●✽●❀❄❆❨✾✖❏✮❖→❁❄❆➆❃✦❆✱❚●✻✹❙❯❙▼❑▼❅P❵✛✾✘❅✿❚➠❏▲❆❊❙▼❆✘❅✱❭➠❡❢✻▲❖P✾❜❳✬❑▼❆✘❋●❀❜◆❈✆✟❋P❙▼❙▼✻✹❁❄❑▼❅↔❆✘❈↕þ➜✾✖❁❄❖P✻✹❃✣✾✖❁❄❑▼❏❜✾✘❙
✆✄❑❯❆✘❙▼❆❊❵✘❭❛◆ ✮✕✖ ✒ ✚✕✤✱❤✷✄✦✚☎✡❊û✱ô

ú✠✡✬ô❥❖❛❁❂❁❄✽❋✒ ✔☎✔✢ý➭ý➭ý❥ô ❩⑤ý■❑▼❩❂❩▲ô ✾✘❑➓ô ❃✦❑▼❁❜ô ✻❜❚✬❋✌✔✢✽●❀❄❆❃❅⑤✻▲❏✹❁❄❩❖✔✖✾✘❃✦❆✖❀❄✽P❖P❆✘❋P❩❖✔ ✮ ô ✚★✛☎✡✕✔
ú✠✚✬ô❥❖❛❁❂❁❄✽❋✒ ✔☎✔✖✽●❩⑤❭●❩⑤❁❄✻✹❃✦❩▲ô ❚✬❑▼❩❂❏▲❆●ô ❋P❅●❑▼❃✦❑❯❡❶ô ❑▼❁✷✔
✖ û✬ô❥❖❛❁❂❁❄✽❋✒ ✔☎✔✢ý➭ý➭ý❥ô ❩❂❡P❃✦❙➓ô ❆✘❀❄❵✳✔

25



Chemical Blending with Particles, Cells, and

Artificial Chemistries

Christof Teuscher

University of California, San Diego (UCSD), Department of Cognitive Science
9500 Gilman Drive, La Jolla, CA 92093-0515, USA

E-mail: christof@teuscher.ch, URL: www.teuscher.ch/christof

Abstract Whereas understanding the brain is arguably a major chal-

lenge of the 21st century, making the next generation pervasive com-
puting machines more lifelike probably equals to a similar challenge.
Thereby, dealing with new physical computing substrates, new environ-
ments, and new applications is likely to be equally important as to pro-
vide new paradigms to organize, train, program and interact with such
machines.
The goal of this contribution is to delineate a possible way to address
the general scientific challenge of seeking for further progress and new
metaphors in computer science by means of unconventional methods. I
show that an amalgamation of (1) a particle-based and randomly inter-
connected substrate, (2) membrane systems, and (3) artificial chemistries
in combination with (4) an unconventional organizational paradigm has
interesting properties and allows to realize complex systems in an alter-
native way.

1 Motivation

Biologically-inspired computing (see for example [13, 22] for a general introduc-
tion), also commonly called natural computing, is an emerging and interdisci-
plinary area of research which is heavily relied on the fields of biology, computer
science, and mathematics. It is the study of computational systems that use ideas
and get inspiration from natural organisms to build large, complex, and dynam-
ical systems. The principal goal of bio-inspired computing is to make machines
more lifelike and to endow them with properties that traditional machines typi-
cally do not posses, such as for example adaptation, learning, evolution, growth,
development, and fault-tolerance.

It is evident that biological organisms operate on completely different prin-
ciples from those with which most engineers are familiar. Whereas life itself
might be defined as a chemical system capable of self-reproduction and of evolv-
ing, computers constitute a fundamentally different environment where self-
reproduction, evolution, and many other processes are all but naturally oc-
curring. This makes it particularly difficult to “copy” nature, but bears many
opportunities to get inspiration from it. A further difficulty often resides in the
way how information in computers is represented and processed. Whereas the

26



concepts of computability and universal computation are undoubtedly central
to theoretical computer science, their importance might be questioned with re-
gards to biologically-inspired computing machines and to biological organisms.
The traditional concept of“computation”can in most cases not straightforwardly
be applied to biological components or entire organisms and there is no evidence
that such a system can compute “universally”, on the contrary, biology seems
to prefer highly specialized units. And whether the metaphor of the brain or
mind as a digital computer is valuable is still much debated. Although we have
experienced in the past that biological systems are generally difficult to describe
and to model by algorithmic processes, there is little reason to believe that they
“compute” beyond the algorithmic domain, since, at the bottom it is all just
physical stuff doing what it must.

The quest for novel computing machines and concepts is motivated by the
observation that fundamental progress in machine intelligence and artificial life
seem to stagnate [3]. For example, one of the keys to machine intelligence is
computers that learn in an open and unrestricted way, and we are still just
scratching the surface of this problem. Connectionist models have been unable to
faithfully model the nervous systems of even the simplest living things. Although
the interconnectivity of the C. elegans’ 302 neurons in the adult animal is known,
it has—to the best of my knowledge—not been possible so far to mimic the
worm’s simple nervous system. One reason is that artificial neural neurons are
gross oversimplifications of real neurons. Another fundamental problem is that
parallel programming has failed to produce general methods for programming
massively parallel systems. Our abilities to program complex systems are simply
not keeping up with the desire to solve complex problems. And equally serious
is the lack of systematic and formal approaches to gradually create hierarchical
and complex systems that scale, although some attempts have been made (see
Section also 4).

I believe that some of today’s and upcoming computing challenges are best
approached by unconventional paradigms instead of “straying” around the well-
known concepts, changing the model’s parameters, and putting hope in increas-
ing computing power. Using Brooks words, I rather believe in “[. . . ] something
fundamental and currently unimagined in our models” [3] than in all other pos-
sibilities, although they might also play a role of course. We need new tools
and new concepts that move seamlessly between brain, cognition, computation,
growth, development, and self-organization—a finding that has also been made
in a 2002 NSF/DOC-sponsored report [20]. This is definitely a transdisciplinary
challenge with the need of simultaneous technical and conceptual innovations.
Much debate has also been focused on what cognitive paradigms should be used
in order to obtain a “intelligent” agents. This seems to somehow become an eter-
nal and useless discussion since—as in many other domains—there is no best
model. Different models are better for different things in different contexts [7].

The goal of my contribution is to delineate one possible way to address the
general scientific challenge of seeking for further progress and new metaphors in
computer science by means of unconventional methods. I show that an amal-

27



gamation of (1) a particle-based and randomly interconnected substrate, (2)
membrane systems, and (3) artificial chemistries in combination with (4) an un-
conventional organizational paradigm has interesting properties and allows to
realize complex systems in an alternative way. An overview on the goals and
guiding principles shall be provided in the next section.

Please note that this is still ongoing work which extends and further develops
some of the visions as first presented in [24]. The present paper is an extended
abstract only.

2 Goals and General Guiding Principles

The visions and work presented in this contribution are mainly motivated by the
following goals and guiding principles:

1. The system should be robust and fault-tolerant. Fault-tolerance is a major
issue for tomorrow’s computing machines and might potentially be beneficial
for new manufacturing technologies, such as for example printing technolo-
gies to create cheap and flexible sheets of transistors (polymer electronics),
for molecular electronics, and likely for nanotechnology. Further, it supports
the general challenge of building “perfect machines out of imperfect compo-
nents”, which would help to drop manufacturing costs.

2. The system should allow for hierarchies. This allows to divide (top-down)
and gradually create (bottom-up) complexity and to provide a mode of par-
allelism. It is also a means to optimize limited resources, to minimize the
overhead of control, and to support fault-tolerance.

3. The system should potentially allow to continuously adapt and invent by
means of an unconventional method. This helps to deal with cases unfore-
seen by the designer and with an ever changing environment. The reason for
using an unconventional method is the hope to avoid drawbacks of existing
methods and to obtain new and interesting properties.

4. Everything should be made as local and as simple as possible. This helps
to obtain scalable, large and potentially cheaper systems, and prevents from
using global controllers, which often represent a performance bottleneck and
a source for failures.

These guiding principles directly lead to a number of methods and tools which
amalgamation—as I will illustrate—will results in a computational system with
interesting properties and application domains.

In order to obtain a fault-tolerant system, our architecture will rely on a irreg-
ular, inhomogeneous, asynchronously operating, and possibly imperfect particle-
based substrate (see Section 3), not unlike an amorphous computer. Currently,
the only possibility to build a perfect machine from imperfect components is to
use redundancy (i.e., spare components), which clearly favors a particle-based
implementation. I will also make extensive use of artificial chemistries, which
represent—if appropriately used—an ideal means to compute in uncertain envi-
ronments. Further, they have also been identified as potentially very promising

28



for the perpetual creation of novelty [11], a feature that shall be later used to
support adaptation and learning. In order to be able to build hierarchies, I will
make use of cells and membranes throughout the system (see Section 4). Thereby,
membrane systems will serve as a main source of inspiration. Finally, adaptation
is achieved by a method inspired by conceptual blending, a framework of cogni-
tive science that tries to explain how we deal with mental concepts. However,
instead of dealing with mental concepts we will use artificial chemistries and
membranes (see Section 5).

3 The Circuit Amorphous Computer Substrate

In a 1996 white paper first described the philosophy of amorphous comput-
ing1 [1, 14]. Amorphous computing is the development of organizational prin-
ciples and programming languages for obtaining coherent global behavior from
the local cooperation of myriads of unreliable parts—all basically containing the
same program—that are interconnected in unknown, irregular, and time-varying
ways. In biology, this question has been recognized as fundamental in the con-
text of animals (such as ants, bees, etc.) that cooperate and form organizations.
Amorphous computing brings the question “down” to computing science and
engineering. Using the metaphor of biology, the cells cooperate to form a multi-
cellular organism (also called programmable multitude) under the direction of a
genetic program shared by the members of the colony.

I will present a modified amorphous computer model which will serve as
a substrate for the implementation of cellular membrane system hierarchies.
The model is called circuit amorphous computer (CAC), since, compared to
the original model, its interconnections are wire-based. The main component of
each particle, called amorphon, is a “well-stirred” reactor (see Figure 1). I will
also show that the distributed and randomly interconnected reactor network is
particularly suited for building robust systems.

4 Cellular Computing Architectures and Hierarchies

The biological cell is a central building blocks of most living organisms. Reason
why numerous more or less complex computational models and implementations
have been proposed. Most cellular models are, however, so simple that the only
thing they share with their biological counterpart is the name. In most cases,
the reason for this simplicity is that “[t]he simplest living cell is so complex that
supercomputer models may never simulate its behavior perfectly” [8].

Cellular automata (CA), originally conceived by Ulam and von Neumann
in the 1940s to provide a formal framework for investigating the behavior of
complex, extended systems [27], are probably the best known cellular machines.
In the simplest case, their structure is completely uniform and regular. On the

1 Website: http://www.swiss.ai.mit.edu/projects/amorphous

29



r1

r2

r3

r4

r2

r4

amorphous cell

amorphon reactor

amorphon reactor

Figure 1. A cell is made up by a distributed network of “well-stirred” reactors.

other extreme, random boolean networks (RBNs)—as for example used by Kauff-
man [12]—have a random interconnection topology and non-uniform cells (i.e.,
each cell can have different rules). In both cases, there is no straightforward way
to create hierarchies of cells. This is mainly due to the cell’s simplicity and the
lack of appropriate mechanisms.

In 1998, Paun initiated P systems (or membrane computing) [16, 17] as a
highly parallel—though theoretical—computational model afar inspired by bio-
chemistry and by some of the basic features of biological membranes. A typi-
cal P system (note that many variations exist) consists of cell-like membranes
placed inside a unique “skin” membrane. Multisets of objects—usually strings of
symbols—and a set of evolution rules are then placed inside the regions delimited
by the membranes. The artificial chemistry [4] then evolves—or “computes”—
according to the rules. A major drawback is, however, that all the rules have to
be applied synchronously, which requires a global control signal. Additionally,
membrane systems are usually engineered by hand since no methodology exists
on how to set up a system for a given task.

P systems are particularly interesting since they allow to easily create hier-
archies, which I consider a key issue for the creation of complex systems (see
also Section 2). Hierarchical composition is ubiquitous in physical and biological
systems: the nonlinear dynamics at each level of description generates emergent
structure, and the nonlinear interactions among these structures provide a basis
for the dynamics at the next higher level [21].

30



I will present how to create membrane systems on a circuit amorphous com-
puter (Figure 2) and compare the approach to existing algorithms to create
groups and hierarchies on amorphous computers.

cell

Circuit Amorphous

Amorphon

System
Membrane

cell

cell

cell

cell

cell

Computer

Figure 2. Implementing membrane systems on a circuit amorphous computer.

5 Chemical Blending

Conceptual blending (or conceptual integration) [5, 6] is a theory developed by
Fauconnier and Turner about conceptual spaces and how they develop and pro-
liferate as we talk and think. Conceptual spaces consist of elements and relations
among them and are of course not directly instantiated in the brain, instead, they
should be seen as a formalism invented by researchers to address and certain is-
sues of their investigation. Conceptual spaces and blending are just a good tool
to study meaning in natural language, metaphors, and concepts, but they are
not suitable to talk about the structure of things [10]. Hence, Goguen and Har-
rell recently proposed a blending algorithm called structural blending [10], which
also takes into account structure. A major drawback of blending is the difficulty
to considered it as a real theory because of the lack of a formal approach. In
recent years, however, several people worked on explicit computational frame-
works [9, 10, 18, 19, 25, 26].

While all current approaches deal with concepts, I am interested in a very
different approach. One of the fundamental problems of membrane systems and

31



artificial chemistries in general is the fact that there does not exist any universal
approach which allows to choose a set of objects (chemicals) and rules (reac-
tions) able to solve a given task. Since this problem is basically equivalent to the
challenge of programming a massively parallel machine, we should of course not
expect astonishing breakthroughs.

The main motivations for investigating a blending-inspired approach applied
to artificial chemistries are the following:

– How might “novelty” be created in a “smart” way in a membrane system?
– Can Fauconnier and Turner’s blending [6] be used in an elegant way to create

“new” cells (in the sense of Paun’s membrane systems) from two already
existing cells? The newly created cell should contain novel, but also already
existing elements.

– How might blending be used as or inspire an organizing or optimizing prin-
ciple for membrane systems?

– What are the benefits and drawbacks of such an approach?

I will illustrate these questions, provide examples (see Figure 3), and show
how all this can be integrated. I will also delineate possible ways of how this
approach could be used to obtain suitable artificial chemistries, particle-based
systems, and reactive agents. The approach will also be compared to related
work.

Acknowledgments

The author is supported by the Swiss National Science Foundation under grant
PBEL2-104420.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, E. Rauch, G. J. Sussman, and R. Weiss.
Amorphous computing. Communications of the ACM, 43(5):74–82, May 2000.

2. E. Bilotta, D. Gross, T. Smith, T. Lenaerts, S. Bullock, H. H. Lund, J. Bird,
R. Watson, P. Pantano, L. Pagliarini, H. Abbass, R. Standish, and M. A. Be-
dau, editors. Alife VIII-Workshops. Workshop Proceedings of the 8th International
Conference on the Simulation and Synthesis of Living Systems. University of New
South Wales, Australia, December 2002.

3. R. Brooks. The relationship between matter and life. Nature, 409:409–411, January
18 2001.

4. P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries–a review. Artificial
Life, 7(3):225–275, 2001.

5. G. Fauconnier and M. Turner. Conceptual integration networks. Cognitive Science,
22(2):133–187, April–June 1998.

6. G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, 2002.

7. C. Gershenson. Cognitive paradigms: Which one is the best. Cognitive Systems
Research, 5:135–156, 2004.

32



blending a new membrane system

g db d

b d

a

a

ab

b

f

δ

bb

fff

ae

a bδ

d de

deg

a bδ

a

a b

ff

δ

d

e eout

e eout

de

ce

af

a ab

f ff

eout

ag

af

g

deff

e

Figure 3. Illustration of the basic idea of chemical blending: the creation of a new cell
which contains new structure but also elements from two existing cells. .

8. W. W. Gibbs. Cybernetic cells. Scientific American, 285(2):43–47, August 2001.

9. J. Goguen. An introduction to algebraic semiotics, with applications to user inter-
face design. In Nehaniv [15], pages 242–291.

10. J. Goguen and F. Harrell. Foundations for active multimedia narrative: Semiotic
spaces and structural blending. Interaction Studies: Social Behaviour and Com-
munication in Biological and Artificial Systems, 2004. (To appear).

11. D. Gross and McMullin B. The creation of novelty in artificial chemistries. In
Standish et al. [23], pages 400–408.

12. S. A. Kauffman. The Origins of Order: Self–Organization and Selection in Evolu-
tion. Oxford University Press, New York; Oxford, 1993.

13. D. Mange and M. Tomassini, editors. Bio-Inspired Computing Machines: Towards
Novel Computational Architectures. Presses Polytechniques et Universitaires Ro-
mandes, Lausanne, Switzerland, 1998.

14. R. Nagpal. Programmable Self-Assembly: Constructing Global Shape using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, June 2001.

15. C. L. Nehaniv, editor. Computation for Metaphor, Analogy and Agents, volume
1562 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg,
1999.

33



16. G. Paun. Computing with membranes. Journal of Computer and System Sci-
ences, 61(1):108–143, 2000. First published in a TUCS Research Report, No 208,
November 1998, http://www.tucs.fi.

17. G. Paun and G. Rozenberg. A guide to membrane computing. Journal of Theo-
retical Computer Science, 287(1):73–100, 2002.

18. F. C. Pereira and A. Cardoso. Knowledge integration with conceptual blending. In
D. O’Donoghue, editor, Proceedings of the Twelfth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS-2001), pages 33–42, Maynooth, Irland,
September 2001. National University of Ireland, Department of Computer Science.

19. F. C. Pereira and A. Cardoso. The horse-bird creature generation experiment.
AISB Journal, 2003.

20. M. C. Roco and W. S. Bainbridge, editors. Converging Technologies for Improv-
ing Human Performance: Nanotechnology, Biotechnology, Information Technology
and Cognitive Science. World Technology Evaluation Center (WTEC), Arlington,
Virginia, June 2002. NSF/DOC-sponsored report.

21. A. C. Scott. Nonlinear Science: Emergence and Dynamics of Coherent Structures.
Oxford University Press, Oxford, 1999.

22. M. Sipper. Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw-
Hill, New York, 2002.

23. R. K. Standish, M. A. Bedau, and H. A. Abbass, editors. Artificial Life VIII. Pro-
ceedings of the Eight International Conference on Artificial Life. Complex Adaptive
Systems Series. A Bradford Book, MIT Press, Cambridge, MA, 2003.

24. C. Teuscher. Amorphous Membrane Blending: From Regular to Irregular Cellular
Computing Machines. PhD thesis, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, 2004. Thesis No 2925.

25. T. Veale and D. O’Donoghue. Computation and blending. Cognitive Linguistics,
11(3–4):253–281, 2000.

26. T. Veale, D. O’Donoghue, and M. T. Keane. Epistemological issues in metaphor
comprehension: A comparison of three models and a new theory of metaphor.
In Proceedings of the International Cognitive Linguistics Conference (ICLA’95),
University of New Mexico, Albuquerque, July 17–21 1995.

27. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, Illinois, 1966.

34



Membrane Systems: An Introduction

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 7014700 Bucureşti, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Abstract. Membrane Computing (MC) is part of the powerful trend in
computer science known under the name of Natural Computing. Its goal
is to abstract computing models from the structure and the functioning
of the living cell. The present paper is a short and informal introduction
to MC, presenting the basic ideas, the central (types of) results, and the
main directions of research.

1 Membrane Computing – Starting From Cells

In the last decade, the continuous and mutually beneficial collaboration of in-
formatics with biology became simply spectacular. Two landmark examples are
the completion of the genome project, a great success of bio-informatics, of us-
ing computer science in biology, and the successful Adleman’s experiment (1994)
of using DNA molecules as a support for computing. The latter example is il-
lustrative for the direction of research opposite to the traditional one, of using
computers in biology: in Adleman’s experiment, biological materials and tech-
niques were used in order to solve a computational problem. This was the “official
birth certificate” of what is now called DNA Computing, and this gave a decisive
impulse to Natural Computing.

Membrane Computing is the youngest branch of Natural Computing. It starts
from the observation that one of the most marvellous machineries evolved by na-
ture are the cells. The cell is the smallest living unit, a microscopic “enterprise”,
with a complex structure, an intricate inner activity, and an exquisite relation-
ship with its environment. Both substances, from ions to large macromolecules,
and information are processed in a cell, according to involved reactions, orga-
nized in a robust and at the same time sensitive manner, having as the goal the
processes themselves, the life itself of the cell and of the structures where the
cells are included – organs, organisms, populations.

Thus, a double challenge emerged: to check whether or not the often made
statements about the “computations” taking place in a cell (see, e.g., [2] and
[3]) are mere metaphoras or they correspond to computations in the standard
(mathematical) understanding of this term, and, more ambitiously, having in

35



mind the encouraging experience of other branches of Natural Computing, to get
inspired from the structure and the functioning of the living cell and define new
computing models, possibly of interest for computer science, for computability
in general.

Membrane computing emerged as an answer to this double challenge, propos-
ing a series of models (actually, a general framework for devising models) in-
spired from the cell structure and functioning, as well as from the cell organi-
zation in tissue. These models, called P systems, were investigated as mathe-
matical objects, with the main goals being of a (theoretical) computer science
type: computation power (in comparison with Turing machines and their re-
strictions), and usefulness in solving computationally hard problems. The field
(founded in 1998; the paper [4] was first circulated on web) simply flourished
at this level. Comprehensive information can be found in the web page at
http://psystems.disco.unimib.it; see also [5].

In this paper we discuss only the cell-like P systems, whose study is much
more developed than that of tissue-like P systems or of neural-like P systems,
only recently investigated in more details. In short, such a system consists of a
hierarchical arrangement of membranes (understood as three-dimensional vesi-
cles), which delimits compartments (also called regions), where abstract objects

are placed. These objects correspond to the chemicals from the compartments of
a cell, and they can be either unstructured, a case when they can be represented
by symbols from a given alphabet, or structured. In the latter case, a possible
representation of objects is by strings over a given alphabet. Here we discuss only
the case of symbol-objects. Corresponding to the situation from reality, where
the number of molecules from a given compartment matters, also in the case of
objects from the regions of a P system we have to take into consideration their
multiplicity, that is why we consider multisets of objects assigned to the regions
of P systems. These objects evolve according to rules, which are also associated
with the regions. The intuition is that these rules correspond to the chemical
reactions from cell compartments and the reaction conditions are specific to each
compartment, hence the evolution rules are localized. The rules say both how
the objects are changed and how they can be moved (we say communicated)
across membranes. By using these rules, we can change the configuration of a
system (the multisets from its compartments); we say that we get a transition

among system configurations. The way the rules are applied imitates again the
biochemistry (but goes one further step towards computability): the reactions
are done in parallel, and the objects to evolve and the rules by which they evolve
are chosen in a non-deterministic manner, in such a way that the application
of rules is maximal. A sequence of transitions forms a computation, and with
computations which halt (reach a configuration where no rule is applicable) we
associate a result, for instance, in the form of the multiset of objects present in
the halting configuration in a specified membrane.

All these basic ingredients of a membrane computing system (a P system) will
be discussed further below. This brief description is meant, on the one hand, to
show the passage from the “real cell” to the “mathematical cell”, as considered

36



in membrane computing, and, on the other hand, to give a preliminary idea
about the computing model we are investigating.

It is important to note at this stage the generality of the approach. We start
from the cell, but the abstract model deals with very general notions: membranes
interpreted as separators of regions, objects and rules assigned to regions; the
basic data structure is the multiset; the rules are used in the non-deterministic
maximally parallel manner, and in this way we get sequences of transitions,
hence computations. In such terms, Membrane Computing can be interpreted
as a bio-inspired framework for distributed parallel processing of multisets.

We close this introductory discussion by stressing the basic similarities and
differences between MC and the other areas of Natural Computing. All these ar-
eas start from biological facts and abstract computing models. Neural and Evo-
lutionary Computing are already implemented (rather successfuly, especially in
the case of Evolutionary Computing) on the usual computer. DNA Computing
has a bigger ambition, that of providing a new hardware, leading to bio-chips,
to “wet computers”. For MC it seems that the most realistic attempt for imple-
mentation is in silico (this started already to be a trend and some successes are
already reported) rather than in vitro (no attempt was made yet).

2 The Basic Classes of P Systems

We introduce now the fundamental ideas of MC in a more precise way. What we
look for is a computing device, and to this aim we need data structures, opera-

tions with these data structures, an architecture of our “computer”, a systematic
manner to define computations and results of computations.

Inspired from the cell structure and functioning, the basic elements of a
membrane system (currently called P system) are (1) the membrane structure

and the sets of (2) evolution rules which process (3) multisets of (4) objects placed
in the compartments of the membrane structure.

A membrane structure is a hierarchically arranged set of membranes. A
suggestive representation is as in the figure below. We distinguish the exter-
nal membrane (corresponding to the plasma membrane and usually called the
skin membrane) and several internal membranes (corresponding to the mem-
branes present in a cell, around the nucleus, in Golgi apparatus, vesicles, etc); a
membrane without any other membrane inside it is said to be elementary. Each
membrane uniquely determines a compartment, also called region, the space
delimited from above by it and from below by the membranes placed directly
inside, if any exists.

In the basic class of P systems, each region contains a multiset of symbol-
objects, which correspond to the chemicals swimming in a solution in a cell
compartment; these chemicals are considered here as unstructured, that is why
we describe them by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The rules correspond to
the chemical reactions possible in the compartments of a cell. The typical form

37



of such a rule is aad → (a, here)(b, out)(b, in), with the following meaning: two
copies of object a and one copy of object d react and the reaction produces one
copy of a and two copies of b; the new copy of a remains in the same region
(indication here), one of the copies of b exits the compartment, going to the
surrounding region (indication out) and the other enters one of the directly inner
membranes (indication in). We say that the objects a, b, b are communicated as
indicated by the commands associated with them in the right hand member
of the rule. When an object exits a membrane, it will go to the surrounding
compartment; in the case of the skin membrane this is the environment, hence
the object is “lost”, it never comes back into the system. If no inner membrane
exists (that is, the rule is associated with an elementary membrane), then the
indication in cannot be followed, and the rule cannot be applied.

✬

✫

✩

✪

✬

✫

✩

✪

✛

✚

✘

✙✛
✚

✘
✙

✓
✒

✏
✑

✓
✒

✏
✑

✤
✣

✜
✢

✓
✒

✏
✑
✓
✒

✏
✑

✡
✡

✡✡✢

❅
❅
❅❘

�
�

�
�✠

membrane

❆❆❯

skin elementary membranemembrane

region

environment environment

✟✟✯
❍❍❍❍❍❍❍❍❥

❅
❅

❅❅❘

1 2

3

4
5

6

7

8

9

The communication of objects through membranes reminds the fact that
the biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with a consumption of energy), in a rather selective manner. The
fact that the communication of objects from a compartment to a neighboring
compartment is controlled by the “reaction rules” is attractive mathematically,
but not quite realistic from a biological point of view, that is why there also
were considered variants where the two processes are separated: the evolution is
controlled by rules as above, without target indications, and the communication
is controlled by specific rules (by symport/antiport rules – see below).

A rule as above, with several objects in its left hand member, is said to be
cooperative; a particular case is that of catalytic rules, of the form ca → cx, where
a is an object and c is a catalyst, appearing only in such rules, never changing.
A rule of the form a → x, where a is an object, is called non-cooperative.

The rules associated with a compartment are applied to the objects from
that compartment, in a maximally parallel way: all objects which can evolve by
means of local rules should do it (we assign objects to rules, until no further

38



assignment is possible). The used objects are “consumed”, the newly produced
objects are placed in the compartments of the membrane structure according
to the communication commands assigned to them. The rules to be used and
the objects to evolve are chosen in a non-deterministic manner. In turn, all
compartments of the system evolve at the same time, synchronously (a common
clock is assumed for all membranes). Thus, we have two layers of parallelism,
one at the level of compartments and one at the level of the whole “cell”.

A membrane structure and the multisets of objects from its compartments
identify a configuration of a P system. By a non-deterministic maximally parallel
use of rules as suggested above we pass to another configuration; such a step
is called a transition. A sequence of transitions constitutes a computation. A
computation is successful if it halts, it reaches a configuration where no rule can
be applied to the existing objects. With a halting computation we can associate
a result in various ways. The simplest possibility is to count the objects present
in the halting configuration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave the system during
the computation, and this is called external output. In both cases the result
is a number. If we distinguish among different objects, then we can have as
the result a vector of natural numbers. The objects which leave the system
can also be arranged in a sequence according to the moments when they exit
the skin membrane, and in this case the result is a string. This last possibility
is worth emphasizing, because of the qualitative difference between the data
structure used inside the system (multisets of objects, hence numbers) and the
data structure of the result, which is a string, it contains a positional information,
a syntax.

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several
results. Thus, a P system computes (one also uses to say generates) a set of
numbers, or a set of vectors of numbers, or a language.

Of course, the previous way of using the rules from the regions of a P system
reminds the non-determinism and the (partial) parallelism from cell compart-
ments, with the mentioning that the maximality of parallelism is mathematically
oriented (rather useful in proofs); when using P systems as biological models,
this feature should be replaced with more realistic features (e.g., reaction rates,
probabilities, partial parallelism).

An important way to use a P system is the automata-like one: an input

is introduced in a given region and this input is accepted if and only if the
computation halts. This is the way for using P systems, for instance, in solving
decidability problems.

We do not give here a formal definition of a P system. The reader interested in
mathematical and bibliographical details can consult the mentioned monograph
[5], as well as the relevant papers from the web bibliography mentioned above.
Of course, when presenting a P system we have to specify: the alphabet of
objects, the membrane structure (usually represented by a string of labelled
matching parentheses), the multisets of objects present in each region of the

39



system (represented by strings of symbol-objects, with the number of occurrences
of a symbol in a string being the multiplicity of the object identified by that
symbol in the multiset represented by the considered string), the sets of evolution
rules associated with each region, as well as the indication about the way the
output is defined.

Many modifications/extensions of the very basic model sketched above are
discussed in the literature, but we do not mention them here. Instead, we only
briefly discuss the interesting case of computing by communication.

In the systems described above, the symbol-objects were processed by multi-
set rewriting-like rules (some objects are transformed into other objects, which
have associated communication targets). Coming closer to the trans-membrane
transfer of molecules, we can consider purely communicative systems, based on
the three classes of such transfer known in the biology of membranes: uniport,

symport, and antiport (see [1] for details). Symport refers to the transport where
two (or more) molecules pass together through a membrane in the same direc-
tion, antiport refers to the transport where two (or more) molecules pass through
a membrane simultaneously, but in opposite directions, while the case when a
molecule does not need a “partner” for a passage is referred to as uniport.

In terms of P systems, we can consider object processing rules of the following
forms: a symport rule (associated with a membrane i) is of the form (ab, in) or
(ab, out), stating that the objects a and b enter/exit together membrane i, while
an antiport rule is of the form (a, out; b, in), stating that, simultaneously, a exits
and b enters membrane i.

A P system with symport/antiport rules has the same architecture as a sys-
tem with multiset rewriting rules: alphabet of objects, membrane structure, ini-
tial multisets in the regions of the membrane structure, sets of rules associated
with the membranes, possibly an output membrane – with one additional compo-
nent, the set of objects present in the environment. This is an important detail:
because by communication we do not create new objects, we need a supply of
objects, in the environment, otherwise we are only able to handle a finite popu-
lation of objects, those provided in the initial multiset. Also the functioning of a
P system with symport/antiport rules is the same as for systems with multiset
rewriting rules: the transition from a configuration to another configuration is
done by applying the rules in a non-deterministic maximally parallel manner,
to the objects available in the regions of the system and in the environment, as
requested by the used rules. When a halting configuration is reached, we get a
result, in a specified output membrane.

3 Computational Completeness; Universality

As we have mentioned before, many classes of P systems, combining various in-
gredients described above, are able of simulating Turing machines, hence they
are computationally complete. Always, the proofs of results of this type are con-
structive, and this have an important consequence from the computability point
of view: there are universal (hence programmable) P systems. In short, start-

40



ing from a universal Turing machine (or an equivalent universal device), we get
an equivalent universal P system. Among others, this implies that in the case of
Turing complete classes of P systems, the hierarchy on the number of membranes
always collapses (at most at the level of the universal P systems). Actually, the
number of membranes sufficient in order to characterize the power of Turing
machines by means of P systems is always rather small.

We only mention here two of the most interesting universality results:

1. P systems with symbol-objects with catalytic rules, using only two catalysts
and two membranes, are universal.

2. P systems with symport/antiport rules of a rather restricted size (exam-
ple: four membranes, symport rules of weight 2, and no antiport rules) are
universal.

We can conclude that the compartmental computation in a cell-like mem-
brane structure (using various ways of communicating among compartments) is
rather powerful. The “computing cell” is a powerful “computer”.

4 Computational Efficiency

The computational power is only one of the important questions to be dealt
with when defining a new computing model. The other fundamental question
concerns the computing efficiency. Because P systems are parallel computing
devices, it is expected that they can solve hard problems in an efficient manner –
and this expectation is confirmed for systems provided with ways for producing
an exponential workspace in a linear way. Three main such possibilities have
been considered so far in the literature, and all of them were proven to lead to

polynomial solutions to NP-complete problems: membrane division, membrane

creation, and string replication. Using them, polynomial solutions to SAT, the
Hamiltonian Path problem, the Node Covering problem, the problem of inverting
one-way functions, the Subset-sum, and the Knapsack problems were reported
(note that the last two are numerical problems, where the answer is not of the
yes/no type, as in decidability problems) etc. Details can be found in ([5], [6],
as well as in the web page of the domain.

Roughly speaking, the framework for dealing with complexity matters is that
of accepting P systems with input: a family of P systems of a given type is con-
structed starting from a given problem, and an instance of the problem is in-
troduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration), in a given time one of the an-
swers yes/no is obtained, in the form of specific objects sent to the environment.
The family of systems should be constructed in a uniform mode (starting from
the size of instances) by a Turing machine, working a polynomial time.

This direction of research is very active at the present moment. More and
more problems are considered, the membrane computing complexity classes are

41



refined, characterizations of the P 6=NP conjecture were obtained in this frame-
work, improvements are looked for. An important recent result concerns the fact
that PSPACE was shown to be included in PMCD, the family of problems
which can be solved in polynomial time by P systems with the possibility of
dividing both elementary and non-elementary membranes [7].

5 Concluding Remarks

This paper was intended as a quick and general introduction to Membrane Com-
puting, an invitation to this recent branch of Natural Computing.

The starting motivation of the area was to learn from the cell biology new
ideas, models, paradigms useful for informatics – and we have informally pre-
sented a series of details of this type. The mathematical development was quite
rapid, mainly with two types of results as the purpose: computational universal-
ity and computational efficiency. Recently, the domain started to be used as a
framework for modelling processes from biology (but also from linguistics, man-
agement, computer graphics, etc), and this is rather important in view of the
fact that P systems are (reductionistic, but flexible, easily scallable, algorithmic,
intuitive) models of the whole cell; modelling the whole cell was often mentioned
as an important challenge for the bio-computing in the near future – see, e.g., [8].

We have recalled only a few classes of P systems and only a few (types of)
results. A detailed presentation of the domain is not only beyond the scope of this
text, but also beyond the dimensions of a monograph; furthermore, the domain
is fastly emerging, so that, the reader interested in any research direction, a more
theoretical or a more practical one, is advised to follow the developments, for
instance, through the web page mentioned in Section 2.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology

of the Cell, 4th ed., Garland Science, New York, 2002.
2. D. Bray, Protein Molecules as Computational Elements in Living Cells. Nature, 376

(July 1995), 307–312.
3. S. Ji, The Cell as the Smallest DNA-based Molecular Computer, BioSystems, 52

(1999), 123–133.
4. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,

61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

5. Gh. Păun, Computing with Membranes: An Introduction, Springer, Berlin, 2002.
6. M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Comple-

jidad en Modelos de Computatión Celular con Membranas, Kronos, Sevilla, 2002.
7. P. Sosik, The Computational Power of Cell Division in P Systems: Beating Down

Parallel Computers? Natural Computing, 2, 3 (2003), 287–298.
8. M. Tomita, Whole-Cell Simulation: A Grand Challenge of the 21st Century, Trends

in Biotechnology, 19 (2001), 205–210.

42



P Systems: Some Recent Results and Research Problems �

Oscar H. Ibarra

Department of Computer Science

University of California

Santa Barbara, CA 93106, USA

Abstract. We consider the following definition (different from the standard definition in the literature) of

“maximal parallelism” in the application of evolution rules in a P system G: Let R � fr�� ���rkg be the

set of distinct rules in the system. G operates in maximal parallel mode if at each step of the computation,

a maximal subset of R is applied, and at most one instance of any rule is used at every step (thus at most

k rules are applicable at any step). We refer to this system as a maximally parallel system. We look at the

computing power of P systems under three semantics of parallelism. For a positive integer n � k, define:

n-Max-Parallel: At each step, nondeterministically select a maximal subset of at most n rules in R to

apply (this implies that no larger subset is applicable).

� n-Parallel: At each step, nondeterministically select any subset of at most n rules in R to apply.

n-Parallel: At each step, nondeterministically select any subset of exactly n rules in R to apply.

In all three cases, if any rule in the subset selected is not applicable, then the whole subset is not applicable.

When n � �, the three semantics reduce to the Sequential mode.

We look at two models of P systems that have been studied in the literature: catalytic systems and commu-

nicating P systems. We show that for these systems, n-Max-Parallel mode is strictly more powerful than

any of the following three modes: Sequential, � n-Parallel, or n-Parallel. For example, it follows from a

result in [6] that a �-Max Parallel communicating P system is universal. However, under the three limited

modes of parallelism, the system is equivalent to a vector addition system, which is known to only define a

recursive set. This shows that “maximal parallelism” is key for the model to be universal.

We also briefly summarize other recent results concerning membrane hierarchy and computational com-

plexity of P systems. Finally, we propose some problems for future research.

No proofs are given in this extended abstract. Some results presented here were obtained in collaboration

with Zhe Dang and Hsu-Chun Yen.

Keywords: P system, catalytic Psystem, communicating P system, maximally parallel system, sequential sys-

tem, limited parallelism, vector addition system, semilinear set, membrane hierarchy, computational complex-

ity.

1 Introduction

There has been a flurry of research activities in the area of membrane computing (a branch of molecular

computing) initiated five years ago by Gheorghe Paun [15]. Membrane computing identifies an unconventional

computing model, namely a P system, from natural phenomena of cell evolutions and chemical reactions.

Due to the built-in nature of maximal parallelism inherent in the model, P systems have a great potential

for implementing massively concurrent systems in an efficient way that would allow us to solve currently

intractable problems (in much the same way as the promise of quantum and DNA computing) once future

bio-technology (or silicon-technology) gives way to a practical bio-realization (or chip-realization).

� This research was supported in part by NSF Grants IIS-0101134 and CCR02-08595.

43



The Institute for Scientific Information (ISI) has recently selected membrane computing as a fast “Emerg-

ing Research Front” in Computer Science (see http://esi-topics.com/erf/october2003.html). A P system is a

computing model, which abstracts from the way the living cells process chemical compounds in their compart-

mental structure. Thus, regions defined by a membrane structure contain objects that evolve according to given

rules. The objects can be described by symbols or by strings of symbols, in such a way that multisets of objects

are placed in regions of the membrane structure. The membranes themselves are organized as a Venn diagram

or a tree structure where one membrane may contain other membranes. By using the rules in a nondetermin-

istic, maximally parallel manner, transitions between the system configurations can be obtained. A sequence

of transitions shows how the system is evolving. Various ways of controlling the transfer of objects from a

region to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have

been studied. P systems were introduced with the goal to abstract a new computing model from the structure

and the functioning of the living cell (as a branch of the general effort of Natural Computing – to explore

new models, ideas, paradigms from the way nature computes). Membrane computing has been quite success-

ful: many models have been introduced, most of them Turing complete and/or able to solve computationally

intractable problems (NP-complete, PSPACE-complete) in a feasible time (polynomial), by trading space for

time. (See the P system website at http://psystems.disco.unimb/it for a large collection of papers in the area,

and in particular the monograph [16].)

In the standard semantics of P systems [15, 16, 18], each evolution step of a system G is a result of applying

all the rules in G in a maximally parallel manner. More precisely, starting from the initial configuration, w,

the system goes through a sequence of configurations, where each configuration is derived from the directly

preceding configuration in one step by the application of a multi-set of rules, which are chosen nondeterministi-

cally. For example, a catalytic rule Ca� Cv in membrane q is applicable if there is a catalyst C and an object

(symbol) a in the preceding configuration in membrane q. The result of applying this rule is the evolution of

v from a. If there is another occurrence of C and another occurrence of a, then the same rule or another rule

with Ca on the left hand side can be applied. Thus, in general, the number of times a particular rule is applied

at anyone step can be unbounded. We require that the application of the rules is maximal: all objects, from all

membranes, which can be the subject of local evolution rules have to evolve simultaneously. Configuration z

is reachable (from the starting configuration) if it appears in some execution sequence; z is halting if no rule is

applicable on z.

In this paper, we study a different definition of maximal parallelism. Let G be a P system and R �
fr�� ���� rkg be the set of distinct rules in all the membranes. (Note that ri uniquely specifies the membrane

the rule belongs to.) We say that G operates in maximal parallel mode if at each step of the computation, a

maximal subset of R is applied, and at most one instance of any rule is used at every step (thus at most k rules

are applicable at any step). For example, if ri is a catalytic rule Ca � Cv in membrane q and the current

configuration has two C 's and three a's in membrane q, then only one a can evolve into v. Of course, if there is

another rule rj , Ca � Cv�, in membrane q, then the other a also evolves into v �. Throughout the paper, we

will use this definition of maximal parallelism.

2 Catalytic System (CS)

We recall the definition of a multi-membrane catalytic system (CS) as defined in [15]. The membranes (regions)

are organized in a hierarchical (tree) structure and are labeled 1, 2, .., m for some m, with the outermost

membrane (the skin membrane) labeled �. At the start of the computation, there is a distribution of catalysts

and noncatalysts in the membranes (the distribution represents the initial configuration of the system). Each

membrane may contain a finite set of catalytic rules of the form Ca � Cv, where C is a catalyst, a is a

noncatalyst, and v is a (possibly null) string of noncatalysts. When this rule is applied, the catalyst remains in

the membrane the rule is in, symbol a is deleted from the membrane, and the symbols comprising v (if nonnull)

are transported to other membranes in the following manner. Each symbol b in v has a designation or target,

i.e., it is written bx, where x can be here, out, or inj . The designation here means that the object b remains in

44



the membrane containing it (we usually omit this target, when it is understood). The designation out means that

the object is transported to the membrane directly enclosing the membrane that contains the object; however,

we do not allow any object to be transported out of the skin membrane. The designation inj means that the

object is moved into a membrane, labeled j, that is directly enclosed by the membrane that contains the object.

It is important to note that our definition of catalytic system is different from what is usually called catalytic

system in the literature. Here, we do not allow rules without catalysts, i.e., rules of the form a � v. Thus our

systems use only purely catalytic rules.

Suppose S is a CS with m membranes. Let fa�� ���� ang be the set of noncatalyst symbols (objects) that

can occur in the configurations of S. Let w � �w�� ���� wm� be the initial configuration, where wi represents

the catalysts and noncatalysts in membrane i. (Note that wi can be null.) Each reachable configuration of S

is an nm-tuple �v�� ���� vm�, where vi is an n-tuple representing the multiplicities of the symbols a�� ���� an
in membrane i. Note that we do not include the catalysts in considering the configuration as they are not

changed (i.e., they remain in the membranes containing them, and their numbers remain the same during the

computation). Hence the set of all reachable configurations of S, denoted by R�S� is a subset ofNmn. The set

of all halting reachable configurations is denoted by Rh�S�.
It is known that for any set Q � N

n that can be accepted by a Turing machine, we can construct a 1-

membrane CS G with only purely catalytic rules such that Rh�G� � Q [19, 20, 5]. In fact, [5] shows that three

distinct catalysts (where each catalyst appears exactly once in the initial configuration) are already sufficient

for universality. Thus, in general, a �-Max-Parallel 1-membrane CS can define a nonrecursive reachability set.

2.1 Sequential CS (Zero Parallelism)

In a sequential CS, each step of the computation consists of an application of a single nondeterministically

chosen rule, i.e., the membrane and rule within the membrane to apply are chosen nondeterministically. Thus,

the computation of the CS has no parallelism at all. It turns out that sequential CS's are much weaker. They

define exactly the semilinear sets.

We need the definition of a vector addition system. An n-dimensional vector addition system (VAS) is a

pair G � hx�W i, where x � Nn is called the start point (or start vector) and W is a finite set of vectors in Zn,

where Z is the set of all integers (positive, negative, zero). The reachability set of the VAS hx�W i is the set

R�G� � fz j for some j, z � x�v�� ����vj � where for all � � i � j, each vi �W and x�v�� ����vi � �g.

The halting reachability set Rh�G� � fz j z � R�G�� z � v �� � for every v in Wg.

A VAS G � hx�W i, where each vector in W is in Nn (i.e., has nonnegative components) generates a

linear set. Any finite union of linear sets is called a semilinear set.

An n-dimensional vector addition system with states (VASS) is a VAS hx�W i together with a finite set T of

transitions of the form p� �q� v�, where q and p are states and v is in W . The meaning is that such a transition

can be applied at point y in state p and yields the point y � v in state q, provided that y � v � �. The VASS

is specified by G � hx� T� p�i, where p� is the starting state. The reachability set is R�G� � fz j for some j,

z � x�v�� ����vj� where for all � � i � j, pi�� � �pi� vi� � T , and x�v�� ����vi � �g. The reachability

problem for a VASS (respectively, VAS) G is to determine, given a vector y, whether y is in R�G�. The

equivalence problem is to determine given two VASS (respectively, VAS) G and G�, whether R�G� � R�G��.
Similarly, one can define the reachability problem and equivalence problem for halting configurations.

The following summarizes the known results concerning VAS and VASS [22, 7, 1, 8, 13]:

Theorem 1. 1. Let G be an n-dimensional VASS. We can effectively construct an �n � ��-dimensional VAS

G� that simulates G.

2. If G is a 2-dimensional VASS G, then R�G� is an effectively computable semilinear set.

3. There is a 3-dimensional VASS G such that R�G� is not semilinear.

4. If G is a 5-dimensional VAS G, then R�G� is an effectively computable semilinear set.

5. There is a 6-dimensional VAS G such that R�G� is not semilinear.

6. The reachability problem for VASS (and hence also for VAS) is decidable.

45



7. The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability problem for VASS (respec-

tively, VAS) is decidable.

A communication-free VAS is a VAS where in every transition, at most one component is negative, and

if negative, its value is -1. They are equivalent to communication-free Petri nets, which are also equivalent

to commutative context-free grammars [3, 9]. It is known that they have effectively computable semilinear

reachability sets [3].

Our first result shows that a sequential CS is weaker than a maximally parallel CS.

Theorem 2. The following are equivalent: communication-free VAS, sequential multi-membrane CS, sequen-

tial 1-membrane CS.

Corollary 1. 1. If S is a sequential multi-membrane CS, then R�S� and Rh�S� are effectively computable

semilinear sets.

2. The reachability problem (whether a given configuration is reachable) for sequential multi-membrane CS

is NP-complete.

2.2 CS Under Limited Parallelism

Here we look at the computing power of the CS under three semantics of parallelism. Let R � fR�� ���� Rkg
be the set of rules of the CS. For a positive integer n � k, define:

1. n-Max-Parallel: At each step, nonderministically select a maximal subset of at most n rules in R to

apply (this implies that no larger subset is applicable).

2. � n-Parallel: At each step, nondeterministically select any subset of at most n rules in R to apply.

3. n-Parallel: At each step, nondeterministically select any subset of exactly n rules in R to apply.

In all three cases above, if any rule in the set selected is not applicable, then the whole set is not applicable.

Note that when n � �, the three semantics reduce to the Sequential mode.

Theorem 3. For n � �, a 1-membrane CS operating under the n-Max-Parallel mode can define a recursively

enumerable set. For any n, a multi-membrane CS operating under� n-Parallel mode or n-Parallel mode can

be simulated by a VASS (= VAS).

2.3 Simple Cooperative 1-Membrane System

Now consider the case when the 1-membrane CS has only one catalyst C with initial configuration Ckx for

some k and string x of noncatalysts. Thus, there are k copies of the same catalyst in the initial configuration.

The rules allowed are of the form Ca� v or of the form Caa� Cv, i.e., C catalyzes two copies of an object.

This system is equivalent to a special form of cooperative P system [15, 16]. A simple cooperative system

(SCS) is a P system where the rules allowed are of the form a � v or of the form aa � v. Moreover, there is

some fixed integer k such that the system operates in maximally parallel mode, but uses no more that k rules

in any step. Clearly, the two systems are equivalent.

Theorem 4. A 1-membrane SCS operating in k-maximally parallel mode can simulate a Turing machine when

k is at least �.

46



3 Communicating P Sytem (CPS)

A communication P System (CPS) has rules of the form form (see [19]):

1. a� ax
2. ab� axby
3. ab� axbyccome

where x� y can be here, out, or inj . As before, here means that the object remains in the membrane containing

it, out means that the object is transported to the membrane directly enclosing the membrane that contains

the object (or to the environment if the object is in the skin membrane), and come can only occur within the

outermost region (i.e., skin membrane), and it means import the object from the environment. The designation

inj means that the object is moved into a membrane, labeled j, that is directly enclosed by the membrane that

contains the object.

3.1 Sequential 1-Membrane CPS

First we consider the case when there is only one membrane (the skin membrane). The computation is sequen-

tial in that at each step there is only one application of a rule (to one instance). So, e.g., if nondeterministically

a rule like ab� ahereboutccome is chosen, then there must be at least one a and one b in the membrane. After

the step, a remains in the membrane, b is thrown out of the membrane, and c comes into the membrane. There

may be several a's and b's, but only one application of the rule is applied. Thus, there is no parallelism involved.

The computation halts when there is no applicable rule. Again, we are only interested in the multiplicities of

the objects when the system halts.

We shall see below that a 1-membrane CPS can be simulated by a VASS (= VAS). However, the converse

is not true:

Theorem 5. The set of (halting) reachable configurations of a sequential 1-membrane CPS is a semilinear set.

3.2 Sequential 1-Membrane Extended CPS (ECPS)

Interestingly, if we generalize the rules of a 1-membrane CPS slightly the extended system becomes equivalent

to a VASS. Define an extended CPS (ECPS) by allowing rules of the form:

1. a� ax
2. ab� axby
3. ab� axbyccome

4. ab� axbyccomedcome

(i.e., by adding rules of type 4).

Theorem 6. Sequential 1-membrane ECPS and VASS are equivalent.

We can generalize rules of an ECPS further as follows:

1. ai� ���aih � ai�x� ���aihxh
2. ai� ���aih � ai�x� ���aihxhcj�come

���cjlcome

where h� l �1, and xm � fhere� outg for � � m � h, and the a's and c's are symbols. Call this system

ECPS+. ECPS+ is still equivalent to a VASS. Thus, we have:

Corollary 2. The following systems are equivalent: Sequential 1-membrane ECPS, sequential 1-membrane

ECPS+, and VASS.

47



3.3 Sequential 2-Membrane CPS

In Section 3.1, we saw that a sequential 1-membrane CPS can only define a semilinear set. However, if the

system has two membranes, we can show:

Theorem 7. A sequential 2-membrane CPS is equivalent to a VASS.

3.4 Sequential Multi-Membrane ECPS

In Theorem 6, we saw that a sequential 1-membrane ECPS can be simulated by a VASS. This result generalizes

to:

Theorem 8. The following are equivalent: VASS, sequential 2-membrane CPS, sequential 1-membrane ECPS,

sequential multi-membrane ECPS, and sequential multi-membrane ECPS+.

We can also prove:

Theorem 9. For any n, a multi-membrane ECPS+ operating under� n-Parallel mode or n-Parallel mode is

equivalent to a VASS.

4 Membrane Hierarchy

The question of whether there exists a model of P systems where the number of membranes induces an infinite

hierarchy in its computational power had been open since the beginning of membrane computing five years

ago. Our recent paper [10] provided a positive answer to this open problem.

Consider a restricted model of a communicating P system, called RCPS, whose environment does not

contain any object initially. The system can expel objects into the environment but only expelled objects can

be retrieved from the environment. Such a system is initially given an input ai�
�
���ainn (with each ij representing

the multiplicity of distinguished object ai, � � i � n) and is used as an acceptor. We showed the following

results in [10]:

Theorem 10. 1. RCPS's are equivalent to two-way multihead finite automata over bounded languages (i.e.,

subsets of a�
�
���a�n, for some distinct symbols a�� ���� an).

2. For every r, there is an s � r and a unary language L accepted by an RCPS with s membranes that cannot

be accepted by an RCPS with r membranes.

We note that the proof of the infinite hierarchy above reduces the problem (in an intricate way) to the known

hierarchy of nondeterministic two-way multihead finite automata over a unary input alphabet. An interesting

problem for further investigation is whether the hierarchy can be made tighter, i.e., whether the result holds for

s � r � �.

We also considered in [10] variants/generalizations of RCPS's, e.g, acceptors of languages; models that

allow a “polynomial bounded” supply of objects in the environment initially; models with tentacles, etc. We

showed that they also form an infinite hierarchy with respect to the number of membranes (or tentacles). The

proof techniques can be used to obtain similar results for other restricted models of P systems, like sym-

port/antiport systems.

48



5 Computational Complexity of P Systems

In [11], we showed how techniques in machine-based complexity can be used to analyze the complexity of

membrane computing systems. The focus was on catalytic systems, communicating P systems, and systems

with only symport/antiport rules, but the techniques are applicable to other P systems that are universal. We de-

fined space and time complexity measures and showed hierarchies of complexity classes similar to well known

results concerning Turing machines and counter machines. We also showed that the deterministic communicat-

ing P system simulating a deterministic counter machine in [19, 21] can be constructed to have a fixed number

of membranes, answering positively an open question in [19, 21]. We proved that reachability of extended con-

figurations for symport/antiport systems (as well as for catalytic systems and communicating P systems) can

be decided in nondeterministic log n space and, hence, in deterministic log�n space or in polynomial time,

improving the main result in [17]. We also proposed two equivalent systems that define languages (instead

of multisets of objects): the first is a catalytic system language generator and the other is a communicating P

system acceptor (or a symport/antiport system acceptor). These devices are universal and therefore can also be

analyzed with respect to space and time complexity. Finally, we gave a characterization of semilinear languages

in terms of a restricted form of catalytic system language generator.

6 Some Problems for Future Research

Limited parallelism in other P systems: We believe the results in Sections 2 and 3 can be shown to hold for

other more general P systems (including those where membranes can be dissolved), provided the rules are not

prioritized. For example, the results should apply to systems with symport/antiport rules. We plan to look at

this problem.

Characterizations: We propose to investigate various classes of nonuniversal P systems and characterize their

computing power in terms of well-known models of sequential and parallel computation. We plan to investigate

language-theoretic properties of families of languages defined by P systems that are not universal (e.g., closure

and decidable properties), find P system models that correspond to the Chomsky hierarchy, and in particular,

characterize the “parallel” computing power of P systems in terms of well-known models like alternating Turing

machines, circuit models, cellular automata, parallel random access machines. We will also study models of

P systems that are not universal for which we can develop useful and efficient algorithms for their decision

problems.

Reachability problem in cell simulation: Another important research area that has great potential applications

in biology is the use of P systems for the modeling and simulation of cells. While previous work on modeling

and simulation use continuous mathematics (differential equations), P systems will allow us to use discrete

mathematics and algorithms. As a P system models the computation that occurs in a living cell, an important

problem is to develop tools for determining reachability between configurations, i.e., how the system evolves

over time. Specifically, given a P system and two configurations � and � (a configuration is the number and

distribution of the different types of objects in the various membranes in the system), is � reachable from �?

Unfortunately, unrestricted P systems are universal (i.e., can simulate a Turing machine), hence all nontrivial

decision problems (including reachability) are undecidable. Therefore, it is important to identify special P

systems that are decidable for reachability.

7 Conclusion

We showed in this paper that P systems that operate under limited parallelism are strictly weaker than systems

that operate in “maximal parallelism” for two classes of systems: multi-membrane catalytic systems and multi-

membrane communicating P systems. Our results on multi-membrane communicating P systems should also

49



hold for an equivalent model with symport/antiport rules [12, 14]. We also briefly summarized our recent re-

sults concerning membrane hierarchy and computational complexity of P systems. Finally, we proposed some

problems for future research.

There has been some related work on P systems operating in sequential mode. For example, sequential

variants of P systems have been studied, in a different framework, in [4]. There, generalized P systems (GP-

systems) were considered and were shown to be able to simulate graph controlled grammars. A comparison

between parallel and sequential modes of computation in a restricted model of a P automaton was also recently

investigated in [2], where it was shown that the parallel version is equivalent to a linear space-bounded nonde-

terministic Turing machine (NTM) and the sequential version is equivalent to a simple type of a one-way log n

space-bounded NTM.

References

1. H. G. Baker. Rabin's proof of the undecidability of the reachability set inclusion problem for vector addition systems.

In C.S.C. Memo 79, Project MAC, MIT, 1973.

2. E. Csuhaj-Varju, O. Ibarra, and G. Vaszil. On the computational complexity of P automata. In DNA 10, Lecture Notes

in Computer Science. Springer-Verlag, 2004 (to appear).

3. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. In Proc. Fundamentals of

Computer Theory, volume 965 of Lecture Notes in Computer Science, pages 221–232. Springer, 1995.

4. R. Freund. Sequential P-systems. Available at http://psystems.disco.unimib.it, 2000.

5. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without priorities: two catalysts are

sufficient. Available at http://psystems.disco.unimib.it, 2003.

6. R. Freund and A. Paun. Membrane systems with symport/antiport rules: universality results. In Proc. WMC-CdeA2002,

volume 2597 of Lecture Notes in Computer Science, pages 270–287. Springer, 2003.

7. M. H. Hack. The equality problem for vector addition systems is undecidable. In C.S.C. Memo 121, Project MAC,

MIT, 1975.

8. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theoretical

Computer Science, 8(2):135–159, 1979.

9. D.T. Huynh. Commutative grammars: The complexity of uniform word problems. Information and Control, 57:21–39,

1983.

10. O. H. Ibarra. The number of membranes matters. In Proceedings of the 2003 Workshop on Membrane Computing

(WMC 2003), Lectures Notes in Computer Science, to appear.

11. O. H. Ibarra. On the computational complexity of membrane systems. Theoretical Computer Science, to appear.

12. C. Martin-Vide, A. Paun, and Gh. Paun. On the power of P systems with symport rules. Journal of Universal Computer

Science, 8(2):317–331, 2002.

13. E. Mayr. Persistence of vector replacement systems is decidable. Acta Informat., 15:309–318, 1981.

14. A. Paun and Gh. Paun. The power of communication: P systems with symport/antiport. New Generation Computing,

20(3):295–306, 2002.

15. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–143, 2000.

16. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.

17. Gh. Paun, M. Perez-Jimenez, and F. Sancho-Caparrini. On the reachability problem for P systems with sym-

port/antiport. submitted, 2002.

18. Gh. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Computer Science, 287(1):73–100, 2002.

19. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proceedings of Workshop on Membrane

Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages 371–382, 2002.

20. P. Sosik and R. Freund. P systems without priorities are computationally universal. In WMC-CdeA2002, volume 2597

of Lecture Notes in Computer Science, pages 400–409. Springer, 2003.

21. P. Sosik and J. Matysek. Membrane computing: when communication is enough. In Unconventional Models of

Computation 2002, volume 2509 of Lecture Notes in Computer Science, pages 264–275. Springer, 2002.

22. J. van Leeuwen. A partial solution to the reachability problem for vector addition systems. In Proceedings of STOC'74,

pages 303–309.

50



�✂✁☎✄✆✄✆✝✞✄✠✟☛✡✌☞✍✁✏✎✑✟☎✒✔✓✕✡✗✖✙✘✙✡✗✟✛✚✜✚✜✢✆✣✤✘

✥✧✦✩★✫✪✭✬ ✮✆✯✱✰✲✬ ✳✴★✵✦✩✶✸✷

✹✲✺✼✻✛✽✆✾❀✿ ✽✆✾❂❁✲❃❄✽✼❅✴❆❇✻☎❈❊❉✩❋●✾❀❍❏■❑✿ ■❑▲✴■❑❆✏✺✆▼❖◆✱✺✼✻☛P❀▲✴■❑❆✭◗❙❘✩❃❇✿ ❆❇✾❀❃❇❆✼❉❀❋❏✽✴❚❍❯✿
❱✩❲✠❳❊❨✴❩✆❬❊❭✼❪✩❩❫❩✠❴❛❵❜❴✼❝❀❩✼❲❊❞❫❩✔❵❜❨✩❡

❢✛❣✐❤❇❥❇❦✠❧✸♠✼❥✼♥ ❁❙❅❀✽✆P✴■♦✽✆♣❀q ❆r❆✭s✴❆❇❃❇▲✴■❑✿ ✺✼✾❀❍✙✿ ✾❀❍❯P❀✿ ◗❑❆❄❅t♣❊❈✉■❑✈❀❆r❃❇❆❇q q✏♣✇❆❇✈✸✽❄①✩✿ ✺✼▲✴◗②❃❄✽✆✾t♣✇❆
❅✴❆❇❍❯❃✭◗❑✿ ♣✇❆❄❅☛♣❊❈☛✽③❃❇❆❇q q ▲❀q ✽✠◗✗✻☛❆✭■♦✽✠④❜P✴◗❑✺✼⑤✆◗♦✽✆✻☛✻☛✿ ✾❀⑤✏P✸✽✠◗♦✽✼❅✴✿ ⑤✼✻❂⑥✩⑦✑✈❀❆✲❃❇❆❇q q✫✽✼❅❀✽✆P✴■♦✽✆♣❀✿ q ✿ ■●❈
✽✆✾✸❅⑧✻☛❆✭■♦✽✠④❜P✴◗❑✺✼⑤✆◗♦✽✆✻☛✻☛✿ ✾❀⑤❙✽✠◗❑❆✗◗❑❆❇q ✽✠■❑❆❄❅☎■❑✺❙■❑✈❀❆✗✾❀✺✆■❑✿ ✺✼✾❀❍❛✺✆▼✫♣✇❆❇✈✸✽❄①✩✿ ✺✼▲✴◗♦✽✆q✴◗❑❆✭⑨✸❆❇❃✭■❑✿ ✺✼✾✵❉
⑩ ✈❀✿ ❃♦✈❶✽✆q q ✺ ⑩ ❍③✽☛P✴◗❑✺✼⑤✆◗♦✽✆✻❷■❑✺✛✻☛✺✩❅✴✿ ▼ ❈❊❉✸❆❇①❫❆❇✾❸✽✠■✲◗❑▲❀✾✴④❹■❑✿ ✻☛❆✼❉❀✿ ■❑❍❙✺ ⑩ ✾❸❃❇✺✩❅✴❆⑧✽✆❍ ⑩ ❆❇q q
✽✆❍❙■❑✈❀❆☎❍❯❆❇✻✛✽✆✾❊■❑✿ ❃❇❍❙✺✆▼✱✿ ■❑❍✏✺ ⑩ ✾❶P✴◗❑✺✼⑤✆◗♦✽✆✻☛✻☛✿ ✾❀⑤☛q ✽✆✾❀⑤✼▲✸✽✆⑤✼❆✼⑥✫❺✤❆☎P✴◗❑❆❇❍❯❆❇✾❊■❙■❑✈❀❆☎❃❇❆❇q q ▲✴④
q ✽✠◗⑧✻☛❆✭■♦✽✠④❜P✴◗❑✺✼⑤✆◗♦✽✆✻☛✻☛✿ ✾❀⑤②✈❀❆❇q P❀✿ ✾❀⑤❂✺✼✾✤✻☛❆❇✻⑧♣✴◗♦✽✆✾❀❆⑧❍❏❈✴❍❏■❑❆❇✻☛❍☎✽✆✾✸❅✤✽②❍❯P✇❆❇❃❇✿ ❻✸❃❄✽✠■❑✿ ✺✼✾
q ✽✆✾❀⑤✼▲✸✽✆⑤✼❆⑧♣✸✽✆❍❯❆❄❅❂✺✼✾❂◗❑❆ ⑩ ◗❑✿ ■❑✿ ✾❀⑤ ⑩ ✈❀✿ ❃♦✈❸✽✆q q ✺ ⑩ ❍✏✻☛❆✭■♦✽✠④❜q ❆❇①❫❆❇q✔❍❏■❯◗♦✽✠■❑❆❇⑤✼✿ ❆❇❍③✽✆✾✸❅②▲❀❍❯❆❼✺✆▼
◗❑❆✭⑨✸❆❇❃✭■❑✿ ✺✼✾✵⑥

❽ ❾❙❿❼➀✴➁✇➂❖➃✂➀➅➄t➆❑➇✲➈❑➇➊➉✗❿

➋✸➌✇➍❑➎✭✮✆➏r➍➊★✫✬ ✳✴✯ ✳✴➐✴➌✙✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍➊✦☛✶✫✮✆➒➔➓✠✪✭✳❀➍✭➍❑→❯➣✇✬↔➍✭➓✠✬ ➑✫✯ ✬ ✶✵✦✩✪✭➌✛✦✩➑✫➑✫✪✭✳❀✦✴➓❇↕❂✬ ✶r★✫✬ ✳✴✯ ✳✴➐✴➌✙➒③↕✫✬↔➓❇↕r↕✵✦✴➍
✳✴✶✫✯ ➌②✪✭✮✼➓✠✮✆✶❀➎✭✯ ➌✙★✔✮✆✮✆✶r➏r✦✴➣✇✮❼➑✔✳❀➍✭➍♦✬ ★✫✯ ✮③★✸➌❂✦✴➣✇➙❊✦✩✶✵➓✠✮✼➍✗✬ ✶❸➓✠✳✴➏❂➑✫✷✇➎✭✮✆✪❙➍✭➓✠✬ ✮✆✶✵➓✠✮❼✦✩✶✵➣②➎✭✮✼➓❇↕✫✶✫✳✴✯ ✳✴➐✴➌✴➛
➜ ✶✫✯ ✬ ➝✴✮❂➎✭✪❇✦✴➣✇✬ ➎✭✬ ✳✴✶✵✦✩✯✗★✫✬ ✳✴✯ ✳✴➐✴✬↔➍❑➎❇➍✧➍❑➎✭✷✵➣✇➌✸✬ ✶✫➐✞✬ ✶✵➣✇✬ ➙✸✬↔➣✇✷✵✦✩✯➊➐✴✮✆✶✫✮✼➍✆➞✐➑✫✪✭✳✩➎✭✮✆✬ ✶✵➍✧✳✴✪✛➍♦➏r✦✩✯ ✯✲➍♦✷✫★✵➍♦➌✇➍❑→
➎✭✮✆➏r➍③✬ ✶✞✬↔➍♦✳✴✯↔✦❊➎✭✬ ✳✴✶❛➞✫➍♦➌✇➍❑➎✭✮✆➏r➍✏★✫✬ ✳✴✯ ✳✴➐✴➌❸✮✆➏✙★✫✪❇✦✴➓✠✮✼➍❙➎✭↕✫✮☛➙✸✬ ✮✆➒➟➎✭↕✵✦❊➎③➎✭↕✫✮✛➒③↕✫✳✴✯ ✮✛➍♦➌✇➍❑➎✭✮✆➏➠➏✙✷✵➍❑➎
★✔✮❙✦✩✶✵✦✩✯ ➌✸➡✆✮✼➣✧✬ ✶✛✳✴✪❇➣✇✮✆✪✐➎✭✳☎✷✫✶✵➣✇✮✆✪❇➍❑➎❇✦✩✶✵➣⑧➎✭↕✫✮❙➓✠✳✴➏❂➑✫✯ ✮✠➢☛✬ ✶❀➎✭✮✆✪❇✦✴➓❄➎✭✬ ✳✴✶✧✳✩➤✵✦✩✯ ✯❀✯ ✮✆➙✴✮✆✯↔➍❛✳✩➤✇★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯
✬ ✶✇➤❹✳✴✪✭➏r✦❊➎✭✬ ✳✴✶❛➛✩➋✸➌✇➍❑➎✭✮✆➏r➍✱★✫✬ ✳✴✯ ✳✴➐✴➌☛✪✭✮✼➥❀✷✫✬ ✪✭✮✼➍❖➐✴✯ ✳✴★✵✦✩✯✸➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵➍✑✦✩✶✵➣✛➎✭✳✸✳✴✯↔➍✱★✔✳✩➎✭↕✙➎✭✳✧➣✇✮✠➦✵✶✫✮
➎✭↕✫✮✏✮✆✯ ✮✆➏❂✮✆✶❀➎❇➍✱✳✩➤✫➎✭↕✫✮✏➍♦➌✇➍❑➎✭✮✆➏✤➞❊✦✩✶✵➣☛➎✭✳☎➤❹✳✴✯ ✯ ✳❊➒t➎✭↕✫✮❙✮✆✯ ✮✆➏❂✮✆✶❀➎❇➍✱★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✑✦✴➍❛➎✭↕✫✮③➍♦➌✇➍❑➎✭✮✆➏❷➓✆✦✩✪♦→
✪✭✬ ✮✼➍➊✳✴✷✇➎✲✬ ➎❇➍➊➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶✵➍✆➛❀➧✱✬ ✶✵✦✩✯ ✯ ➌✴➞✴➎✭↕✫✮☎➍♦➌✇➍❑➎✭✮✆➏r➍✲✦✩➑✫➑✫✪✭✳❀✦✴➓❇↕❂✪✭✮✼➥❀✷✫✬ ✪✭✮✼➍✗➏r✦❊➎✭↕✫✮✆➏r✦❊➎✭✬↔➓✆✦✩✯✵➏❂✳✇➣✇✮✆✯↔➍
✦✩✶✵➣✤➏❂✮✠➎✭↕✫✳✇➣✫➍⑧✦✩★✫✯ ✮☛➎✭✳❶➣✇✮✼➍✭➓✠✪✭✬ ★✔✮☛➎✭↕✫✮✙✶✵✦❊➎✭✷✫✪✭✮✛✳✩➤✑➎✭↕✫✮✙➒③↕✫✳✴✯ ✮✙➍♦➌✇➍❑➎✭✮✆➏✤➞✔✦✩✶✵➣✤✬ ➎❇➍❼➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍✆➛
➨ ↕✫✮✆✪✭✮✠➤❹✳✴✪✭✮③➍♦➌✇➍❑➎✭✮✆➏r➍✗★✫✬ ✳✴✯ ✳✴➐✴➌☛✬↔➍➊✦✧✶✫✮✆➒➩↕✫✳✴✯ ✬↔➍❑➎✭✬↔➓✏➙✸✬ ✮✆➒➩✳✩➤➫➏❂✳✴✯ ✮✼➓✠✷✫✯↔✦✩✪✗★✫✬ ✳✴✯ ✳✴➐✴➌✴➛✩➭☎➍✗✬ ➎✲✬↔➍✗➏❂✮✆✶✇→
➎✭✬ ✳✴✶✫✮✼➣✙✬ ✶✞➯ ➲❊➳❏➞❊✬ ➎✗✬ ✶✸➙✴✳✴✯ ➙✴✮✼➍❖➎✭↕✫✮③✦✩➑✫➑✫✯ ✬↔➓✆✦❊➎✭✬ ✳✴✶②✳✩➤✔✮✠➢✇➑✔✮✆✪✭✬ ➏❂✮✆✶❀➎❇✦✩✯●➞✼➎✭↕✫✮✆✳✴✪✭✮✠➎✭✬↔➓✆✦✩✯●➞✩✦✩✶✵➣✙➏❂✳✇➣✇✮✆✯ ✯ ✬ ✶✫➐
➎✭✮✼➓❇↕✫✶✫✬↔➥❀✷✫✮✼➍⑧➎✭✳❶➎✭↕✫✮❸➍❑➎✭✷✵➣✇➌➵✳✩➤✲★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯✑✳✴✪✭➐❀✦✩✶✫✬↔➍♦➏r➍⑧✦❊➎☛✦✩✯ ✯✗✯ ✮✆➙✴✮✆✯↔➍✆➞✔➤❹✪✭✳✴➏➸➎✭↕✫✮r➏❂✳✴✯ ✮✼➓✠✷✫✯↔✦✩✪✼➞
➎✭↕✫✪✭✳✴✷✫➐✴↕✉➎✭↕✫✮❸➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪✼➞➫➎✭✳➺➎✭↕✫✮r★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❇✦✩✯●➛➫➻❏➎❇➍☛✦✩✬ ➏➼✦✩✶✵➣➽➓❇↕✵✦✩✯ ✯ ✮✆✶✫➐✴✮②✬↔➍✧➎✭✳✤✬↔➣✇✮✆✶❀➎✭✬ ➤❹➌➵➎✭↕✫✮
➑✫✪✭✬ ✶✵➓✠✬ ➑✫✯ ✮✼➍☎➎✭↕✵✦❊➎☛✯ ✮✼✦✴➣➵➎✭✳❶➎✭↕✫✮r✦✴➓❄➎✭✷✵✦✩✯✗➓✠✳✴➏✙★✫✬ ✶✵✦❊➎✭✬ ✳✴✶✉✳✩➤❙➏❂✳✴✯ ✮✼➓✠✷✫✯↔✦✩✪⑧➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏r➍✆➛✐➭☎➣✫➣✇✬ ✶✫➐
✶✫✮✆➒➾✦✩★✵➍❑➎✭✪❇✦✴➓❄➎✭✬ ✳✴✶✵➍✆➞✇➣✇✬↔➍✭➓✠✪✭✮✠➎✭✮✧➏❂✳✇➣✇✮✆✯↔➍③✦✩✶✵➣➺➏❂✮✠➎✭↕✫✳✇➣✫➍③✦✩★✫✯ ✮✧➎✭✳❂↕✫✮✆✯ ➑✤✳✴✷✫✪③✷✫✶✵➣✇✮✆✪❇➍❑➎❇✦✩✶✵➣✇✬ ✶✫➐❂✳✩➤
➎✭↕✫✮❸★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯✗➑✫↕✫✮✆✶✫✳✴➏❂✮✆✶✵✦✫➞❖➍♦➌✇➍❑➎✭✮✆➏r➍☛★✫✬ ✳✴✯ ✳✴➐✴➌➵➏r✦❫➌✉➑✫✪✭✳❊➙✸✬↔➣✇✮r➑✫✪✭✮✼➣✇✬↔➓❄➎✭✬ ➙✴✮r➑✔✳❊➒❙✮✆✪✼➞✐✷✵➍♦✮✠➤❹✷✫✯
➓✠✯↔✦✴➍✭➍♦✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵➍✆➞✼✶✫✮✆➒➚➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏r➍❖✬ ✶②➓✠✳✴➏❂➑✫✷✇➎✭✬ ✶✫➐☛✦✩✶✵➣✛✶✫✮✆➒➚➑✔✮✆✪❇➍♦➑✔✮✼➓❄➎✭✬ ➙✴✮✼➍✱✳✴✶✛➎✭↕✫✮③➣✇➌✸✶✵✦✩➏❂✬↔➓✆➍
✳✩➤✑➙❊✦✩✪✭✬ ✳✴✷✵➍❙★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯✐➍♦➌✇➍❑➎✭✮✆➏r➍✆➛

➻❯✶t➎✭↕✫✬↔➍✙➑✵✦✩➑✔✮✆✪②➒❙✮❶➑✫✪✭✮✼➍♦✮✆✶❀➎②➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪②➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✵➞❛✦✉➓✠✳✴➏❂➑✫✷✇➎✭✬ ✶✫➐✉➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏
✬ ✶✵➍♦➑✫✬ ✪✭✮✼➣➵★✸➌✤➎✭↕✫✮r➣✇➌✸✶✵✦✩➏❂✬↔➓✙✶✵✦❊➎✭✷✫✪✭✮✙✳✩➤✲➎✭↕✫✮❂➓✠✮✆✯ ✯✗★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✼➞➫➣✇✮✼➍✭➓✠✪✭✬ ★✔✮✼➣➵➒③✬ ➎✭↕➵➎✭↕✫✮❂↕✫✮✆✯ ➑➽✳✩➤
➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧➍♦➌✇➍❑➎✭✮✆➏r➍❙✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✭✬ ✶✫➐②✦✩★✵➍❑➎✭✪❇✦✴➓❄➎✏➏❂✳✇➣✇✮✆✯↔➍❙✬ ✶✵➍♦➑✫✬ ✪✭✮✼➣❶★✸➌❂➎✭↕✫✮☛➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❇➍❙✳✩➤
✦✛➓✠✮✆✯ ✯●➛ ➨ ↕✫✮☎✪✭✳✸✳✩➎➊✳✩➤✐➎✭↕✫✬↔➍✲✦✩➑✫➑✫✪✭✳❀✦✴➓❇↕❂✬↔➍➊➐✴✬ ➙✴✮✆✶❂★✸➌✙➎✭↕✫✮☎↕✫✬ ➐✴↕❸✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌❂✦✩✶✵➣②➪✵✮✠➢✇✬ ★✫✬ ✯ ✬ ➎❑➌❂✳✩➤
➎✭↕✫✮②➓✠✮✆✯ ✯❖★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✼➛✵➻❑➣✇✮✆✶❀➎✭✬ ➤❹➌✸✬ ✶✫➐r➎✭↕✫✮✙➑✫✪✭✬ ✶✵➓✠✬ ➑✫✯ ✮✼➍③➎✭↕✵✦❊➎⑧➐✴✳❊➙✴✮✆✪✭✶❶➎✭↕✫✮②➣✇✮✼➍♦✬ ➐✴✶➵✦✩✶✵➣➺➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶
✳✩➤✐➎✭↕✫✬↔➍✏✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌②✬↔➍❙✦✙➓✠✮✆✶❀➎✭✪❇✦✩✯✵➐✴✳❀✦✩✯✵✳✩➤❛✳✴✷✫✪✲✪✭✮✼➍♦✮✼✦✩✪❇➓❇↕❛➛ ➨ ↕✫✮⑧✦✴➣✫✦✩➑✇➎❇✦❊➎✭✬ ✳✴✶r✳✩➤❖➓✠✮✆✯ ✯↔➍➊➎✭✳✛➎✭↕✫✮
➓❇↕✵✦✩✶✫➐✴✬ ✶✫➐➵✮✆✶✸➙✸✬ ✪✭✳✴✶✫➏❂✮✆✶❀➎②✪✭✮✼➥❀✷✫✬ ✪✭✮✼➍✙➍♦✳✴➑✫↕✫✬↔➍❑➎✭✬↔➓✆✦❊➎✭✮✼➣t➑✫✪✭✳✇➓✠✮✼➍✭➍♦✬ ✶✫➐➵➏❂✮✼➣✇✬↔✦❊➎✭✮✼➣t★✸➌t✬ ✶❀➎✭✮✆✪❇✦✴➓❄➎✭✬ ✶✫➐
➐✴✮✆✶✫✮✼➍②✦✩✶✵➣t➑✫✪✭✳✩➎✭✮✆✬ ✶✵➍✆➛✱➻❯✶➚➓✠✳✴➏❂➑✫✷✇➎✭✬ ✶✫➐✉➎✭✮✆✪✭➏r➍✆➞✱➒❙✮➺➍✭✦❫➌✉➎✭↕✵✦❊➎r✦✉➓✠✮✆✯ ✯✏✬↔➍②✦✩★✫✯ ✮❸➎✭✳➽✦✴➣✫✦✩➑✇➎②✬ ➎❇➍

51



✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶➵✦✴➓✆➓✠✳✴✪❇➣✇✬ ✶✫➐②➎✭✳❸➙❊✦✩✪✭✬ ✳✴✷✵➍③➣✇✮✆➙✴✮✆✯ ✳✴➑✫➏❂✮✆✶❀➎❇✦✩✯❖✦✩✶✵➣✤✮✆✶✸➙✸✬ ✪✭✳✴✶✫➏❂✮✆✶❀➎❇✦✩✯❛➍❑➎✭✬ ➏✙✷✫✯ ✬●➞➫➓✆✦✩✷✵➍♦✬ ✶✫➐
➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐➽➓❇↕✵✦✩✶✫➐✴✮✼➍✙✬ ✶ ✬ ➎❇➍❂★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✼➛ ✁ ✮✞✪✭✮✠➤❹✮✆✪❂➏r✦✩✬ ✶✫✯ ➌t➎✭✳ ✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌➅✦❊➎❂➎✭↕✫✮
➍♦✳✩➤ ➎❑➒✏✦✩✪✭✮⑧✯ ✮✆➙✴✮✆✯●➛

➭☎➣✫✦✩➑✇➎❇✦✩★✫✯ ✮➊✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶✵➍❖✦✩✪✭✮✗➐✴✮✆✶✫✮✆✪❇✦❊➎✭✮✼➣⑧✬ ✶✙➓✠✳✴➏❂➑✫✷✇➎✭✮✆✪✱➍✭➓✠✬ ✮✆✶✵➓✠✮➊★✸➌⑧➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✵➛
✂ ✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐➺✬↔➍☛➎✭↕✫✮❶✦✴➓❄➎✙✳✩➤③➒③✪✭✬ ➎✭✬ ✶✫➐✞➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏r➍✆➞✐✦✩✶✵➣t✦✤➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏ ✬↔➍
✦ ➑✫✪✭✳✴➐✴✪❇✦✩➏ ➎✭↕✵✦❊➎❸➏r✦✩✶✫✬ ➑✫✷✫✯↔✦❊➎✭✮✼➍❸✬ ➎❇➍♦✮✆✯ ➤✛✦✴➍r✬ ➎❇➍❸➣✫✦❊➎❇✦✫➞✲✦✩✯ ✯ ✳❊➒③✬ ✶✫➐t✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶ ➏❂✳✇➣✇✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❛➛
✂ ✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐ ✬↔➍➺✪✭✮✆✯↔✦❊➎✭✮✼➣➩➎✭✳➅➎✭↕✫✮➽✶✫✳✩➎✭✬ ✳✴✶✵➍❸✳✩➤✛✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➛❙➻❯✶➔➎✭↕✫✮➽➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐
✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✼➍✆➞✵✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➵✬↔➍⑧➣✇✮✠➦✵✶✫✮✼➣✉✦✴➍❼➎✭↕✫✮❂✦✩★✫✬ ✯ ✬ ➎❑➌✤✳✩➤✲✦❶➑✫✪✭✳✴➐✴✪❇✦✩➏➠➎✭✳❶➏r✦✩✶✫✬ ➑✫✷✫✯↔✦❊➎✭✮✙➎✭↕✫✮②✮✆✶✇→
➓✠✳✇➣✇✬ ✶✫➐❶✳✩➤➊➎✭↕✫✮❂➍❑➎❇✦❊➎✭✮✙✳✩➤✗➎✭↕✫✮②➑✫✪✭✳✴➐✴✪❇✦✩➏➸➣✇✷✫✪✭✬ ✶✫➐❶✬ ➎❇➍☎✳❊➒③✶➵✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶❛➛ ➨ ↕✫✮✙➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏ ➤❹✳✴✪
✮✆✶✵➓✠✳✇➣✇✬ ✶✫➐✛✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶r➍❑➎❇✦❊➎✭✮✼➍☎✄❜✦✴➍➊➣✫✦❊➎❇✦✝✆✑✬↔➍✲➓✆✦✩✯ ✯ ✮✼➣②✪✭✮✆✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❛➛ ➨ ↕✫✮❼✪✭✮✠➪✵✮✼➓❄➎✭✬ ➙✴✮③➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏r➍
✦✩✪✭✮❸★✔✳✩➎✭↕➩➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪❇✦✩✯✏✦✩✶✵➣t★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❇✦✩✯●➛✑➋❀➎✭✪✭✷✵➓❄➎✭✷✫✪❇✦✩✯❙✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➅✬↔➍✛➎✭↕✫✮✤✦✩★✫✬ ✯ ✬ ➎❑➌➽➎✭✳✉➒❙✳✴✪✭➝
➒③✬ ➎✭↕➵➎✭↕✫✮❂➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✼➍☎✦✩✶✵➣➵➑✫✪✭✳✇➓✠✮✼➍✭➍♦✮✼➍③✳✩➤❙✦❸➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐❸➍♦➌✇➍❑➎✭✮✆➏➸➒③✬ ➎✭↕✫✬ ✶➵➎✭↕✫✮②➑✫✪✭✳✴➐✴✪❇✦✩➏②→
➏❂✬ ✶✫➐✙➍♦➌✇➍❑➎✭✮✆➏✕✬ ➎❇➍♦✮✆✯ ➤❑➛ ➨ ↕✫✬↔➍✗➤❹✳✴✪✭➏✕✳✩➤✐✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❂✬↔➍✗✮✼✦✴➍♦✬ ✮✆✪✑➎✭✳✛✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎✼➞❀✦✩✶✵➣❂✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✼➍✑✦✴➍
✞ ✬↔➍♦➑❛➞✸➋✸➏r✦✩✯ ✯ ➎❇✦✩✯ ➝➫➞✸✦✩✶✵➣✠✟❀✦❫➙❊✦✧↕✵✦❫➙✴✮❼➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪❇✦✩✯✵✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶r➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏r➍✆➛☛✡❼✳❊➒❙✮✆➙✴✮✆✪✼➞❊➎✭↕✫✮⑧➓✠✮✆✯ ✯
✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌❂✬↔➍✏➓✠✯ ✳❀➍♦✮❼➎✭✳✙➎✭↕✫✮⑧★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❇✦✩✯✔✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❸➒③↕✫✬↔➓❇↕➺✦✩✯ ✯ ✳❊➒❼➍✲✦✙➑✫✪✭✳✴➐✴✪❇✦✩➏✕➎✭✳②➏❂✳✇➣✸→
✬ ➤❹➌✴➞✩✮✆➙✴✮✆✶②✦❊➎➊✪✭✷✫✶✇→●➎✭✬ ➏❂✮✴➞❊✬ ➎❇➍✑✳❊➒③✶❂➓✠✳✇➣✇✮③✦✴➍✱➒❙✮✆✯ ✯✫✦✴➍✱➎✭↕✫✮③➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍✗✦✩✶✵➣✛➎✭↕✫✮③✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶
✳✩➤✑✬ ➎❇➍✏✳❊➒③✶➺➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐②✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✴➛✌☞☎✷✫✪③➏r✦✩✬ ✶➺✬ ✶❀➎✭✮✆✪✭✮✼➍❑➎③✬↔➍③✬ ✶✤★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✏✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➛

➨ ↕✫✮➽➓✠✮✆✯ ✯✧✬↔➍➺✦✩★✫✯ ✮➵➎✭✳➚➏❂✳✇➣✇✬ ➤❹➌➔✬ ➎❇➍✤✦✴➓❄➎✭✬ ➙✸✬ ➎❑➌➔✦✴➓✆➓✠✳✴✪❇➣✇✬ ✶✫➐t➎✭✳➚✬ ➎❇➍❶➤❹✳✴✪✭✮✆➐✴✳✴✬ ✶✫➐t➑✫✪✭✳✇➓✠✮✼➍✭➍♦✮✼➍✆➞
➎✭✳➅✳✴★✵➍♦✮✆✪✭➙✴✮➵✦✩✶✵➣➔➓❇↕✵✦✩✶✫➐✴✮✞✬ ➎❇➍❸✳❊➒③✶➔➓✠✳✇➣✇✮➵✮✆➙✴✮✆✶ ✦❊➎❶✪✭✷✫✶✇→●➎✭✬ ➏❂✮✴➛ ➨ ↕✫✬↔➍❸★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❸✬↔➍❸➏❂✳✴✪✭✮
➎✭↕✵✦✩✶➺➎✭↕✫✮✛✪✭✮✆✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶➺➑✫✪✭✳✇➓✠✮✼➍✭➍✏★✸➌❶➒③↕✫✬↔➓❇↕✞✦❂➑✫✪✭✳✴➐✴✪❇✦✩➏ ➒③↕✫✬↔➓❇↕✤✬↔➍❼✦❊➎❼✪✭✷✫✶✇→●➎✭✬ ➏❂✮☛✬↔➍③✷✵➍♦✮✼➣✞✦✴➍③✦
✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶✍✄❜➣✫✦❊➎❇✦❸➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✼➍✆➞✫➑✫✪✭✳✇➓✠✮✼➣✇✷✫✪✭✮✼➍✎✆❙✮✠➢✇➑✫✪✭✮✼➍✭➍♦✮✼➣➺✬ ✶✞➎✭↕✫✮✛✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮☛✬ ➎❇➍♦✮✆✯ ➤❑➞➫✦✩✶✵➣
➏r✦✴➣✇✮❼✦❫➙❊✦✩✬ ✯↔✦✩★✫✯ ✮❙➎✭✳☛➎✭↕✫✮❼➑✫✪✭✳✴➐✴✪❇✦✩➏❷✦✴➍✗✳✴✪❇➣✇✬ ✶✵✦✩✪✭➌✙➣✫✦❊➎❇✦✫➛ ➨ ↕✫✮❼➓✠✮✆✯ ✯↔➍✗➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✧✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✼➍
✦✩✯ ✯ ✳❊➒✉➎✭✳⑧➍❑➎✭✮✆➑☛✬ ✶❀➎✭✳❼➎✭↕✫✮✲➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯●➞✠➒③↕✫✮✆✪✭✮➊✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶✛✳✩➤✸➎✭↕✫✮✲✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✗✬↔➍❛✮✠➢✇➑✫✯ ✬↔➓✠✬ ➎✭✯ ➌
✦❫➙❊✦✩✬ ✯↔✦✩★✫✯ ✮✴➛ ➨ ↕✫✬↔➍✲➓✆✦✩➑✵✦✩★✫✬ ✯ ✬ ➎❑➌✛✮✆✶✵✦✩★✫✯ ✮✼➍✗➙❊✦✩✪✭✬ ✳✴✷✵➍➊➓✠✷✵➍❑➎✭✳✴➏❂✬ ➡✼✦❊➎✭✬ ✳✴✶✵➍✑✬ ✶✵➓✠✯ ✷✵➣✇✬ ✶✫➐✛✶✫✮✆➒ ➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✼➍✆➞
➓❇↕✵✦✩✶✫➐✴✬ ✶✫➐❸➎✭↕✫✮②★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪✼➞✵➐✴✳✴✬ ✶✫➐❶✷✫➑➽✦✩✶✵➣✉➣✇✳❊➒③✶➵✬ ✶➽✦❸➎✭✳❊➒❙✮✆✪☎✳✩➤✲➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯↔➍☎★✸➌✞✷✵➍♦✬ ✶✫➐➺✦
✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➺➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏✤➛

✁ ✮❙✷✵➍♦✮✏✦❼✪❇✦❊➎✭↕✫✮✆✪✱➏r✦❊➎✭↕✫✮✆➏r✦❊➎✭✬↔➓✆✦✩✯✸✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮☎✄❜➓✆✦✩✯ ✯ ✮✼➣ ✂ ✦✩✷✵➣✇✮✏✆❛➒③↕✫✬↔➓❇↕✙✬↔➍✑✦✩★✫✯ ✮✲➎✭✳⑧➑✫✪✭✳❊➙✸✬↔➣✇✮
✮✠➢✇✮✼➓✠✷✇➎❇✦✩★✫✯ ✮➽➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❛➞✏✦✩✶✵➣➟✦✩✶➟✦✩★✵➍❑➎✭✪❇✦✴➓❄➎➺➏❂✳✇➣✇✮✆✯✧✳✩➤✛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍❶✬ ✶✵➍♦➑✫✬ ✪✭✮✼➣➔★✸➌➩➎✭↕✫✮
➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❇➍❼✳✩➤❙✦❶➓✠✮✆✯ ✯✑✄❜➓✆✦✩✯ ✯ ✮✼➣✓✒➟➍♦➌✇➍❑➎✭✮✆➏r➍✎✆❄➛✔➻❯✶✉✳✴✪❇➣✇✮✆✪❼➎✭✳❶➑✫✪✭✮✼➍♦✮✆✶❀➎☎➎✭↕✫✮②➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪⑧➏❂✮✠➎❇✦❊→
➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐r➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏✤➞✫➒❙✮✙➑✫✪✭✳❊➙✸✬↔➣✇✮✧➎✭↕✫✮✙✮✠➢✇✮✼➓✠✷✇➎❇✦✩★✫✯ ✮②➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵➍❼✳✩➤✔✒ ➍♦➌✇➍❑➎✭✮✆➏r➍❼✬ ✶
✂ ✦✩✷✵➣✇✮✴➞✏✦➅➍♦✳✩➤ ➎❑➒✏✦✩✪✭✮➵➍♦➌✇➍❑➎✭✮✆➏ ➍♦✷✫➑✫➑✔✳✴✪♦➎✭✬ ✶✫➐➚✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➛✖✕☎✮✼➍♦➑✫✬ ➎✭✮➵➎✭↕✫✮➵➎✭↕✫✮✆✳✴✪✭✮✠➎✭✬↔➓✆✦✩✯☎✯ ✬ ➏❂✬ ➎❇➍✆➞
✂ ✮✼➍♦✮✆➐✴✷✫✮✆✪☎✦✩✶✵➣✉✰✲✯↔✦❫➙✴✮✆✯❛↕✵✦❫➙✴✮✛➣✇✮✠➦✵✶✫✮✼➣✞✦r➐✴✮✆✶✫✮✆✪❇✦✩✯✐➎✭↕✫✮✆✳✴✪✭➌❶✳✩➤✗✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶✤➤❹✳✴✪ ✂ ✦✩✷✵➣✇✮✛✬ ✶➚➯ ✗❊➳❏➛
➨ ↕✫✮✆➌ ➑✫✪✭✳✴➑✔✳❀➍♦✮✉➏❂✮✠➎❇✦❊→❏✯ ✳✴➐✴✬↔➓✆✦✩✯⑧✦❊➢✇✬ ✳✴➏r➍r➤❹✳✴✪➺✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➞✏✦✴➍❶➒❙✮✆✯ ✯☛✦✴➍❸➐✴✮✆✶✫✮✆✪❇✦✩✯✧✦❊➢✇✬ ✳✴➏r➍r➤❹✳✴✪
➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✵✦✩✯❛➍❑➎✭✪❇✦❊➎✭✮✆➐✴✬ ✮✼➍❙✬ ✶✤✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❂✯ ✳✴➐✴✬↔➓✩➛

✘ ✙➽➂❖➈♦➈✛✚☎➈✢✜✤✣✦✥ ➂✐➁✧✜✩★✏✪✫✣✫➇➊➉✬✣✭✜✗➃✂➃✂➆✛✮❼➉✕➇✩✯✲➂✰✣✱✥ ➂❖➃✳✲☎✣✭✜✴✮❼➂❖➀

✂ ✮✆➏✙★✫✪❇✦✩✶✫✮✲➍♦➌✇➍❑➎✭✮✆➏r➍❖✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✱✦❼✶✫✮✆➒➅✦✩★✵➍❑➎✭✪❇✦✴➓❄➎❖➏❂✳✇➣✇✮✆✯❀✳✩➤✵➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯❀✦✩✶✵➣✛➣✇✬↔➍❑➎✭✪✭✬ ★✫✷✇➎✭✮✼➣✛➓✠✳✴➏②→
➑✫✷✇➎✭✬ ✶✫➐r✬ ✶✵➍♦➑✫✬ ✪✭✮✼➣➺★✸➌➺➓✠✮✆✯ ✯❖➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❇➍③✦✩✶✵➣➺➏❂✳✴✯ ✮✼➓✠✷✫✯↔✦✩✪③➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍☛➯ ✵✷✶✫➞✸✵☛✵✠➳❏➛✫➭❷➓✠✮✆✯ ✯❛✬↔➍
➣✇✬ ➙✸✬↔➣✇✮✼➣❶✬ ✶❶➙❊✦✩✪✭✬ ✳✴✷✵➍❙➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❇➍✆➞❀✮✼✦✴➓❇↕➺➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❙➒③✬ ➎✭↕✤✦②➣✇✬ ✹➫✮✆✪✭✮✆✶❀➎❙➎❇✦✴➍♦➝➫➞✇✦✩✶✵➣❶✦✩✯ ✯
✳✩➤❙➎✭↕✫✮✆➏✌➒❙✳✴✪✭➝✸✬ ✶✫➐✤➍♦✬ ➏✙✷✫✯ ➎❇✦✩✶✫✮✆✳✴✷✵➍♦✯ ➌✤➎✭✳➵✦✴➓✆➓✠✳✴➏❂➑✫✯ ✬↔➍♦↕ ✦➺➏❂✳✴✪✭✮❂➐✴✮✆✶✫✮✆✪❇✦✩✯✱➎❇✦✴➍♦➝➵✳✩➤❙➎✭↕✫✮r➒③↕✫✳✴✯ ✮
➍♦➌✇➍❑➎✭✮✆➏✤➛ ➨ ↕✫✮❼➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✗✳✩➤❛✦✺✒➅➍♦➌✇➍❑➎✭✮✆➏✂➣✇✮✠➎✭✮✆✪✭➏❂✬ ✶✫✮❼✪✭✮✆➐✴✬ ✳✴✶✵➍✑➒③↕✫✮✆✪✭✮③✳✴★✧✻❑✮✼➓❄➎❇➍✲✦✩✶✵➣❂✮✆➙✴✳✴✯ ✷✇→
➎✭✬ ✳✴✶❸✪✭✷✫✯ ✮✼➍✲➓✆✦✩✶r★✔✮⑧➑✫✯↔✦✴➓✠✮✼➣✐➛ ➨ ↕✫✮☎✳✴★✧✻❑✮✼➓❄➎❇➍➊✮✆➙✴✳✴✯ ➙✴✮☎✦✴➓✆➓✠✳✴✪❇➣✇✬ ✶✫➐✧➎✭✳☛➎✭↕✫✮☎✪✭✷✫✯ ✮✼➍❙✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✮✼➣②➒③✬ ➎✭↕
✮✼✦✴➓❇↕➺✪✭✮✆➐✴✬ ✳✴✶❛➞✫✦✩✶✵➣❸➎✭↕✫✮✛✪✭✮✆➐✴✬ ✳✴✶✵➍✏➓✠✳✸✳✴➑✔✮✆✪❇✦❊➎✭✮✧✬ ✶✤✳✴✪❇➣✇✮✆✪❙➎✭✳r➏r✦✩✬ ✶❀➎❇✦✩✬ ✶➺➎✭↕✫✮☛➑✫✪✭✳✴➑✔✮✆✪③★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪
✳✩➤✔➎✭↕✫✮③➒③↕✫✳✴✯ ✮③➍♦➌✇➍❑➎✭✮✆➏✤➛☛✒ ➍♦➌✇➍❑➎✭✮✆➏r➍✑➑✫✪✭✳❊➙✸✬↔➣✇✮③✦⑧✶✫✬↔➓✠✮❼✦✩★✵➍❑➎✭✪❇✦✴➓❄➎✭✬ ✳✴✶✙➤❹✳✴✪✗➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯✇➍♦➌✇➍❑➎✭✮✆➏r➍✆➞✴✦✩✶✵➣
✦❂➍♦✷✫✬ ➎❇✦✩★✫✯ ✮✧➤❹✪❇✦✩➏❂✮✆➒❙✳✴✪✭➝②➤❹✳✴✪❼➣✇✬↔➍❑➎✭✪✭✬ ★✫✷✇➎✭✮✼➣✤✦✩✶✵➣➺➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯✐✦✩✯ ➐✴✳✴✪✭✬ ➎✭↕✫➏r➍☛➯ ✼❫➳❏➛

52



➨ ↕✫✬↔➍❖➍♦✮✼➓❄➎✭✬ ✳✴✶☛➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍✐★✫✪✭✬ ✮✠➪✵➌✧✦✩✶☛✮✠➢✇✮✼➓✠✷✇➎❇✦✩★✫✯ ✮➊➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵➍✐➤❹✳✴✪❖➏❂✮✆➏✙★✫✪❇✦✩✶✫✮➊➍♦➌✇➍❑➎✭✮✆➏r➍✆➛
✂ ✳✴✪✭✮❸➣✇✮✠➎❇✦✩✬ ✯↔➍②✦✩✪✭✮r➑✫✪✭✮✼➍♦✮✆✶❀➎✭✮✼➣ ✬ ✶ ➯ ✵✠➳❏➛ ✁ ✮❶✮✆➏❂➑✫↕✵✦✴➍♦✬ ➡✆✮r➎✭↕✫✮➺➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪✛➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐
✦✩✶✵➣ ✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➟✦✴➍♦➑✔✮✼➓❄➎❇➍✆➞❙➑✫✪✭✳❊➙✸✬↔➣✇✬ ✶✫➐➅✬ ✶ ➎✭↕✫✮t➍✭✦✩➏❂✮➵➎✭✬ ➏❂✮ ✦➚➣✇✬↔➍❑➎✭✬ ✶✵➓❄➎✭✬ ➙✴✮✉➤❹✮✼✦❊➎✭✷✫✪✭✮➽✳✩➤☛➎✭↕✫✮
➏❂✮✆➏✙★✫✪❇✦✩✶✫✮☛➓✠✳✴➏❂➑✫✷✇➎✭✬ ✶✫➐✵➛
➧✫✳✴✪✭➏r✦✩✯ ✯ ➌✴➞❀✦✺✒➅➍♦➌✇➍❑➎✭✮✆➏ ✬↔➍❙✦☛➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✁�✄✂ ✄✆☎✞✝✠✟✡✝✠☛✁☞✌✝✎✍✎✍✎✍✎✝✠☛✑✏✒✝✔✓✕☞✖✝✎✍✎✍✎✍✎✝✔✓✗✏✒✝✠✘✚✙✸✆❄➞❀➒③↕✫✮✆✪✭✮✜✛
✄❹✬ ✆✢☎❷✬↔➍❼✦✩✶✤✦✩✯ ➑✫↕✵✦✩★✔✮✠➎❼✳✩➤✱✳✴★✧✻❑✮✼➓❄➎❇➍✎✣
✄❹✬ ✬ ✆✤✟➽✬↔➍③✦❂➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮☛➓✠✳✴✶✵➍♦✬↔➍❑➎✭✬ ✶✫➐❂✳✩➤✑✯↔✦✩★✔✮✆✯ ✯ ✮✼➣❶➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✎✣
✄❹✬ ✬ ✬ ✆✤☛✑✥➊✦✩✪✭✮✧➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎❇➍✏✳❊➙✴✮✆✪✦☎✕✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✮✼➣❶➒③✬ ➎✭↕➺➎✭↕✫✮☛✪✭✮✆➐✴✬ ✳✴✶✵➍✏➣✇✮✠➦✵✶✫✮✼➣➺★✸➌✧✟✡✣
✄❹✬ ➙✭✆★✓✗✥➊✦✩✪✭✮⑧➦✵✶✫✬ ➎✭✮✙➍♦✮✠➎❇➍③✳✩➤✑✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶➺✪✭✷✫✯ ✮✼➍③✳❊➙✴✮✆✪✦☎ ✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✮✼➣❸➒③✬ ➎✭↕✤➎✭↕✫✮✛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✆➞✇✳✩➤

➎❑➌✸➑✫✬↔➓✆✦✩✯➫➤❹✳✴✪✭➏✪✩✬✫✮✭✯✩ ✄✱✰✌✝✠✘✳✲✵✴✷✆✸✄✱✰✌✝✔✶✖✷✹✸✛✆✺✣
✄❹➙✭✆✤✘✳✻☛✬↔➍✏✮✆✬ ➎✭↕✫✮✆✪❼✦②✶✸✷✫➏✙★✔✮✆✪③★✔✮✠➎❑➒❙✮✆✮✆✶ ✵☛✦✩✶✵➣✤✼✌➍♦➑✔✮✼➓✠✬ ➤❹➌✸✬ ✶✫➐②➎✭↕✫✮✤✽✌✾✬✿ ❀❁✾✬✿✐➏❂✮✆➏✙★✫✪❇✦✩✶✫✮⑧✳✩➤✡�t➞

✳✴✪③✬ ➎❼✬↔➍✏✮✼➥❀✷✵✦✩✯➫➎✭✳ ✶②✬ ✶✵➣✇✬↔➓✆✦❊➎✭✬ ✶✫➐❂➎✭↕✵✦❊➎✏➎✭↕✫✮☛✳✴✷✇➎✭➑✫✷✇➎☎✬↔➍❙➎✭↕✫✮☛✳✴✷✇➎✭✮✆✪③✪✭✮✆➐✴✬ ✳✴✶❛➛
✁ ✮❼➑✫✪✭✮✠➤❹✮✆✪✗➎✭✳✛✮✠➢✇➑✫✪✭✮✼➍✭➍➊✦✧➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❼✦✴➍➊✦☛➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✁❂❃✂ ✄✱✓❅❄❆✝✠☛✦❄ ✆❄➞❀✦✩✶✵➣❂✬ ➎❇➍✗✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶
✪✭✷✫✯ ✮✼➍✏✦✴➍❙✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✙✪✭✷✫✯ ✮✼➍✆➛ ✁ ✮✧➓✠✳✴✶✵➍♦✬↔➣✇✮✆✪❙➎✭↕✫✮⑧➤❹✳✴✯ ✯ ✳❊➒③✬ ✶✫➐✙➏r✦❊➢✇✬ ➏r✦✩✯➫➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯✐✦✩➑✫➑✫✯ ✬↔➓✆✦❊➎✭✬ ✳✴✶❶✳✩➤
✪✭✷✫✯ ✮✼➍✎✛✼✬ ✶②✦❼➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶✙➍❑➎✭✮✆➑❛➞✼➎✭↕✫✮❙✪✭✷✫✯ ✮✼➍❖✳✩➤✵✮✼✦✴➓❇↕✛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❙✦✩✪✭✮✲✷✵➍♦✮✼➣✙✦✩➐❀✦✩✬ ✶✵➍❑➎✱✬ ➎❇➍✱✪✭✮✼➍♦✳✴✷✫✪❇➓✠✮✼➍
➍♦✷✵➓❇↕➩➎✭↕✵✦❊➎❶✶✫✳➅➏❂✳✴✪✭✮✞✪✭✷✫✯ ✮✼➍❸➓✆✦✩✶ ★✔✮✉✦✩➑✫➑✫✯ ✬ ✮✼➣✐➛③✰✲✳✴✶✵➍♦✬↔➣✇✮✆✪✭✬ ✶✫➐t✦✩✶❈❇❊❉ ❇❊❋●❇❊❍■✿❑❏✌▲✺▼◆❋●❇❊❋●❖❊▲✔❏✌❍❁❇
❂❃✂✳✄✱✓❅❄❆✝✠☛✦❄ ✆❄➞❀➒③↕✫✮✆✪✭✮✦✓❅❄➠✬↔➍✗➎✭↕✫✮③➦✵✶✫✬ ➎✭✮☎➍♦✮✠➎✲✳✩➤✐✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶❂✪✭✷✫✯ ✮✼➍➊✦✩✶✵➣P☛✦❄➠✬↔➍✗➎✭↕✫✮❼✬ ✶✫✬ ➎✭✬↔✦✩✯
➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎✼➞✵✦❂➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✞➍❑➎✭✮✆➑❶➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶➺✬↔➍❼➣✇✮✠➦✵✶✫✮✼➣✤✦✴➍③✦②✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐②✪✭✷✫✯ ✮☛★✸➌

◗ ☞✑✭✯❘❙☞❚✝✎✍✎✍✎✍✎✝ ◗✹❯ ✭❱❘ ❯✤❲ ✓❅❄❆✝✔❳❂✬↔➍✑✓❅❄❸→❏✬ ✪✭✪✭✮✼➣✇✷✵➓✠✬ ★✫✯ ✮
◗ ☞❨✍✎✍✎✍ ◗✹❯✧❩ ❘❙☞❨✍✎✍✎✍✚❘ ❯ ❳

✄✢✵✏✆

❳✉✬↔➍✞✓❅❄❸→❏✬ ✪✭✪✭✮✼➣✇✷✵➓✠✬ ★✫✯ ✮❸➒③↕✫✮✆✶✫✮✆➙✴✮✆✪✙➎✭↕✫✮✆✪✭✮➺➣✇✳✸✮✼➍✙✶✫✳✩➎②✮✠➢✇✬↔➍❑➎②✪✭✷✫✯ ✮✼➍✙✬ ✶❬✓❅❄ ✦✩➑✫➑✫✯ ✬↔➓✆✦✩★✫✯ ✮❸➎✭✳❭❳✵➛
➭❫❪❴✽✌❋✦❀■✽✖❵✺❛❜✿❑❇★❋●❇❊❋●❖❊▲✔❏✌❍❁❇✠➞❖➎✭↕✵✦❊➎✙✬↔➍✙✦✞➏❂✮✆➏✙★✫✪❇✦✩✶✫✮r➒③✬ ➎✭↕t✳✩➎✭↕✫✮✆✪✙➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✒❂❝☞✖✝✎✍✎✍✎✍❊✝❴❂❡❞
✬ ✶✵➍♦✬↔➣✇✮r✬ ➎✼➞❛✬↔➍☛➣✇✮✆✶✫✳✩➎✭✮✼➣✉★✸➌✦✄✆❂❝☞✖✝✎✍✎✍✎✍❊✝❴❂❡❞❢✝✔✓❅❄❆✝✠✘✳✲❣✘✳✸✛✆❄➞✐➒③↕✫✮✆✪✭✮❂✮✼✦✴➓❇↕◆❂◆✥✛✄✢✵★❤✐✘✕❤❦❥✭✆⑧✬↔➍☛✦✩✶
✮✆✯ ✮✆➏❂✮✆✶❀➎❇✦✩✪✭➌➽✳✴✪✙✦✉➓✠✳✴➏❂➑✔✳❀➍♦✬ ➎✭✮❸➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✴➛❨✓❅❄ ✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍✧➎✭↕✫✮❸➦✵✶✫✬ ➎✭✮➺➍♦✮✠➎②✳✩➤③✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶
✪✭✷✫✯ ✮✼➍✙✳✩➤✗❂ ➞✑✦✩✶✵➣◆✘✳✲❣✘✳✸☛✬↔➍✙✬ ➎❇➍✙✬ ✶✫✬ ➎✭✬↔✦✩✯③➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶ ✳✩➤❼➤❹✳✴✪✭➏ ✄❧☛♠✝✷✄❧☛✁☞✌✝✎✍✎✍✎✍✎✝✠☛✦❞ ✆✛✆❄➞✑➒③↕✫✮✆✪✭✮
☛✑✥✏✬↔➍⑧➎✭↕✫✮❂➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎✛✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✮✼➣➵➒③✬ ➎✭↕✉➎✭↕✫✮❂➏❂✮✆➏✙★✫✪❇✦✩✶✫✮●❂◆✥❑➛❛➭✂➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✵✦✩✯✗➍❑➎✭✮✆➑➽✳✩➤✏✦
➓✠✳✴➏❂➑✔✳❀➍♦✬ ➎✭✮✧➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧✬↔➍❼➣✇✮✠➦✵✶✫✮✼➣✤✦✴➍✏✦❂✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐②✪✭✷✫✯ ✮☛★✸➌

☛ ❩ ☛✁♥✆✝✠☛✁☞ ❩ ☛✁♥☞ ✝✎✍✎✍✎✍✎✝✠☛ ❯●❩ ☛✁♥❯
✄❧☛♠✝✷✄❧☛✁☞♦✝✎✍✎✍✎✍✎✝✠☛✦❞ ✆✛✆ ❩ ✄❧☛ ♥ ✝✷✄❧☛ ♥☞ ✝✎✍✎✍✎✍❊✝✠☛ ♥❞ ✆✛✆

✄ ✼☛✆

➻❯✶✤➎✭↕✫✬↔➍❼➒✏✦❫➌✴➞✸➎✭↕✫✮✛✳✴★✧✻❑✮✼➓❄➎❇➍③✳✩➤✑➎✭↕✫✮✛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍③✦✩✪✭✮✧➎✭↕✫✮✙➍♦✷✫★✧✻❑✮✼➓❄➎☎✳✩➤✑✯ ✳✇➓✆✦✩✯❛✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶✤✪✭✷✫✯ ✮✼➍
➎✭↕✵✦❊➎❼✮✆➙✴✳✴✯ ➙✴✮✧➍♦✬ ➏✙✷✫✯ ➎❇✦✩✶✫✮✆✳✴✷✵➍♦✯ ➌✴➛✫➭ ➍♦✮✼➥❀✷✫✮✆✶✵➓✠✮✧✳✩➤✑➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✤➍❑➎✭✮✆➑✵➍③✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍✏✦❂➓✠✳✴➏❂➑✫✷✇→
➎❇✦❊➎✭✬ ✳✴✶❛➛✩➭ ➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✙✬↔➍✑➍♦✷✵➓✆➓✠✮✼➍✭➍❑➤❹✷✫✯✇✬ ➤✵➎✭↕✫✬↔➍✗➍♦✮✼➥❀✷✫✮✆✶✵➓✠✮❙✬↔➍❖➦✵✶✫✬ ➎✭✮✴➞❊✶✵✦✩➏❂✮✆✯ ➌☛➎✭↕✫✮✆✪✭✮❙✬↔➍✑✶✫✳⑧✪✭✷✫✯ ✮
✦✩➑✫➑✫✯ ✬↔➓✆✦✩★✫✯ ✮③➎✭✳✛➎✭↕✫✮⑧✳✴★✧✻❑✮✼➓❄➎❇➍➊➑✫✪✭✮✼➍♦✮✆✶❀➎❙✬ ✶r➎✭↕✫✮☎✯↔✦✴➍❑➎✏➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛✩➻❯✶➺✦✧➦✵✶✵✦✩✯➫➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➞
➎✭↕✫✮☎✪✭✮✼➍♦✷✫✯ ➎➊✳✩➤❛✦✛➍♦✷✵➓✆➓✠✮✼➍✭➍❑➤❹✷✫✯✔➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶r✬↔➍✗➎✭↕✫✮③➎✭✳✩➎❇✦✩✯✵✶✸✷✫➏✙★✔✮✆✪✲✳✩➤✐✳✴★✧✻❑✮✼➓❄➎❇➍✗➑✫✪✭✮✼➍♦✮✆✶❀➎✲✬ ✶❂➎✭↕✫✮
➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✤➓✠✳✴✶✵➍♦✬↔➣✇✮✆✪✭✮✼➣➅✦✴➍✙➎✭↕✫✮✤✳✴✷✇➎✭➑✫✷✇➎❂➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✴➛ ✁ ✮✞➍♦✬ ➏❂➑✫✯ ✬ ➤❹➌t➎✭↕✫✬↔➍②➑✫✪✭✳✇➓✠✮✼➣✇✷✫✪✭✮✜✣✑✶✫✳
✬ ✶❀➎✭✮✆✪✭✶✵✦✩✯✐➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧✬↔➍❼➍♦➑✔✮✼➓✠✬ ➦✵✮✼➣✤✦✴➍③✦✩✶➺✳✴✷✇➎✭➑✫✷✇➎☎➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✴➞✫✦✩✶✵➣➺➍♦✳②➎✭↕✫✮☛✪✭✮✼➍♦✷✫✯ ➎❼✬↔➍✏➐✴✬ ➙✴✮✆✶
★✸➌r➎✭↕✫✮☛✶✸✷✫➏✙★✔✮✆✪❼✳✩➤✱✳✴★✧✻❑✮✼➓❄➎❇➍✏✬ ✶➺➎✭↕✫✮✛➍♦➝✸✬ ✶✤➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✴➛

✂ ✦✩✷✵➣✇✮☎✬↔➍❙✮✼➍✭➍♦✮✆✶❀➎✭✬↔✦✩✯ ✯ ➌❂✦✛➏r✦❊➎✭↕✫✮✆➏r✦❊➎✭✬↔➓✆✦✩✯➫✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✴➛ ➨ ↕✫✮✺☞✗♣✑✟✛➎✭↕✫✮✆✳✴✪✭➌r✦✩✶✵➣❸✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✼➍
➯ q✼➳✇↕✵✦❫➙✴✮➊✬ ✶✇➪✵✷✫✮✆✶✵➓✠✮✼➣✛➎✭↕✫✮ ✂ ✦✩✷✵➣✇✮✏➣✇✮✼➍♦✬ ➐✴✶②✦✩✶✵➣☛➑✫↕✫✬ ✯ ✳❀➍♦✳✴➑✫↕✸➌✴➛❫➭ ✂ ✦✩✷✵➣✇✮❙➑✫✪✭✳✴➐✴✪❇✦✩➏➟✬↔➍✑✦☎✯ ✳✴➐✴✬↔➓✆✦✩✯
➎✭↕✫✮✆✳✴✪✭➌✴➞✴✦✩✶✵➣❂✦ ✂ ✦✩✷✵➣✇✮☎➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶❂✬↔➍➊✦✧✯ ✳✴➐✴✬↔➓✆✦✩✯✫➣✇✮✼➣✇✷✵➓❄➎✭✬ ✳✴✶r✷✵➍♦✬ ✶✫➐✧➎✭↕✫✮☎✦❊➢✇✬ ✳✴➏r➍✗➍♦➑✔✮✼➓✠✬ ➦✵✮✼➣
✬ ✶✛➎✭↕✫✮✏➑✫✪✭✳✴➐✴✪❇✦✩➏✤➛ ➨ ↕✫✮✲➤❹✳✴✷✫✶✵➣✫✦❊➎✭✬ ✳✴✶✵➍❖✳✩➤ ✂ ✦✩✷✵➣✇✮❙✬↔➍✱➐✴✬ ➙✴✮✆✶✛★✸➌☛➏❂✮✆➏✙★✔✮✆✪❇➍♦↕✫✬ ➑✙✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵✦✩✯✴✯ ✳✴➐✴✬↔➓
✦✩✶✵➣❂✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✛✯ ✳✴➐✴✬↔➓✩➛❀➭ ✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✛➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶●r➠✬↔➍✲✦✕s✩→●➎✭✷✫➑✫✯ ✮✑r✢✂ ✄✳t✤✝✔✉●✝✔✈✦✝✔✓✺✆✑➒③↕✫✮✆✪✭✮

53



✄✳t✤✝✔✉ ✆❛✬↔➍✱✦❼✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❼✯ ✳✴➐✴✬↔➓✲➍♦✬ ➐✴✶✵✦❊➎✭✷✫✪✭✮✴➞❚✈➵✬↔➍✑✦☎➍♦✮✠➎✱➒③↕✫✳❀➍♦✮✲✮✆✯ ✮✆➏❂✮✆✶❀➎❇➍✱✦✩✪✭✮✲➓✆✦✩✯ ✯ ✮✼➣☛✯↔✦✩★✔✮✆✯↔➍✆➞❊✦✩✶✵➣
✓✕✬↔➍⑧✦❸➍♦✮✠➎⑧✳✩➤✗✯↔✦✩★✔✮✆✯ ✯ ✮✼➣✞✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐r✪✭✷✫✯ ✮✼➍ ✄❜➍♦✮✆✶❀➎✭✮✆✶✵➓✠✮✼➍✎✆③➒③✪✭✬ ➎♦➎✭✮✆✶✉✦✴➍✁�✧✛✐➯ ✸✸✄ ◗ ✆❏➳✄✂ ✭✜➯ ✸ ♥ ✄ ◗ ✆❏➳✄✂③➛
➨ ↕✫✮r✬ ✶✇➤❹✮✆✪✭✮✆✶✵➓✠✮r✪✭✷✫✯ ✮✼➍✧✳✩➤✏✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✤✯ ✳✴➐✴✬↔➓❂✦✩✯ ✯ ✳❊➒❷➎✭✳➵➣✇✮✼➣✇✷✵➓✠✮r➐✴✮✆✶✫✮✆✪❇✦✩✯ ✄❜➓✠✳✴✶✵➓✠✷✫✪✭✪✭✮✆✶❀➎ ✆❼➎✭✪❇✦✩✶✇→
➍♦✬ ➎✭✬ ✳✴✶✵➍❂➒③↕✫✬↔➓❇↕➔✦✩✪✭✮➺➑✔✳❀➍✭➍♦✬ ★✫✯ ✮✞✬ ✶➔✦ ➍♦➌✇➍❑➎✭✮✆➏ ➍✭✦❊➎✭✬↔➍❑➤❹➌✸✬ ✶✫➐❭r➵➛ ✁ ✮➵➍✭✦❫➌t➎✭↕✵✦❊➎●r ❇❊❍■✿❑❏✌❛❜❉ ❵✢✿✆☎ ❇
❵✎❇❊❍■✿❑❇❊❍❁❪❴❇❂➯ ✸❏➳ ✭ ➯ ✸ ♥ ➳➊✦✩✶✵➣➵➒③✪✭✬ ➎✭✮♠r✞✝➩➯ ✸❏➳ ✭ ➯ ✸ ♥ ➳✗✬ ✹ ➯ ✸❏➳ ✭ ➯ ✸ ♥ ➳➊➓✆✦✩✶➵★✔✮❂✳✴★✇➎❇✦✩✬ ✶✫✮✼➣✞★✸➌✤➦✵✶✫✬ ➎✭✮
✦✩➑✫➑✫✯ ✬↔➓✆✦❊➎✭✬ ✳✴✶✞✳✩➤✗✬ ➎❇➍☎✬ ✶✇➤❹✮✆✪✭✮✆✶✵➓✠✮✙✪✭✷✫✯ ✮✼➍✆➛ ➨ ↕✫✮✛➐✴✮✆✶✫✮✆✪❇✦✩✯✐➎✭↕✫✮✆✳✴✪✭➌➺✳✩➤✗➎✭↕✫✮✙✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐r✯ ✳✴➐✴✬↔➓✛✦✩✯ ✯ ✳❊➒❼➍
➓✠✳✴✶✵➣✇✬ ➎✭✬ ✳✴✶✵✦✩✯❖➍♦✮✆✶❀➎✭✮✆✶✵➓✠✮✼➍❼✦✩✶✵➣✞➓✠✳✴✶✵➣✇✬ ➎✭✬ ✳✴✶✵✦✩✯❛✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐r✪✭✷✫✯ ✮✼➍✆➛ ➨ ↕✫✮☛✬ ✶❀➎✭✮✆✪✭✮✼➍❑➎✭✮✼➣✤✪✭✮✼✦✴➣✇✮✆✪③✬↔➍❼✬ ✶✇→
➙✸✬ ➎✭✮✼➣❶➎✭✳❂✪✭✮✼✦✴➣➽➯ s✩➳❏➛
➨ ↕✫✮➺★✵✦✴➍♦✬↔➓❸➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✉➍❑➎❇✦❊➎✭✮✆➏❂✮✆✶❀➎❇➍②✳✩➤ ✂ ✦✩✷✵➣✇✮➺✦✩✪✭✮❶✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✆➞✑➏❂✮✆➏✙★✔✮✆✪❇➍♦↕✫✬ ➑➚✦✴➍✭➍♦✮✆✪♦→
➎✭✬ ✳✴✶✵➍✆➞➊✦✩✶✵➣➅✪✭✷✫✯ ✮✼➍✆➛➊➭ ✂ ✦✩✷✵➣✇✮✤➑✫✪✭✳✴➐✴✪❇✦✩➏ ➓✠✳✴✶❀➎❇✦✩✬ ✶✫✬ ✶✫➐✉✳✴✶✫✯ ➌➅✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍❂✦✩✶✵➣➚➏❂✮✆➏✙★✔✮✆✪❇➍♦↕✫✬ ➑
✦✴➍✭➍♦✮✆✪♦➎✭✬ ✳✴✶✵➍☛✬↔➍✙➓✆✦✩✯ ✯ ✮✼➣➅✦✤➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶✵✦✩✯❙➏❂✳✇➣✇✷✫✯ ✮✴➛ ➨ ↕✫✮❸✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✙✦✩✪✭✮❸✷✵➍♦✮✼➣t✦✴➍✛✪✭✷✫✯ ✮✼➍ ✄❹✮✼➥❀✷✵✦❊→
➎✭✬ ✳✴✶✵✦✩✯➫✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐ ✆❄➞✇✦✩✶✵➣r➎✭↕✫✮✧✪✭✮✆➑✫✯↔✦✴➓✠✮✆➏❂✮✆✶❀➎✏✳✩➤❖✮✼➥❀✷✵✦✩✯↔➍✲➤❹✳✴✪✏✮✼➥❀✷✵✦✩✯↔➍❙✬↔➍❙➑✔✮✆✪♦➤❹✳✴✪✭➏❂✮✼➣❸✳✴✶✫✯ ➌❂➤❹✪✭✳✴➏
✯ ✮✠➤ ➎➊➎✭✳✧✪✭✬ ➐✴↕❀➎✼➛✩➭ ✂ ✦✩✷✵➣✇✮✏➑✫✪✭✳✴➐✴✪❇✦✩➏❷➓✠✳✴✶❀➎❇✦✩✬ ✶✫✬ ✶✫➐✧★✔✳✩➎✭↕❂✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✗✦✩✶✵➣②✪✭✷✫✯ ✮✼➍✑✬↔➍➊➓✆✦✩✯ ✯ ✮✼➣②✦☛➍♦➌✇➍❑→
➎✭✮✆➏ ➏❂✳✇➣✇✷✫✯ ✮✴➛✠✟③✷✫✯ ✮✼➍❼✦✩✪✭✮✧✶✫✳✩➎☎✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✆➞✸➎✭↕✫✮✆➌✤✦✩✪✭✮✧✯ ✳✇➓✆✦✩✯✐➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶✤✪✭✷✫✯ ✮✼➍✏✬ ✶➵✦❂➑✔✳❀➍✭➍♦✬ ★✫✯ ➌
➓✠✳✴✶✵➓✠✷✫✪✭✪✭✮✆✶❀➎✏➍♦➌✇➍❑➎✭✮✆➏✤➛ ➜ ✶✫✯ ✬ ➝✴✮⑧➤❹✳✴✪✏✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✆➞❀➎✭↕✫✮✆✪✭✮⑧✬↔➍✏✶✫✳❂✦✴➍✭➍♦✷✫➏❂➑✇➎✭✬ ✳✴✶❸➎✭↕✵✦❊➎❼✦✩✯ ✯✐✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐
➍♦✮✼➥❀✷✫✮✆✶✵➓✠✮✼➍☎➒③✬ ✯ ✯✱✯ ✮✼✦✴➣✞➎✭✳❸➎✭↕✫✮❂➍✭✦✩➏❂✮✛➦✵✶✵✦✩✯✱✪✭✮✼➍♦✷✫✯ ➎✼➞➫✦✩✶✵➣✞➤❹✳✴✪✧➍♦✳✴➏❂✮②➍♦➌✇➍❑➎✭✮✆➏r➍❼➎✭↕✫✮✆✪✭✮✙➏r✦❫➌✤✶✫✳✩➎
★✔✮✛✦✩✶✸➌r➦✵✶✵✦✩✯❛➍❑➎❇✦❊➎✭✮✼➍✆➛

➨ ↕✫✮➊✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐③➑✔✮✆✪♦➤❹✳✴✪✭➏❂✮✼➣☎➤❹✳✴✪❖➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✐✬↔➍❖✦③➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎❖✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✵➛✠➻❯✶ ✂ ✦✩✷✵➣✇✮✗➎✭↕✫✬↔➍❖✬↔➍
➍♦➑✔✮✼➓✠✬ ➦✵✮✼➣❸✬ ✶r➎✭↕✫✮⑧✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵✦✩✯✵➑✵✦✩✪♦➎❙✳✩➤❛➎✭↕✫✮☎➑✫✪✭✳✴➐✴✪❇✦✩➏ ✄❜➍♦➌✇➍❑➎✭✮✆➏✂➏❂✳✇➣✇✷✫✯ ✮✏✆➊★✸➌r➣✇✮✼➓✠✯↔✦✩✪✭✬ ✶✫➐☛➎✭↕✵✦❊➎
➎✭↕✫✮✞➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎❸✷✫✶✫✬ ✳✴✶➩✳✴➑✔✮✆✪❇✦❊➎✭✳✴✪❂➍✭✦❊➎✭✬↔➍❑➦✵✮✼➍②➎✭↕✫✮➵✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✬ ➙✸✬ ➎❑➌t✦✩✶✵➣ ➓✠✳✴➏❂➏✙✷✇➎❇✦❊➎✭✬ ➙✸✬ ➎❑➌t✮✼➥❀✷✵✦❊→
➎✭✬ ✳✴✶✵➍✆➞✐✦✩✶✵➣✞↕✵✦✴➍✧✦✩✯↔➍♦✳❶✦✩✶✉✬↔➣✇✮✆✶❀➎✭✬ ➎❑➌✴➛ ➨ ↕✫✬↔➍⑧✬↔➍⑧➣✇✳✴✶✫✮❂➍♦✬ ➏❂➑✫✯ ➌✞★✸➌✤✷✵➍♦✬ ✶✫➐✤✦❊➎♦➎✭✪✭✬ ★✫✷✇➎✭✮✼➍✆➞✐✦✩✶✵➣✤➎✭↕✫✬↔➍
✬ ✶✇➤❹✳✴✪✭➏r✦❊➎✭✬ ✳✴✶②✬↔➍✗✷✵➍♦✮✼➣✙➎✭✳☛➐✴✮✆✶✫✮✆✪❇✦❊➎✭✮③✦✧➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎➊➏r✦❊➎❇➓❇↕✫✬ ✶✫➐✛✦✩✯ ➐✴✳✴✪✭✬ ➎✭↕✫➏✤➛✩➧✫✷✫✪♦➎✭↕✫✮✆✪➊✮✠➢✇➑✫✪✭✮✼➍✭➍♦✬ ➙✴✮✠→
✶✫✮✼➍✭➍⑧✬↔➍⑧➐❀✦✩✬ ✶✫✮✼➣➵★✸➌✞➙❊✦✩✪✭✬ ✳✴✷✵➍❼➤❹✮✼✦❊➎✭✷✫✪✭✮✼➍✧✦✴➍⑧✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵✦✩✯✱➑✵✦❊➎♦➎✭✮✆✪✭✶➽➏r✦❊➎❇➓❇↕✫✬ ✶✫➐✵➞➫✷✵➍♦✮✆✪♦→❯➣✇✮✠➦✵✶✵✦✩★✫✯ ✮
➍♦➌✸✶❀➎❇✦❊➢➺✦✩✶✵➣➺➣✫✦❊➎❇✦✫➞✇➐✴✮✆✶✫✮✆✪✭✬↔➓☎➎❑➌✸➑✔✮✼➍③✦✩✶✵➣➺➏❂✳✇➣✇✷✫✯ ✮✼➍✆➞✵✦✩✶✵➣❶✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➛

✁ ✮➅✮✆➏❂➑✫↕✵✦✴➍♦✬ ➡✆✮t➎✭↕✫✮ ❇☛✡✌❏✌❉ ✾■❏✌✿✆❛✱✽✌❍❈❵✺✿✆▲✔❏✌✿❑❇✌☞♦❛✱❇✺❵➵✦✩✶✵➣ ▲✔❇✎✍✑❇❴❪❊✿✆❛✱✽✌❍ ❀❁▲✔✽✔❀■❇❊▲✺✿✆▼❊➛✑✏➊➙❊✦✩✯ ✷✵✦❊➎✭✬ ✳✴✶
➍❑➎✭✪❇✦❊➎✭✮✆➐✴✬ ✮✼➍✏➓✠✳✴✶❀➎✭✪✭✳✴✯✵➎✭↕✫✮☛➑✔✳❀➍♦✬ ➎✭✬ ✳✴✶✵➍❙✬ ✶➺➒③↕✫✬↔➓❇↕➺✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍③➓✆✦✩✶❶★✔✮✛✦✩➑✫➑✫✯ ✬ ✮✼➣✐➞✇➐✴✬ ➙✸✬ ✶✫➐✙➎✭↕✫✮✧✷✵➍♦✮✆✪
➎✭↕✫✮✏➑✔✳❀➍✭➍♦✬ ★✫✬ ✯ ✬ ➎❑➌✛✳✩➤✔✬ ✶✵➣✇✬↔➓✆✦❊➎✭✬ ✶✫➐⑧➒③↕✫✬↔➓❇↕❂✦✩✪✭➐✴✷✫➏❂✮✆✶❀➎❇➍❛➎✭✳✧✮✆➙❊✦✩✯ ✷✵✦❊➎✭✮❙★✔✮✠➤❹✳✴✪✭✮③➍♦✬ ➏❂➑✫✯ ✬ ➤❹➌✸✬ ✶✫➐☛✦☎➐✴✬ ➙✴✮✆✶
✳✴➑✔✮✆✪❇✦❊➎✭✳✴✪❙➒③✬ ➎✭↕➺➎✭↕✫✮☛✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍✆➛✒✟③✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶✤✦✩✯ ✯ ✳❊➒❼➍✏✦❂➓✠✳✴➏❂➑✫✯ ✮✠➎✭✮☛➓✠✳✴✶❀➎✭✪✭✳✴✯➫✳✩➤❖➎✭↕✫✮☛✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐
✄❹✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶ ✆✏✷✵➍♦✬ ✶✫➐②➎✭↕✫✮✛✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❂✪✭✷✫✯ ✮✼➍③✬ ✶✤➎✭↕✫✮✧➎✭↕✫✮✆✳✴✪✭➌✴➛✓✟③✮✠➪✵✮✼➓❄➎✭✬ ➙✴✮✛➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✵➍❼✦✩✯ ✯ ✳❊➒
➎✭↕✫✮☛✯ ✬ ✶✫➝❶★✔✮✠➎❑➒❙✮✆✮✆✶➺➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯❛✦✩✶✵➣❸➎✭↕✫✮☛✳✴★✧✻❑✮✼➓❄➎❼✯ ✮✆➙✴✮✆✯●➞✇➒③↕✫✮✆✶✫✮✆➙✴✮✆✪③➑✔✳❀➍✭➍♦✬ ★✫✯ ✮✴➛
✟③✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✤✯ ✳✴➐✴✬↔➓✙✬↔➍●▲✔❇✎✍✑❇❴❪❊✿✆❛✄✡✌❇✠➞❛✬●➛ ✮✴➛✐➎✭↕✫✮✆✪✭✮❂✬↔➍✛✦❶➦✵✶✫✬ ➎✭✮✆✯ ➌✉➑✫✪✭✮✼➍♦✮✆✶❀➎✭✮✼➣❝✾✬❍■❛✄✡✌❇❊▲❴❵✎❏✌❉ ▲✔❇☛✔✡▲✺❛❜✿✖✕

❛❜❍✗☞ ❵✆❀■❇❴❪❊❛ ✘ ❪❴❏✌✿✆❛✱✽✌❍✚✙ ➍♦✷✵➓❇↕➽➎✭↕✵✦❊➎✛➤❹✳✴✪✙✦✩✶✸➌➵➦✵✶✫✬ ➎✭✮✆✯ ➌➽➑✫✪✭✮✼➍♦✮✆✶❀➎✭✮✼➣➽✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐➵➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❭r
✄❹✬ ✶✵➓✠✯ ✷✵➣✇✬ ✶✫➐✛✙❷✬ ➎❇➍♦✮✆✯ ➤✎✆❄➞✵➒❙✮✧↕✵✦❫➙✴✮⑧➎✭↕✫✮⑧➤❹✳✴✯ ✯ ✳❊➒③✬ ✶✫➐❂✮✼➥❀✷✫✬ ➙❊✦✩✯ ✮✆✶✵➓✠✮✜✛

r✜✝✉➯ ✸❏➳❣✭ ➯ ✸ ♥ ➳t✬ ✹✢✙✣✝✥✤ r ✝ ✸✧✦ ✭★✤ r ✝ ✸ ♥ ✦✺✝
➒③↕✫✮✆✪✭✮ r➼✦✩✶✵➣ ✸❼✦✩✪✭✮✛➎✭✮✆✪✭➏r➍☎✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✭✬ ✶✫➐●r➼✦✩✶✵➣ ✸❼✦✴➍⑧➣✫✦❊➎❇✦❸✮✆✯ ✮✆➏❂✮✆✶❀➎❇➍☎✳✩➤✩✙②➛✐➋✸✬ ✶✵➓✠✮✑✙✂✬↔➍
✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦✩★✫✯ ✮➊✬ ✶✛✬ ➎❇➍♦✮✆✯ ➤❑➞❫✬ ➎✱✬↔➍❖➑✔✳❀➍✭➍♦✬ ★✫✯ ✮➊➎✭✳⑧✦✴➓❇↕✫✬ ✮✆➙✴✮✲✦✫✪♦✪✭✮✠➪✵✮✼➓❄➎✭✬ ➙✴✮✗➎✭✳❊➒❙✮✆✪✭✬✏➒③✬ ➎✭↕②✦✩✶✙✦✩✪✭★✫✬ ➎✭✪❇✦✩✪✭➌
✶✸✷✫➏✙★✔✮✆✪③✳✩➤✑✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➺✯ ✮✆➙✴✮✆✯↔➍✎✛

r✜✝✉➯ ✸❏➳❣✭ ➯ ✸ ♥ ➳❛✬ ✹✮✙✣✝✥✤ r ✝ ✸✧✦ ✭★✤ r ✝ ✸ ♥ ✦❙✬ ✹✮✙✣✝✥✤ ✙✞✝ ✤ r❆✝ ✸✧✦✧✦ ✭★✤ ✙P✝ ✤ r ✝ ✸ ♥ ✦✯✦❁✍✎✍✎✍
➨ ↕✫✬↔➍⑧✬ ✶❀➎✭✮✆✪✭✮✼➍❑➎✭✬ ✶✫➐✤✦✩✶✵➣➵➑✔✳❊➒❙✮✆✪♦➤❹✷✫✯✗➓✠✳✴✶✵➓✠✮✆➑✇➎✧✬↔➍☛➍♦✷✫➑✫➑✔✳✴✪♦➎✭✮✼➣➵★✸➌ ✂ ✦✩✷✵➣✇✮✙➎✭↕✫✪✭✳✴✷✫➐✴↕➽✦❶★✫✷✫✬ ✯ ➎♦→❏✬ ✶
➏❂✳✇➣✇✷✫✯ ✮✉➓✆✦✩✯ ✯ ✮✼➣✱✰✗✲✗✳✗✴✓✵✷✶✸✲✗✹✗✲✒✶✔➛ ➨ ↕✫✬↔➍r➏❂✳✇➣✇✷✫✯ ✮➵↕✵✦✴➍❸➍♦✳✴✪♦➎❇➍✫✳✻✺✷✼✾✽➔✦✩✶✵➣✱✰✻✿✸❀✷❁✠❂✸✺ ➍♦✷✵➓❇↕➩➎✭↕✵✦❊➎
➎✭↕✫✮❶✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶ ✸☛✳✩➤☎✦✤➎✭✮✆✪✭➏✯✸☛✬↔➍✙✳✩➤☎➍♦✳✴✪♦➎✛✳✻✺✷✼✾✽➅✦✩✶✵➣➽➎✭↕✫✮➺✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶ ❃❅❄ ✳✩➤☎✦
➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❆❃❅❄ ✬↔➍✱✳✩➤➫➍♦✳✴✪♦➎✩✰✻✿✸❀✷❁✠❂✸✺✵➛ ➨ ↕✫✮✆✪✭✮✏✦✩✪✭✮✏✦✩✯↔➍♦✳❼➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶✵➍✑✯ ✬ ➝✴✮❇✽❈✺✷❉✻❊✷❋✻✺✸❀✷❁❈●✷✺ ✄ ❃❅❄❅✝ ✸✛✆
➒③↕✫✬↔➓❇↕☛✪✭✮✠➎✭✷✫✪✭✶✵➍➫➎✭↕✫✮✲✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶⑧✳✩➤✸➎✭↕✫✮➊✪✭✮✼➣✇✷✵➓✠✮✼➣⑧➤❹✳✴✪✭➏ ✳✩➤✫✦❙➎✭✮✆✪✭➏ ✸➫✷✵➍♦✬ ✶✫➐③➎✭↕✫✮➊✮✼➥❀✷✵✦❊➎✭✬ ✳✴✶✵➍
✬ ✶➺➎✭↕✫✮☛➏❂✳✇➣✇✷✫✯ ✮✛❃❅❄❂➛

54



✰✗✲✗✳✗✴✓✵✷✶✸✲✗✹✗✲✒✶❂➏❂✳✇➣✇✷✫✯ ✮②➓✆✦✩✶➵★✔✮②✮✠➢✸➎✭✮✆✶✵➣✇✮✼➣✞★✸➌➺➎✭↕✫✮✙✷✵➍♦✮✆✪☎➎✭✳➺➍♦➑✔✮✼➓✠✬ ➤❹➌✞➍❑➎✭✪❇✦❊➎✭✮✆➐✴✬ ✮✼➍❼✳✩➤✲➓✠✳✴✶✇→
➎✭✪✭✳✴✯ ✯ ✬ ✶✫➐✧➎✭↕✫✮❼✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐☛➑✫✪✭✳✇➓✠✮✼➍✭➍✆➛ ✁ ✮❼✷✵➍♦✮✁✰✗✲✗✳✗✴✓✵✷✶✸✲✗✹✗✲✒✶☎✬ ✶r✳✴✪❇➣✇✮✆✪✗➎✭✳✛➣✇✮✠➦✵✶✫✮③➎✭↕✫✮ ✪♦➏r✦❊➢✇✬ ➏r✦✩✯
➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯✔✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✸✬✙➍❑➎✭✪❇✦❊➎✭✮✆➐✴➌✴➛✴➻❯✶❶➤❜✦✴➓❄➎❙➎✭↕✫✮⑧➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯✔✬↔➍❙✶✫✮✆✮✼➣✇✮✼➣❸➤❹✳✴✪✲➎❑➒❙✳✙➏r✦✩✬ ✶❶✪✭✮✼✦✴➍♦✳✴✶✵➍✎✛
➎✭✳➺✯ ✳✇➓✆✦❊➎✭✮✙➎✭↕✫✮r➍♦✮✠➎✧✳✩➤✲✪✭✷✫✯ ✮✼➍✧➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐r➎✭✳✞✦➺➓✠✮✆✪♦➎❇✦✩✬ ✶➵➏❂✮✆➏✙★✫✪❇✦✩✶✫✮②✬ ✶➵➎✭↕✫✮r➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮✼➣
✂ ✦✩✷✵➣✇✮③➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❂✳✩➤➫✦✧➓✠✳✴➏❂➑✔✳❀➍♦✬ ➎✭✮ ✒t➍♦➌✇➍❑➎✭✮✆➏✤➞✩✦✩✶✵➣✛➎✭✳✛➣✇✮✼➍✭➓✠✪✭✬ ★✔✮❙➎✭↕✫✮③➏r✦❊➢✇✬ ➏r✦✩✯✇➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯
✦✩➑✫➑✫✯ ✬↔➓✆✦❊➎✭✬ ✳✴✶➺✳✩➤✱➎✭↕✫✮☛✯ ✳✇➓✆✦❊➎✭✮✼➣❶✪✭✷✫✯ ✮✼➍③✦✴➍③✦②✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐r➍❑➎✭✪❇✦❊➎✭✮✆➐✴➌✴➛

➨ ↕✫✮ ✰✗✲✗✳✗✴✓✵✷✶✸✲✗✹✗✲✒✶❙➏❂✳✇➣✇✷✫✯ ✮❙✬↔➍❛✷✵➍♦✮✼➣✧➎✭✳☎➑✫✪✭✳❊➙✸✬↔➣✇✮✲✦❼➓✠✯ ✮✼✦✩✪✱✦✩✯ ➐✴✳✴✪✭✬ ➎✭↕✫➏❂✬↔➓➊➣✇✮✼➍✭➓✠✪✭✬ ➑✇➎✭✬ ✳✴✶☛➐✴✬ ➙✴✮✆✶
★✸➌✛✽❈❊ ✁✄✂ ❊✷✼✗❋✻✺✆☎☛✳✩➤✐➎✭↕✫✮☎✪❇✦❊➎✭↕✫✮✆✪❙✦❫➒③➝✸➒✏✦✩✪❇➣②✦✩✶✵➣r✦✩➏✙★✫✬ ➐✴✷✫✳✴✷✵➍ ✪♦✶✫✳✴✶✵➣✇✮✠➎✭✮✆✪✭➏❂✬ ✶✫✬↔➍❑➎✭✬↔➓❼✦✩✶✵➣❂➏r✦❊➢✇✬ →
➏r✦✩✯✵➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯ ✬☛✦✩➑✫➑✫✯ ✬↔➓✆✦❊➎✭✬ ✳✴✶✵➍✗✳✩➤✐✮✆➙✴✳✴✯ ✷✇➎✭✬ ✳✴✶r✪✭✷✫✯ ✮✼➍➊✬ ✶❂➎✭↕✫✮ ✒➅➍♦➌✇➍❑➎✭✮✆➏r➍✆➛ ➜ ➍♦✬ ✶✫➐✑✽❈❊ ✁✄✂ ❊✷✼✗❋✻✺✆☎✛✦✴➍
✦③➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶✙➍❑➎✭✮✆➑✛★✔✮✠➎❑➒❙✮✆✮✆✶✛➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯✸➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵➍✆➞✠➒❙✮➊➎✭↕✫✮✆✶✙➑✫✪✭✳❊➙✸✬↔➣✇✮✲✦✩✶✛✳✴➑✔✮✆✪❇✦❊➎✭✬ ✳✴✶✵✦✩✯
➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍➊✳✩➤✐➎✭↕✫✮ ✒➅➍♦➌✇➍❑➎✭✮✆➏r➍✆➛ ➜ ➍♦✬ ✶✫➐✛➎✭↕✫✮☎➑✔✳❊➒❙✮✆✪➊➐✴✬ ➙✴✮✆✶r★✸➌✙➎✭↕✫✮❼➎✭✳❊➒❙✮✆✪✲✳✩➤✐✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶r✯ ✮✆➙✴✮✆✯↔➍
✬ ✶ ✂ ✦✩✷✵➣✇✮✴➞✩➒❙✮③➣✇✮✠➦✵✶✫✮③✳✴➑✔✮✆✪❇✦❊➎✭✬ ✳✴✶✵➍✱✳❊➙✴✮✆✪✑➏❂✳✇➣✇✷✫✯ ✮✼➍➊✦✩✶✵➣②➍❑➎✭✪❇✦❊➎✭✮✆➐✴✬ ✮✼➍❖➎✭✳☛➐✴✷✫✬↔➣✇✮❙➎✭↕✫✮❼➣✇✮✼➣✇✷✵➓❄➎✭✬ ✳✴✶
➑✫✪✭✳✇➓✠✮✼➍✭➍✆➛✫➧✱✬ ✶✵✦✩✯ ✯ ➌❸➒❙✮✛➓✆✦✩✶➺✷✵➍♦✮✛✦②➏❂✮✠➎❇✦❊→❏➏❂✮✠➎❇✦✩✯ ✮✆➙✴✮✆✯➫➎✭✳r✦✩✶✵✦✩✯ ➌✸➡✆✮☛✦✩✶✵➣❶➙✴✮✆✪✭✬ ➤❹➌r➎✭↕✫✮✛➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍
✳✩➤❛➎✭↕✫✮ ✒➩➍♦➌✇➍❑➎✭✮✆➏r➍⑧➯ ✵✠➳❏➛ ➨ ↕✫✬↔➍❙➓✠✳✴✶✵➓✠✮✆➑✇➎✭✷✵✦✩✯✐➣✇✮✼➍✭➓✠✪✭✬ ➑✇➎✭✬ ✳✴✶❸✳✩➤❛➎✭↕✫✮ ✒➩➍♦➌✇➍❑➎✭✮✆➏r➍✲★✵✦✴➍♦✮✼➣r✳✴✶❶➏❂✮✠➎❇✦❊→
➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐②➓✆✦✩➑✵✦✩★✫✬ ✯ ✬ ➎✭✬ ✮✼➍❙➐✴✬ ➙✴✮✆✶❶★✸➌❸✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❶✬↔➍③➓✆✦✩✯ ✯ ✮✼➣❶➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪✏➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✵➞
✦✩✶✵➣②✬ ➎✲➓✠✳✴✷✫✯↔➣✙★✔✮✼➓✠✳✴➏❂✮❼✦✧✷✵➍♦✮✠➤❹✷✫✯✫➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏➾➤❹✳✴✪✑➤❹✷✫✪♦➎✭↕✫✮✆✪➊✬ ✶✸➙✴✮✼➍❑➎✭✬ ➐❀✦❊➎✭✬ ✳✴✶✵➍✱✬ ✶r➍♦➌✇➍❑➎✭✮✆➏✕★✫✬ ✳✴✯ ✳✴➐✴➌✴➛

✝ ✥ ➂❖➃✳✲☎✣✭✜✴✮❼➂✕❾❙❿❼➀✴➁✇➂❖➃✂➀ ❾✟✞☛➂✡✠✐➆☞☛✌✠ ✜✱➁✫➆❑➇✔✮ ➆✛✮ ✥ ✜✴✚✎✍❼➂

✏✲✦✴➓❇↕ ✒➽➍♦➌✇➍❑➎✭✮✆➏ � ✬↔➍✱✶✵✦❊➎✭✷✫✪❇✦✩✯ ✯ ➌☛✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✭✮✼➣✙✦✴➍✑✦⑧➓✠✳✴✯ ✯ ✮✼➓❄➎✭✬ ✳✴✶✙✳✩➤ ✂ ✦✩✷✵➣✇✮✏➍♦➌✇➍❑➎✭✮✆➏❷➏❂✳✇➣✇✷✫✯ ✮✼➍
➍♦✷✵➓❇↕☛➎✭↕✵✦❊➎✱✮✼✦✴➓❇↕✛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮➊✬↔➍❖✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✭✮✼➣✧★✸➌☛✦☎➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐ ✂ ✦✩✷✵➣✇✮❙➍♦➌✇➍❑➎✭✮✆➏➾➏❂✳✇➣✇✷✫✯ ✮✴➛
➨ ↕✫✮❶➍♦✳✴✪♦➎✑✏✓✒✕✔✞✬↔➍✧➤❹✳✴✪✛✳✴★✧✻❑✮✼➓❄➎✙✶✵✦✩➏❂✮✼➍✆➞❖✦✩✶✵➣➽✬ ➎❇➍✙➍♦✷✫★✵➍♦✳✴✪♦➎✖✏ ❁✒❉✘✗✗❁✒❉✞✬↔➍☛➤❹✳✴✪✛✪✭✮✼➍♦✷✫✯ ➎❇➍✆➛ ✁ ✮❶✦✴➣✫➣
✦✤➍♦✳✴✪♦➎✚✙✗✿✾❁✄✗✞➤❹✳✴✪✧➎✭↕✫✮r➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎❇➍✧✳✩➤✏✳✴★✧✻❑✮✼➓❄➎❇➍✆➞❛✦✩✶✵➣➽✦✤➍♦✳✴✪♦➎✜✛✒✿✆✢✤✣✦✥★✧➺➤❹✳✴✪✧➎✭↕✫✮❸➍❑➎❇✦❊➎✭✮✼➍✧✳✩➤✏✦ ✒
➍♦➌✇➍❑➎✭✮✆➏✤➛✼➭❼✶☛✮✠➢✇➑✫✪✭✮✼➍✭➍♦✬ ✳✴✶✧✳✩➤❀➎✭↕✫✮➊➤❹✳✴✪✭➏ ✤✆❂✪✩✾❃❇✦➫✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍❛✦③➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶☛➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐
➎✭✳ ✦✩✶➟✮✆✯ ✮✆➏❂✮✆✶❀➎❇✦✩✪✭➌ ➏❂✮✆➏✙★✫✪❇✦✩✶✫✮ ❂ ➒③✬ ➎✭↕ ✬ ➎❇➍➺➏✙✷✫✯ ➎✭✬↔➍♦✮✠➎✥❃✏➞③✦✩✶✵➣➟✦✩✶ ✮✠➢✇➑✫✪✭✮✼➍✭➍♦✬ ✳✴✶ ✳✩➤✛➎✭↕✫✮
➤❹✳✴✪✭➏✢✤✆❂✫✩✾❃✮✣✭✬✑☞✖✝✎✍✎✍✎✍✎✝✭✬ ❯ ✦❙✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍③✦❂➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶➺➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐✙➎✭✳❸✦❂➓✠✳✴➏❂➑✔✳❀➍♦✬ ➎✭✮
➏❂✮✆➏✙★✫✪❇✦✩✶✫✮ ❂ ✬ ✶✛➍❑➎❇✦❊➎✭✮ ❃✤✦✩✶✵➣☛➒③✬ ➎✭↕☛➎✭↕✫✮✲➓✠✳✴➏❂➑✔✳✴✶✫✮✆✶❀➎ ✘✔↕✵✦❫➙✸✬ ✶✫➐③➎✭↕✫✮✲➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✚✬ ✥♦➛ ➨ ↕✫✮
✂ ✦✩✷✵➣✇✮r➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍⑧✳✩➤➊➎✭↕✫✮r➏❂✳✇➣✇✷✫✯ ✮❆✰✞✬↔➍✧✶✫✳✩➎✧➎✭↕✫✮r➍✭✦✩➏❂✮②➒③✬ ➎✭↕✉➎✭↕✫✮✠✒➾➍♦➌✇➍❑➎✭✮✆➏ ➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍✆➛
➨ ↕✫✮✆✪✭✮✠➤❹✳✴✪✭✮✤➒❙✮✤➏✙✷✵➍❑➎❶✦✴➍✭➍♦✳✇➓✠✬↔✦❊➎✭✮➺➒③✬ ➎✭↕ ✰t➎✭↕✫✮✞✪✭✬ ➐✴↕❀➎❸➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍❂★✵✦✴➍♦✮✼➣➩✳✴✶➚➎✭↕✫✮✞➏r✦❊➢✇✬ ➏r✦✩✯
➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯③✪✭✮✆➒③✪✭✬ ➎✭✮✤✪✭✮✆✯↔✦❊➎✭✬ ✳✴✶❛➛ ✁ ✮✞✷✵➍♦✮✤➎✭↕✫✮✞➤❜✦✴➓✠✬ ✯ ✬ ➎✭✬ ✮✼➍r➑✫✪✭✳❊➙✸✬↔➣✇✮✼➣➅★✸➌➚✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶➩✬ ✶ ✂ ✦✩✷✵➣✇✮✴➞
➣✇✮✠➦✵✶✫✬ ✶✫➐❂➎✭↕✫✬↔➍❼➍♦✮✆➏r✦✩✶❀➎✭✬↔➓✆➍✏✦❊➎③➎✭↕✫✮☛➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯●➛

➧✫✳✴✪③➎✭↕✫✮✙✮✆✯ ✮✆➏❂✮✆✶❀➎❇✦✩✪✭➌❶➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✆➞✔✦❸➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶➵➍❑➎✭✮✆➑✞★✔✮✠➎❑➒❙✮✆✮✆✶➵➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵➍③✬↔➍
➣✇✮✠➦✵✶✫✮✼➣✤✦✴➍✎✛

❃ ❩ ❃ ♥
✤✆❂✮✩✷❃❇✦ ❩ ✤✆❂✪✩✾❃ ♥ ✦ ✄✰✯✝✆

➒③↕✫✮✆✪✭✮✫❃ ❩ ❃ ♥ ✬↔➍☛➣✇✮✠➦✵✶✫✮✼➣➵✬ ✶✱✄✢✵✏✆❄➛ ❃ ❩ ❃ ♥ ✬↔➍⑧✶✫✳✩➎✧➎✭↕✫✮②✳✴✪❇➣✇✬ ✶✵✦✩✪✭➌✤✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐➺➣✇✮✠➦✵✶✫✮✼➣✉★✸➌
❂ ➞✇★✫✷✇➎❼➎✭↕✫✮✆➌❶✦✩✪✭✮☛➍❑➎✭✪✭✳✴✶✫➐✴✯ ➌r✪✭✮✆✯↔✦❊➎✭✮✼➣❣✛

❃ ❩ ❃ ♥ ✬ ✹ ❃✲✱✳ ✭✵✴✷✶✣❃ ♥ ➍✆➛ ➎✼➛✵❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵ ✄✱✓❅❄❆✝✭❃ ✝✭❃ ♥ ✆

➒③↕✫✮✆✪✭✮ ✱✳ ✭✵✴✷✶ ✬↔➍❛➎✭↕✫✮✲✳✴✪❇➣✇✬ ✶✵✦✩✪✭➌⑧✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐☎➣✇✮✠➦✵✶✫✮✼➣✛★✸➌❅✓❅❄✉➞❫✦✩✶✵➣●❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵ ✄✱✓❅❄❆✝✭❃ ✝✭❃ ♥ ✆✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇➍✛➎✭↕✫✮✞➓✠✳✴✶✵➍❑➎✭✪❇✦✩✬ ✶❀➎❇➍❂➣✇✮✠➦✵✶✫✬ ✶✫➐✉➎✭↕✫✮✞➏r✦❊➢✇✬ ➏r✦✩✯✏➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯❙✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐ ➍❑➎✭✪❇✦❊➎✭✮✆➐✴➌ ✳❊➙✴✮✆✪
✓❅❄✉➛ ✂ ✳✴✪✭✮⑧➑✫✪✭✮✼➓✠✬↔➍♦✮✆✯ ➌✴➞✇➒❙✮✧↕✵✦❫➙✴✮✜✛

✵✴➛✏✬ ➤❇❃◆✂ ❃ ♥ ➞✸➎✭↕✫✮✆✶ ❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵ ✄✱✓❅❄❆✝✭❃ ✝✭❃✬✆❙↕✫✳✴✯↔➣✫➍✏✬ ✹ ❃➚✬↔➍✑✓❅❄❸→❏✬ ✪✭✪✭✮✼➣✇✷✵➓✠✬ ★✫✯ ✮✜✣

55



✼✇➛✏✬ ➤ ❃✁�✂ ❃ ♥ ➞✔➎✭↕✫✮✆✶❬❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵ ✄✱✓❅❄❆✝✭❃ ✝✭❃ ♥ ✆❼↕✫✳✴✯↔➣✫➍⑧✬ ✹t➎✭↕✫✮✆✪✭✮②✮✠➢✇✬↔➍❑➎❇➍✑❃ ☞✖✝✭❃ ♥☞ ✝✄✂✞✭★� ❲
✓❅❄ ➍♦✷✵➓❇↕❶➎✭↕✵✦❊➎ ❃ ✂☎✂ ❃ ☞❫➞✓❃ ♥ ✂ �❇❃ ♥☞ ➞✵✦✩✶✵➣❆❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵ ✄✱✓❅❄❆✝✭❃ ☞✖✝✭❃ ♥☞ ✆❄➛

➋✸✬ ✶✵➓✠✮✤❋●❏✹✸✓✺✑❏✌▲✓✻ ✽✌❍ ❵②↕✵✦✴➍③➎✭↕✫✮②➍♦✮✠➎☎✳✩➤➊✪✭✷✫✯ ✮✼➍❼✳✩➤✗➎✭↕✫✮✙➏❂✳✇➣✇✷✫✯ ✮P❂ ✦✴➍❼➑✵✦✩✪❇✦✩➏❂✮✠➎✭✮✆✪✼➞✫✬ ➎⑧➤❹✳✴✯ ✯ ✳❊➒❼➍
➎✭↕✵✦❊➎☛✬ ➎✙➓✆✦✩✶✉★✔✮❸➣✇✮✼➓✠✬↔➣✇✮✼➣✉✳✴✶✫✯ ➌➵✦❊➎☛➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯●➛ ➨ ↕✫✮②➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶➽★✔✮✠➎❑➒❙✮✆✮✆✶➽➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵➍
➤❹✳✴✪❼➓✠✳✴➏❂➑✔✳❀➍♦✬ ➎✭✮✧➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧✬↔➍❼➣✇✮✠➦✵✶✫✮✼➣✤✦✴➍✎✛

❃ ❩ ❃ ♥ ✝✭✬✑☞ ❩ ✬ ♥☞ ✝✎✍✎✍✎✍✎✝✭✬✮❞ ❩ ✬ ♥❞
✤✆❂✪✩✾❃✮✣✭✬✑☞✌✝✎✍✎✍✎✍❊✝✭✬✮❞✾✦ ❩ ✤✆❂✪✩✾❃ ♥ ✣✭✬ ♥☞ ✝✎✍✎✍✎✍✎✝✭✬ ♥❞ ✦

✄❧s ✆

➭✕➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶➵✬↔➍⑧✦❶➍♦✮✼➥❀✷✫✮✆✶✵➓✠✮✙✳✩➤✗➎✭✪❇✦✩✶✵➍♦✬ ➎✭✬ ✳✴✶✵➍☎➍❑➎✭✮✆➑✵➍✌✬ ✻ ❩ ✬✑☞ ❩ ✬ ✴ ❩ ✍✎✍✎✍ ❩ ✬ ❯✢❩
✍✎✍✎✍ ➞❀➒③↕✫✮✆✪✭✮✌✬ ✻⑧✬↔➍➊➎✭↕✫✮⑧✬ ✶✫✬ ➎✭✬↔✦✩✯➫➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛ ➨ ↕✫✮⑧✪✭✮✼➍♦✷✫✯ ➎❙✳✩➤❖✦✙➍♦✷✵➓✆➓✠✮✼➍✭➍❑➤❹✷✫✯➫➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶❸✬↔➍
✮✠➢✸➎✭✪❇✦✴➓❄➎✭✮✼➣✞➤❹✪✭✳✴➏➸➎✭↕✫✮✙➦✵✶✵✦✩✯➊➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵✣✫➤❹✳✴✪✧✬ ✶✵➍❑➎❇✦✩✶✵➓✠✮✴➞✔➎✭↕✫✮❂✪✭✮✼➍♦✷✫✯ ➎☛➓✠✳✴✷✫✯↔➣➵★✔✮②➎✭↕✫✮②➎✭✳✩➎❇✦✩✯
✶✸✷✫➏✙★✔✮✆✪③✳✩➤✑✳✴★✧✻❑✮✼➓❄➎❇➍✏➑✫✪✭✮✼➍♦✮✆✶❀➎③✬ ✶➺➎✭↕✫✮✛➍♦➝✸✬ ✶➺➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✴➛✆✞✝✠✟☛✡✌☞✎✍✑✏✓✒ ✁ ✮✛➑✫✪✭✮✼➍♦✮✆✶❀➎⑧✦r➍♦✬ ➏❂➑✫✯ ✮✛✮✠➢✫✦✩➏❂➑✫✯ ✮✛✳✩➤✗➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✛➍♦➌✇➍❑➎✭✮✆➏✤➞✔✦✩✶✵➣❶➎✭↕✫✮✆✶✉➣✇✮✼➍✭➓✠✪✭✬ ★✔✮
✦✩✶✵➣✤✮✠➢✇✮✼➓✠✷✇➎✭✮✙✬ ➎❇➍ ✂ ✦✩✷✵➣✇✮✙➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❛➛ ✁ ✮②➓✠✳✴✶✵➍♦✬↔➣✇✮✆✪⑧✦ ✒ ➍♦➌✇➍❑➎✭✮✆➏ ➐✴✮✆✶✫✮✆✪❇✦❊➎✭✬ ✶✫➐❸➍♦➌✸➏✙★✔✳✴✯↔➍
✫⑧✦✩✶✵➣✢✰⑧➒③✬ ➎✭↕➺➎✭↕✫✮✛➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍❙➎✭↕✵✦❊➎③➎✭↕✫✮☛✶✸✷✫➏✙★✔✮✆✪❼✳✩➤✡✰✕✔ ➍③✬↔➍❼➣✇✳✴✷✫★✫✯ ✮☛✳✩➤✱➎✭↕✫✮☛✶✸✷✫➏✙★✔✮✆✪❼✳✩➤ ✫✖✔ ➍✆➞
✦✩✶✵➣❸➎✭↕✫✮✧➎✭✳✩➎❇✦✩✯❛✶✸✷✫➏✙★✔✮✆✪③✳✩➤ ✫✖✔ ➍③✦✩✶✵➣★✰✕✔ ➍③✬↔➍③✦②➏✙✷✫✯ ➎✭✬ ➑✫✯ ✮☛✳✩➤✘✗✫➛

�✧☞ ✂✌✄✆☎✞✝✠✟✡✝✠☛✁☞♦✝✠☛✑✴♦✝✔✓✕☞✌✝✔✓✗✴♦✝✠✘✚✙✸✆✺✝
☎✐✂✚✙✖✩✹✝❴✫✖✝✔✰✖✛❢✝
✟❆✂ ➯ ☞ ➯ ✴ ➳ ✴ ➳ ☞ ✝
☛✁☞✦✂ ✩ ✴ ✝
☛✑✴✗✂✢✜✵✝
✓✕☞✦✂✣✙✖✩P✭✯✩ ✄✆✫✖✝✠✘✳✲✵✴ ✆✸✄✱✰✌✝✠✘✳✲✵✴✷✆ ✴ ✝✦✩ ✴ ✭ ✄✱✩✹✝✔✶✖✷✹✸✛✆ ✴ ✛❢✝
✓✗✴✗✂✥✤✬✝
✘✚✙✦✂ ✼✬✍

➨ ↕✫✮✧✬ ✶✫✬ ➎✭✬↔✦✩✯❖➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❶✬↔➍✎✛

✦

✧

★

✩
✪✫ ✬ ✭

✮ ✯
✰✲✱

✰✌✳✴✰✶✵✸✷✺✹✖✻✽✼ ✱✿✾ ✵✸❀☛✹✖✻✽✼ ✱✿✾ ✱✰ ✱ ✳❁✵✸✰✘✹✕❂☛❃✘❄ ✾ ✱
✁ ✮❙➑✫✪✭✮✼➍♦✮✆✶❀➎✱↕✫✮✆✪✭✮❙✳✴✶✫✯ ➌☛➍♦✳✴➏❂✮✲✬ ➏❂➑✔✳✴✪♦➎❇✦✩✶❀➎✗➍❑➎✭✮✆➑✵➍✱✳✩➤✇➎✭↕✫✮③➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵✣✼➏❂✳✴✪✭✮❙➣✇✮✠➎❇✦✩✬ ✯↔➍✑➓✆✦✩✶✛★✔✮
➤❹✳✴✷✫✶✵➣✙✬ ✶✤➯ ✵✠➳❏➛✾✏✲✦✴➓❇↕✙➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❙✬↔➍✗➍♦➑✔✮✼➓✠✬ ➦✵✮✼➣✙✬ ✶ ✂ ✦✩✷✵➣✇✮✏★✸➌✙✦✩✶✙✬ ✶✵➣✇✮✆➑✔✮✆✶✵➣✇✮✆✶❀➎✲➍♦➌✇➍❑➎✭✮✆➏❷➏❂✳✇➣✸→
✷✫✯ ✮✴➛✐➭☎➓❄➎✭✷✵✦✩✯ ✯ ➌✴➞➫➒❙✮②✬ ➐✴✶✫✳✴✪✭✮✛➎✭↕✫✮②➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✙✯↔✦✩★✔✮✆✯ ✯ ✮✼➣➵★✸➌✫✼✇➞➫✦✩✶✵➣✉➓✠✳✴✶✵➍♦✬↔➣✇✮✆✪❅�✧☞✛➓✠✳✴✶✵➍♦✬↔➍❑➎✭✬ ✶✫➐
✳✴✶✫✯ ➌❸✳✩➤✱➎✭↕✫✮✛➍♦➝✸✬ ✶✵✛❅❇❆ ❡❉❈❋❊❍●❏■▲❑➩❩❫❞
❩▲▼❏◆P❖✕◗❍❑✕❘✿■❉❙ ❅ ◗❍❚❏❯❲❱❉❳❨◗✖❱❉❩❲❚❨❖✿❬❷❵

56



❡✁�➩❩▲▼❀❩✠❴✄✂ ❱✆☎ ❊❫❡✠❝✆� ❵
❬✞✝➚❩▲▼❀❩✠❴✠✟t❲➽❲➾❵
❨✩❭☛✡✌☞ ❊❍●❏■▲❑✎✍✏✂②❲✑✟✎☎ ❲✞❳ ◆ ◆➟❵
❨✩❭☛✡✌☞ ❊❍●❏■▲❑✎✍✏✂②❲ ❲✒✟✎☎➽❬ ❆ �❊❴✆✓❷❵

❬❉▼✕❈ ❆ ❬
➨ ↕✫✮ ✂ ✦✩✷✵➣✇✮⑧➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❸✳✩➤❖✦ ✒➚➍♦➌✇➍❑➎✭✮✆➏✂✬↔➍❙✦✙➍♦➌✇➍❑➎✭✮✆➏✂➏❂✳✇➣✇✷✫✯ ✮☎✬ ➏❂➑✔✳✴✪♦➎✭✬ ✶✫➐✛➎✭↕✫✮⑧➏❂✳✇➣✇✷✫✯ ✮✼➍
➓✠✳✴✪✭✪✭✮✼➍♦➑✔✳✴✶✵➣✇✬ ✶✫➐③➎✭✳☎➎✭↕✫✮✏➓✠✳✴➏❂➑✔✳✴✶✫✮✆✶❀➎✱➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✼➍✆➞❫✦✩✶✵➣✙➣✇✮✠➦✵✶✫✬ ✶✫➐☎➎✭↕✫✮❙✬ ✶✫✬ ➎✭✬↔✦✩✯✇➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛
➨ ↕✫✮❸➍❑➎✭✪✭✷✵➓❄➎✭✷✫✪✭✮②✳✩➤❙➎✭↕✫✮❸➍♦➌✇➍❑➎✭✮✆➏ ✬↔➍☛➍♦➑✔✮✼➓✠✬ ➦✵✮✼➣➽✬ ✶✉➎✭↕✫✮r✬ ✶✫✬ ➎✭✬↔✦✩✯✲➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛ ➨ ↕✫✮❂➏❂✳✇➣✇✷✫✯ ✮
➣✇✮✼➍✭➓✠✪✭✬ ★✫✬ ✶✫➐●�✧☞☎✬↔➍✎✛❅❇❆ ❡❉❈✑✔✿❊✁✕✿❊t❩❫❞
❩▲▼❏◆ ❊❍●❏■▲❑ ❵
❡✁�➩❩▲▼❀❩✠❴✕❖❊❡❍▼✎✖✏✂ ❱✆☎P❖❊❡❍▼✎✖✴❩✠❱✕❵
❬✞✝➚❩▲▼❀❩✠❴✕❖❊❡❍▼✎✖✗✟✠✘✙☞ ❊❍●❏■▲❑✛✚②❩▲▼❀❩✠❴✗☎➾❵

❬❉▼✕❈ ❆ ❬
➨ ↕✫✮✏✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐☎✪✭✷✫✯ ✮✼➍✑➣✇✮✠➦✵✶✫✬ ✶✫➐⑧➎✭↕✫✮③➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✙✳✩➤ ✒➽➍♦➌✇➍❑➎✭✮✆➏r➍✑✦✩✪✭✮❙✬ ✶✵➓✠✯ ✷✵➣✇✮✼➣✙✬ ✶❂✦ ✂ ✦✩✷✵➣✇✮
➍♦➌✇➍❑➎✭✮✆➏ ➏❂✳✇➣✇✷✫✯ ✮✙➓✆✦✩✯ ✯ ✮✼➣ ✛✤✏✾✰ ✂ ✙✵➛✫➧✫✳✴✪③✬ ✶✵➍❑➎❇✦✩✶✵➓✠✮✴➞✔➍♦✳✴➏❂✮☛✪✭✷✫✯ ✮✼➍③✦✩✪✭✮☛✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎✭✮✼➣✤✬ ✶ ✂ ✦✩✷✵➣✇✮✦❊➎③➎✭↕✫✮✧➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯❛✦✴➍✎✛◆✠❨✩❭☛✡✜�❀❞✣✢✤✍✄✂ ❆ ❲✌✥✞✔✴❲✆❨✞✦✩❬✌✧✿❊ ❅ ✦✩★ ❊❨❬✪✟✎☎❆ ❲✌✥✞✔✴❲✆❨✞✦✩❬✌✧✿❊ ❅ ✦✩★ ❅ ❨✩❭✬✫✠✟✎☎✭✕✏✡●❭❫❲✠❳✩❬❊❭ ❅✯✮ ❬✰✍ ❵✄❬✱★✳✲✆✔✩★ ❊❨❬

❩✁✖ ❅ ✦✴✢✤❨✩❭✪✫✠✟✎☎✵✕✶✡●❭❫❲✠❳✩❬❊❭ ❅✯✮ ❬✰✍✕❵✷✦✹✸❨❬✙✂✺✟✪✦✼✻✆✽
✲✆✔✄✂✺✟ ❆ ❬✼❴✩❲✌✫ ❆ ❲✆❴✿◆✰✾ ❅ ✔✿❊✁✕✿❊✿★❸❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ✔✿❊✁✕✿❊✿★❀✫❏❬✖❬✱★

❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ✔✿❊✁✕✿❊✿★ ❊❨❬✖❬✱★ ▼❀❩✼❭✿★❂❁❃★✛❝✖▼❫❳✴❡✠❝✖▼✕❈❊❬❲❈❄★❅❁✿❬✒✻✆✽
✲✆✔✄✂✆✂✷✲✴❲✆❴✿◆✰✾✆✔✴❲❊❩✠❨✕❵◆✠❨✩❭☛✡✜�❀❞✁❆✆✍✄✂ ❆ ❲✌✥✞✔✴❲✆❨✞✦✩❬✌✧ ❅ ☞✯✘✆❇✩✚❈❇✆☎❄✡✜✲✛★ ❊✌✍❏❬✵✟✎☎

☞✯✘✆❇✩✚❈❇✆☎❄✡✜✲✩★ ❆ ❲✌✥✞✔✴❲✆❨✞✦✩❬✌✧✿❊ ❅ ❱❊❬✼❴ ✮ ✦✴❭❊❞ ❅ ❱❊❬✼❴✞✦✴❭❊❞ ❅ ✔✿❊✌✕✿❊❨❬✱★❀✲ ❬✱★ ❊❨❬✰✍
❩✁✖➚❞✼❲ ❆ ❬❉●❀❩▲▼✕❈ ❅ ✔✿❊✁✕✿❊✿★r❱❊❬✼❴✖❳✆✓✞�✩❬ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ✔✿❊✁✕✿❊✿★ ❊❨❬✖❬✱★❉☞ ❊❫❡✠❝✆� ❬➟❵

✁ ✮❸➓✆✦✩✶➽✷✵➍♦✮❂➙❊✦✩✪✭✬ ✳✴✷✵➍ ✂ ✦✩✷✵➣✇✮r➓✠✳✴➏❂➏r✦✩✶✵➣✫➍✧✬ ✶ ✳✴✪❇➣✇✮✆✪⑧➎✭✳✤➏r✦✩➝✴✮❂✮✠➢✇➑✔✮✆✪✭✬ ➏❂✮✆✶❀➎❇➍✧➒③✬ ➎✭↕➽➎✭↕✫✮ ✒
➍♦➌✇➍❑➎✭✮✆➏➼➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶❛➛❛➧✫✳✴✪☛✬ ✶✵➍❑➎❇✦✩✶✵➓✠✮✴➞❛➒❙✮r✷✵➍♦✮②➎✭↕✫✮❸➓✠✳✴➏❂➏r✦✩✶✵➣ ✼✻✺✆☎➵➎✭✳✞➍♦✮✆✮❂➎✭↕✫✮r✪✭✮✼➍♦✷✫✯ ➎✛✳✩➤
➏r✦❊➢✇✬ ➏r✦✩✯✐➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯➫✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❀➍✎✛

✲✴❲✠❝✕❈❊❬✎☎➅❞✆❬❊❭✼❬❨◆✠❴✌❖✕◗✁✲✆✔✿❊ ❵
✲✴❲✠❝✕❈❊❬✎☎ ❅ ❈✩❡✁✧✖▼❉✔✿❊✁✕✿❊❊✂✙❨❊❬✌✧ ❨✞✧✎✖ ❅ ❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ❝✆� ❅ ✔✿❊✁✕✿❊✿❬✱★

❝✆� ❅ ✔✿❊✁✕✿❊✿★❶❩▲▼❀❩✠❴✕❖❊❡❍▼✎✖❏❬✖❬✖❬✖❬➾❵✄❬
❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✿✂❋❆✎●✆❍✞❆➚❩▲▼■✢✰❏✆❁ ❆ ❞ ◆✰�❫❝ ❅ ✢✤❆✎❁ ❆ ❞✉❨❊❬❊❲❫❭❨❬ ❅ ❏✆❑✆❍✆❁✆❁ ❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✞✻❊❞✆❬❨◆✼❡❍▼✕❈❏❬
❨❊❬✩❞❄❝✴❭✆❴❋❖❊❡❍▼✎✖✴❩✠❱✄✂
✘▲☞ ❊❍●❏■▲❑✛✚✙❲➽❲➵❳➽❳ ❳➽❳➽❳ ❳ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆✑☎

✲✴❲✠❝✕❈❊❬✎☎
➨ ↕✫✮✫✼✻✺✆☎➽➓✠✳✴➏❂➏r✦✩✶✵➣✉➒③✬ ➎✭↕➅✦➺✯ ✬ ➏❂✬ ➎✭✮✼➣ ✶✸✷✫➏✙★✔✮✆✪☛✳✩➤③➍❑➎✭✮✆➑✵➍✆➞❛✬↔➍☛✶✫✳✩➎✛✷✵➍♦✮✠➤❹✷✫✯➊✬ ✶ ✳✴✷✫✪✛➓✆✦✴➍♦✮r★✔✮✠→
➓✆✦✩✷✵➍♦✮❼➎✭↕✫✮✧✶✸✷✫➏✙★✔✮✆✪✏✳✩➤❖✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐②➍❑➎✭✮✆➑✵➍❙✬ ✶ ✂ ✦✩✷✵➣✇✮⑧✬↔➍❙✶✫✳✩➎❙➎✭↕✫✮✧➍✭✦✩➏❂✮⑧➒③✬ ➎✭↕❸➎✭↕✫✮✧✶✸✷✫➏✙★✔✮✆✪✏✳✩➤
➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✉➍❑➎✭✮✆➑✵➍☎✳✩➤✔✒ ➍♦➌✇➍❑➎✭✮✆➏r➍✆➛ ➨ ↕✫✮✆✪✭✮✠➤❹✳✴✪✭✮✴➞✫➎✭↕✫✮✙✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❸➑✫✪✭✳✇➓✠✮✼➍✭➍❼✬↔➍☎✪✭✮✼➍❑➎✭✪✭✬↔➓❄➎✭✮✼➣✤★✸➌
➎✭↕✫✮✛➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶➺➍♦✬ ➡✆✮✜✛◆✠❨✩❭✉❨✞✧✎✖ ❅ ✫❏❬✒✟✎☎✉❨✞✧✎✖ ❅❇❆ ❲✌✥✞✔✴❲✆❨✞✦✩❬✌✧ ❅ ✫❏❬✖❬➅❩✁✖ ❅ ✫✄✂✆✂ ❳❊❬✼❨ ❆ ❬✒✻✆✽ ❅◆▼ ❅ ✫❏❬✒✘❉✸✞❁✿❬➟❵◆✠❨✩❭✉❨✞✧✎✖ ❅ ✫❏❬✒✟✎☎✒✫➅❩✁✖ ▼ ❅ ✫❏❬✒☎✞✟✠✸✞❁➾❵
✁ ✮☛➓✠✳✴✶✵➍♦✬↔➣✇✮✆✪✏✦✙➏❂✳✇➣✇✷✫✯ ✮ ✰✗✲✗✳✗✴ ✛✤✏✾✰ ✂ ✙✛➣✇✮✠➦✵✶✫✬ ✶✫➐❂✦✛➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶✮✿✾❁✒❉❂➒③↕✫✬↔➓❇↕❶✪✭✮✆➏❂✳❊➙✴✮✼➍✗➎✭↕✫✮✧✶✫✳✴✶✇→✳✴✷✇➎✭➑✫✷✇➎✏✳✴★✧✻❑✮✼➓❄➎❇➍✆➞✸✦✩✶✵➣❶✦☛➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶❀❖◗P✌❘✧➒③↕✫✬↔➓❇↕❶➓✠✳✴✷✫✶❀➎❇➍➊➎✭↕✫✮⑧✳✇➓✆➓✠✷✫✪✭✪✭✮✆✶✵➓✠✮✼➍✲✳✩➤❖✦✩✶❸✳✴★✧✻❑✮✼➓❄➎✏✬ ✶❀➎✭✳

57



✦✤➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛ ➨ ↕✫✮❂➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶ ✿✾❁✒❉✉➍♦✬ ➏✙✷✫✯↔✦❊➎✭✮✼➍☛➍♦✳✴➏❂✮✆↕✫✳❊➒ ➎✭↕✫✮r➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❂✯↔✦✩★✔✮✆✯ ✯ ✮✼➣➽★✸➌
✼✇➛✵➋✸✬ ✶✵➓✠✮✧➎✭↕✫✮✼➍♦✮✧➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶✵➍❼✦✩✪✭✮☛✦✩➑✫➑✫✯ ✬ ✮✼➣❶➎✭✳r➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵➍❙✳✴★✇➎❇✦✩✬ ✶✫✮✼➣➺➒③✬ ➎✭↕ ✽❈✺✷❉✻❊✷❋✻✺✆☎✒✼ ✥ ❉✻✺
➓✠✳✴➏❂➏r✦✩✶✵➣✐➞✇➏❂✳✇➣✇✷✫✯ ✮✑✰✗✲✗✳✗✴ ✛✤✏✾✰ ✂ ✙✛✬↔➍❼➣✇✮✠➦✵✶✫✮✼➣✤✦❊➎✏➎✭↕✫✮☛➏❂✮✠➎❇✦❊→❏➏❂✮✠➎❇✦✩✯ ✮✆➙✴✮✆✯●➛

✲✴❲✠❝✕❈❊❬✎☎ ❅ ❞✆❬❊❭✼❬❨◆✠❴✑✲✁�✕❳✖❩✕❖✕◗✁✲✆✔✿❊❷❵✄❬
✲✴❲✠❝✕❈❊❬✎☎ ❅ ❈✩❡✁✧✖▼❉✔✿❊✁✕✿❊❊✂ ❈✩❡✁✧✖▼❋❖✕◗✁✲✆✔✿❊❊✂✙❨❊❬❲❈➽❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬✌✧❊❨✴❩✠❴❊❬ ❅ ❝✆� ❅ ❖✕◗✁✲✆✔❏❊❨❬✱★

❝✆� ❅ ❖✕◗✁✲✆✔✿❊✿★r❨✞✧✎✖ ❅ ❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ❝✆� ❅ ✔✿❊✁✕✿❊❨❬ ★
❝✆� ❅ ✔✿❊✁✕✿❊✿★❶❩▲▼❀❩✠❴✕❖❊❡❍▼✎✖❏❬✖❬✖❬✖❬✖❬✱★✪✢✰❁✆❁✿❬✖❬➟❵✄❬

❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✿✂ ✸✞❑✆❑ ✢✤❆➩❩▲▼ ✢✄✂✞❁ ❆ ❞✌◆✰�❫❝ ❅ ✢✤❆✎❁ ❆ ❞➵❨❊❬❊❲❫❭❨❬ ❅ ✢✰●✆●✞❆✣✸✞❑➽❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✞✻❊❞✆❬❨◆✼❡❍▼✕❈❏❬
❨❊❬✩❞❄❝✴❭✆❴❋❖❊❡❍▼✎✖✴❩✠❱✄✂
✘▲☞ ❊❍●❏■▲❑✛✚✙❲➽❲➵❳➽❳ ❳➽❳➽❳ ❳ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆✑☎

➨ ↕✫✮✧➓✠✳✴➏❂➏r✦✩✶✵➣ ❀✒✿✆☎✄✢❸✦✩✶✵➣r➎✭↕✫✮⑧➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶ ❁✄✗❶✦✩✪✭✮☎✷✵➍♦✮✼➣❸➎✭✳②➏❂✳❊➙✴✮☎★✔✮✠➎❑➒❙✮✆✮✆✶❸➎❑➒❙✳❂➍♦✷✵➓✆➓✠✮✼➍✭➍♦✬ ➙✴✮
✯ ✮✆➙✴✮✆✯↔➍❸✳✩➤✧➎✭↕✫✮✉✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶ ➎✭✳❊➒❙✮✆✪✼➛✲➧✫✳✴✪❶✬ ✶✵➍❑➎❇✦✩✶✵➓✠✮✴➞ ❀✒✿✆☎✄✢ ✛✤✏✾✰ ✂ ✙✆☎❂✬ ✶❀➎✭✮✆✪✭➑✫✪✭✮✠➎❇➍r➎✭↕✫✮✉✪✭✮✼➍♦✷✫✯ ➎
✪✭✮✠➎✭✷✫✪✭✶✫✮✼➣➩★✸➌ ✼✻✺✸❀➅✬ ✶ ➎✭↕✫✮➵➏❂✳✇➣✇✷✫✯ ✮ ✛✤✏✾✰ ✂ ✙✵➛ ➨ ↕✫✮✤➤❹✷✫✶✵➓❄➎✭✬ ✳✴✶➟➓✆✦✩✯ ✯ ❁✄✗ P ✂ ✙✞✝✤✙✠✟ ✥ ✢ ✥ ❉ ✛✒✿✆✢✤✣✿❘
✪✭✮✠➎✭✷✫✪✭✶✵➍✑➎✭↕✫✮❼✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶❂✦❊➎✗➎✭↕✫✮❼➏❂✮✠➎❇✦❊→❏✯ ✮✆➙✴✮✆✯✇✳✩➤➫➎✭↕✫✮③➎✭✮✆✪✭➏ ✥ ✢ ✥ ❉ ✛✒✿✆✢✤✣✧➣✇✮✠➦✵✶✫✮✼➣❂✬ ✶ ✂ ✙✞✝✤✙✵➛➻❏➤☛➒❙✮✞➒③✬↔➍♦↕➩➎✭✳t✬ ✶✸➙✴✮✼➍❑➎✭✬ ➐❀✦❊➎✭✮➺➎✭↕✫✮➵➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍❂✳✩➤⑧➎✭↕✫✮➵✪✭✮✼➍♦✷✫✯ ➎✼➞✗➎✭↕✫✮✆✶➔➒❙✮✞➏r✦❫➌➚➑✫✪✭✳✇➓✠✮✆✮✼➣➩✦✴➍
➤❹✳✴✯ ✯ ✳❊➒❼➍✎✛

❅❇❆ ❡❉❈✑✔✆✦✿◗✖◗❉❘➩❩❫❞
❩▲▼❏◆✵✲✁�✕❳✖❩✕❖✕◗✁✲✆✔✿❊❷❵
❡✁�✠✝✩❭❊✂ ❱✆☎ ✮ ❩❍❈☛✡❀❩❫❞✠❴✕❵
❬✞✝❉✝✩❭✑✟ ❡✠❝❊❴ ❅ ❵❫❵❫❵❜❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬✌✧❊❨✴❩✠❴❊❬ ❅ ❝✎� ❅ ❖✕◗✌✲✆✔✿❊❨❬ ★

❝✆� ❅ ❖✕◗✁✲✆✔✿❊✿★●❱❊❬✼❴✖❳❊❬✼❨ ❆ ❅❇❆ ❬✼❴✩❲✁✦✩❬❲❈✼❝❏◆✆❬ ❅ ❝✆� ❅ ✔❏❊✁✕✿❊❨❬ ★❜❝✆� ❅ ✔❏❊✁✕✿❊✿★♦❩▲▼❀❩✠❴✕❖✩❡❍▼✎✖❏❬✕❬✖❬✖❬✱★✤✢✰❁✆❁✿❬✖❬✕❬✖❬✕❵
❬❉▼✕❈ ❆ ❬
✁ ✮⑧➓✆✦✩✶❸➓❇↕✫✮✼➓❇➝✙✶✫✳❊➒➩➎✭↕✵✦❊➎✲➎✭↕✫✮❼✶✸✷✫➏✙★✔✮✆✪❙✳✩➤✐✳✴★✧✻❑✮✼➓❄➎❇➍ ●✧✬↔➍✲➣✇✳✴✷✫★✫✯ ✮❼✳✩➤✐➎✭↕✫✮☎✶✸✷✫➏✙★✔✮✆✪✲✳✩➤✐✳✴★✧✻❑✮✼➓❄➎❇➍
✒✐➞✫✦✩✶✵➣❶➎✭↕✫✮✧➎✭✳✩➎❇✦✩✯✐✶✸✷✫➏✙★✔✮✆✪③✳✩➤ ✫✖✔ ➍③✦✩✶✵➣✢✰✕✔ ➍✏✬↔➍③✦❂➏✙✷✫✯ ➎✭✬ ➑✫✯ ✮☛✳✩➤✎✗ ✛
✲✴❲✠❝✕❈❊❬✎☎ ❅ ❨❊❬❲❈ ▼ ❅ ✝✩❭✿★❉☞✆☞✄◆✕❬✪✟✆✟✠✸✌☞ ▼ ❅ ✝✩❭✿★❉☞✆☞❜❳ ❬➟❵✄❬
❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✿✂❂❏✎✸✆✸t❩▲▼✼✸✞❏✆❁ ❆ ❞ ◆✰�❫❝ ❅ ✸✞❏✆❁ ❆ ❞✉❨❊❬❊❲❫❭❨❬ ❅ ✢✤❆✎❁✆❁ ❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✞✻❊❞✆❬❨◆✼❡❍▼✕❈❏❬
❨❊❬❲❈✼❝❏◆✆❬➚❩▲▼✑✔✆✦✿◗✖◗❉❘✏✂
▼ ❅ ✝✩❭✿★✆☞✆☞✄◆✕❬✁✟✆✟✼✸✍☞ ▼ ❅ ✝✩❭✿★✆☞✆☞❜❳ ❬

❨❊❬✩❞❄❝✴❭✆❴ ❚✴❡❫❡❫❭❊✂
❴❫❨✼❝✩❬

✲✴❲✠❝✕❈❊❬✎☎ ❅ ❨❊❬❲❈ ❅◆▼ ❅ ✝✩❭✿★❉☞✆☞✄◆✕❬✏✎ ▼ ❅ ✝✩❭✿★❉☞✆☞❜❳ ❬✖❬➵❨❊❬ ❆ ❑➾❵✄❬
❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✿✂❂❏✎✸✞❑➅❩▲▼■✢✰❁ ❆ ❞ ◆✰�❫❝ ❅ ✢✰❁ ❆ ❞➵❨❊❬❊❲❫❭❨❬ ❅ ❏✎✸✞❑✆❁✆❁➽❨❊❬✌✧❊❨✴❩✠❴❊❬✩❞✞✻❊❞✆❬❨◆✼❡❍▼✕❈❏❬
❨❊❬❲❈✼❝❏◆✆❬➚❩▲▼✑✔✆✦✿◗✖◗❉❘✏✂❅◆▼ ❅ ✝✩❭✿★✆☞✆☞✄◆✕❬✄✎ ▼ ❅ ✝✩❭✿★✆☞✆☞❜❳ ❬✖❬❄❨❊❬ ❆ ❑
❨❊❬✩❞❄❝✴❭✆❴✒✑❫❬✼❨✩❡❊✂
❁

✡❼✮✆✪✭✮✧➒❙✮✛➓❇↕✫✮✼➓❇➝❸➓✠✮✆✪♦➎❇✦✩✬ ✶➺➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍❙➤❹✳✴✪❼✦❂➍♦➑✔✮✼➓✠✬ ➦✔➓☛➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶❛➛✫➋✸✳✴➏❂✮✧➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍③➓✆✦✩✶
★✔✮✤➓❇↕✫✮✼➓❇➝✴✮✼➣➽➤❹✳✴✪❂✦✩✯ ✯❙➎✭↕✫✮✤➓✠✳✴✶✇➦✵➐✴✷✫✪❇✦❊➎✭✬ ✳✴✶✵➍✆➞❛✷✵➍♦✬ ✶✫➐✉➎✭↕✫✮❶➎✭✮✆➏❂➑✔✳✴✪❇✦✩✯✲➤❹✳✴✪✭➏✙✷✫✯↔✦✴➍✙✦✩✶✵➣➅✦➵➏❂✳✇➣✇✮✆✯
➓❇↕✫✮✼➓❇➝✴✮✆✪➊✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎✭✮✼➣❸✬ ✶ ✂ ✦✩✷✵➣✇✮✴➛ ✂ ✦✩✷✵➣✇✮☎↕✵✦✴➍✲✦✙➓✠✳✴✯ ✯ ✮✼➓❄➎✭✬ ✳✴✶❸✳✩➤✐➤❹✳✴✪✭➏r✦✩✯✫➎✭✳✸✳✴✯↔➍❙➍♦✷✫➑✫➑✔✳✴✪♦➎✭✬ ✶✫➐
➣✇✬ ✹➫✮✆✪✭✮✆✶❀➎✗➤❹✳✴✪✭➏r➍✗✳✩➤➫✯ ✳✴➐✴✬↔➓✆✦✩✯✇✪✭✮✼✦✴➍♦✳✴✶✫✬ ✶✫➐☎➎✭✳☛➙✴✮✆✪✭✬ ➤❹➌✙➑✫✪✭✳✴➐✴✪❇✦✩➏ ➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍✆➞❊✬ ✶✵➓✠✯ ✷✵➣✇✬ ✶✫➐✙✦⑧➏❂✳✇➣✇✮✆✯
➓❇↕✫✮✼➓❇➝✴✮✆✪❖➎✭✳⑧➙✴✮✆✪✭✬ ➤❹➌✧➎✭✮✆➏❂➑✔✳✴✪❇✦✩✯✸➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍❖✳✩➤✵➦✵✶✫✬ ➎✭✮✠→❯➍❑➎❇✦❊➎✭✮✏➍♦➌✇➍❑➎✭✮✆➏ ➏❂✳✇➣✇✷✫✯ ✮✼➍③➯ ✗❊➳❏➛ ➨ ↕✫✬↔➍✱➏❂✳✇➣✇✮✆✯
➓❇↕✫✮✼➓❇➝✴✮✆✪⑧➑✫✪✭✳❊➙✸✬↔➣✇✮✼➍⑧✦❶✷✵➍♦✮✠➤❹✷✫✯✑➎✭✳✸✳✴✯✑➎✭✳✤➣✇✮✠➎✭✮✼➓❄➎✛➍♦✷✫★✇➎✭✯ ✮❂✮✆✪✭✪✭✳✴✪❇➍✆➞✔✦✩✶✵➣➵➎✭✳➺➙✴✮✆✪✭✬ ➤❹➌➵➍♦✳✴➏❂✮❂➣✇✮✼➍♦✬ ✪✭✮✼➣
➎✭✮✆➏❂➑✔✳✴✪❇✦✩✯✐➑✫✪✭✳✴➑✔✮✆✪♦➎✭✬ ✮✼➍✆➛

58



� ✙➽➇✔✮✎✠✐➈✛✚☎➀✸➆❑➇✔✮
➋❀➎❇✦✩✪♦➎✭✬ ✶✫➐✛➤❹✪✭✳✴➏✕➎✭↕✫✮✧➓✠✮✆✯ ✯↔➍❙✦✩★✫✬ ✯ ✬ ➎❑➌✙➎✭✳✙✪✭✮✼✦✴➓❄➎❙✦✩✶✵➣❸➓❇↕✵✦✩✶✫➐✴✮③➎✭↕✫✮✆✬ ✪❙★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❙✦❊➎❙✪✭✷✫✶✇→●➎✭✬ ➏❂✮✴➞❀➒❙✮
➎✭✪❇✦✩✶✵➍♦✯↔✦❊➎✭✮✛➎✭↕✫✬↔➍✧✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌✤✬ ✶➽✦❶➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐❂➤❹✮✼✦❊➎✭✷✫✪✭✮✙✳✩➤❙✦ ✒➟➍♦➌✇➍❑➎✭✮✆➏r➍⑧✬ ➏❂➑✫✯ ✮✠→
➏❂✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶➺★✵✦✴➍♦✮✼➣❶✳✴✶✤✮✠➢✇✮✼➓✠✷✇➎❇✦✩★✫✯ ✮☛➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶✵➍✆➛

✁ ✮r➙✸✬ ✮✆➒✕➎✭↕✫✮❶➓✠✮✆✯ ✯✲✦✴➍✛✦✞➓✠✳✴➏❂➑✫✯ ✮✠➢ ➍♦➌✇➍❑➎✭✮✆➏➼➓✠✳✸✳✴✪❇➣✇✬ ✶✵✦❊➎✭✬ ✶✫➐✤➙❊✦✩✪✭✬ ✳✴✷✵➍✧➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❂➒❙✳✴✪✭➝❀→
✬ ✶✫➐ ✬ ✶➩➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯●➛✗➭☎➣✫✦✩➑✇➎❇✦✩★✫✯ ✮✞✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶✵➍②✬ ✶✵➍♦➑✫✬ ✪✭✮✼➣➚★✸➌t➎✭↕✫✮✞➓✠✮✆✯ ✯❼★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪r➓✆✦✩✶➚★✔✮➵➣✇✮✠→
➍✭➓✠✪✭✬ ★✔✮✼➣✛★✸➌☛✦⑧➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪✱➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐③➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏✤➛ ➨ ↕✫✮✏➓✠✮✆✯ ✯✇✦✴➣✫✦✩➑✇➎❇✦✩★✫✬ ✯ ✬ ➎❑➌☛✦✩✶✵➣✛➏❂✮✠➎❇✦❊→
➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐r✦✩✪✭✮✛✪✭✮✆✯↔✦❊➎✭✮✼➣❶➎✭✳r➎✭↕✫✮✙✶✫✳✩➎✭✬ ✳✴✶✵➍❼✳✩➤✗★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❇✦✩✯❛✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶❛➛ ✁ ✮✙➑✫✪✭✮✼➍♦✮✆✶❀➎③➎✭↕✫✮
➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪✙➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✞➒③✬ ➎✭↕t➎✭↕✫✮➺↕✫✮✆✯ ➑➅✳✩➤❼➏❂✮✆➏✙★✫✪❇✦✩✶✫✮❶➍♦➌✇➍❑➎✭✮✆➏r➍②✦✩✶✵➣➅✦✞✪✭✮✠➪✵✮✼➓❄➎✭✬ ➙✴✮
➍♦➑✔✮✼➓✠✬ ➦✔➓✆✦❊➎✭✬ ✳✴✶➔✯↔✦✩✶✫➐✴✷✵✦✩➐✴✮✤★✵✦✴➍♦✮✼➣➩✳✴✶➔✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐✵➛ ➨ ↕✫✮✉✦✩➑✫➑✫✪✭✳❀✦✴➓❇↕➩✮✠➢✇➑✫✯ ✳✴✬ ➎❇➍r➎✭↕✫✮➵✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶
➑✫✪✭✳✴➑✔✮✆✪♦➎❑➌✤✳✩➤✗➎✭↕✫✮②✪✭✮✆➒③✪✭✬ ➎✭✬ ✶✫➐❶✯ ✳✴➐✴✬↔➓✩➞✔➑✫✪✭✳✴➑✔✮✆✪♦➎❑➌✤➒③↕✫✬↔➓❇↕➵➑✫✪✭✳❊➙✸✬↔➣✇✮②✦❸➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐❸✦✩★✇→
➍❑➎✭✪❇✦✴➓❄➎✭✬ ✳✴✶❛➛✲➻❯✶ ➎✭↕✫✬↔➍❶➒✏✦❫➌✴➞➊➎✭↕✫✮➽✦✩★✵➍❑➎✭✪❇✦✴➓❄➎❸➏❂✮✼➓❇↕✵✦✩✶✫✬↔➍♦➏ ✳✩➤✛✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶ ➓✠✳✴✷✫✯↔➣➔➣✇✮✼➍✭➓✠✪✭✬ ★✔✮✞➎✭↕✫✮
★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯✵✮✆✶❀➎✭✬ ➎✭✬ ✮✼➍✏✦✩★✫✬ ✯ ✬ ➎❑➌❂➎✭✳✙✪✭✮✼✦✴➓❄➎✏✦✩✶✵➣❶➓❇↕✵✦✩✶✫➐✴✮❼➎✭↕✫✮✆✬ ✪✏★✔✮✆↕✵✦❫➙✸✬ ✳✴✷✫✪❙✦✴➓✆➓✠✳✴✪❇➣✇✬ ✶✫➐☛➎✭✳②➙❊✦✩✪✭✬ ✳✴✷✵➍
➣✇✮✆➙✴✮✆✯ ✳✴➑✫➏❂✮✆✶❀➎❇✦✩✯➫✦✩✶✵➣❸✮✆✶✸➙✸✬ ✪✭✳✴✶✫➏❂✮✆✶❀➎❇✦✩✯➫➍❑➎✭✬ ➏✙✷✫✯ ✬●➛✸➻❯✶❸➎✭↕✫✬↔➍✏➑✵✦✩➑✔✮✆✪✏➒❙✮☎✮✆➏❂➑✫↕✵✦✴➍♦✬ ➡✆✮☎➎✭↕✫✮✧➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪
➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐⑧✦✩✶✵➣②✪✭✮✠➪✵✮✼➓❄➎✭✬ ✳✴✶r✦✴➍♦➑✔✮✼➓❄➎❇➍✆➞❊➑✫✪✭✳❊➙✸✬↔➣✇✬ ✶✫➐✧✬ ✶②➎✭↕✫✮☎➍✭✦✩➏❂✮❙➎✭✬ ➏❂✮☎✦✧➣✇✬↔➍❑➎✭✬ ✶✵➓❄➎✭✬ ➙✴✮
➤❹✮✼✦❊➎✭✷✫✪✭✮✧✳✩➤✱➎✭↕✫✮☛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮☛➓✠✳✴➏❂➑✫✷✇➎✭✬ ✶✫➐✵➛

➻❯✶✵➍♦➑✫✬ ✪✭✮✼➣❶★✸➌r➎✭↕✫✮✛➓✠✮✆✯ ✯❖➓✠✳✴➏❂➑✵✦✩✪♦➎✭➏❂✮✆✶❀➎❇➍✏✦✩✶✵➣❶➎✭↕✫✮✆✬ ✪❼➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯➫✮✠➢✇✮✼➓✠✷✇➎✭✬ ✳✴✶✵➍✆➞✇➒❙✮✧➑✫✪✭✮✼➍♦✮✆✶❀➎③✬ ✶
➯ ✯❊➳❖✦✙➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯➫✬ ➏❂➑✫✯ ✮✆➏❂✮✆✶❀➎❇✦❊➎✭✬ ✳✴✶➺✳✩➤❛➎✭↕✫✮☛➏❂✮✆➏✙★✫✪❇✦✩✶✫✮✧➍♦➌✇➍❑➎✭✮✆➏r➍❙✳✴✶✤✦②➓✠✯ ✷✵➍❑➎✭✮✆✪✏✳✩➤✑➓✠✳✴➏❂➑✫✷✇➎✭✮✆✪❇➍✆➛
✂ ✮✆➏✙★✫✪❇✦✩✶✫✮✏➍♦➌✇➍❑➎✭✮✆➏r➍✗✦✩✯↔➍♦✳⑧✪✭✮✆➑✫✪✭✮✼➍♦✮✆✶❀➎✗✦✧➍♦✷✫✬ ➎❇✦✩★✫✯ ✮❙➤❹✪❇✦✩➏❂✮✆➒❙✳✴✪✭➝⑧➤❹✳✴✪✗➣✇✬↔➍❑➎✭✪✭✬ ★✫✷✇➎✭✮✼➣❂✦✩✶✵➣✙➑✵✦✩✪❇✦✩✯ ✯ ✮✆✯
✦✩✯ ➐✴✳✴✪✭✬ ➎✭↕✫➏r➍❙➯ ✼❫➳❏➛❊➧✫✷✫✪♦➎✭↕✫✮✆✪✑✪✭✮✼➍♦✮✼✦✩✪❇➓❇↕☛➒③✬ ✯ ✯✸✬ ✶✸➙✴✮✼➍❑➎✭✬ ➐❀✦❊➎✭✮✲↕✫✳❊➒ ➎✭✳⑧✬ ✶❀➎✭✮✆➐✴✪❇✦❊➎✭✮➊➎✭↕✫✮✼➍♦✮✏✦✴➍♦➑✔✮✼➓❄➎❇➍✱➒③✬ ➎✭↕
➎✭↕✫✮❙➓✠✮✆✯ ✯ ✷✫✯↔✦✩✪❖➏❂✮✠➎❇✦❊→❏➑✫✪✭✳✴➐✴✪❇✦✩➏❂➏❂✬ ✶✫➐✏➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏✤➞✠➎✭✪✭➌✸✬ ✶✫➐③➎✭✳☎↕✵✦✩✪✭➏❂✳✴✶✫✬ ➡✆✮✗➎✭↕✫✮✆✳✴✪✭➌✧✦✩✶✵➣✧➑✫✪❇✦✴➓❄➎✭✬↔➓✠✮✴➞
➤❹✳❀➍❑➎✭✮✆✪✭✬ ✶✫➐②➤❹✮✆✪♦➎✭✬ ✯ ✬ ➡✼✦❊➎✭✬ ✳✴✶➺★✔✮✠➎❑➒❙✮✆✮✆✶✤★✫✬ ✳✴✯ ✳✴➐✴✬↔➓✆✦✩✯➫➑✫✪✭✬ ✶✵➓✠✬ ➑✫✯ ✮✼➍③✦✩✶✵➣➺➓✠✳✴➏❂➑✫✷✇➎❇✦❊➎✭✬ ✳✴✶✤➑✵✦✩✪❇✦✴➣✇✬ ➐✴➏r➍✆➛

✁ ➂✄✂❇➂✰✣✫➂✩✮✎✠➫➂❖➀
☎ ⑥✝✆☎⑥ ❁✲✾✸❅✩◗❑❆❇✿ ❉✟✞☎⑥ ◆✱✿ ✺✼♣✸✽✆✾✩▲✵❉✡✠⑧⑥ ☛✵▲❀❃❄✽✆✾✩▲✵⑥③✹✲❆ ⑩ ◗❑✿ ■❑✿ ✾❀⑤✌☞ ❘❊❈✴❍❏■❑❆❇✻☛❍❶✿ ✾✎✍❂✽✆▲✸❅✴❆✼⑥☎❋●✾✏✞☎⑥ ✍❂✽✆▲✴◗❑✿ ❉

✞❙✈✵⑥ ☞✒✑✽✆▲❀✾✵❉✇◆✲⑥ ✓✫✽✆✾✸❅✩◗❑✺✼✾✕✔✗✖❖❅✴❍❇⑥ ✘✚✙✜✛✣✢✥✤✧✦★✛✣✢✪✩✬✫✚✤✥✤✪✭✯✮★✰✲✱✯✳✵✴✷✶✹✸✻✺✆❉✜✍②✿ q ✽✆✾❀✺✴❉ ☎✬✼✯✽ ④ ☎✾☎✬✿ ❉❁❀ ✼✾✼✯✽ ⑥
❀❊⑥✝✞☎⑥✼◆✱✿ ✺✼♣✸✽✆✾✩▲✵⑥❂✠✏✿ ❍❏■❯◗❑✿ ♣❀▲✴■❑❆❄❅❼✽✆q ⑤✼✺✆◗❑✿ ■❑✈❀✻☛❍➫✺✠①❫❆✭◗➫❃❇✺✼✻☛✻⑧▲❀✾❀✿ ❃❄✽✠■❑✿ ✾❀⑤➊✻☛❆❇✻⑧♣✴◗♦✽✆✾❀❆✐❍❏❈✴❍❏■❑❆❇✻☛❍❇⑥❂❃✱✿ ✺❊❘❊❈✴❍❏④
■❑❆❇✻☛❍❇❉✴①❫✺✼q ⑥ ❄ ✼ ✔❅❀✾✘♦❉ ☎ ❀✯❆✠④ ☎ ❆✾❆✩❉❇✖❛q ❍❯❆❇①✩✿ ❆✭◗❄❉❇❀ ✼✾✼ ❆✩⑥

❆✩⑥✝✞☎⑥✴◆✱✿ ✺✼♣✸✽✆✾✩▲✵❉❊❺ ⑥❈✞❙▲❀✺✴⑥❈☞➵❘❊❈✴❍❏■❑❆❇✻☛❍❛✹✲▲❀✾❀✾❀✿ ✾❀⑤③✺✼✾✙✽☎◆✱q ▲❀❍❏■❑❆✭◗✗✺✆▼✐◆✱✺✼✻☛P❀▲✴■❑❆✭◗❑❍❇⑥✫❋●✾❊❉●❋✥❍❏■✯❑✚▲❂▼❇❋
◆✄❖ ❍✟P❘◗❈❙✗❚ ▼❈❯❀❉❱☛❁❲③◆✗❘✙①❫✺✼q ⑥ ❀✯❳✾❆✾❆✩❉✵❘✩P✴◗❑✿ ✾❀⑤✼❆✭◗❄❉ ☎ ❀✯❆✠④ ☎ ❆✾❳✩❉❁❀ ✼✾✼✯✽ ⑥

✽ ⑥✝✍❶⑥✩◆✱q ✽❄①❫❆❇q ❉✲❨✱⑥✾✠✏▲✴◗❬❩✽✆✾✵❉✩❘✇⑥❭✖✄❪❫❆✭◗❄❉❭☞➫⑥❫☛✵✿ ✾❀❃❇✺✼q ✾✵❉❭❲☎⑥❫✍❂✽✠◗❯■✬❩❴ ④❵✆❙q ✿ ❆✭■❄❉❈❛✴⑥✲✍②❆❇❍❯❆❇⑤✼▲❀❆✭◗❄❉✲❛✴⑥ ❨✱⑥❈❜❙▲❀❆❇❍❑✽✼❅❀✽✩⑥
✍❂✽✆▲✸❅✴❆✾✙➫❘✩P✇❆❇❃❇✿ ❻✸❃❄✽✠■❑✿ ✺✼✾➺✽✆✾✸❅✵☞✐◗❑✺✼⑤✆◗♦✽✆✻☛✻☛✿ ✾❀⑤✙✿ ✾❶✹✲❆ ⑩ ◗❑✿ ■❑✿ ✾❀⑤❏☛✵✺✼⑤✼✿ ❃✼⑥❞❝❢❡❱✤✪✩✯✢✥✤✚❣❤✮✗✫✥✐✾❥✒✸✻✩✯❦♠❧❬♥✲❣♦✤✚✢
♣ ✫✧✮❅✤✚✰✜✫✚✤♦❉✸①❫✺✼q ⑥ ❀ ✿❭q ✔❅❀✾✘♦❉ ☎✬✿ ❄❄④❵❀ ✽ ❆✩❉❁❀ ✼✾✼ ❀❊⑥

q ⑥✝✍❶⑥➫◆✱q ✽❄①❫❆❇q ❉❢❨✱⑥❁✠✏▲✴◗❬❩✽✆✾✵❉✔❘✇⑥❁✖✄❪❫❆✭◗❄❉❁☞➫⑥❁☛✵✿ ✾❀❃❇✺✼q ✾✵❉❁❲☎⑥❢✍❂✽✠◗❯■✬❩❴ ④❵✆❙q ✿ ❆✭■❄❉❘❛✴⑥r✍②❆❇❍❯❆❇⑤✼▲❀❆✭◗❄❉➫◆➟⑥ ⑦➫✽✆q ❃❇✺✆■❯■❄⑥
✶✵✐✯♥❱✭❫✤s✶✵✐✯✰❱♥❱✐✾❥❇✔❤t❖❆✭◗❑❍❯✿ ✺✼✾✉❀❊⑥ ☎ ✘♦⑥✸✈❊■❯■❑P❁✙ ✈✾✈✠✻✛✽✆▲✸❅✴❆✼⑥ ❃❇❍❇⑥ ▲❀✿ ▲❀❃✼⑥ ❆❄❅✴▲✵❉✜❀ ✼✾✼✯✽ ⑥

✇ ⑥❼❘✇⑥❇✖✄❪❫❆✭◗❄❉❇❛✴⑥❢✍②❆❇❍❯❆❇⑤✼▲❀❆✭◗❄❉✔✽✆✾✸❅❸❁❼⑥✵❘❊◗❑✿ ❅✴✈✸✽✠◗♦✽✆✾✸✽✠◗♦✽❇❈✩✽✆✾✸✽✆✾✵⑥③⑦✑✈❀❆①✍❂✽✆▲✸❅✴❆✟☛✴⑦②☛③✍②✺✩❅✴❆❇q✱◆✱✈❀❆❇❃✚❪❫❆✭◗
✽✆✾✸❅✛❋❜■❑❍✑❋●✻☛P❀q ❆❇✻☛❆❇✾❊■♦✽✠■❑✿ ✺✼✾✵⑥✫❋●✾②⑦❙⑥ ❃✑✽✆q q ❉✇❘✇⑥ ④✧⑥ ✹❙✽✬⑤❯✽✆✻✛✽✆✾❀✿✄✔✗✖❖❅✴❍❇⑥ ✘✚✙✜✶✵✩✬✭❫✤✧❥❘✸r❡❱✤✪✫✚⑥❂✮★✰✲✱ ♣ ✩❵⑦✚❣❤⑧⑨✐✯✢✥✤✬⑩
❶❭❷ ❣★❡ ♣ ✛⑨❸✪❹❺✴❏✩✯✢✥⑥❂✳✪❡❈✩✚❧✸❉✜☛❁❲③◆✗❘✛①❫✺✼q ⑥ ❀ ✇✯✽❭✿ ❉✵❘✩P✴◗❑✿ ✾❀⑤✼❆✭◗❄❉✜❀✯❆ ✼ ④❵❀✯❆ ✽ ❉❁❀ ✼✾✼ ❆✩⑥

❄❊⑥❻❛✴⑥✣✞❙✺✼⑤✼▲❀❆❇✾✵❉✱⑦❙⑥❛❺t✿ ✾❱❪✩q ❆✭◗❄❉⑨❛✴⑥✣✍②❆❇❍❯❆❇⑤✼▲❀❆✭◗❄❉⑨④✧⑥✻❨❀▲✴■♦✽✠■❑❍❯▲❀⑤✼✿ ❉⑨❛✴⑥ ☞➫⑥✣❛✼✺✼▲✸✽✆✾❀✾✸✽✆▲✸❅✫⑥✉❋●✾❊■❯◗❑✺✩❅✴▲❀❃❇✿ ✾❀⑤
✆s❃✣❛✴⑥❖❋●✾ ♣ ✩❵⑦✚❣❤⑧⑨✐✯✢✥✤♠❼✣✰✲✱✯✮★✰❇✤✥✤✚✢✚✮★✰✲✱✷⑧✄✮★❣★❡❞❽⑨❾✒❿❫❉❬❆✠④ ☎✬✇ ❄❊❉❬④③q ▲ ⑩ ❆✭◗❄❉✜❀ ✼✾✼✾✼ ⑥

✿ ⑥s➀☎⑥❈④③✿ ■♦✽✆✾❀✺✴⑥✑◆✱✺✼✻☛P❀▲✴■♦✽✠■❑✿ ✺✼✾✸✽✆q➫❘❊❈✴❍❏■❑❆❇✻☛❍✒❃✱✿ ✺✼q ✺✼⑤✆❈❊⑥❬❲✏✽✠■❑▲✴◗❑❆✏①❫✺✼q ⑥ ✽ ❀ ✼ ❉❁❀ ✼✾✇ ④❵❀ ☎✬✼ ❉❁❀ ✼✾✼ ❀❊⑥
❳✩⑥❻❛✴⑥❊✍②❆❇❍❯❆❇⑤✼▲❀❆✭◗❄❉➁✍❶⑥②◆✱q ✽❄①❫❆❇q ⑥ ❁➊s✴✿ ✺✼✻✛✽✠■❑✿ ➂❇✿ ✾❀⑤ ✹✲❆✭⑨✸❆❇❃✭■❑✿ ①❫❆➃☛✵✺✼⑤✼✿ ❃❇❍t✽✆✾✸❅➄☛✔✽✆✾❀⑤✼▲✸✽✆⑤✼❆❇❍❇⑥ ❋●✾

✞☎⑥ ④③✿ ❃➅➂❄✽✆q ❆❇❍✟✔✗✖❖❅✫⑥ ✘✚✙✜➆✒✤★➇✒✤✪✫✧❣❤✮✗✩✯✰❇➈ ➉❫➊✠❉❁❀ ✇ ❆✠④❵❀ ✿✾✿ ⑥✜➋❙❆✭◗❑✺❄s➁☞✫❁✲✹✲◆✲❉ ☎ ❳✾❳ ✇ ⑥
☎✬✼ ⑥✡✞❙✈✵⑥❱☞✒✑✽✆▲❀✾✵⑥❛◆✱✺✼✻☛P❀▲✴■❑✿ ✾❀⑤ ⑩ ✿ ■❑✈②✻☛❆❇✻⑧♣✴◗♦✽✆✾❀❆❇❍❇⑥✻❿✲✩✯♥✲✢✚✰✜✐✾❥r✩❵⑦✟✸✻✩✯❦♠❧❬♥✲❣♦✤✚✢✡✐✯✰✜✭ ♣❱➌ ✳✥❣♦✤✚❦ ♣ ✫✧✮❅✤✚✰✜✫✚✤✚✳

①❫✺✼q ⑥ ✇✲☎ ❉ ☎✬✼✾✿ ④ ☎➅✽ ❆✩❉❁❀ ✼✾✼✾✼ ⑥
☎✾☎ ⑥✡✞❙✈✵⑥❬☞✒✑✽✆▲❀✾✵⑥❻✸✻✩✯❦♠❧❬♥✲❣❤✮★✰✲✱➍⑧✄✮★❣★❡❊✶❞✤✚❦➍➎✧✢✪✐✯✰❇✤✚✳➅⑩❢➏✒✰✉❸✥✰❱❣❤✢✪✩✬✭✯♥❱✫✧❣❤✮✗✩✯✰❀❉✵❘✩P✴◗❑✿ ✾❀⑤✼❆✭◗❄❉✜❀ ✼✾✼ ❀❊⑥

59



From Quantum Computing
to Quantum Programming

Philippe Jorrand

CNRS - Leibniz Laboratory
46, avenue Félix Viallet
38000 Grenoble, France

Philippe.Jorrand@imag.fr

Extended Abstract

1 From Quantum Physics to Quantum Computing, ...

Information is physical: the laws which govern its encoding, processing and
communication are bound by those of its unavoidably physical incarnation. In today’s
informatics, information obeys the laws of classical Newtonian physics: this statement
holds all the way from commercial computers down to (up to?) Turing machines and
lambda-calculus. Today’s computation is classical.

The driving force of research in quantum computation is that of looking for the
consequences of having information encoding, processing and communication based
upon the laws of another kind of physics, namely quantum physics, i.e. the ultimate
knowledge that we have, today, of the foreign world of elementary particles, as
described by quantum mechanics.

Quantum mechanics, which is the mathematical formulation of the laws of
quantum physics, relies on four postulates: (i) the state of a quantum system (i.e. a
particle, or a collection of particles) is a unit element of a Hilbert space, that is a
vector of length 1 in a d-dimensional complex vector space; (ii) the evolution of the
state of a closed quantum system (i.e. not interacting with its -classical- environment)
is deterministic, linear, reversible and characterized by a unitary operator, that is by a
dxd rotation matrix applied to the state vector; (iii) the measurement of a quantum
system (i.e. the observation of a quantum system by its -classical- environment)
irreversibly modifies the state of the system by performing a projection of the state
vector onto a probabilistically chosen subspace of the Hilbert space, with
renormalization of the resulting vector, and returns a value (e.g. an integer) to the
classical world, which just tells which subspace was chosen; and (iv) the state space of
a quantum system composed of several quantum subsystems is the tensor product of
the state spaces of its components (given two vector spaces P and Q of dimensions p
and q respectively, their tensor product is a vector space of dimension pxq).

The question is then: how to take advantage of these postulates to the benefits of
computation?

60



The most widely developed approach to quantum computation exploits all four
postulates in a rather straightforward manner. The elementary physical carrier of
information is a qubit (quantum bit), i.e. a quantum system (electron, photon, ion, ...)
with a 2-dimensional state space (postulate i); the state of a n-qubit register lives in a
2n-dimensional Hilbert space, the tensor product of n 2-dimensional Hilbert spaces
(postulate iv). Then, by imitating in the quantum world the most traditional
organization of classical computation, quantum computations are considered as
comprising three steps in sequence: first, preparation of the initial state of a quantum
register (postulate iii can be used for that, possibly with postulate i i); second,
computation, by means of deterministic unitary transformations of the register state
(postulate ii); and third, output of a result by probabilistic measurement of all or part
of the register (postulate iii).

More concretely, from a computational point of view, these postulates provide the
elementary quantum ingredients which are at the basis of quantum algorithm design:

Superposition: at any given moment, the state of quantum register of n  qubits is a
vector in a 2n-dimensional vector space, i.e. a vector with at most 2n non zero
components, one for each of the 2n different values on n bits: the basis of this vector
space comprises the 2n vectors |i>, for i in {0,1}n (|i> is Dirac’s notation for vectors
denoting quantum states). This fact is exploited computationally by considering that
this register can actually contain (a superposition of) all the 2n different values on n
bits, whereas a classical register of n bits may contain only one of these values at any
given moment.

Quantum parallelism and deterministic computation: let f be a function from {0,1}n

to {0,1}n and x be a quantum register of n qubits initialized in a superposition of all
values in {0,1}n (this initialization can be done in one very simple step). Then,
computing f(x) is achieved by a deterministic, linear and unitary operation on the state
of x: because of linearity, a single application of this operation produces all 2n values
of f in one computation step. Performing this operation for any, possibly non linear f
while obeying the linearity and unitarity laws of the quantum world, requires a register
of 2n qubits formed of the register x, augmented with a register y of n  qubits
initialized in the basis state |0>: before the computation of f, this larger register
contains a superposition of all pairs |i,0> for i in {0,1}n and, after the computation of f,
it contains a superposition of all pairs |i,f(i)> for i in {0,1}n.

Probabilistic measurement and output of a result: after f has been computed, all its
values f(i), for i in {0,1}n, are superposed in the y part of the register of 2n qubits, each
of these values facing (in the pair |i,f(i)>) their corresponding i still stored within the
unchanged superposition contained in the x part of that register. Observing the
contents of y will return only one value, j, among the possible values of f. This value is
chosen with a probability which depends on f since, e.g. if f(i)=j for several distinct
values of i, the probability of obtaining j as a result will be higher than that of
obtaining k  if f(i)=k  for only one value of i. This measurement also causes the
superposition in y to be projected onto the 1-dimensional subspace corresponding to
the basis state |j>, i.e. the state of the y part collapses to |j>, which implies that all
other values of f which were previously in y are irreversibly lost.

61



Interference: the results of the 2n parallel computations of f over its domain of
definition can be made to interfere with each other. Substractive interference will
lower the probability of observing some of these value in y, whereas additive
interference will increase the probability of observing other values and bring it closer
to 1.

Entangled states: measuring y after the computation of f is in fact measuring only n
qubits (the y part) among the 2n qubits of a register. The state of this larger register is
a superposition of all pairs |i,f(i)> for i in {0,1}n (e.g., in this superposition, there is no
pair like |2,f(3)>): this superposition is not a free cross-product of the domain {0,1}n

of f by its image in {0,1}n, i.e. there is a strong correlation between the contents of the
x and y parts of the register. As a consequence, if measuring the y part returns a value
j, with the state of that part collapsing to the basis state |j>, the state of the larger
register will itself collapse to a superposition of all remaining pairs |i,j> such that
f(i)=j. This means that, in addition to producing a value j, the measurement of the y
part also causes the state of the x part to collapse to a superposition of all elements of
the f -1(j) subset of the domain of f. This correlation is called entanglement: in quantum
physics, the state of a system composed of n sub-systems is not, in general, simply
reducible to an n-tuple of the states of the components of that system. Entanglement
has no equivalent in classical physics and it constitutes the most powerful resource for
quantum information processing.

No cloning: a direct consequence of the linearity of all operations that can be
applied to quantum states (a two line trivial proof shows it) is that the state of a qubit a
(this state is in general an arbitrary superposition, i.e. a vector made of a linear
combination of the two basis state vectors |0> and |1>), cannot be duplicated and made
the state of another qubit b, unless the state of a is simply either |0> or |1> (i.e. not an
arbitrary superposition). This is true of the state of all quantum systems, including of
course registers of n qubits used by quantum computations.

With these basic ingredients and their peculiarities at hand for building
computations, what are then the assembling tools and the rules of the game of
quantum algorithmics and their consequences for programming?

2 ... to Quantum Algorithms, ...

Richard Feynman launched in 1982 the idea that computation based upon quantum
physics would be exponentially more efficient than based upon classical physics.
Then, after the pioneering insight of David Deutsch in the mid eighties, who showed,
by means of a quantum Turing machine, that quantum computing could indeed not, in
general, be simulated in polynomial time by classical computing, it was ten years
before the potential power of quantum computing was demonstrated on actual
computational problems.

The first major breakthrough was by Peter Shor: in 1994, he published a quantum
algorithm operating in polynomial time (O(log3N)) for factoring an integer N, whereas
the best classical algorithm is exponential. Two years later, Lov Grover published a
quantum algorithm for searching an unordered database of size N, which realizes a

62



quadratic acceleration (it operates in O(N 1/2)) when compared with classical
algorithms for the same problem (in O(N)). Shor’s algorithm relies on a known
reduction of the problem of factoring to that of finding the order of a group, or the
period of a function: then, since order finding can be achieved by a Fourier Transform,
the key is a Quantum Fourier Transform designed by Shor, which is indeed
exponentially more efficient than FFT, thanks to quantum parallelism, entanglement
and tensor product. Grover’s algorithm relies upon a very subtle use of interference,
now known as amplitude amplification, which performs a stepwise increase of the
probability of measuring a relevant item in the database, and which brings this
probability very close to one after N1/2 steps.

Another major result, by Charles Bennet and others in 1993, was the design of
theoretical principles leading to a quantum teleportation protocol, which takes
advantage of entanglement and of probabilistic measurement: the state of a quantum
system a (e.g. a qubit) localized at A’s place can be assigned, after having been
measured, thus destroyed, to another quantum system b (e.g. another qubit), localized
at B’s place, without the state of a being known neither by A nor by B, and without
neither a, b nor any other quantum system being moved along a trajectory between A
and B. It is important to notice that this is not in contradiction with no cloning: there is
still only one instance of the teleported state, whereas cloning would mean that there
coexist one original and one copy.

Since then, these results have been generalized and extended to related classes of
problems. Shor’s algorithm solves an instance of the hidden subgroup problem for
abelian groups and a few extensions to non-abelian cases have been designed. In
addition to Fourier Transform, order finding and amplitude amplification, other
candidates to the status of higher level building blocks for quantum algorithmics have
emerged, such as quantum random walks on graphs. Principles for distributed
quantum computing have also been studied and successfully applied to a few classes
of problems, etc. Very recently, on the basis of amplitude amplification, quadratic and
other quantum speedups have been found for several problems on graphs, such as
connectivity, minimum spanning tree and single source shortest paths.

Teleportation also has been generalized. The measurement used in its original
formulation was such that the state eventually obtained for b was the same as the state
initially held by a  (up to a correcting operation which still had to be applied,
depending on the probabilistic outcome of that measurement). By changing the way
the measurement is done (in fact, by appropriately rotating the basis upon which the
measurement of a will project the state of a), it has been found that the state teleported
to b could be not the state initially held by a, but that state to which a rotation, i.e. a
unitary operation has been applied. In other words, entanglement and measurement,
i.e. the resources needed by teleportation, can be used to simulate computations by
unitary tranformations. This has given rise to a whole new direction of research in
quantum computation, namely measurement-based quantum computation.

There is an obvious and ever present invariant in all these different ways of
organizing quantum computations and quantum algorithms. Quantum computations
operate in the quantum world, which is a foreign and unknowable world. No one in
the classical world will ever know what the superposition state of an arbitrary qubit is,

63



the only information one can get is 0 or 1, through measurement, i.e. the classical
outcome of a probabilistic projection of the qubit state vector onto |0> or |1>: if one
gets |0>, the only actual information which is provided about the state before
measurement is that it was not |1>, because |0> and |1> are orthogonal vectors. Then,
for the results of quantum computations to be useful in any way, there is an intrinsic
necessity of cooperation and communication controlled by the classical world. All
quantum algorithms, either based upon unitary transformations or upon
measurements, if they are of any relevance, eventually end up in a final quantum state
which hides, among its superposed basic states, a desired result. Such a result is asked
for upon request by the classical world, which decides at that point to perform a
measurement on part or all of the quantum register used by the computation. But
measurement is probabilistic: its outcome may be a desired result, but it may well be
something else. For example, Grover’s algorithm ends up in a state where desired
results have a probability close to 1 to be obtained, but other, unwanted results may
also come out from the final measurement, although with a much lower probability.

The whole game of quantum algorithmics is thus to massage the state of the
quantum register so that, in the end, desired results have a high probability to be
obtained, while doing that at the minimum possible cost, i.e. minimal number of
operations applied (time) and of qubits used (space). This is achieved through
interferences (by means of appropriate unitary operations), through the establishment
of entangled states and through measurements in appropriate bases. But this is not the
end: once a measurement outcome is obtained by the classical world, it must be
checked, by the classical world, for its validity. If the result satisfies the required
conditions to be correct, termination is decided by the classical world. If it does not,
the classical world decides to start the quantum part of the computation all over. For
example, in the case of Grover’s algorithm, if the element of the database produced by
the measurement is not correct, the whole quantum search by amplitude amplification
is started again by the classical world.

In general, algorithms will not contain one, but several quantum parts embedded
within classical control structures like conditions, iterations, recursions. Measurement
is not the only channel through which the classical and quantum worlds interact, there
is also the initialization of quantum registers to a state chosen by the classical world
(notice that such initializations can only be to one among the basis states, since they
are the only quantum states which correspond, one to one, to values expressible by the
classical world). A quantum part of an algorithm may also, under the control of the
classical world, send one of its qubits to another quantum part (but not the state of that
qubits, because of no cloning): this quantum to quantum communication is especially
useful for quantum secure communication protocols, which are a family of distributed
quantum algorithms of very high practical relevance, in a not too far future, among the
foreseeable applications of quantum information processing.

This means that not only the peculiarities of the basic quantum ingredients for
computing have to be taken into account in the design of languages for the formal
description of quantum algorithms (and quantum protocols), but also the necessity of
embedding quantum computations within classical computations, of having both
worlds communicate and cooperate, of having classical and quantum parts be
arbitrarily intermixed, under the control of the classical side, within the same program.

64



3 ... and to Quantum Programming.

Quantum computing is still in its infancy, but quantum programming is even much
younger. Quantum computing is on its way to becoming an established discipline
within computer science, much like, in a symmetric and very promising manner,
quantum information theory is becoming a part of quantum physics. Since the not so
old birth of quantum computing, the most important efforts have been invested in the
search for new quantum algorithms that would show evidence of significant drops in
complexity compared with classical algorithms. Obtaining new and convincing results
in this area is clearly a crucial issue for making progress in quantum computing. This
research has been, as could be expected, largely focusing on complexity related
questions, and relying on approaches and techniques provided by complexity theory.

However, the much longer experience from classical computer science tells that the
study of complexity issues is not the only source of inspiration toward the creation,
design and analysis of new algorithms. There are other roads, which run across the
lands of language design and semantics. A few projects in this area have recently
started, following these roads. Three quantum programming language styles are under
study: imperative, parallel and distributed, and functional. There are also a number of
very specific issues in the domain of semantic frameworks for quantum programming
languages.

The sequential and imperative programming paradigm, upon which all major
quantum algorithmic breakthroughs have relied, is still widely accepted as “the” way
in which quantum + classical computations are organized and should be designed.
However, before any language following that style was designed, and even today, the
quantum parts of algorithms are described by drawing quantum gate arrays, which are
to quantum computing what logical gate circuits are to classical computing. This is of
course very cumbersome and far from useful for proving properties of programs. This
is why some imperative languages for quantum + classical programming have been
design first.

The most representative quantum imperative programming language is QCL
(Quantum Computing Language), a C flavoured language designed by B. Ömer at the
University of Vienna. Another one, qGCL (Quantum Guarded Command Language)
was due to P. Zuliani at Oxford University, with the interesting design guideline of
allowing the construction by refinement of proved correct programs.

Functional programming offers a higher level of abstraction than most other
classical programming paradigms, especially than the imperative paradigm.
Furthermore, it is certainly one of the most fruitful means of expression for inventing
and studying algorithms, which is of prime importance in the case of quantum
computing. A natural way to try and understand precisely how this programming style
can be transposed to quantum computing is to study a quantum version of lambda-
calculus.

This what is being done by A. Van Tonder at Brown University. His approach puts
forward the fact that there is a need for new semantic bases in order to accommodate
disturbing peculiarities of the quantum world. A striking example are the
consequences of no cloning. In quantum programs, there are quantum variables, i.e.

65



variables storing quantum states. However, since it is impossible to duplicate the state
of a qubit, it is impossible to copy the value of a quantum variable into another
quantum variable. This has far reaching consequences, e.g., in lambda-calculus, an
impossibility to stay with classical beta-reduction. Van Tonder and J.Y. Girard are
suggesting that linear logic may be the way out of this specifically quantum issue.

On the functional side, there is also QPL (a Quantum Programming Language),
designed by P. Selinger at the University of Ottawa. QPL is a simple quantum
programming language with high-level features such as loops, recursive procedures,
and structured data types. The language is functional in nature, statically typed, free of
run-time errors, and it has an interesting denotational semantics in terms of complete
partial orders of superoperators (superoperators are a generalization of quantum
operations).

Process calculi are an abstraction of communicating and cooperating computations
which take place during the execution of parallel and distributed programs. They form
a natural basis for rigorous and high level expression of several key aspects of
quantum information processing: cooperation between quantum and classical parts of
a computation, multi-party quantum computation, description and use of teleportation
and of its generalization, description and analysis of quantum communication and
cryptographic protocols.

CQP (Communicating Quantum Processes) is being designed by R. Nagarayan at
the University of Warwick. It combines the communication primitives of the pi-
calculus with primitives for measurement and transformation of quantum states. A
strong point of CQP is its static type system which classifies channels, distinguishes
between quantum and classical data, and controls the use of quantum states: this type
system guarantees that each qubit is owned by a unique process within a system.

QPAlg (Quantum Process Algebra) is being designed by M. Lalire and Ph. Jorrand
at the University of Grenoble. It does not have yet any elaborate typing system like
that of CQP. But, in addition to modelling systems which combine quantum and
classical communication and computation, the distinctive features of QPAlg are the
explicit representation of qubit initialization through classical to quantum
communication, and of measurement through quantum to classical communication,
which are systematic and faithful abstractions of physical reality. Similarly, quantum
to quantum communication actually models the sending of qubits (not of qubit states)
and guarantees that the no cloning law is enforced.

Both CQP and QPAlg have formally defined operational semantics, in the Plotkin’s
inference rules style, which include a treatment of probabilistic transitions due to the
measurement postulate of quantum mechanics.

All these language designs are still at the stage of promising work in progress. The
core issues clearly remain at the semantics level, because of the many non-classical
properties of the quantum world. No-cloning, entanglement, probabilistic
measurement, mixed states (a more abstract view of quantum states, for representing
probabilistic distributions over pure states), together with the necessary presence of
both worlds, classical and quantum, within a same program, call for further in depth
studies toward new bases for adequate semantic frameworks.

66



Operational semantics (i.e. a formal description of how a quantum + classical
program operates) is the easiest part, although probabilities, no-cloning and
entanglement already require a form of quantumized treatment. For example, leaving
the scope of a quantum variable is not as easy as leaving the scope of a classical
variable, since the state of the former may be entangled with the state of more global
variables.

Axiomatic semantics (what does a program do? How to reason about it? How to
analyse its properties, its behaviour?) is a very tricky part. Defining quantum versions
of Hoare’s logic or Dijkstra’s weakest precondition would indeed provide logical
means for reasoning on quantum + classical programs and constitute formal bases for
developing such programs. Some attempts toward a dynamic quantum logic, based on
the logical study of quantum mechanics initiated in the thirties by Birkhoff and von
Neumann have already been made, for example by Brunet and Jorrand, but such
approaches rely upon the use of orthomodular logic, which is extremely uneasy to
manipulate. Of much relevance here is the recent work of D’Hondt and Panangaden
on quantum weakest preconditions, which establishes a semantic universe where
programs written in QPL can be interpreted in a very elegant manner.

A long-term goal is the definition of a compositional denotational semantics
which would accommodate quantum as well as classical data and operations and
provide an answer to the question: what is a quantum + classical program, which
mathematical object does it stand for? Working toward this objective has been rather
successfully attempted by P. Selinger with QPL. Recent results on categorical
semantics for quantum information processing by Abramsky and Coecke, and other
different approaches like the work of van Tonder and the interesting manuscript of J.
Y. Girard on the relations between quantum computing and linear logic, are also
worth considering for further research in those directions.

In fact, there are still a great number of wide open issues in the domain of
languages for quantum programming and of their semantics. Two seemingly
elementary examples show that there still is a lot to accomplish. First example:
classical variables take classical values, quantum variables take quantum states. What
would a type system look like for languages allowing both, and which quantum
specific properties can be taken care of by such a type system? Second example: it
would be very useful to know in advance whether the states of quantum variables will
or will not be entangled during execution. Abstract interpretation would the natural
approach to answer such a question, but is there an adequate abstraction of quantum
states for representing entanglement structures? At the current stage of research in
quantum information processing and communication, these and many other similarly
interesting questions remain to be solved.

67



4 Short bibliography

About Quantum Computing

A concise, well written and easy to read (by computer scientists) introduction to
quantum computing:

E. G. Rieffel and W. Polak. An Introduction to Quantum Computing for Non-

Physicists, Los Alamos ArXiv e-print, http://xxx.lanl.gov/abs/quant-ph/9809016,
1998.

A pedagogical, detailed and rather thorough textbook on quantum computing:

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

A dense and theoretically profound textbook on quantum computing:

A. Y. Kitaev, A. H. Shen and M. N. Vyalyi. Classical and Quantum Computation.
American Mathematical Society, Graduate Studies in Mathematics, Vol. 47, 2002.

About Quantum Programming

A recent workshop on Quantum Programming Languages:

Second International Workshop on Quantum Programming Languages, held in
Turku, Finland, July 12-13, 2004. The full papers are available in the proceedings:
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html, 2004.

Quantum programming languages which have been mentioned in the text:

Imperative quantum programming:

B. Ömer. Quantum Programming in QCL. Master’s thesis, Institute of Information
Systems, Technical University of Vienna, 2000.

P. Zuliani. Quantum Programming. PhD thesis, St. Cross College, Oxford
University, 2001.

Functional quantum programming:

P. Selinger. Toward a Quantum Programming Language. To appear in
Mathematical Structures in Computer Science, Cambridge University Press, 2004.

A. Van Tonder. A lambda Calculus for Quantum Computation. Los Alamos arXiv
e-print, http://xxx.lanl.gov/abs/quant-ph/0307150, 2003.

Parallel and distributed quantum programming:

S. J. Gay and R. Nagarajan. Communicating Quantum Processes. In Proc. 2nd

International Workshop on Quantum Programming Languages, Turku, Finland,
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html, pp. 91-107,
2004.

68



M. Lalire and Ph. Jorrand. A Process Algebraic Approach to Concurrent and

Distributed Quantum  Computation: Operational Semantics. Los Alamos arXiv e-
print, http://xxx.lanl.gov/abs/quant-ph/0407005, 2004. Also in Proc. 2nd

International Workshop on Quantum Programming Languages, Turku, Finland,
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html, pp. 109-126,
2004.

Quantum semantics issues (see also Proc. Int. Workshop on  Quantum Programming
Languages: http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html):

S. Abramsky and B. Coecke. Physical Traces: Quantum vs. Classical Information

Processing. In R. Blute and P. Selinger, editors, Proceedings of Category Theory
and Computer Science, CTCS’02, ENTCS 69, Elsevier, 2003.

O. Brunet and Ph. Jorrand. Dynamic Quantum Logic for Quantum Programs.
International J. of Quantum Information, Vol. 2, N. 1, pp. 45-54, 2004.

E. D’Hondt and P. Panangaden. Quantum Weakest Preconditions. In Proc. 2nd

International Workshop on Quantum Programming Languages, Turku, Finland,
http://quasar.mathstat.uottawa.ca/~selinger/qpl2004/proceedings.html, pp. 75-90,
2004.

J. Y. Girard. Between Logic and Quantic: a Tract. Manuscript, October 2003.

A. Van Tonder. Quantum Computation, Categorical Semantics and Linear Logic.
Los Alamos arXiv e-print, http://xxx.lanl.gov/abs/quant-ph/0312174, 2003.

69



Abstractions for Directing Self-organising

Patterns

Daniel Coore

The University of the West Indies, Mona Campus, Jamaica

Abstract. We present an abstraction for pattern formation, called pat-
tern networks, which are suitable for constructing complex patterns from
simpler ones in the amorphous computing environment. This work builds
upon previous efforts that focused on creating suitable system-level ab-
stractions for engineering the emergence of agent-level interactions. Our
pattern networks are built up from combinations of these system-level
abstractions, and may be combined to form bigger pattern networks. We
demonstrate the power of this abstraction by illustrating how a few com-
plex patterns could be generated by a combination of appropriately de-
fined pattern networks. We conclude with a discussion of the challenges
involved in parameterising these abstractions, and in defining higher-
order versions of them.

1 Introduction

An amorphous computing system is a collection of irregularly placed, locally
interacting, identically-programmed, asynchronous computing elements[1]. We
assume that these elements (agents) communicate within a fixed radius, which
is large relative to the size of an element, but small relative to the diameter of the
system. We also assume that most agents do not initially have any information
to distinguish themselves from other agents; this includes information such as
position, identity and connectivity. The challenge of amorphous computing is to
systematically produce a program that when executed by each agent (in parallel)
produces some pre-specified system-wide behaviour.

The model is motivated by advances in microfabrication and in cellular en-
gineering [7, 3] – technologies that will enable us to build systems with more
parts than we currently can. In fact, we envision these technologies allowing for
systems containing myriads (think hundreds of thousands) of elements to be
built cheaply. The technology for precisely controlling such systems is still in its
infancy, yet we can observe natural systems with similar complexity operating
with apparently high efficiency. Compelling examples include: cells in an embryo
specialising to give rise to the form and function of the various parts of an or-
ganism; ants, bees and other social insects cooperating in various ways to find
food for the colony; and birds flocking to reduce drag during flight.

The amorphous computing model is not explicit about the assumed capabil-
ities of a single agent – only that it has limited memory to work with because

70



of its size. It has become commonplace to assume that each agent, operating in
isolation, can:

– maintain and update state (read and write to memory)
– access a timer (a piece of state that changes uniformly with time, but not

necessarily at the same rate as happens on other agents)
– access a source of random bits
– perform simple arithmetic and logic operations.

So far, one of the most important results of Amorphous Computing is that
despite the constraints of the computing model, in which so little positional in-
formation is available, it is still possible to engineer the emergence of certain
types of globally defined patterns [6, 9, 4, 8, 2]. In each of these works, the princi-
pal mechanism used to control emergence was to define a system-level language
that could describe an interesting class of patterns, but that could also be sys-
tematically transformed to agent-level computations.

1.1 A Unifying Pattern Description Language

Recently, we proposed a unifying language[5] that is capable of describing the
same patterns as those produced by the programming languages defined in [6,
9, 4, 8]. In this language, the system is regarded as a collection of points. Each
point has a neighbourhood which is the set of points that lie within some fixed
distance of the original point. Points can be named and some operations may
yield points as results, which may be used in any context in which a point is
expected. We can execute blocks of commands at any point. Computations that
are specified to occur at multiple points are performed in parallel, but generally
computations specified at a single point are carried out sequentially (although
threaded computations are permitted at a point).

All computations are either entirely internal to an agent or may be derived
from local communication between neighbouring agents. All primitive opera-
tions, whether they can be computed by an agent in isolation or only through
neighbourhoods, have a mechanism for indicating to the originating point when
the computation is considered completed. This means that any operations per-
formed at a point may be sequenced together, even if the operation involves
computations at many points.

2 Pattern Networks

The recently proposed pattern description language[5] is not rich in abstrac-
tions. It provides primitives that abstract over the agent-level interactions, but
it does not provide any abstractions over the patterns that may be described.
For example, it is possible to describe four lines that form a square, but it is not
possible to name that pattern of four lines and invoke it whenever we need a
square. Instead we must describe the four constituent lines, each time a square
is desired.

71



We propose a plausible abstraction for patterns, called a pattern network,
that is compatible with this language. This abstraction is similar to the network
abstractions for GPL described in[6]. The implementation of this abstraction in
our pattern description language is in progress, so any sample outputs illustrating
the idea have been taken from the GPL version of the abstraction.

Pattern networks describe patterns in terms of a set of given points in the
domain (the input points). Special points that arise from the generation of these
patterns (the output points) may be named and used as inputs to other pattern
networks. The network construct defines a pattern network. Its syntax is:

network 〈 name 〉 [〈 inputs 〉] [〈 outputs 〉] {
〈 pattern-defn 〉

}

2.1 An Example

As an illustration of how this abstraction can be used, let us reuse the code,
presented in [5], that draws a line segment between two given points. We present
below, the original code surrounded by a box to highlight the minimal syntax of
the pattern network abstraction.

network segment[A, B] [] {

Diffusable B-stuff

PointSet ABLine

at B: diffuse (B-stuff, linear-unbounded)

at A:do SearchForB {
addTo(ABLine)

nbrConcs := filter(queryNbhd(B-stuff),

lt(B-stuff))

at select(nbrConcs, min):

do SearchForB

}

}

In this example, the network is called segment and has two input points (A,
B) and zero output points. Whenever the segment network is invoked, a logical
substance named B-stuff is diffused from the point supplied as B. Simultaneously
from A, a process is started that locally seeks the source of the B-stuff diffusion,
and propagates from point to point until it is found. This process labels each
visited point with the ABLine label to identify the line segment that would have
formed from A to B after the process is completed. In this example, both the
logical substance B-stuff and the set label ABLine are local to the network, so
they are actually renamed on each invocation of the network so that the actual
labels exchanged at the agent level are actually unique to the invocation of the
network. This avoids unwanted interference between separate invocations of the
same network. Now, for example, to define a triangle between three points, we
might define the following network:

72



network triangle [A, B, C] [] {
segment[A,B]

segment[B,C]

segment[C,A]

}

2.2 Combining Patterns

Pattern networks can be defined in terms of combinations of smaller pattern
networks. We have already seen an example of this in the triangle network
defined above, however that was simply the simultaneous invocation of three
instances of the segment network. We can go further by using the output of
one network to feed into another. A special operation has to be introduced for
associating output points of one network with inputs of another. We introduced
the cascade operation to conveniently implement the simple chaining of networks
together. Its syntax is:

cascade(〈 points 〉, 〈 net1 〉, ..., 〈 netn 〉, [points])

up right down

Fig. 1. Three networks, each having one input and one output have been defined, and
named up, right and down. Each one draws a short line in the indicated direction relative
to a reference line (produced by some other pattern). In each case, a dot indicates the
location of the input point and an ‘x’ indicates the output point

To illustrate the operation of cascade, let us assume that we already have
three pattern networks, each with one input and one output, named up, right

and down. Each one draws a short line relative to some reference line (constructed
by some other pattern) in the indicated direction. The termination point of each
line is the output point of its network. These networks are illustrated in Figure 1.
We could now define a new network, called rising with one input and one output
that is the result of cascading up with right. A similar network, called falling,
could be composed from cascading down with right. To get one period of a square
wave, we could cascade rising and falling together. The effect of the cascade

operation in these definitions is illustrated in Figure 2.

73



network rising [A][B] {
cascade([A], up, right, [B])

}

network falling [A][B] {
cascade([A], down, right, [B])

}

network sq-period [A][B] {
cascade([A], rising, falling, [B])

}

Fig. 2. The composition of networks with the cascade operation. Pattern networks
can be composed and abstracted to build compound patterns that would otherwise be
tedious to construct.

We could now further build upon this network by constructing a square wave
of several periods, by cascading many instances of sq-period together. It should
be clear that the cascade operation has provided considerable expressive power
by enabling the composition of a large pattern from sub-patterns.

When there are multiple inputs and outputs, the cascade operation associates
outputs with inputs according to the order in which they appear. In some in-
stances, the user may want the association between outputs of one network and
inputs of another to be some permutation other than the identity permutation.
This re-ordering of points can be achieved with the use of a binding construct
that permits intermediate points to be named and used in any context in which
a point expression may legally appear. The let-points construct facilitates this;
its syntax is defined as:

let-points [〈 id1 〉, ..., 〈 idn 〉]
{〈 point-defns 〉}

in {〈 pattern-defn 〉}

The point-defns expression may be any expression that is capable of yielding
points as outputs. These points are bound to the names id1, id2 for use in
evaluating the pattern-defn expression, which itself is also any expression that
may have legally appeared in the body of a pattern network. The let-points

construct allows outputs to be permuted when cascaded with other networks.

For example, suppose that net1 and net2 are two pattern networks each with
two inputs and two outputs. Now, suppose we want to cascade the outputs of

74



net1 to the inputs of net2 but with the orderings exchanged (i.e. first output to
second input and vice-versa). In addition, we shall make the connected structure
a new pattern network. The following network definition uses the let-points

construct to accomplish this.

network crossed [A, B][C, D] {
let-points[out1, out2]

{cascade([A, B], net1, [out1, out2])}
in {cascade([out2, out1], net2, [C, D])}

}

The let-points command not only provides a generic means for supporting
arbitrary permutations of output points, but it also provides a means for con-
necting the outputs of two pattern networks to the inputs of a single network.
The following example shows how the outputs from the right and up networks
(previously mentioned) to the inputs of net1. It creates a pattern network that
has two inputs and two outputs. Each input point acts as the input to the single-
input networks, their outputs are connected to the inputs of net1 and its outputs
are the outputs of the overall network.

network two-to-one [A, B][C, D] {
let-points[out1, out2]

{
cascade([A], right, [out1])

cascade([B], up, [out2])

}
in {cascade([out1, out2], net1, [C, D])}
}

3 Examples

Pattern networks provide a convenient high-level abstraction for describing pat-
terns in a system-level language. In this section, we illustrate their versatility by
showing how they were used in GPL to describe self-organising text and CMOS
circuit layouts.

3.1 Text

As an example, let us use pattern networks to define patterns of self-organising
text. The idea is that each letter of the alphabet is defined as a pattern network.
Each letter is defined relative to a line, which will be generated along with
the characters themselves. Each network has two input points and two output
points. One input point defines the starting point for the letter, and the other the
starting point for the segment of the reference line, upon which the letter sits.
The letters are drawn from left to right, so the outputs represent the locations

75



that a letter placed to the right of the current one would use as its inputs.
In this way, a word can be defined as a cascade of pattern networks each of
which produces a single letter. Furthermore, each word is also now a network
with exactly two inputs and two outputs that can be cascaded with other words
and letters to form bigger networks. Figure 3 illustrates the result of using this
technique in GPL with three letters, each separately defined as a network and
then cascaded together.

Fig. 3. The result of cascading the pattern networks for the letters ‘M’, ‘I’ and ‘T’
together. Observe that the reference line is subject to the variability in the distribution
of the agents. A badly drawn reference line can often cause the desired letters to fail
to form in a recognizable way

3.2 CMOS Circuits

Another fruitful family of patterns to which pattern networks could be applied
with great effect is that of circuit diagrams. Indeed, input and output points for
a circuit’s pattern network often directly correspond to the input and output
terminals of the circuit. For example, the pattern representing the CMOS layout
of an AND gate can be described as the cascade of the layouts of a NAND gate,
a via (a connector across layers in the CMOS process) and an inverter. In GPL,
this network is expressed as follows:

(define-network (and+rails

(vdd-in vss-in a b)

(vdd-out vss-out output))

(cascade (vdd-in vss-in a b)

nand+rails

via+rails

inverter+rails

(vdd-out vss-out output)))

76



Figure 4 illustrates how the various constituent networks of the AND circuit
are combined.

Fig. 4. The NAND+rails network has 4 inputs and 3 outputs, and both of via+rails
and Inverter+rails have 3 inputs and 3 outputs. The arrows depict the connections
between the outputs and inputs of the three networks. Each bordering rectangle depicts
a network. Observe that the result of the cascade of the three networks is itself another
network with 4 inputs (the number of inputs of the first network in the cascade) and
3 outputs (the number of outputs of the last network in the cascade)

4 Challenges for Extensions

Since the input points involved in the definition of a pattern network, are not
necessarily local to each other, the invocation of a network’s computation is ac-
tually the parallel invocation of all computations specified at the input points.
In particular, the output points that result from this parallel execution may also
be non-local to each other. This poses some problems for attempting to create
parameterised or higher-order abstractions of networks. For example, if pattern
networks could accept parameters, their values would have to be available to
all points participating in the invocation of these networks. This could proba-
bly be accomplished by passing around an environment specific to the pattern
network, but represents a significant departure from the current macro-style
implementation of pattern networks. Supporting higher-order pattern networks
requires allowing the invocation of networks passed as parameters or the creation
of networks on the fly. Both of these requirements require signficant changes to
the current implementation of pattern networks in GPL though, so the idea of
higher-level pattern networks has not yet been explored fully.

77



5 Conclusions

Pattern networks provide a powerful means of expressing patterns that can be
self-organised. They can capture simple patterns that are directly expressed in
terms of local interactions, and they can be combined to form more complex
pattern networks. In addition, the expression of these combinations are quite
natural, yet they remain transformable to collections of local interactions that,
under the appropriate conditions, cause the desired patterns to emerge. Pattern
networks are currently not generalisable to higher order patterns nor can they
even accept parameters to allow more general specifications. However, these
limitations are currently self-imposed as a simplification exercise, and we expect
some of them, at least, will be overcome in the near future.

References

1. Abelson, H., D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,
E. Rauch, G. Sussman, and R. Weiss. Amorphous Computing. Communications of
the ACM, 43(5), May 2000.

2. Beal, Jacob, “Persistent Nodes for Reliable Memory in Geographically Local Net-
works”, AI Memo 2003-011, Massachusetts Institute of Technology, Artificial In-
telligence Laboratory. Apr. 2003.

3. Benenson, Yaakov., Rivka Adar,Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro,
“DNA molecule provides a computing machine with both data and fuel.” in Pro-
ceedings National Academy of Science, USA 100, 2191-2196. (2003).

4. Clement, Lauren, and Radhika Nagpal, “ Self-Assembly and Self-Repairing
Topologies”, in Workshop on Adaptability in Multi-Agent Systems, RoboCup Aus-
tralian Open, Jan. 2003.

5. Coore, Daniel, “Towards a Universal Language for Amorphous Computing”, in
International Conference on Complex Systems (ICCS2004), May 2004.

6. Coore, Daniel, Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer. PhD thesis, MIT, Dept. of
Electrical Engineering and Computer Science, Feb. 1999.

7. Knight, Tom, Gerald J. Sussman, “Cellular Gate Technologies”, in First Interna-
tional Conference on Unconventional Models of Computation (UMC98), 1998.

8. Kondacs, Attila, “Biologically-Inspired Self-Assembly of Two-Dimensional Shapes
Using Global-to-Local Compilation”, in International Joint Conference on Artifi-
cial Intelligence (IJCAI), Aug. 2003.

9. Nagpal, Radhika, Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis,
MIT, Dept. of Electrical Engineering and Computer Science, (June 2001).

78



Abstractions for code reuse in ecoli

Dean D. Holness

The University of the West Indies, Mona Campus, Jamaica

Abstract. Many programming paradigms have ways of permitting reuse
of code.For example in the object oriented paradigm, code reuse can be
achieved through the use of inheritance, methods and instances. This
paper describes three abstractions that facilitate code reuse in an amor-
phous programming language. These abstractions have significantly re-
duced the size and complexity of amorphous programs and facilitate the
design of efficient and robust algorithms. We also present an implemen-
tation of these abstractions in the amorphous programming language,
ecoli. The ecoli programming language has many similarities to the
object-oriented paradigm, so do the abstractions put forward by this
paper. Several examples are also presented to show the effectiveness of
these abstractions. We argue that they are necessary for any amorphous
programming language to realistically solve non-trivial problems.

1 Introduction

The re-use of code is one of the many ways in which software developers reduce
the amount of time needed to implement a given solution. Many programming
paradigms have recognized this and have introduced language constructs, to fa-
cilitate the design and implementation of reusable software components. This
concept is also very applicable to the Amorphous paradigm [?] since in many
cases the code produced in solving problems will usually have fragments in com-
mon. It is from these commonalities between programs, that we have developed
a series of abstractions in order to better incorporate the code reuse process
in Amorphous programming languages. We have further implemented these ab-
stractions as constructs in our own Amorphous programming language ecoli

(Extensible Calculus of Local Interactions) and have seen where it has had sig-
nificant benefits in the design and implementation of our algorithms. The central
problem with code reuse in an Amorphous setting is capturing the repeating por-
tion and expressing it. This paper puts forward three abstractions for code reuse,
Instances, Inheritance and Remote procedure calls. These abstractions were in-
spired by analogies from the Object Oriented paradigm, and for good reason.
The Amorphous programming paradigm has various similarities with Object
Oriented design. In object oriented design, objects are exclusive entity with
communication only occurring through messages passed between them. So is it
too with the Amorphous paradigm, each agent in the system is an exclusive
entities with communication only occurring through some local interaction.

79



2 ECOLI (Extensible Calculus of Local Interactions)

The ecoli programming language was first described by Daniel Coore in his
PhD Thesis [?]. ecoli is meant to be a language for programming the computa-
tional element of an Amorphous Computer. ecoli assumes that the particles are
irregularly placed and the communication between the particles is asynchronous
and occurs concurrently with their computation. It also assumes that communi-
cation between agents occur via messages and the delivery time of each message
is proportional to its length and at most one message can be received in one
message delay time interval. This imposes a serial nature on the agent’s ability
to process messages. In keeping with the Amorphous model of computational
[?], every agent executes the same program.

2.1 Structure of ecoli

An ecoli program consists of components called Behaviors, Dictionaries and

Handlers. In essence an ecoli program is a collection of possible responses to
messages. These responses are what we call Handlers. Handlers can be grouped
to form Dictionaries, so that each dictionary defines the set of messages to which
the agent can respond while it is active. The ability of an agent to differentiate
its behavior over time comes from the fact that the current dictionary can be
programmatically changed. The meaning of a message is therefore, dependent
on the agent’s current dictionary and could then differ from agent to agent. A
useful analogy would be to a finite state machine where the destinations of the
transitions are determined during execution. In this sense a behaviour defines
a the state machine. A dictionary would represent a state, each transition from
the state is represented by a handler and the input to the state machine is a
message. Messages sent from one agent’s behavior, will be received by the same
behavior on the neighboring agents. A behavior defines a specific high level task
in an Amorphous environment, whether it is to draw a line between two points
or to find the distances from a point. Here is an example of a behavior.

ecoli Behaviour code fragment
(define-behavior

find-dist

((current-dist 10000))

(define-dict default

(DIST

(n)

(guard (< n current-dist))

(set current-dist n)

(trap current-dist)

(send DIST (+ n 1))

)

(ACTIVATE

()

(set current-dist 0)

(send DIST 1)

)

)

)

In the preceding example, the behavior find-dist is designed to find the dis-
tances of agents from a given point. It contains one dictionary, default and two

80



handlers, DIST and ACTIVATE. The program starts by assigning a specified
agent the role of being the center, from which all other measurements will be
taken. The starting processor is sent an ACTIVATE message, which in turn
sends a DIST message with 1 as its argument. The neighbors of the starting
processor will receive the DIST message and invoke their own DIST handler,
which will add one to the argument and resend the message to their neighbors.
The special keyword, guard is used to determine if the agent should respond to
the message. In this case, the guarding condition is that the agent’s value for the
variable current-dist is greater than the argument of the message. At the end of
the program, all agents in reach will have a value for the current-dist variable
which represents the minimum number of communication hops between it and
the starting agent.

3 ecoli Abstractions

This section puts forward our abstraction for code reuse in ecoli, along with
examples of actual programs that have benefited from these abstractions.

3.1 Dictionary Inheritance

In ecoli, each dictionary defines a handler for each message to which the agent
can potentially respond while the dictionary is active. If the agent wants to re-
spond to one message differently but keep all the handlers for the other messages
the same, it must define a new dictionary. Since a dictionary must define han-
dlers, for all possible messages, the programmer would then be forced to define,
not only the changed handler but also the unchanged ones. Therefore, the code
for the two dictionaries would be exactly the same, except the changed handler.
We have defined an abstraction that eliminates the need for this handler du-
plication. It allows the programmer to re-use the previous dictionary’s handler
definitions and redefine only the ones that are different. Dictionary inheritance
is similar to inheritance in the object oriented paradigm, where a class inherits
all the behaviors of its parent class and redefines a behavior only if it changes.
An ecoli programmer can now specify that a dictionary /em extends a previous
dictionary, and with that, the new dictionary will automatically gain access to
all the parent dictionary’s handler definitions. This significantly reduces the size
of ecoli programs, since it has been empirically found that dictionaries share a
number of handlers in common. The following examples illustrate the use of dic-
tionary inheritance. The first code segment describes an implementation without
the use of inheritance and the second, with dictionary inheritance.

81



Inheritance - code fragment 1
(define-behavior

original-dict

()

(define-dict original

(HANDLER1

(src)

(trap src)

(send HANDLER1 (+ src 10))

)

(HANDLER2

(src)

(trap src)

(send HANDLER2 (* src 20))

)

(HANDLER3

(src)

(trap src)

(send HANDLER3 (/ src 50))

)

(ACTIVATE

()

(set current-dist 0)

(trap current-dist)

(send DIST my-id 1)

)

)

(define-dict derived

(HANDLER1

(src)

(trap src)

(send HANDLER1 (+ src 10))

)

(HANDLER2

(src)

(trap src)

(send HANDLER2 (* src 20))

)

(HANDLER3

(src)

(trap src)

(send HANDLER3 (+ src (/ src 50)))

)

(ACTIVATE

()

(set current-dist 0)

(trap current-dist)

(send DIST my-id 1)

)

)

82



Inheritance - code fragment 2
(define-behavior

extenddict

()

(define-dict original-dict

(HANDLER1

(src)

(trap src)

(send HANDLER1 (+ src 10))

)

(HANDLER2

(src)

(trap src)

(send HANDLER2 (* src 20))

)

(HANDLER3

(src)

(trap src)

(send HANDLER3 (/ src 50))

)

(ACTIVATE

()

(set current-dist 0)

(trap current-dist)

(send DIST my-id 1)

)

)

(define-dict derived (extend original-dict

(HANDLER3

(src)

(trap src)

(send HANDLER3 (+ src (/ src 50)))))

)

3.2 Remote Procedure Calls

Behaviors define specific tasks in an ecoli program. It would be useful if one
behavior could be called from another behavior as a subroutine in an aid to solve
a smaller problem on which the calling behavior can build. There are numer-
ous things to consider when trying to achieve this. First, there is no easy way
to suspend the execution of a behavior to facilitate the running of the subrou-
tine. Second, the mechanisms for detecting when a behavior is completed and
informing the calling behavior are tedious and unreliable. We have introduced
a Remote Procedure Call (RPC) like construct, that allows a behavior to call
another behavior as a subroutine, allow the subroutine to perform its task and
return to a specified handler in the calling behavior. It is similar to remote pro-
cedure calls in that the calling behavior essentially invokes the desire behavior
on its neighbors. A typical example is a solution for drawing a square given a be-
havior that defines a line-segment. ideally we would like to call the line-drawing
behavior as a subroutine to the square-drawing behavior. The following code
fragment illustrates the use of the call and return construct.

83



Remote Procedure Calls - code fragment

(define-behavior

run-prog

(define-dict

(ACTIVATE

()

(if b-point?

(begin

(set B-material true)

(call RETURNHERE find-dist ACTIVATE)))

)

(RETURNHERE

()

(send RETURNER)

)

)

The code illustrates how a call to a handler in the behavior can be implemented
as a subroutine. In the above case, the run-prog behavior calls the find-dist be-
havior as a subroutine. The called behavior will execute and when finished, will
pass control back to the run-prog behavior, more specifically to the RETURN-

HERE handler.

3.3 Instances of Behaviors

Each behavior usually represents a solution to a specific task in ecoli, and is
analogous to an object in the object oriented paradigm. The behavior’s state
is represented by its state variables and its current dictionary. Recall that all
agents in the amorphous environment execute the same program. Therefore, if
one agent starts a behavior to solve a particular problem for its own use, and
another agent starts the same behavior for a completely different problem. The
behaviors, though logically trying to achieve different versions of the same task,
still have the same name and since messages sent from an agent are delivered to
the handler of the behavior with the same name on its neighbors, there is no way
to stop the two executions of the behavior from interfering. Observe the following:
An ecoli programmer has defined a behavior that models the secretion process
of a particular chemical A. The behavior contains the concentration of Chemical
A as its state variable, and the process of secreting is modeled by the behavior’s
dictionaries and handlers. The programmer now decides to implement a process
that models the secretion of a new chemical B. Even though the process for
secreting Chemical A and B is identical, to stop the behaviors from interfering,
the programmer would have to implement an exact duplicate of the behavior
to secrete Chemical A with the only difference being the behavior’s name. We
have borrowed from the Object Oriented paradigm again in a bid to stem this
behavior duplication issue. In object oriented design, the implementation of a

84



solution is done only once, in a class, and all further uses of that implementation
simply creates an instance of the class. We can do the same thing here. If we
abstract away the elements of a behavior that makes it specific, and focus on
the commonalities between them, then we can then define instances of that
behavior to accomplish specific tasks. Since these instances are unique then they
will be able to execute concurrently on the amorphous media without the risk
of interference from each other. In the example above, the programmer would
simple make an instance of the secrete behavior for chemical A, and another
instance for chemical B. From the agents perspective, these instances are treated
as behaviors with separate names. Hence messages sent from these instances will
be delivered to the appropriate instances in the neighboring agent. Here is an
example of the use of instances, and how the concept was implemented in ecoli

before its introduction. The first code fragment demonstrates why instances are
important. It illustrates how the programmer would need to explicitly create a
different behavior for every specific execution of a secretion task. Whereas in the
second code fragment, the programmer simply defines the secrete behavior once,
and makes as many instances as necessary from it.

Instances - code fragment 1
(define-behavior

secrete-A-pheromone

...

(UPDATE

(val)

(guard (and (> val value)))

(set B-pheromone instance)

(set value val)

(send UPDATE (- value 1))

)

(POLL

()

(send SENDVALUES my-id)

)

)

)

(define-behavior

secrete-B-pheromone

(define-dict default

....

(UPDATE

(val)

(guard (and (> val value)))

(set B-pheromone instance)

(set value val)

(send UPDATE (- value 1))

)

(POLL

()

(send SENDVALUES my-id)

)

)

)

(define-behavior

run-prog

(define-dict

(ACTIVATE

()

(if b-point?

(begin

(set B-material true)

(call AFTERA secrete-B-pheromone ACTIVATE)))

(if a-point?

85



(begin

(set A-material true)

(call AFTERB secrete-A-pheromone ACTIVATE)))

)

)

)

Instances - code fragment 2
(define-behavior

secrete

...

(UPDATE

(val)

(guard (and (> val value)))

(set B-pheromone instance)

(set value val)

(send UPDATE (- value 1))

)

(POLL

()

(send SENDVALUES my-id)

)

)

)

(define-behavior

run-prog

(define-dict

(ACTIVATE

()

(if b-point?

(begin

(set B-pheromone (new secrete))

(call AFTERB B-pheromone ACTIVATE)))

(if a-point?

(begin

(set A-pheromone (new secrete))

(call AFTERA A-pheromone ACTIVATE)))

)

)

)

References

1. Coore, Daniel, Botanical Computing: A Developmental Approach to Generating

Interconnect Topologies on an Amorphous Computer. PhD thesis, MIT, Dept. of
Electrical Engineering and Computer Science, Feb 1999.

2. Abelson, H., D. Allen. D. Coore, C. Homsy, T. Knight, R. Nagpal, E. Rauch, G.
Sussman, and R. Weiss. Amorphous Computing. Communications of the ACM,
May 2000.

3. Campbell,Roy H., Gary M. Johnston, Peter W. Madany, Vincent F. Russo. Prin-

ciples of Object-Oriented Operating System Design (1991)
4. Shaw Mary, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,

Gregory Zelesnik. Abstractions for Software Architecture and Tools to Support

Them (1995)
5. Neighbors, James M., Software Construction Using Components (1980)

86



�✂✁☎✄✝✆✞✁☎✟✡✠☛✠✌☞✎✍✏✆✑✟✡✍✓✒✔✠✌✄✞✁✖✕✘✗✏✄✚✙✏✛✢✜✣✄✚✠✌✕✘✙✥✤✦✟✧✤✦☞★✄✚✍✏✟✡✩
✪ ✫✭✬✮☞✎✙✘✠

✯✱✰✳✲✎✴✳✵✥✶✸✷✹✰✻✺

✼✾✽❀✿❁✿❂✽❀❃❅❄✻❆✱✿❁❇❉❈❁❈❂✿❋❊❍●■✿❏❈❂❑▲❈❂❆■❈❂❇◆▼✎❖◗P❘❇❙❃❅❄✱●✱▼❀❚❯▼✹❱❀❲❨❳❬❩✦✽❀❭❫❪■❴❂❑❛❵■❱❀❇✭✼✾❜❞❝✹❡✻❢❤❣❀✐✳❳❦❥◆❧■❜

♠✭♥ ✴✳♦❉♣rqr✴■s✉t✭✲★✴ ♥ ♣rs❦✈①✇③②r④⑤✲★✴✳②⑥t❅✇⑧⑦❦✷✎♦❙t◆✈❉qr✷✝♣✉♦①✴■✵r✺⑨✷ ♥ ✴✳⑩✖✲★✴✳②✱✈❉♦①✴■✺⑨✺③✇⑨②✉④ ♥ ✇⑨✺③✺⑨✇③✴✳②⑥t✭✴✻⑩❋t①♣✉✰✻❶
✈①✇⑧✰✻✺③✺⑨❷❸⑦❦✇⑧t❂✈❉♦①✇③✵rs❦✈❉✷❀⑦❸sr②r♦❉✷✎✺③✇⑧✰✻✵r✺③✷❹⑦❦✷✎❺❬✇⑧✲★✷✹t❼❻❽qr✇⑧✲❙q❾✲★✴ ♥✾♥ sr②r✇⑧✲✎✰❨✈❉✷❿✴✳②r✺③❷✮✈❉✴✮②r✷✹✰✻♦❉✵✱❷➀②r✷✎✇③④✳qr❶
✵⑥✴■♦❉t❀➁❘➂➃✴➄♣✉♦①✴■④✳♦❙✰ ♥ t❅s✉✲❙q➀✰✥t①❷❦t❂✈❉✷ ♥✏➅ ❻✸✷✚②r✷✎✷✹⑦✮✰➄q✉✇⑨④■q❦❶❍✺③✷✎❺■✷✎✺➆⑦❦✷❀t❉✲★♦❉✇⑨♣r✈①✇③✴✳②➇✺⑧✰✻②✉④✳s✉✰✳④✳✷❼⑩➈✴■♦
⑦❦✷❀t①✇⑨♦❉✷❀⑦✥④✳✺③✴✳✵⑥✰✻✺➉✵❘✷✎q✉✰➊❺❬✇③✴✳♦❙t ➅ ✰✻②⑥⑦✥✰✾t①❷❬t❅✈①✷ ♥ ✈①✴❹✲✎✴ ♥ ♣r✇③✺⑨✷❼t①s✉✲❙q✘⑦❦✷❀t❉✲★♦❉✇③♣❦✈①✇③✴✳②✉t✸✇③②✱✈①✴❿✺③✴❬✲❀✰✻✺③✺⑨❷
✷★➋❦✷❀✲✎s❦✈①✇③②r④❾✲★✴❦⑦❦✷✘❻❽q✉✇③✲❙q➌✈①q✉✷✎②❞♦①✴■✵rs✉t❅✈①✺③❷➍✲✎♦①✷✹✰❨✈①✷✹t❿✰✻②✉⑦ ♥ ✰✻✇③②✱✈❉✰✳✇⑨②✉t✚✈❉qr✷➇⑦❦✷✹t❅✇③♦❉✷❀⑦➍④✳✺③✴✳✵✉✰✳✺
✵⑥✷❀q✉✰➊❺❬✇⑨✴■♦❀➁➉➎➏t❅s✉♦①❺■✷✎❷✏✈①q✉✷❹✷★➋❦✇⑧t❂✈❉✇⑨②r④✘✲✎✴ ♥ ♣rs❦✈❙✰❨✈①✇③✴✳②⑥✰✻✺✖♣r♦❉✇ ♥ ✇⑨✈①✇③❺✳✷✹t ➅ ④■✇⑨❺■✷❿⑦❦✷❀t①✇③⑦r✷✎♦❙✰❨✈❉✰✥⑩➈✴■♦✡✰
✺③✰✳②r④✳s✉✰✳④✳✷❽⑦❦✷✹t①✲✎♦①✇③✵r✇③②r④✡✲★✴ ♥ ♣✉s❦✈❉✰✻✈①✇③✴✳②✾✴✳②❿✰✻②❹✰ ♥ ✴✳♦❉♣rqr✴✳s⑥t ♥ ✷✹⑦❦✇③s ♥✏➅ ✰✻②⑥⑦❿t❅➐■✷★✈❉✲❙q✾qr✴❨❻➍✈①q✉✷
✷★➋❦✇③t❅✈①✇③②r④❼♣r♦❉✇ ♥ ✇⑨✈①✇③❺✳✷✹t ♥ ✇⑨④■q■✈✖✵❘✷✭✲★✴ ♥ ✵r✇③②r✷✹⑦✞✈❉✴❼♣r♦❉✴❬⑦rs✉✲★✷❽✰✻②✾✺⑧✰✻②r④■s✉✰✻④■✷❋✈❉q✉✰❨✈❋✲✎✴ ♥ ♣rs❦✈❉✷❀t☎✴■②
✰✻②✞✰ ♥ ✴■♦①♣✉qr✴✳s✉t➃✲★✴ ♥ ♣✉s❦✈①✷❀♦✦✰■t➑✈❉qr✴✳s✉④✳q✡✇⑨✈➆❻✸✷✎♦❉✷➒✰❫t❅♣⑥✰✳✲★✷✎❶➔➓⑥✺⑨✺③✇⑨②✉④→✲★✴ ♥ ♣✉s❦✈❉✰✻✈①✇③✴✳②✉✰✳✺ ♥ ✷❀⑦r✇⑨s ♥ ➁

➣ ↔➙↕✭➛➝➜➟➞✣➠✖➡r➢✧↕✭➠❋➤❫➥➌➦➀➠❋➞✣➢❫➤✭➧r➨❅➩✭➫➯➭◆➲➳➛◗➩→➵✦➡✉➨❂➠

➂◆qr✷✡✰ ♥ ✴✳♦❉♣rqr✴■s✉t✸✲★✴ ♥ ♣rsr✈①✇③②r④❿✷✎②r④■✇⑨②✉✷✎✷✎♦❉✇③②r④✚⑦r✴ ♥ ✰✻✇③②✥♣✉♦①✷✹t❅✷❀②■✈❙t❽✰✾t❅✷✎✈◆✴✳⑩✦✲❙q⑥✰✻✺③✺⑨✷❀②r④✳✇③②r④✚♦①✷✎❶
➸ s✉✇⑨♦❉✷ ♥ ✷✎②✱✈❙t✥✰✳②✉⑦➟♣r♦❉✴✳qr✇③✵r✇⑨✈①✇③✴✳②✉t❹✈①✴➺✈①qr✷❸t❅❷❦t❅✈①✷ ♥ ⑦r✷❀t①✇⑨④■②r✷✎♦ ➅ ⑩➈✴■♦❉✲✎✇⑨②r④➍✲★✴✳②r⑩➈♦①✴■②■✈❙✰❨✈❉✇⑨✴■②➟✴✻⑩
✇③t❉t❅s✉✷❀t✖✴✳⑩➑♦①✴■✵rs✉t❅✈①②r✷✹t①t ➅ ⑦r✇③t❅✈①♦❉✇⑨✵✉s❦✈①✇③✴✳② ➅ ✰✳②✉⑦❹t❉✲✎✰✻✺⑧✰✻✵✉✇⑨✺③✇❛✈❂❷■➁■➂◆qr✷✹t❅✷❫✲★✴✳②⑥t❂✈❉♦❉✰✳✇⑨②✱✈❉t➒⑦❦✷✎♦❉✇③❺✳✷ ♥ s✉✲❙q
✴✻⑩❽✈①q✉✷✎✇③♦✞✇③②✉t❅♣✉✇⑨♦❙✰❨✈❉✇⑨✴■②❸⑩➈♦①✴ ♥ ✵✉✇⑨✴■✺⑨✴■④✳✇⑧✲✎✰✻✺➒t❅❷❦t❅✈①✷ ♥ t✞✷✎②r④✱✰✻④✳✷✹⑦❸✇⑨② ♥ ✴■♦①♣✉qr✴✳④■✷✎②r✷✹t❅✇⑧t❼✰✻②✉⑦❾♦①✷✎❶
④✳♦❉✴❨❻◆✈①q ➅ ❻❽qr✇③✲❙q ♥ s✉t❅✈✧✵❘✷✝✰■✲✎✲✎✴ ♥ ♣r✺③✇③t①qr✷❀⑦✮✵✱❷✘✲✎✴✱✴■♦❉⑦r✇⑨②✉✰✻✈①✇③②r④❹✷✎➋✱✈❉♦①✷ ♥ ✷✎✺③❷⑤✺⑧✰✻♦❉④✳✷✞②✱s ♥ ✵❘✷✎♦❙t
✴✻⑩✦sr②r♦❉✷✎✺③✇③✰✳✵r✺⑨✷❼⑦❦✷❀❺❬✇③✲✎✷❀t❼➻➼✲✎✷✎✺③✺③t❙➽❤➁
➂◆qr✷✏➓✉♦❙t❂✈➄✰✳②✉⑦➍⑩➈✴✳♦❉✷ ♥ ✴■t❅✈❿♦①✷ ➸ s✉✇⑨♦❉✷ ♥ ✷✎②✱✈❿✇⑧t❹➾❀➚■➪r➶➼➪r➹➆➘➔➶➼➘➈➴❙➷☎➬☎✈❉qr✷✮②❬s ♥ ✵⑥✷❀♦❿✴✻⑩❼⑦❦✷✎❺❬✇⑧✲★✷❀t

♥ ✰➊❷✏✵❘✷✾✺③✰✳♦①④■✷ ➅ ✰✻②❬❷❬❻❽qr✷✎♦❉✷✡⑩➈♦❉✴ ♥ ✈①q✉✴✳s✉t❉✰✻②✉⑦✉t→✈❉✴ ♥ ✇③✺⑨✺③✇③✴✳②✉t✧✴✳♦✧✷✎❺■✷✎②➀✵r✇⑨✺③✺③✇⑨✴■②✉t✎➁➉✶✸✇③✴✳✺③✴✳④✳✇⑧✲✎✰✳✺
t❅❷❦t❅✈①✷ ♥ t ➅ ✇③②✏⑩➼✰✳✲★✈ ➅❘♥ ✰➊❷⑤✲★✴ ♥ ♣✉♦①✇⑧t❅✷➏✈❉♦①✇③✺③✺⑨✇③✴✳②✉t→✴✻⑩✖✲★✷❀✺⑨✺⑧t❀➁⑥➮✖♦❙✰✳✲★✈①✇⑧✲✎✰✳✺⑨✺③❷ ➅ ✈❉qr✇⑧t ♥ ✷❀✰✳②✉t❽✈❉q✉✰❨✈❫✰✳②
✰✻✺③④✳✴✳♦❉✇⑨✈①q ♥ ✇③t→✴✳②r✺③❷✥♦❉✷❀✰■t❅✴■②✉✰✻✵✉✺⑨✷➏✇⑨⑩✦✇⑨✈❉t→♣⑥✷❀♦❅❶❁⑦❦✷❀❺✱✇⑧✲★✷✝✰✳t①❷ ♥ ♣❦✈❉✴✻✈❉✇③✲❼✲✎✴ ♥ ♣r✺③✷★➋❦✇❛✈❂❷❸➻➈✷■➁ ④⑥➁⑥t①♣✉✰✳✲✎✷
✴✳♦❿✵✉✰✳②✉⑦❦❻❽✇⑧⑦❬✈①q➌♣⑥✷❀♦➄⑦❦✷❀❺✱✇⑧✲★✷➊➽✚✰✻♦❉✷⑤♣❘✴✳✺③❷❬②r✴ ♥ ✇⑧✰✻✺◆✇③②➌✺③✴✳④❋➱✃➻➈❻❽q✉✷✎♦❉✷✘➱❐✇⑧t✚✈①qr✷✘②❬s ♥ ✵⑥✷❀♦❿✴✻⑩
⑦❦✷✎❺❬✇⑧✲★✷❀t❙➽✸❒❮✰✳②✉⑦✮✰✻②❬❷✏✵❘✴✳sr②✉⑦➀t❅✇③④✳②✉✇❛➓⑥✲❀✰✻②✱✈①✺③❷⑤④✳♦❉✷❀✰❨✈❉✷✎♦→✈①q✉✰✳②➙❰✾➻➼Ï➈Ð✱➱◗➽→t❅q✉✴✳sr✺⑧⑦✮✵❘✷✡✈❉♦①✷✹✰❨✈①✷✹⑦
❻❽✇❛✈❉q➙✲✎✴✳②✉t①✇③⑦r✷✎♦❙✰✻✵r✺③✷✞t①s✉t❅♣✉✇③✲✎✇⑨✴■②➑➁➉Ñrsr♦①✈①qr✷❀♦ ➅ sr②✉✺⑨✇③➐✳✷ ♥ ✰✻②❬❷✘✰✳⑦❬❶❏qr✴❦✲✡②r✷✎✈❂❻➒✴■♦①➐❬✇③②r④✥⑦r✴ ♥ ✰✻✇③②✉t ➅
✰ ♥ ✴✳♦❉♣rqr✴■s✉t➄✲✎✴ ♥ ♣rs❦✈❉✇⑨②r④➍④✳✷❀②r✷✎♦❙✰✻✺③✺⑨❷❞✰✳t❉t①s ♥ ✷❀t➄➚➊Ò➆Ó❬➪❦Ô✔Ó❬Õ➃Ó✱Ö❨×⑥➷✉Ø✾➶➼Ù➑➚■➪r➶➄Ô➆Ö❨Ù➑➚✳Ó❬➾✹➾❀➘➔Õ➃×➃Ø
➪rÕ➃ÚÛ➾❀➴❀Ù⑥Ö➊➪✉×⑥Ó➄❒Ü✇⑨②✮✴✳✈①qr✷❀♦❫❻✸✴✳♦❙⑦rt ➅ ✰✳t❫✺③✴✳②r④➄✰■t❽✈❉qr✷✎❷✮⑦❦✴➄②r✴✻✈✧q✉✰➊❺✳✷✞✰➄qr✇③④✳q✮♣❘✷✎♦①❶❏⑦r✷✎❺❬✇③✲✎✷
✰✳t①❷ ♥ ♣❦✈❉✴✻✈❉✇③✲➏✲★✴ ♥ ♣r✺⑨✷✎➋❦✇❛✈❂❷ ➅❦♥ ✇③②r✇ ♥ ✇⑨Ý❀✇⑨②r④✾✈❉qr✷ ♥ ✇③t✭②r✴✻✈✭✴✳⑩➃♣✉✰✳♦❅✈❉✇③✲✎sr✺③✰✳♦◆✇⑨②✱✈①✷❀♦①✷✹t❂✈✹➁
➂◆qr✷◆②r✷★✈❂❻✸✴✳♦❉➐❼④✳♦❙✰✻♣rq✝✇③t☎⑦r✷★✈①✷❀♦ ♥ ✇③②r✷❀⑦✚✵❬❷❼✈❉qr✷✭➾✎Ô✦➪❦➴✹➘➼➪r➶➃Ú➃➘➔➾✎➴❀Ö➊➘➼➹➆Þ➃➴❀➘➔Ù⑥Õ⑤✴✳⑩⑥✈❉qr✷❽⑦❦✷✎❺❬✇⑧✲★✷❀t

✇⑨②❹t①✴ ♥ ✷→ß❋s✉✲★✺③✇③⑦r✷❀✰✻②❿t①♣✉✰✳✲✎✷ ➅ ❻❽q✉✇③✲❙q❹✲✎✴✳✺③✺③✰✳✵⑥✴■♦❉✰✻✈①✷◆❺❬✇③✰✡➶➔Ù➑➚✳➪✉➶➆➚■Ù⑥à➺à➀Þ➆Õ➃➘➔➚✳➪❦➴✹➘➼Ù❘Õ❋➁❨á❫✷✎❺❬✇⑧✲★✷❀t
✰✻♦❉✷✧④■✷✎②r✷❀♦❉✰✳✺⑨✺③❷❹➘➼à➺à❾Ù✉➹✦➘➼➶➔Ó✡sr②✉✺⑨✷✹t①t✸✈❉qr✷✡t❅♣⑥✰✳✲★✷➏✇③②✏❻❽qr✇③✲❙q⑤✈❉qr✷✎❷⑤✰✻♦❉✷❫✷ ♥ ✵❘✷❀⑦r⑦❦✷✹⑦⑤✇③t ♥ ✴❨❺■✷❀⑦
➻➈✷✳➁ ④✉➁☎✲✎s❦✈❅✈❉✇⑨②r④â✰✳②✉⑦➺♣⑥✰✳t❅✈①✇③②r④➙ã■t ♥ ✰✳♦❅✈✚♣✉✰✻♣❘✷✎♦❙ã■➽★➁ ♠ sr②✉✇❛✈❹⑦❦✇⑧t①✲ ♥ ✴❦⑦❦✷✎✺◆✇⑧t✾✴✻⑩ä✈❉✷✎②➌s✉t❅✷✹⑦â✈❉✴
✲★♦❉✷❀✰❨✈❉✷✚✈①qr✷❹②✉✷★✈❂❻✸✴✳♦❉➐ ➅ ✇③②â❻❽qr✇⑧✲❙qâ✰✏✵r✇③⑦r✇⑨♦❉✷❀✲★✈①✇③✴✳②✉✰✳✺☎✺⑨✇③②r➐➙✷★➋❦✇③t❅✈❉t✡✵⑥✷✎✈❂❻➒✷❀✷✎②➙✈❂❻➒✴✮⑦r✷✎❺❬✇③✲✎✷❀t➏✇⑨⑩
✰✻②✉⑦✝✴✳②r✺③❷❼✇⑨⑩✉✈①q✉✷✎❷✞✰✳♦①✷✸✺⑨✷✹t①t➃✈❉q✉✰✻②✾⑦❦✇⑧t❂✈❙✰✻②✉✲✎✷✸♦☎✰✳♣✉✰✻♦①✈❀➁❨å➑✴❦✲❀✰✻✺❦✲★✴ ♥✚♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②✞✇ ♥ ♣r✺③✇⑨✷✹t➆✈①q✉✰✻✈
✈①qr✷❼②r✷✎✈❂❻➒✴■♦①➐❿✇⑧t◆✷★➋❦♣❘✷❀✲★✈①✷❀⑦✥✈❉✴❿q✉✰➊❺✳✷➏✰✚qr✇⑨④■q✘⑦❦✇③✰ ♥ ✷★✈①✷❀♦ ➅ ✰✳②✉⑦ ➅ ✰■t①t①s ♥ ✇⑨②✉④✾✰✚♣✉✰■✲❙➐✳✷✎✈❅❶❏✵✉✰✳t①✷❀⑦
✲★✴ ♥✾♥ sr②r✇⑧✲✎✰❨✈❉✇⑨✴■② ♥ ✴❬⑦r✷✎✺ ➅ ✈①q✉✇③t ♥ ✷❀✰✻②⑥t➏✈①q✉✰✻✈✞✈❉qr✷❹✈❉✇ ♥ ✷❿⑩➈✴■♦✞✇③②❦⑩➈✴✳♦ ♥ ✰❨✈①✇③✴✳②❸✈❉✴✮♣r♦❉✴✳♣✉✰✳④■✰✻✈①✷
✈①qr♦❉✴✳sr④■q✞✈❉qr✷❽②r✷✎✈❂❻➒✴■♦①➐✡⑦❦✷❀♣⑥✷❀②✉⑦rt❋♣r♦①✇ ♥ ✰✻♦❉✇⑨✺③❷❼✴✳②✚✈❉qr✷❽②❬s ♥ ✵❘✷✎♦☎✴✳⑩❘qr✴■♣✉t✦✇⑨✈✖②r✷✎✷✹⑦rt✦✈①✴✧✈❉♦❉✰➊❺■✷✎✺❍➁

87



å➑✴❦✲✎✰✳✺✦✲✎✴ ♥✾♥ s✉②r✇③✲❀✰❨✈❉✇⑨✴■②➙✰✳✺③t①✴ ♥ ✷✹✰✻②✉t❫✈①q⑥✰❨✈✡✲★✴ ♥✚♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②❸✲★✴ ♥ ♣r✺③✷★➋❦✇⑨✈❂❷✘✇③t➏✵❘✷❀t❅✈ ♥ ✷❀✰✻❶
t❅sr♦❉✷❀⑦➍✵❬❷➺à❾➪❦æ➑➘➔à➀Þ➆à✓➚✳Ù❘à❾à➙Þ➃Õ➆➘➼➚■➪❦➴❀➘➔Ù⑥ÕçÚ➆Ó❬Õ➃➾✹➘➈➴❙➷➟❒è✈①qr✷ ♥ ✰❨➋❦✇ ♥ s ♥ ✵⑥✰✻②✉⑦❦❻❽✇⑧⑦❬✈❉q
♦①✷ ➸ s✉✇⑨♦❉✷❀⑦✥✵❬❷➄✰✾⑦❦✷✎❺❬✇⑧✲★✷✧❒✌♦❙✰❨✈①q✉✷✎♦◆✈①q⑥✰✻②⑤✵✱❷✥②❬s ♥ ✵❘✷✎♦❽✴✳⑩ ♥ ✷❀t❉t❉✰✻④✳✷✹t✎➁
á→sr✷➀✈①✴➍✈①q✉✷➙②❬s ♥ ✵⑥✷❀♦✥✴✳⑩✝⑦❦✷❀❺✱✇⑧✲★✷✹t⑤♣⑥✴✳✈①✷✎②✱✈❉✇③✰✳✺⑨✺③❷➟✇⑨②❬❺■✴✳✺③❺✳✷❀⑦ ➅ ✈❉qr✷➙t①❷❦t❂✈❉✷ ♥é♥ s✉t❂✈✏②r✴✳✈

⑦❦✷✎♣❘✷✎②✉⑦ê✴✳② ♥ s⑥✲❙qê✲✎✰✻♦❉✷✮✰✻②⑥⑦➌⑩➈✷✎✷❀⑦r✇⑨②r④➺✴✻⑩➏✈①qr✷➇✇⑨②✉⑦r✇⑨❺❬✇⑧⑦❦s✉✰✻✺➏⑦❦✷❀❺✱✇⑧✲★✷✹t✎➁❋➎❁②ê④✳✷❀②r✷✎♦❙✰✻✺ ➅ ✇⑨✈➄✇③t
✰✳t❉t❅s ♥ ✷✹⑦❿✈①q⑥✰❨✈❽✷✎❺■✷✎♦❉❷❹⑦❦✷✎❺❬✇⑧✲★✷✧✇③t❽➘➔Ú➃Ó❬Õ➳➴❀➘➔➚✳➪r➶➔➶➈➷❾Ô➆Ö❨Ù⑥×⑥Ö❨➪rà❾à❾Ó❬Ú ➅ ✵rsr✈❽✈①q✉✰✻✈✸✈❉qr✷✎♦❉✷➏✲✎✰✻②⑤✵❘✷
✰✝t ♥ ✰✻✺③✺➳✰ ♥ ✴✳sr②✱✈❽✴✻⑩➃Ú➆➘➈ë➒Ó■Ö❨Ó❬Õ➳➴❀➘➔➪❦➴❀➘➔Ù⑥Õ➍ì➑➘➼➪➀➘➼Õ➆➘➈➴✹➘➼➪r➶✖➚■Ù⑥Õ➆Ú➆➘➈➴❀➘➔Ù⑥Õ➆➾■➁rí❫②⑥✲★✷❫✈①qr✷❼t①❷❬t❅✈①✷ ♥ ✇③t
♦①sr②✉②r✇⑨②✉④ ➅ qr✴❨❻✸✷✎❺■✷✎♦ ➅ ✈❉qr✷✎♦❉✷➏✇③t→Õ➃Ù➙Ô❋Ó✱Ö✹î❉Ú➆Ó✱ì➑➘➼➚✳Ó➇➪rÚ➃à➺➘➼Õ➆➘➼➾❀➴✎Ö❨➪❦➴❀➘➔Ù⑥Õ➙✰✻✺③✺③✴❨❻➒✷✹⑦➉➁
➂◆qr✷✎♦❉✷❫✰✳♦①✷✧t❂✈❉♦①✇⑧✲❤✈◆✺⑨✇ ♥ ✇❛✈❙✰❨✈❉✇⑨✴■②✉t❋✴■②❹✈❉qr✷✧✰■t①t①s ♥ ✷❀⑦➄②r✷★✈❂❻✸✴✳♦❉➐✚✇⑨②❦⑩➈♦❙✰✳t❅✈①♦❉s✉✲★✈①sr♦❉✷✳➁❬➂◆qr✷➏t❅❷❦t❅❶

✈①✷ ♥ ✷★➋❦✷❀✲✎s❦✈①✷✹t◆❻❽✇❛✈❉q✏Ô➆➪❦Ö➊➴✹➘➼➪r➶❽➾❀➷➑Õ➃➚➊Ò➃Ö❨Ù⑥Õ➳➷➀❒☛✷✹✰✳✲❙q✥⑦r✷✎❺❬✇③✲✎✷ ♥ ✰➊❷❹✵⑥✷✡✰■t①t①s ♥ ✷❀⑦➄✈①✴✾q✉✰➊❺■✷
✰✮✲★✺③✴❦✲❙➐➇❻❽qr✇⑧✲❙q❸✈①✇⑧✲❙➐❦t✡♦❉✷✎④✳s✉✺③✰✳♦①✺③❷ ➅ ✵rsr✈✞✈①q✉✷➄✲★✺③✴❦✲❙➐❬t ♥ ✰➊❷❸t①qr✴❨❻✣⑦r✇❛ï➳✷✎♦❉✷✎②✱✈✡✈❉✇ ♥ ✷❀t ➅ ♦❉sr②❾✰✻✈
➻➈✵❘✴✳sr②✉⑦r✷❀⑦❦✺③❷r➽➏⑦❦✇❛ï➳✷✎♦❉✷✎②✱✈❼♦❙✰❨✈①✷✹t ➅ ✰✳②✉⑦➇q⑥✰➊❺✳✷✾⑦❦✇❛ï➳✷✎♦❉✷✎②✱✈❼♣rq✉✰■t❅✷✹t✎➁➉➎❁②❸✰✳⑦✉⑦❦✇❛✈❉✇⑨✴■② ➅ ✈①q✉✷✾t①❷❦t❂✈❉✷ ♥
♥ ✰➊❷➄②r✴✻✈✭✰✳t❉t①s ♥ ✷➏✲✎✴ ♥ ♣r✺③✷★➋✥t①✷✎♦❉❺❬✇③✲✎✷❀t✸②r✴✳✈◆♣✉♦①✷✹t❅✷❀②■✈❉✺⑨❷➄✷★➋❬✈①✷❀②✉⑦❦✷❀⑦✥✈❉✴✝✈❉qr✷✡✰ ♥ ✴■♦①♣rq✉✴✳s✉t◆⑦❦✴✳❶
♥ ✰✳✇⑨②✘❒✑✈❉qr✇③t❫✇⑧t→✰✻♣✉♣r✺⑨✇③✷❀⑦✮♣✉✰✻♦①✈①✇⑧✲★sr✺⑧✰✻♦❉✺③❷➄✈❉✴ ♥ ✷❀✰✻②➀Õ➃Ù➍×⑥➶➔Ù✉➹✦➪r➶❽Õ➆➪rà❾➘➼Õ➆×➃Ø➆Ö❨Ù❘Þ◗➴✹➘➼Õ➆×◗Ø➒Ù✉Ö
➚✳Ù➑Ù⑥Ö❨Ú➃➘➔Õ➃➪❦➴✹Ó✮➾✹Ó■Ö➊ì➑➘➔➚✳Ó ♥ ✰➊❷❹✵❘✷✡✰✳t❉t❅s ♥ ✷✹⑦➉➁
Ñ➃✇③②✉✰✳✺⑨✺③❷ ➅ ✇③②➙✰➄✺③✰✳♦①④■✷ ➅ t❅♣✉✰✻✈①✇⑧✰✻✺③✺⑨❷✮⑦r✇③t❅✈①♦❉✇⑨✵✉s❦✈①✷✹⑦➇②r✷✎✈❂❻➒✴■♦①➐✏✴✳⑩➒⑦❦✷✎❺❬✇⑧✲★✷✹t ➅ ⑩➼✰✻✇③✺③sr♦①✷✹t➏✰✻♦❉✷✞②r✴✳✈

✇③t①✴✳✺⑧✰❨✈❉✷❀⑦❿✷❀❺✳✷✎②✱✈❙t✎➁✱á→sr✷❫✈①✴✞✈①qr✷✧t❅q✉✷✎✷✎♦✸②❬s ♥ ✵❘✷✎♦✸✴✻⑩◗⑦r✷✎❺❬✇③✲✎✷❀t ➅ ♣❘✴✳✇③②✱✈❋⑩➼✰✳✇⑨✺③sr♦❉✷❀t✸✰✻♦❉✷✭✵⑥✷✹t❂✈ ♥ ✷❀✰✻❶
t❅sr♦❉✷❀⑦✥✵❬❷✥✰✳②✥✷✎➋❬♣❘✷❀✲★✈①✷✹⑦✥Ö❨➪❦➴✹Ó➇Ù❘ð✭Ú➆Ó■ì➑➘➔➚✳Ó✘ð❏➪r➘➔➶➼Þ➃Ö➊Ó❘➁✉➂◆q✉✇③t✭t①sr④■④✳✷❀t❅✈❉t◆✰✳✺③t①✴✚✈①q✉✰✻✈ ♥ ✷✎✈①qr✴❦⑦rt
✴✻⑩❽✰✻②✉✰✳✺⑨❷❦t①✇③t➏✺③✇⑨➐■✷❿q✉✰✻✺⑨⑩ä❶❏✺⑨✇⑨⑩➈✷❹✰✻②✉✰✳✺⑨❷❦t①✇③t✹ñ ò❨ó✖❻❽✇③✺⑨✺✖✵❘✷ ♥ ✴✳♦❉✷✾s✉t①✷★⑩➈sr✺❋✈①q✉✰✳②❸t❅✈❉✰✳②✉⑦r✰✳♦❉⑦❸ô⑥❶➔⑩➼✰✳✇⑨✺③sr♦❉✷
✰✻②✉✰✳✺⑨❷❦t①✇③t❀➁■➎❁②⑤✰✳⑦r⑦r✇❛✈❉✇⑨✴■② ➅ ✵❘✷❀✲❀✰✻s✉t①✷❫✈①qr✷✧②r✷★✈❂❻✸✴✳♦❉➐✚✇③t◆t①♣✉✰❨✈❉✇③✰✳✺⑨✺③❷✾✷ ♥ ✵❘✷❀⑦✉⑦❦✷❀⑦ ➅ ✴■s❦✈❉t①✇③⑦r✷❫✷❀❺✳✷✎②✱✈❙t
♥ ✰➊❷✘✲❀✰✻s✉t①✷✚ð❏➪r➘➔➶➼Þ➃Ö❨Ó➙Ù❘ð❼➪❦Ö➊➹✦➘➈➴✎Ö❨➪❦Ö➊➷õ➾✎Ô✦➪❦➴✹➘➼➪r➶→Ö➊Ó❬×❘➘➼Ù❘Õ➃➾✡❒❮✺⑧✰✻♦❉④✳✷✎♦❫♦①✷❀④✳✇③✴✳②✘⑩➼✰✳✇⑨✺③sr♦❉✷❀t✧✰✻♦❉✷
✰✳t❉t❅s ♥ ✷✹⑦✡✈❉✴❼✴❬✲❀✲★sr♦☎✺③✷❀t❉t✦⑩➈♦❉✷ ➸ sr✷❀②■✈❉✺⑨❷■➁✳ö✧✷✎②r✷❀♦❉✰✳✺⑨✺③❷✞t❅✈①✴■♣r♣r✇③②r④➏⑩➼✰✻✇③✺⑨s✉♦①✷✹t☎✰✻♦❉✷✸q⑥✰➊❺✳✷◆✵⑥✷❀✷✎②✾s✉t①✷❀⑦ ➅
✇⑨②⑤❻❽qr✇⑧✲❙q❹✈①q✉✷→⑩➼✰✳✇⑨✺③✇⑨②✉④✚⑦❦✷❀❺❬✇③✲✎✷❫✴■♦➒✺③✇⑨②✉➐➄t❅✇ ♥ ♣r✺③✷✧✲✎✷❀✰✳t①✷❀t➒✴✳♣❘✷✎♦❙✰❨✈❉✇⑨②✉④✉➁❬Ñ➃✇③②✉✰✳✺⑨✺③❷ ➅❦♥ ✰✻✇③②✱✈①✷❀②✉✰✻②✉✲✎✷
♦①✷ ➸ s✉✇⑨♦❉✷❀t✝♦①✷✹✲★✴❨❺■✷✎♦❉❷➇✴✳♦✚♦❉✷✎♣r✺⑧✰✳✲✎✷ ♥ ✷✎②✱✈✾✴✻⑩✭⑩➼✰✳✇⑨✺③✷❀⑦➍⑦❦✷✎❺❬✇⑧✲★✷❀t❀➬✦✇⑨②➍✷✎✇⑨✈①qr✷❀♦❿✲✎✰✳t①✷ ➅ ✈①q✉✷⑤✷✎ï❘✷✹✲❤✈✾✇③t
✈①q✉✰✻✈→Õ➃Ó✱÷øÚ➆Ó■ì➑➘➔➚✳Ó❬➾✭ù✹Ù⑥➘➔Õ➙✈①qr✷❼②✉✷★✈❂❻✸✴✳♦❉➐❿✷✎✇⑨✈①qr✷❀♦✭✇⑨②⑥⑦❦✇⑨❺❬✇⑧⑦❦s✉✰✳✺⑨✺③❷❹✴✳♦✭✰■t❽✰✚♦①✷❀④✳✇③✴✳②➑➁

ú û⑤ü✭➨❅➥■➧r➨❅➩→➫✃➜➟➞✣➠✖➡r➢✧↕✭➠❋➤❫➥➌➦➀➠❋➞✣➢❫➤✭➧r➨❅➩✭➫✃ý➇➡✉➨①➞ç➨❁➧r➨❁þ❋➛➃➥

ÿ ✷✎❺■✷✎♦❙✰✻✺✉✷✎➋❦✇③t❅✈①✇③②r④✞✰ ♥ ✴■♦①♣✉qr✴✳s✉t➒✲★✴ ♥ ♣✉s❦✈①✇③②r④✞✰✳✺⑨④■✴✳♦❉✇❛✈❉q ♥ t✖❻❽✇③✺⑨✺➳t❅✷❀♦①❺■✷→✰✳t❋s✉t①✷★⑩➈sr✺❘♣r♦❉✇ ♥ ✇⑨✈①✇③❺✳✷❀t
⑩➈✴✳♦✡✲★✴■②✉t❅✈①♦❉s✉✲❤✈❉✇⑨②r④✏✰✥✺③✰✳②r④✳s✉✰✳④✳✷■➁➳ß➒✰✳✲❙q➇✰✳✺⑨④■✴✳♦❉✇❛✈❉q ♥ t①s ♥✾♥ ✰✳♦①✇③Ý✎✷✹⑦➇q✉✷✎♦❉✷✝q✉✰■t➏✵⑥✷❀✷✎②➙✇ ♥ ♣r✺③✷★❶
♥ ✷❀②✱✈①✷❀⑦✏✰■t❽✰ ♥ ✴❦⑦❦sr✺③✷❼✴✻⑩✦✲★✴❦⑦❦✷✡✰✳②✉⑦✥⑦r✷ ♥ ✴✳②✉t❅✈①♦❙✰❨✈❉✷❀⑦✥✇⑨②✘t①✇ ♥ sr✺⑧✰❨✈①✇③✴✳②◗➁

�✂✁☎✄ ✆ Ò➃➪rÖ➊Ó❬Ú✞✝✘Ó❬➘➼×❘Ò➳➹❋Ù⑥Ö❨Ò➃Ù➑Ù◗Ú✠✟⑤➪❦➴❀➪

➂◆qr✇③t➆t①✇ ♥ ♣r✺③✷ ♥ ✴❦⑦❦sr✺③✷❋✰✻✺③✺③✴❨❻✭t◗⑦❦✷❀❺✱✇⑧✲★✷✹t➉✈❉✴❫✲★✴ ♥✾♥ sr②r✇⑧✲✎✰✻✈①✷✖✵❬❷ ♥ ✷❀✰✻②⑥t➑✴✻⑩✉✰→t❅q✉✰✳♦①✷✹⑦❬❶ ♥ ✷ ♥ ✴✳♦❉❷
♦①✷❀④✳✇③✴✳②➑➁✻ß➒✰✳✲❙q✝⑦r✷✎❺❬✇③✲✎✷ ♥ ✰✻✇③②■✈❙✰✻✇③②✉t☎✰❫✈❉✰✳✵r✺⑨✷❽✴✳⑩❘➐■✷✎❷✱❶❏❺➊✰✳✺⑨s✉✷➒♣✉✰✳✇⑨♦❙t✦❻❽qr✇⑧✲❙q✾✇❛✈✖❻❽✇⑧t❅q✉✷❀t➆✈①✴✡t①q✉✰✳♦①✷■➁
➮✦✷✎♦❉✇⑨✴❦⑦❦✇⑧✲✎✰✳✺⑨✺③❷➏✷❀✰✳✲❙q✾⑦❦✷❀❺✱✇⑧✲★✷➒✈①♦❙✰✻②⑥t ♥ ✇⑨✈❉t✦✇⑨✈❉t➆✈❉✰✳✵r✺③✷➒✈❉✴➏✇❛✈❙t☎②r✷✎✇③④✳q❬✵❘✴✳♦❙t ➅ ✇③②❦⑩➈✴✳♦ ♥ ✇⑨②r④✧✈❉qr✷ ♥ ✈①q✉✰✻✈
✇❛✈❽✇⑧t❽t❂✈❉✇⑨✺③✺➑✰✚②r✷✎✇③④✳q❬✵❘✴✳♦◆✰✻②✉⑦✥♦①✷✎⑩➈♦①✷✹t❅q✉✇⑨②r④✝✈①q✉✷✎✇③♦❽❺✱✇③✷✎❻❐✴✻⑩➃✇⑨✈❉t❽t①q✉✰✳♦①✷✹⑦ ♥ ✷ ♥ ✴✳♦❉❷✳➁☛✡➒✴■②✱❺■✷✎♦❙t❅✷❀✺⑨❷ ➅
✰✏②r✷✎✇③④✳q❬✵❘✴✳♦✡✇⑧t✡♦❉✷ ♥ ✴❨❺✳✷✹⑦✮⑩➈♦❉✴ ♥ ✈①qr✷➄✈❉✰✳✵r✺⑨✷❿✇⑨⑩ ♥ ✴✳♦❉✷✾✈①q✉✰✳②❾✰✘✲★✷❀♦❅✈❙✰✻✇③②➀✈❉✇ ♥ ✷❹q⑥✰✳t✡✷❀✺③✰✳♣✉t①✷❀⑦
t❅✇③②✉✲★✷✝✇❛✈❙t→✺⑧✰✳t❅✈❫♦❉✷★⑩➈♦❉✷❀t①q➑➁➳➂◆qr✷ ♥ ✴❦⑦❦sr✺③✷✾✲✎✰✻②✏✈❉qr✷✎②➀✵⑥✷ ➸ sr✷✎♦❉✇③✷❀⑦✏⑩➈✴■♦✭✈①q✉✷✚t①✷★✈✧✴✻⑩✖②r✷❀✇⑨④■q✱✵❘✴✳♦❙t ➅
✰✻②✉⑦➄✈①qr✷❼❺❨✰✳✺⑨sr✷✹t❽✇⑨✈❉t◆②r✷❀✇⑨④■q✱✵❘✴✳♦❙t ♥ ✴■t❅✈❽♦①✷✹✲★✷✎②✱✈❉✺⑨❷❹q✉✷✎✺⑧⑦➄⑩➈✴■♦✭✰✻②❬❷❹➐■✷✎❷❹✇③②✏✇❛✈❙t✸✈❉✰✻✵✉✺⑨✷■➁

☞✮✰✻✇③②✱✈❉✰✻✇③②r✇③②r④✝t①q✉✰✳♦①✷✹⑦❿②r✷✎✇③④✳q❬✵❘✴✳♦❉qr✴❬✴❦⑦❹⑦r✰❨✈❙✰❼✈❙✰✻➐✳✷✹t❋♦❉✷ ➸ sr✇③♦❉✷❀t✸t❂✈❉✴✳♦❙✰✻④✳✷❫✰✻②✉⑦❹✲✎✴ ♥✾♥ s✉②r✇❛❶
✲✎✰❨✈❉✇⑨✴■②⑤⑦r✷✎②✉t①✇❛✈❂❷✥♣r♦❉✴✳♣❘✴✳♦①✈①✇③✴✳②✉✰✳✺✉✈❉✴✾✈①qr✷✡✰ ♥ ✴■sr②✱✈❽✴✻⑩➆⑦✉✰❨✈❉✰✾✵❘✷✎✇③②r④❿t①q✉✰✻♦❉✷❀⑦➉➁

88



�✂✁✌� ✍ Ó✱×❘➘➼Ù❘Õ➆➾
➂◆qr✷✞♦❉✷✎④■✇⑨✴■② ♥ ✴❦⑦❦sr✺③✷ ♥ ✰✳✇⑨②✱✈❙✰✻✇③②✉t✭✺⑧✰✻✵❘✷✎✺⑧t❽⑩➈✴■♦✧✲✎✴✳②✱✈①✇③④✳sr✴■s✉t✭t①✷★✈❙t→✴✳⑩☎⑦r✷✎❺❬✇③✲✎✷❀t❀➁ ♠✏✎ ✷✎④■✇⑨✴■②✘✇③t
⑦❦✷★➓✉②✉✷❀⑦✡✵❬❷❼✰❫②✉✰ ♥ ✷➒✰✳②✉⑦✡✰ ♥ ✷ ♥ ✵❘✷✎♦❙t①qr✇⑨♣✡✈①✷❀t❅✈❀➁✒✑➟qr✷❀②✝t①✷✎✷✹⑦❦✷❀⑦✞✇⑨②✡✴■②r✷✸✴✳♦ ♥ ✴■♦①✷✸⑦❦✷✎❺❬✇⑧✲★✷❀t ➅ ✰
✎ ✷✎④■✇⑨✴■②➄t❅♣✉♦①✷✹✰✳⑦rt❋❺✱✇⑧✰✡t①q✉✰✻♦❉✷❀⑦✾②✉✷✎✇③④✳q❬✵⑥✴■♦①q✉✴✱✴❦⑦❿⑦r✰✻✈❉✰✡✈①✴✝✰✳✺⑨✺➳✰✳⑦✔✓❂✴✳✇③②r✇⑨②✉④✞②r✴❦⑦❦✷✹t✖✈❉q✉✰❨✈◆t①✰✻✈①✇⑧t❂⑩➈❷
✈①qr✷ ♥ ✷ ♥ ✵❘✷✎♦❙t❅qr✇③♣✚✈①✷✹t❂✈✹➁✕✑➟qr✷❀②✾✰ ✎ ✷✎④✳✇③✴✳②✾✇⑧t✖⑦❦✷✹✰✻✺③✺⑨✴❦✲✎✰✻✈①✷✹⑦ ➅ ✰✧④■✰✳♦①✵✉✰✳④✳✷◆✲★✴■✺⑨✺③✷❀✲★✈①✇③✴✳② ♥ ✷❀✲❙q✉✰✻❶
②r✇③t ♥ t①♣r♦❉✷❀✰■⑦rt➒✈①qr✷✞⑦r✷❀✰✻✺③✺③✴❬✲❀✰❨✈❉✇⑨✴■②❹✈①q✉♦①✴■sr④✳qr✴■s❦✈◆✈①qr✷❼♣⑥✰✻♦①✈①✇⑧✲★✇③♣✉✰❨✈❉✇⑨②r④❿⑦❦✷❀❺❬✇③✲✎✷❀t ➅ ✰❨✈①✈①✷ ♥ ♣❦✈❉✇⑨②✉④
✈①✴❿✷✎②⑥t❅sr♦❉✷❫✈①q✉✰✻✈❽✈①qr✷✡⑦❦✷✎⑩➈sr②✉✲★✈ ✎ ✷✎④■✇⑨✴■②✥✇⑧t◆♦❉✷ ♥ ✴❨❺✳✷✹⑦❿✈①✴✳✈❉✰✳✺⑨✺③❷✳➁

✖✭✴✻✈❉✷✡✈❉q✉✰❨✈❫⑩➼✰✻✇③✺⑨sr♦❉✷❀t→✴✳♦❫✷✎❺✳✴■✺⑨❺❬✇③②r④➄t①❷❦t❂✈❉✷ ♥ t❂✈❙✰❨✈❉✷ ♥ ✰➊❷⑤t①✷✎♣⑥✰✻♦❙✰❨✈①✷✝✰ ✎ ✷✎④■✇⑨✴■②✮✇③②■✈❉✴➄⑦❦✇⑧t❂❶
✲★✴✳②✉②r✷❀✲★✈①✷❀⑦➄✲★✴ ♥ ♣❘✴✳②r✷❀②✱✈❉t❀➁✕✑➟qr✇③✺⑨✷→✈①qr✷✹t❅✷✧✰✻♦❉✷→t❅✈①✇③✺⑨✺❘✺⑨✴■④✳✇⑧✲✎✰✳✺⑨✺③❷✡✈❉qr✷❫t❉✰ ♥ ✷ ✎ ✷❀④✳✇③✴✳② ➅ ✰✻②✉⑦ ♥ ✰➊❷
♦①✷✗✓❂✴✳✇③②✞✇③②■✈❉✴❼✰❫t①✇⑨②✉④✳✺③✷✸✲✎✴✳②r②r✷✹✲❤✈❉✷❀⑦✞✲✎✴ ♥ ♣❘✴✳②r✷❀②■✈☎✇③②✡✈❉qr✷✸⑩➈s❦✈①sr♦❉✷ ➅ ✇③②❦⑩➈✴■♦ ♥ ✰❨✈❉✇⑨✴■② ♥ ✰➊❷❼②r✴✳✈✦♣⑥✰✳t❉t
✵⑥✷✎✈❂❻➒✷❀✷✎②❸⑦❦✇③t❉✲★✴■②r②r✷✹✲❤✈①✷✹⑦➇✲✎✴ ♥ ♣⑥✴■②r✷✎②✱✈❙t✎➁ ♠ t❼✰✥♦❉✷❀t①sr✺❛✈ ➅ ✈①qr✷❿t❅✈❉✰❨✈❉✷✾✴✻⑩➒⑦❦✇⑧t❉✲★✴✳②✉②r✷❀✲★✈①✷❀⑦➙✲★✴ ♥ ❶
♣⑥✴■②r✷✎②✱✈❉t◆✴✳⑩✦✰ ✎ ✷❀④✳✇③✴✳② ♥ ✰➊❷❿✷✎❺✳✴■✺⑨❺■✷✧t①✷✎♣⑥✰✻♦❙✰❨✈①✷❀✺⑨❷ ➅ ✰✻②✉⑦⑤✇③②✥♣✉✰✳♦❅✈❉✇③✲✎sr✺⑧✰✻♦◆④■✰✳♦①✵✉✰✳④✳✷➏✲★✴■✺⑨✺③✷❀✲★✈①✇③✴✳②
✇③t❽✴■②r✺③❷❹④✳s✉✰✳♦❉✰✳②✱✈①✷✎✷✹⑦❿✈❉✴✚✵❘✷❼✷★ï➳✷❀✲★✈①✇③❺✳✷❼✇③②⑤✰❿✲✎✴✳②r②✉✷❀✲❤✈❉✷❀⑦⑤✲★✴ ♥ ♣❘✴✳②✉✷✎②✱✈❽✴✻⑩☎✰ ✎ ✷✎④✳✇③✴✳②◗➁

✎ ✷✎④■✇⑨✴■②✉t✡✰✻♦❉✷❿✴✳♦❉④■✰✳②r✇③Ý✎✷❀⑦➀✇③②■✈❉✴➇✰⑤✈①♦❉✷✎✷ ➅ ❻❽✇⑨✈①q❾✷❀❺✳✷❀♦①❷➇⑦r✷✎❺❬✇③✲✎✷❹✵❘✷✎✺③✴✳②r④■✇⑨②r④✏✈❉✴✘✈①q✉✷➄♦❉✴✱✴✳✈
♦①✷❀④✳✇③✴✳②➑➁✖➎❁②➟✴■♦❉⑦r✷✎♦✾⑩➈✴✳♦⑤✰â⑦❦✷✎❺❬✇⑧✲★✷✘✈❉✴❾✵❘✷➇✰ ♥ ✷ ♥ ✵⑥✷❀♦➄✴✻⑩✡✰❸♦❉✷✎④■✇⑨✴■② ➅ ✇⑨✈ ♥ s✉t❅✈✥✰✳✺③t①✴â✵⑥✷➀✰
♥ ✷ ♥ ✵❘✷✎♦❽✴✳⑩➑✈①q✉✰✻✈❽♦①✷❀④✳✇③✴✳②✙✘ t❋♣⑥✰✻♦❉✷✎②✱✈✸✇③②✥✈①qr✷✧✈①♦❉✷✎✷■➁❦➂◆qr✇③t◆✇ ♥ ♣r✺③✇③✲✎✇❛✈✭✲★✴ ♥ ♣⑥✴■sr②✉⑦❦✇③②r④✚✴✻⑩ ♥ ✷ ♥ ❶
✵⑥✷❀♦❉t①qr✇③♣➀✈❉✷❀t❅✈❉t✝✰✻✺③✺⑨✴❨❻✭t✧♦❉✷✎④✳✇③✴✳②⑥t✧✈①✴✘✷★➋❦qr✇③✵r✇⑨✈✝t❅✈❉✰✳✲❙➐✱❶❏✺⑨✇③➐✳✷✚✵❘✷✎q✉✰➊❺❬✇③✴✳♦❼❻❽qr✇⑧✲❙q❸❻❽✇⑨✺③✺❋✵❘✷❹s✉t①✷★⑩➈sr✺
⑩➈✴✳♦❽✷❀t❅✈❉✰✳✵r✺③✇③t①qr✇③②r④✾✷★➋❦✷❀✲✎s❦✈①✇③✴✳②✏t①✲✎✴✳♣❘✷➏✇⑨②✘✰✾qr✇③④✳q❦❶❏✺③✷✎❺✳✷❀✺➳✺③✰✳②r④✳s✉✰✳④✳✷■➁

☞✮✰✻✇③②✱✈❉✰✻✇③②r✇③②r④ ✎ ✷❀④✳✇③✴✳②✉t❹♦①✷ ➸ s✉✇⑨♦❉✷❀t✥t❂✈❉✴✳♦❙✰✻④✳✷✮✰✳②✉⑦➟✲★✴ ♥✾♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②ê⑦❦✷❀②✉t①✇❛✈❂❷❞♣r♦❉✴✳♣❘✴✳♦①❶
✈①✇③✴✳②✉✰✳✺☎✈①✴✏✈❉qr✷❿②❬s ♥ ✵❘✷✎♦✡✴✳⑩ ✎ ✷✎④✳✇③✴✳②⑥t❼✵⑥✷❀✇⑨②✉④ ♥ ✰✳✇⑨②✱✈❙✰✻✇③②r✷❀⑦ ➅ ⑦❦sr✷✾✈①✴✏✈❉qr✷ ♥ ✰✻✇③②✱✈①✷❀②✉✰✻②✉✲✎✷✾✴✻⑩
t❅q✉✰✳♦①✷✹⑦❸②r✷✎✇③④✳q❬✵❘✴✳♦❉qr✴❬✴❦⑦➙⑦✉✰❨✈❉✰✉➁✦ö➏✰✳♦①✵⑥✰✻④✳✷❹✲✎✴✳✺③✺⑨✷✹✲❤✈❉✇⑨②r④➀✰ ✎ ✷✎④■✇⑨✴■②â♦①✷ ➸ sr✇⑨♦❉✷❀t❼✈①✇ ♥ ✷⑤♣r♦❉✴✳♣❘✴✳♦①❶
✈①✇③✴✳②✉✰✳✺➳✈①✴✾✈①q✉✷✡⑦❦✇③✰ ♥ ✷★✈①✷❀♦❽✴✻⑩➃✈①qr✷ ✎ ✷❀④✳✇③✴✳②➑➁

�✂✁✛✚ ✜ Ö❨Ù⑥➪rÚ➆➚✳➪✉➾✎➴✔✢✤✣✝Ù❘Õ➳ì⑥Ó✱Ö❨×⑥Ó❬➚✳➪✉➾✎➴
➂◆qr✷✘✵r♦❉✴■✰✳⑦✉✲✎✰✳t❅✈✦✥✻✲★✴■②✱❺■✷✎♦❉④✳✷✹✲✎✰✳t❅✈ ♥ ✴❦⑦❦sr✺③✷✮⑦❦✴❬✷❀t❿✰➙✵⑥✷✹t❂✈①❶❍✷✎ï❘✴■♦❅✈❿✈❉♦❉✰✳②✉t ♥ ✇⑧t❉t❅✇③✴✳②➌✴✻⑩➏✰✻②➟✰✳✲★❶
➐✱②✉✴❨❻❽✺⑨✷✹⑦❦④✳✷✹⑦ ♥ ✷❀t❉t①✰✳④✳✷✡✈❉✴✥✷❀❺✳✷❀♦①❷✮⑦❦✷❀❺❬✇③✲✎✷✝❻❽✇⑨✈①qr✇③②❸✰ ✎ ✷❀④✳✇③✴✳②➑➁➉Ñ✉✴✳♦➏✰➄✵r♦❉✴■✰■⑦r✲✎✰■t❂✈ ➅ ✈❉qr✷❿✰✳✲★❶
➐✱②✉✴❨❻❽✺⑨✷✹⑦❦④✳✷ ♥ ✷❀②✱✈✧✇⑧t✧✓❂s✉t❅✈❼✰✳②➀✇③②✉⑦❦✇⑧✲✎✰✻✈①✴■♦➏✰✳✺⑨✺③✴❨❻❽✇③②r④❹✈❉qr✷❿✵r♦❉✴■✰✳⑦✉✲✎✰✳t❅✈❫✴■♣⑥✷❀♦❉✰✻✈①✇③✴✳②➇✈①✴✥✈①✷✎♦ ♥ ✇❛❶
②✉✰❨✈❉✷✕★❬⑩➈✴✳♦❽✰✚✲★✴■②✱❺■✷✎♦❉④✳✷✹✲✎✰✳t❅✈☎✈①q✉✷➏✰■✲❙➐❬②r✴❨❻❽✺⑨✷✹⑦❦④✳✷ ♥ ✷✎②✱✈ ♥ ✷✎♦❉④✳✷✹t✖✈❉qr✷➏♦①✷✹t❅s✉✺❛✈◆✴✻⑩✦✰ ➸ sr✷❀♦①❷■➁❬➂◆q✉✷
✵r♦①✴✱✰✳⑦r✲❀✰✳t❅✈✖✵rsr✇③✺③⑦✉t❋✰ ♥ sr✺❛✈❉✇❛❶❍✈①♦❉✷✎✷❫✰✳t☎✇③②❦⑩➈✴✳♦ ♥ ✰❨✈❉✇⑨✴■②❿♣r♦①✴■♣✉✰✻④✱✰❨✈❉✷❀t✦✴✳sr✈❂❻✸✰✳♦❉⑦ ➅ ❻❽qr✇③✲❙q❿♦❉✷❀t①✴✳✺③❺✳✷✹t
✇⑨②✱✈①✴⑤✰❿✈❉♦①✷❀✷✝✰✳t✭✈①qr✷✾✰✳✲❙➐❬②r✴❨❻❽✺③✷❀⑦r④✳✷ ♥ ✷❀②■✈❙t❽♦❉✷★✈①s✉♦①② ➅ ✈①q✉✷✎②✮✇⑧t✧④■✰✻♦❉✵✉✰✳④✳✷★❶❁✲★✴■✺⑨✺③✷❀✲★✈①✷✹⑦✥✰✻⑩ä✈①✷✎♦❫✈①q✉✷
✰✳✲❙➐❬②r✴❨❻❽✺③✷❀⑦❦④■✷ ♥ ✷✎②✱✈◆✇③t❽⑦❦✷❀✺⑨✇③❺✳✷❀♦①✷✹⑦➉➁
➂◆qr✷❹✵r♦❉✴■✰■⑦r✲✎✰■t❂✈ ♥ ✴❦⑦❦sr✺③✷❹s✉t①✷❀t✝✰✘♣⑥✴■♦❅✈✾✰✻✵✉t❅✈①♦❙✰✳✲★✈①✇③✴✳② ➅ t❅✴ ♥ ✰✻②❬❷➙♣r♦❉✴❬✲✎✷❀t❉t❅✷✹t✡✲✎✰✳②âs✉t①✷

✈①qr✷➒✵r♦①✴✱✰✳⑦r✲❀✰✳t❅✈ ♥ ✴❬⑦rsr✺⑨✷➒❻❽✇❛✈❉qr✴✳sr✈➃✇③②■✈❉✷✎♦①⑩➈✷✎♦❉✷✎②✉✲✎✷✳➁✹ß❋✰✳✲❙q➏♦❉sr②r②r✇③②r④❫✵r♦①✴✱✰✳⑦r✲❀✰✳t❅✈➉♦①✷ ➸ s✉✇⑨♦❉✷❀t➃✲★✴✳②r❶
t❂✈❙✰✻②✱✈✖t❂✈❉✴✳♦❙✰✻④✳✷➒✰✻②✉⑦✚✲★✴ ♥✚♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②✝⑦r✷✎②✉t①✇❛✈❂❷✞❻❽✇❛✈❉qr✇⑨②✝✈①q✉✷ ✎ ✷✎④✳✇③✴✳②✝✇⑨②✚❻❽qr✇⑧✲❙q✝✇⑨✈☎✷★➋❦✷❀✲✎s❦✈①✷✹t ➅
✰✻②✉⑦➄✈❉✰✳➐✳✷❀t✸✈❉✇ ♥ ✷❼♣r♦❉✴✳♣❘✴✳♦①✈①✇③✴✳②⑥✰✻✺❘✈①✴✾✈❉qr✷❼⑦❦✇③✰ ♥ ✷★✈①✷❀♦✭✴✻⑩➃✈①qr✷❼♦❉✷✎④■✇⑨✴■②➑➁
✶➒♦❉✴■✰■⑦r✲✎✰■t❂✈✩✥❨✲✎✴✳②❬❺✳✷❀♦①④■✷❀✲✎✰■t❂✈➆✇③t◆✴✳⑩◗✺③✇ ♥ ✇⑨✈①✷❀⑦✥s✉t①✷✧⑩➈✴✳♦◆✰✞qr✇③④✳qr❶❍✺③✷✎❺■✷✎✺➳✺③✰✳②r④✳s⑥✰✻④✳✷❫✵⑥✷✹✲✎✰✳s✉t❅✷✧✇⑨✈

✷★➋❦✷❀✲✎s❦✈①✷✹t❼✲★✴ ♥✾♥ sr②r✇⑧✲✎✰❨✈❉✇⑨✴■②❸✵⑥✷✎✈❂❻➒✷❀✷✎②❸✰✘t❅✇③②r④✳✺③✷❿⑦❦✷✎❺❬✇⑧✲★✷❹✰✳②✉⑦➀✰✏✺⑧✰✻♦❉④✳✷✚④✳♦❉✴✳s✉♣➀✴✳⑩✸⑦❦✷❀❺✱✇⑧✲★✷✹t✎➁
ö✧✴■t❉t❅✇③♣❿✰✻②✉⑦✪✡➒✴✳②⑥t❅✷❀②✉t❅s⑥t✫✥ ✎ ✷❀⑦❦s⑥✲❤✈①✇③✴✳②✾✰✻♦❉✷ ♥ ✴✳♦❉✷◆t①sr✇⑨✈❉✰✳✵r✺⑨✷◆⑩➈✴■♦ ♥ ✰✻②❬❷✡♣rs✉♦①♣❘✴■t①✷❀t ➅ ✵rs❦✈ ♥ ✰➊❷
✵⑥✷ ♥ ✴✳♦❉✷➏✷★➋❦♣❘✷✎②✉t①✇⑨❺■✷✳➁

�✂✁✭✬ ✮ Ù❘➾❀➾✹➘➈Ô
➂◆qr✷❹④✳✴✱t①t①✇③♣➙✲✎✴ ♥✾♥ sr②✉✇③✲❀✰❨✈①✇③✴✳② ♥ ✴❦⑦❦sr✺③✷■ñ✰✯✲✱ ➅✫✳ ó❋♣✉♦①✴■♣✉✰✻④✱✰❨✈①✷✹t✧✇⑨②❦⑩➈✴■♦ ♥ ✰✻✈①✇③✴✳②➙✈①qr♦❉✴✳s✉④✳qr✴■s❦✈✡✰
✎ ✷✎④■✇⑨✴■②➌❺❬✇⑧✰❸t❅q✉✰✳♦①✷✹⑦➺②✉✷✎✇③④✳q❬✵⑥✴■♦①q✉✴✱✴❦⑦➌⑦r✰❨✈❙✰r➁✵✴→②r✺③✇⑨➐■✷✮✰❸✵r♦①✴✱✰✳⑦r✲❀✰✳t❅✈ ➅ ④■✴■t❉t❅✇③♣➺✇⑧t➄✰✳✺⑨✺⑨❶➔✈❉✴✻❶❁✰✻✺③✺

89



✲★✴ ♥✾♥ sr②r✇⑧✲✎✰❨✈❉✇⑨✴■②➑➬➳✷❀✰■✲❙q➇✇⑨✈①✷ ♥ ✴✻⑩✸④✳✴■t❉t①✇⑨♣✮q⑥✰✳t❼✰ ♥ ✷❀♦①④■✷✞⑩➈s✉②✉✲❤✈❉✇⑨✴■②❸✲✎✴ ♥ ✵r✇⑨②✉✷❀t✧✺⑨✴❦✲❀✰✻✺☎t❂✈❙✰❨✈❉✷
❻❽✇❛✈❉q✘②r✷✎✇③④✳q❬✵❘✴✳♦❽✇③②❦⑩➈✴✳♦ ♥ ✰❨✈①✇③✴✳②✥✈①✴❿♣✉♦①✴❦⑦❦s✉✲✎✷✡✰ ♥ ✷✎♦❉④✳✷❀⑦✥❻❽qr✴■✺⑨✷■➁✶✑➟qr✷✎②✮✰✳②✥✇⑨✈①✷ ♥ ✴✳⑩➆④■✴■t❉t❅✇③♣
✇③t☎④✱✰✻♦❉✵✉✰✻④■✷★❶❁✲★✴■✺⑨✺③✷❀✲★✈①✷❀⑦ ➅ ✈❉qr✷→⑦❦✷✹✰✻✺③✺⑨✴❦✲✎✰✻✈①✇③✴✳②✚♣r♦❉✴✳♣✉✰✳④■✰❨✈❉✷❀t✦t①✺⑨✴❨❻❽✺③❷❼✈①✴❼♣✉♦①✷❀❺✳✷✎②✱✈☎♦❉✷✎④✳♦❉✴❨❻◆✈①q✝✇⑨②✱✈❉✴
✰✻♦❉✷❀✰✳t✸❻❽qr✇⑧✲❙q⑤q✉✰➊❺✳✷❼✰✻✺③♦❉✷❀✰✳⑦r❷❿✵⑥✷❀✷✎②✏④■✰✳♦①✵✉✰✳④✳✷✎❶❏✲✎✴✳✺③✺⑨✷✹✲❤✈①✷✹⑦➉➁
ö✧✴■t❉t❅✇③♣✞♦❉✷ ➸ sr✇③♦①✷✹t☎t❂✈❉✴✳♦❙✰✻④■✷➒✰✻②⑥⑦✝✲✎✴ ♥✾♥ sr②✉✇③✲❀✰❨✈①✇③✴✳②✾⑦❦✷❀②✉t❅✇⑨✈❂❷✡♣r♦❉✴✳♣❘✴✳♦①✈①✇③✴✳②⑥✰✻✺✱✈①✴✧✈①q✉✷❽②✱s ♥ ❶

✵⑥✷❀♦❫✰✻②⑥⑦⑤t①✇③Ý✎✷❼✴✻⑩☎④■✴■t❉t❅✇③♣✥✇⑨✈①✷ ♥ t✭✵❘✷✎✇③②r④ ♥ ✰✻✇③②✱✈❉✰✻✇③②r✷✹⑦✥✇③②✘✷❀✰■✲❙q ✎ ✷✎④■✇⑨✴■②⑤✴✳⑩➆❻❽q✉✇③✲❙q✮✰❿⑦❦✷❀❺❬✇③✲✎✷
✇③t✖✰ ♥ ✷ ♥ ✵❘✷✎♦ ➅ ⑦❦sr✷✭✈①✴➏✈①q✉✷ ♥ ✰✻✇③②■✈❉✷✎②✉✰✳②✉✲★✷❽✴✳⑩➳t①q✉✰✳♦①✷✹⑦✝②✉✷✎✇③④✳q❬✵⑥✴■♦①q✉✴✱✴❦⑦✚⑦r✰❨✈❙✰r➁■ö➏✰✳♦①✵⑥✰✻④✳✷❽✲✎✴✳✺⑨❶
✺⑨✷✹✲❤✈①✇③②r④❹✰✳②✥✇⑨✈①✷ ♥ ✴✻⑩✦④✳✴✱t①t①✇③♣❹✈❉✰✳➐✳✷✹t✸✈①✇ ♥ ✷❼♣✉♦①✴■♣⑥✴■♦❅✈❉✇⑨✴■②✉✰✻✺⑥✈①✴✾✈❉qr✷✡⑦❦✇⑧✰ ♥ ✷★✈❉✷✎♦❽✴✻⑩➆✈①q✉✷❼♦①✷❀④✳✇③✴✳②➑➁

�✂✁✌✷ ✣✝Ù❘Õ➃➾✹Ó❬Õ➃➾✹Þ➃➾✹✸ ✍ Ó❬Ú➃Þ➆➚✻➴✹➘➼Ù❘Õ✻✺
á→✷❀❺✱✇⑧✲★✷✹t➏♣✉✰✻♦①✈①✇⑧✲★✇③♣✉✰✻✈①✇③②r④✥✇③②❸✰⑤✲✎✴✳②✉t①✷✎②⑥t❅s✉t✧♣r♦❉✴❦✲★✷✹t①t ♥ s⑥t❂✈✡✰✻✺③✺✖✲❙qr✴❬✴■t①✷✝✈①qr✷❿t❉✰ ♥ ✷✾❺➊✰✳✺⑨s✉✷✝✇⑨⑩
✰✻②❬❷✞✴✳⑩❘✈❉qr✷ ♥ ✲❙qr✴❬✴■t①✷✭✰➏❺❨✰✻✺③sr✷ ➅ ✰✻②✉⑦✝✈❉qr✷❫✲❙qr✴✱t❅✷❀②✝❺❨✰✳✺⑨sr✷ ♥ s✉t❅✈❋✵❘✷✭qr✷✎✺⑧⑦✾✵❬❷✚✰✻✈✖✺⑨✷✹✰✳t❅✈❋✴✳②✉✷❽✴✻⑩
✈①qr✷➏♣✉✰✳♦❅✈❉✇③✲✎✇⑨♣✉✰✳②✱✈❉t❀➁ ✎ ✷✹⑦❦s✉✲★✈①✇③✴✳②⑤✇③t◆✰✝④✳✷✎②✉✷✎♦❙✰✻✺③✇⑨Ý✹✰❨✈①✇③✴✳②❿✴✳⑩➃✲★✴■②✉t①✷✎②✉t①s✉t➒✇⑨②⑤❻❽qr✇⑧✲❙q❹✈①q✉✷➏✲❙q✉✴■t①✷✎②
❺➊✰✳✺⑨s✉✷❼✇③t❽✰✝⑩➈sr②✉✲★✈①✇③✴✳②✏✴✻⑩☎✰✻✺③✺➉❺❨✰✻✺③sr✷❀t◆q✉✷✎✺⑧⑦✥✵❬❷➄✈①qr✷❼♣✉✰✳♦❅✈❉✇③✲✎✇⑨♣⑥✰✻②✱✈❉t➏➻➈✷■➁ ④⑥➁✉t①s ♥ ✴✳♦✭✰➊❺■✷✎♦❙✰✻④■✷✹➽❤➁
➂◆qr✷✝➮☎✰✻➋❬✴✱t✭✲★✴■②✉t①✷✎②✉t①s✉t→✰✳✺⑨④■✴✳♦❉✇❛✈❉q ♥ ñ ✼✻ó➃q✉✰■t→✵❘✷✎✷❀②➇⑦❦✷ ♥ ✴■②✉t❅✈①♦❙✰❨✈①✷✹⑦✘✇③②➀✰✻②➀✰ ♥ ✴✳♦❉♣rqr✴■s✉t

✲★✴ ♥ ♣rsr✈①✇③②r④✚✲✎✴✳②✱✈①✷✎➋❬✈ ➅ ñ ✳ ó⑥✵rs❦✈✭t❉✲✎✰✳✺⑨✷✹t✖❺✳✷❀♦①❷✾✵✉✰■⑦❦✺③❷✳➁ ♠ ④■✴■t❉t❅✇③♣❦❶❏✵✉✰✳t①✷❀⑦❿✰✳✺⑨④■✴✳♦❉✇❛✈❉q ♥ ✲✎sr♦❉♦①✷❀②■✈❉✺⑨❷
sr②✉⑦❦✷❀♦❫⑦❦✷❀❺✳✷✎✺③✴✳♣ ♥ ✷❀②✱✈→♣r♦❉✴ ♥ ✇③t①✷❀t ♥ s✉✲❙q✘✵❘✷★✈①✈①✷❀♦❫♦❉✷❀t①sr✺⑨✈❉t❀➬✉✇⑨✈✧✰✻♣✉♣⑥✷✹✰✻♦❙t◆✈①q✉✰✻✈❫♦❉sr②r②r✇③②r④➄✰❹♦①✷✎❶
⑦❦s✉✲❤✈❉✇⑨✴■②➟♣r♦❉✴❬✲✎✷❀t❉t✾✴✳②➟✰ ✎ ✷❀④✳✇③✴✳②❞❻❽✇⑨✺③✺✭♦❉✷ ➸ sr✇③♦①✷✮t❅✈①✴■♦❉✰✳④✳✷✏✰✻②✉⑦❞✲✎✴ ♥✾♥ sr②✉✇③✲❀✰❨✈①✇③✴✳②➟⑦❦✷❀②✉t①✇❛✈❂❷
✺⑨✴■④■✰✻♦❉✇⑨✈①q ♥ ✇⑧✲❽✇⑨②➄✈①qr✷➏⑦❦✇⑧✰ ♥ ✷★✈❉✷✎♦✸✴✻⑩➑✈❉qr✷ ✎ ✷✎④■✇⑨✴■②➄✰✻②✉⑦❿✈①✇ ♥ ✷✧✺③✴✳④✻❶❏✺③✇⑨②r✷✹✰✻♦➒✇⑨②➄✈①qr✷➏⑦❦✇⑧✰ ♥ ✷★✈❉✷✎♦✸✴✻⑩
✈①qr✷ ✎ ✷❀④✳✇③✴✳②➑➁

�✂✁✛✽ ✮ Ö❨➪rÚ➆➘➼Ó❬Õ➳➴
♠ ④✳♦❙✰✳⑦r✇⑨✷❀②■✈➊ñ ✾ ➅❀✿ ó◆✲★✴■sr②✱✈❉t✝sr♣❬❻✸✰✳♦❉⑦rt❼⑩➈♦①✴ ♥ ✇⑨✈❉t✚t①✴✳sr♦❙✲★✷❹✴■♦✝t①✴✳sr♦❙✲★✷✹t✧❒ ✰➇t①✷★✈✝✴✳⑩✭⑦❦✷✎❺❬✇⑧✲★✷❀t
❻❽qr✇③✲❙q➟⑦❦✷✹✲★✺⑧✰✻♦❉✷➄✈❉qr✷ ♥ t①✷✎✺③❺✳✷✹t✚✈①✴âq✉✰➊❺■✷⑤✲✎✴✳sr②✱✈❹❺❨✰✻✺③sr✷✏Ý✎✷❀♦①✴➀❒è④■✇⑨❺❬✇③②r④➙✰✳②➟✰✻♣r♣r♦❉✴➊➋❦✇ ♥ ✰✻✈①✷
t❅♣rq✉✷✎♦❉✇③✲❀✰✻✺r⑦❦✇⑧t❂✈❙✰✻②✉✲✎✷ ♥ ✷❀✰✳t①sr♦❉✷◆s✉t❅✷✎⑩➈sr✺r⑩➈✴■♦☎✷❀t❅✈❉✰✳✵r✺⑨✇⑧t①qr✇⑨②✉④❼♦①✷❀④✳✇③✴✳②✉t❀➁❨➂◆qr✷✭✲★✴■sr②✱✈✖✇③t☎✴■②r✷ ♥ ✴✳♦❉✷
✈①q✉✰✳②✏✈①qr✷ ♥ ✇③②r✇ ♥ s ♥ ❺❨✰✻✺③sr✷✡✇③②✏✈①qr✷✞②r✷✎✇③④✳q❬✵❘✴✳♦❉qr✴❬✴❬⑦ ➅ t❅✴✾✈❉qr✷✞④■♦❉✰■⑦❦✇③✷✎②✱✈✭✲★✴✳②❬❺■✷✎♦❉④✳✷❀t✸✈❉✴❿✈①q✉✷
t❅qr✴■♦❅✈❉✷❀t❅✈✭⑦❦✇③t❅✈❉✰✳②✉✲★✷❼✴❨❺■✷✎♦✸✈①✇ ♥ ✷✳➁✉➂◆q✉✷❼④✳♦❙✰✳⑦❦✇③✷✎②✱✈◆♦①sr②⑥t❽❻❽✇❛✈❉qr✇③②✏✰ ✎ ✷❀④✳✇③✴✳② ➅ ✰✻②✉⑦ ♥ ✰➊❷➄✲★✴■sr②✱✈
✴✳②r✺③❷➙✰✮✵⑥✴■sr②✉⑦❦✷✹⑦❸②✱s ♥ ✵❘✷✎♦✞✴✳⑩❽qr✴✳♣✉t❀➁❁✑➟q✉✷✎②â✈❉qr✷➄t①sr♣r♣❘✴✳♦①✈①✇③②r④➇t①✴✳sr♦❙✲★✷✹t❼⑦❦✇③t❉✰✻♣✉♣⑥✷✹✰✻♦ ➅ ✈①q✉✷
④✳♦❙✰✳⑦❦✇③✷✎②✱✈✭✇⑧t✭④■✰✳♦①✵⑥✰✻④✳✷✎❶❏✲✎✴✳✺③✺⑨✷✹✲❤✈❉✷❀⑦✂★❦✰✳t→✇⑨②✏✈❉qr✷✝✲❀✰✳t①✷❼✴✻⑩☎④✳✴✱t①t①✇③♣⑤✇⑨✈①✷ ♥ t ➅ ✈①qr✷✞④■✰✻♦❉✵✉✰✳④✳✷❼✲★✴■✺⑨✺③✷❀✲★❶
✈①✇③✴✳②➇♣✉♦①✴■♣✉✰✻④✱✰❨✈①✷✹t→t①✺⑨✴❨❻❽✺③❷⑤✈①✴⑤♣r♦❉✷✎❺✳✷❀②✱✈✧♦❉✷✎④■♦①✴❨❻◆✈❉q➑➁ ♠ ④✳♦❙✰✳⑦r✇⑨✷❀②■✈ ♥ ✰➊❷✏✰✳✺③t①✴✥✲❀✰✻♦❉♦①❷✏❺■✷✎♦❙t❅✇③✴✳②
✇⑨②❦⑩➈✴■♦ ♥ ✰✻✈①✇③✴✳② ➅ ✰✻✺③✺③✴❨❻❽✇⑨②r④✧✇⑨✈❉t☎t①✴✳sr♦❙✲★✷➒✈①✴❼✲❙q✉✰✳②r④✳✷✸♦❉✰✳♣r✇⑧⑦❦✺⑨❷❼✵❬❷✡✇③②✉✲✎♦①✷✹✰✳t①✇⑨②r④→✈①qr✷❽❺■✷✎♦❙t❅✇③✴✳②✞②✱s ♥ ❶
✵⑥✷❀♦❀➁

☞✮✰✻✇③②✱✈❉✰✻✇③②r✇③②r④✞✰✞④✳♦❙✰✳⑦❦✇③✷✎②✱✈➒♦❉✷ ➸ sr✇③♦❉✷❀t❋✰✝✲★✴■②✉t❂✈❙✰✻②✱✈➒✰ ♥ ✴■sr②✱✈➒✴✳⑩➃t❂✈❉✴✳♦❙✰✻④■✷✭✰✻②✉⑦❹✲✎✴ ♥✾♥ s✉②r✇❛❶
✲✎✰❨✈❉✇⑨✴■②✮⑦❦✷✎②⑥t❅✇⑨✈❂❷⑤⑩➈✴✳♦→✷❀❺✳✷❀♦①❷✏⑦❦✷✎❺❬✇⑧✲★✷✝✇⑨②✮♦❙✰✻②✉④✳✷❼✴✻⑩☎✈❉qr✷✚④✳♦❙✰✳⑦❦✇③✷✎②✱✈ ➅ ✰✻②✉⑦✘④✱✰✻♦❉✵✉✰✻④■✷✡✲★✴■✺⑨✺③✷❀✲★✈①✇③②r④
✰✞④■♦❉✰■⑦❦✇⑨✷❀②✱✈❋✈❉✰✳➐✳✷✹t✖✈❉✇ ♥ ✷✧✺⑨✇③②r✷❀✰✳♦➒✇③②✥✈①qr✷ ♥ ✇⑨②r✇ ♥ s ♥ ✴✻⑩◗✇⑨✈❉t✸✵❘✴✳sr②⑥⑦❹✴✳♦✸✈❉qr✷✧⑦r✇③✰ ♥ ✷✎✈①✷❀♦✸✴✳⑩➑✈①q✉✷
✎ ✷✎④■✇⑨✴■②✥✇③②✏❻❽qr✇③✲❙q⑤✇⑨✈✭✇③t❽♦❉sr②r②✉✇⑨②r④⑥➁

�✂✁✌❂ ❃ Ó■Ö❨➾✹➘➼➾❀➴❀Ó❬Õ➳➴❄✝✘Ù➑Ú➃Ó
♠ ➮✦✷✎♦❙t❅✇⑧t❂✈❉✷✎②✱✈❅✖✭✴❦⑦❦✷✱ñ ❆❨ó◗✇③t→✰❿⑦❦✇③t❅✈①♦❉✇③✵rs❦✈①✷✹⑦⑤✴✳✵❇✓❂✷✹✲❤✈✭✵✉✰■t❅✷✹⑦⑤✰✳♦①✴■sr②✉⑦⑤✰✾❺✳✷❀♦❉t①✇⑨✴■②r✷❀⑦➄④✳♦❙✰✳⑦❦✇③✷✎②✱✈✹➁
➂◆qr✷➇④■♦❉✰■⑦❦✇⑨✷❀②✱✈✪❈✉✴❨❻✭t❹✴■s❦✈❂❻◆✰✻♦❙⑦➌⑩➈♦①✴ ♥ ✈❉qr✷➀✲✎✷✎②✱✈①✷❀♦ ➅ ✇⑧⑦❦✷✎②✱✈①✇⑨⑩➈❷❬✇⑨②✉④➍✰✻✺③✺➏⑦❦✷✎❺❬✇⑧✲★✷❀t➄❻❽✇❛✈❉qr✇③②❊❉
qr✴✳♣✉t✘➻➈✈①qr✷✏②r✴❦⑦❦✷❋✘ t❿➚■Ù✉Ö❨Ó❦➽✚✰✳t ♥ ✷ ♥ ✵⑥✷❀♦❉t✚✴✳⑩→✈①q✉✷✏➮✦✷❀♦❉t①✇⑧t❂✈❉✷✎②✱✈❄✖→✴❦⑦❦✷ ➅ ❻❽qr✇③✺③✷✏✰➀qr✷❀sr♦①✇⑧t❅✈①✇⑧✲
✲✎✰✻✺⑧✲★s✉✺③✰✻✈①✇③✴✳②●❈✉✴❨❻✭t◗✇⑨②❬❻◆✰✻♦❙⑦➏⑩➈♦❉✴ ♥ ✰✻✺③✺✱⑦r✷✎❺❬✇③✲✎✷❀t➃❻❽✇❛✈❉qr✇③②❍❆✔❉❽q✉✴✳♣✉t✸➻ä✈❉qr✷➒②✉✴❬⑦r✷✕✘ t➃Ö❨Ó❏■✦Ó✱➚✳➴❀Ù⑥Ö✻➽➉✈❉✴

90



⑦❦✷★✈❉✷✎♦ ♥ ✇③②r✷◆❻❽qr✇⑧✲❙q✚⑦r✇⑨♦❉✷❀✲★✈①✇③✴✳②✝✈①qr✷❽✲★✷❀②✱✈①✷✎♦✖t①qr✴■sr✺③⑦✝✵❘✷ ♥ ✴❨❺❬✇③②r④✉➁✻➂◆qr✷◆④■♦❉✰■⑦❦✇⑨✷❀②✱✈➆✇⑧t✦✵⑥✴■sr②✉⑦❦✷✹⑦
✈①✴▲❑▼❉✥qr✴✳♣✉t➄➻ä✈①q✉✷❹②r✴❦⑦❦✷✕✘ t❼Þ➆à➇➹➆Ö❨➪✉➽ ➅ t①✴✘✷✎❺■✷✎♦❉❷✮⑦❦✷✎❺❬✇⑧✲★✷❿✇③②➙✈①qr✇⑧t❼♦❉✷✎④✳✇③✴✳②➙✇⑧t✡✰➊❻✸✰✳♦①✷✚✴✻⑩✸✈①q✉✷
✷★➋❦✇③t❅✈①✷❀②✉✲★✷✏✰✻②⑥⑦❾✺③✴❬✲❀✰❨✈❉✇⑨✴■②❾✴✻⑩✭✈❉qr✷✏➮✦✷✎♦❙t❅✇⑧t❂✈❉✷✎②✱✈❍✖→✴❦⑦❦✷✳➁✦➎❏⑩❫✰✳②✱❷❾⑦r✷✎❺❬✇③✲✎✷➄✇③②➺✈❉qr✷⑤②r✴❦⑦❦✷⑤✲✎✴✳♦❉✷
t❅sr♦❉❺❬✇⑨❺■✷❀t➏✰✥⑩➼✰✻✇③✺⑨s✉♦①✷ ➅ ✈①qr✷✾②r✴❦⑦❦✷✾❻❽✇③✺⑨✺✖♦❉✷✎✵✉sr✇⑨✺⑧⑦➀✇❛✈❙t❅✷❀✺❛⑩ ➅ ✰✳✺❛✈❉qr✴✳s✉④✳q➇✇⑨⑩✸✈①qr✷✾⑩➼✰✳✇⑨✺③sr♦❉✷✾t①✷✎♣⑥✰✻♦❙✰❨✈①✷✹t
✈①qr✷✞✲✎✴✳♦❉✷❼✇⑨②✱✈❉✴➄⑦❦✇⑧t①✲✎✴✳②r②r✷✹✲❤✈❉✷❀⑦✘✲★✴ ♥ ♣⑥✴■②r✷✎②✱✈❉t ➅ ✈❉qr✷✡②r✴❦⑦❦✷ ♥ ✰➊❷✥✵⑥✷✚✲★✺③✴✳②r✷✹⑦➉➁r➎❏⑩☎✈①q✉✷✡s ♥ ✵✉♦❉✰■t
✴✻⑩◗✈❂❻✸✴✾✲★✺③✴✳②r✷✹t◆✷✎❺✳✷❀♦❽✲★✴ ♥ ✷✧✇⑨②✘✲✎✴✳②✱✈❉✰■✲❤✈ ➅ qr✴❨❻✸✷✎❺■✷✎♦ ➅ ✈❉qr✷✎❷➄❻❽✇⑨✺③✺➑♦❉✷❀t①✴✳✺③❺✳✷→✵⑥✰✳✲❙➐❿✇③②■✈❉✴❿✰✚t①✇③②r④✳✺③✷
②r✴❦⑦❦✷❼❺❬✇③✰✝✈①q✉✷✡⑦❦✷❀t❅✈①♦❉s✉✲❤✈❉✇⑨✴■②✥✴✳⑩➆✴■②r✷❼✲★✺③✴✳②r✷■➁
➂◆qr✷✝②✉✴❬⑦r✷✚✇⑧t➏✇⑧⑦❦✷✎②✱✈①✇⑨➓✉✷✹⑦➀✰■t✧✰ ✎ ✷❀④✳✇③✴✳②➀❻❽qr✴■t①✷✝♣⑥✰✻♦❉✷✎②✱✈✧✇⑧t✧✈①q✉✷ ✎ ✷✎④✳✇③✴✳②➀✇⑨②➙❻❽qr✇⑧✲❙q➀✇⑨✈❉t

④✳♦❙✰✳⑦❦✇③✷✎②✱✈◗♦❉sr②✉t❀➁➊➎❁②✞✰✳⑦r⑦r✇❛✈❉✇⑨✴■② ➅ ✰✭②r✴❦⑦❦✷✸✇③t➆✰✭♦❉✷❀✰■⑦✤✥➊❻❽♦❉✇⑨✈①✷✖✴■✵❇✓❂✷❀✲★✈✦t①sr♣r♣❘✴✳♦①✈①✇③②r④❫✲✎✴✳②✉⑦r✇❛✈❉✇⑨✴■②✉✰✻✺③✺⑨❷
✰❨✈①✴ ♥ ✇③✲❫✈①♦❙✰✻②⑥t①✰■✲❤✈①✇③✴✳②⑥t✎➁

☞✮✰✻✇③②✱✈❉✰✻✇③②r✇③②r④✘✰✏♣⑥✷❀♦❉t①✇⑧t❂✈❉✷✎②✱✈✡②r✴❦⑦❦✷❿♦❉✷ ➸ sr✇③♦①✷✹t❼t❂✈❉✴✳♦❙✰✻④✳✷✾✰✻②⑥⑦➙✲✎✴ ♥✾♥ s✉②r✇③✲❀✰❨✈❉✇⑨✴■②➙⑦❦✷❀②✉t①✇❛✈❂❷
✺⑨✇③②r✷❀✰✳♦❼✇⑨②➀✈①q✉✷❹t❅✇③Ý✎✷✾✴✻⑩➒✈①qr✷❹⑦✉✰❨✈❉✰⑤t❅✈①✴✳♦❉✷❀⑦➀✵❬❷✘✈①q✉✷❿②r✴❦⑦❦✷✳➁➑➂◆qr✷✾②r✴❦⑦❦✷ ♥ ✴❨❺■✷❀t✧✰✻②✉⑦➙♦❉✷✎♣✉✰✳✇⑨♦❙t
✇❛✈❙t❅✷❀✺❛⑩✦✇⑨②⑤✈❉✇ ♥ ✷❼✺③✇⑨②r✷✹✰✻♦❽✇③②⑤✈①qr✷✡⑦❦✇⑧✰ ♥ ✷✎✈①✷✎♦❽✴✳⑩➃✈❉qr✷➏②r✴❦⑦❦✷✳➁

�✂✁✛◆ ❖ ➘➔Ó■Ö❨➪❦Ö❨➚➊Ò➆➘➼➚✳➪✉➶ ❃ ➪❦Ö➊➴❀➘➼➴❀➘➼Ù❘Õ➆➘➼Õ➆×

♠P✎ ✷✎④■✇⑨✴■②⑤✲❀✰✻②✏✵❘✷✡♣✉✰✻♦①✈①✇⑨✈①✇③✴✳②✉✷❀⑦✥✈①qr♦❉✴✳s✉④✳q⑤✈①qr✷✞s✉t❅✷❼✴✳⑩✦➮✦✷❀♦❉t①✇⑧t❂✈❉✷✎②✱✈❅✖✭✴❦⑦❦✷❀t❀➬⑧ñ ◗✻ó◗②r✴❦⑦❦✷❀t✭✴✻⑩☎✰
✲❙q✉✰✻♦❙✰✳✲★✈①✷✎♦❉✇⑧t❂✈❉✇③✲✞♦❉✰■⑦❦✇⑨s⑥t✧✰✳♦①✷✚④✳✷❀②r✷✎♦❙✰❨✈❉✷❀⑦➀✰✻②✉⑦➙✰✻✺③✺⑨✴❨❻✸✷❀⑦✮✈①✴✘⑦❦♦❉✇❛⑩ä✈ ➅ ♦①✷❀♣⑥✷❀✺⑨✺③✇③②r④✏✴✳②r✷❿✰✻②✉✴✻✈①q✉✷✎♦ ➅
sr②✱✈①✇③✺✉✷✎❺■✷✎♦❉❷✞⑦❦✷❀❺✱✇⑧✲★✷❽✇③②✚✈①qr✷→♦①✷❀④✳✇③✴✳②✚✇③t☎②✉✷❀✰✻♦✖t①✴ ♥ ✷✭➮✦✷❀♦❉t①✇③t❅✈①✷❀②✱✈❘✖→✴❦⑦❦✷ ➅ ✰✳②✉⑦✾⑦❦✷✎❺❬✇⑧✲★✷✹t✖✲❙qr✴❬✴■t①✷
✰➏②r✴❦⑦❦✷◆✈①✴✡✰■t①t①✴❦✲★✇⑧✰❨✈①✷◆❻❽✇⑨✈①q ➅ ❻❽✇❛✈❉q❹t❅✴ ♥ ✷❽q✱❷❦t❅✈①✷❀♦①✷✹t❅✇⑧t✎➁ ♠ t①✷★✈➒✴✻⑩➳♣✉✰✻♦①✈①✇⑨✈①✇③✴✳②✉t✖❻❽✇❛✈❉q✚✷✎➋❦♣⑥✴■②r✷✎②❦❶
✈①✇⑧✰✻✺③✺⑨❷❿✇③②✉✲★♦❉✷❀✰■t❅✇③②r④✚⑦❦✇③✰ ♥ ✷★✈①✷❀♦✸✲❀✰✻②✥✵⑥✷✧❻❽✇⑨♦❉✷❀⑦❹✈①✴■④✳✷★✈❉qr✷✎♦➒✈①✴✝⑩➈✴✳♦ ♥ ✰✡q✉✇⑨✷❀♦❉✰✳♦❉✲❙qr✇⑧✲✎✰✳✺✉♣✉✰✳♦❅✈❉✇❛✈❉✇⑨✴■②
✴✻⑩➆✈①qr✷ ✎ ✷❀④✳✇③✴✳②✥❻❽qr✇③✲❙q✏✇⑧t◆qr✇③④✳qr✺③❷➄♦❉✷❀t①✇⑨✺③✇③✷✎②✱✈◆✈①✴✚⑩➼✰✻✇③✺⑨s✉♦①✷✹t✎➁

☞✮✰✻✇③②✱✈❉✰✻✇③②r✇③②r④❹✰❹q✉✇⑨✷❀♦❉✰✳♦❉✲❙qr✇⑧✲✎✰✳✺➉♣✉✰✻♦①✈①✇⑨✈①✇③✴✳②✏✈❙✰✻➐■✷❀t→t❅✈①✴■♦❉✰✳④✳✷❼✰✻②⑥⑦✮✲★✴ ♥✚♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②✘✺③✴✳④■✰✻❶
♦①✇⑨✈①q ♥ ✇⑧✲✧✇⑨②✥✈①qr✷❼⑦❦✇⑧✰ ♥ ✷✎✈①✷✎♦◆✴✳⑩➑✈①qr✷ ✎ ✷❀④✳✇③✴✳②✥✵⑥✷❀✇⑨②r④✾♣✉✰✳♦❅✈❉✇❛✈❉✇⑨✴■②r✷❀⑦ ➅ ✰✳②✉⑦➄✲✎♦①✷✹✰❨✈❉✇⑨②r④✝✈①q✉✷✧♣⑥✰✻♦①✈①✇⑨❶
✈①✇③✴✳②⑤✈❉✰✳➐✳✷❀t➒✈❉✇ ♥ ✷❼✺③✴✳④✻❶❏✺③✇⑨②r✷✹✰✻♦◆✇③②✥✈❉qr✷✡⑦❦✇⑧✰ ♥ ✷★✈❉✷✎♦✹➁

�✂✁✛❙ ❚ ➪r➘➼➶➔Þ◗Ö❨Ó▲✣✝➘➈Ö❨➚✳Þ➆à❾➾✹➚✻Ö❨➘➈Ô➆➴❀➘➔Ù⑥Õ

Ñ✉✰✻✇③✺③sr♦①✷⑤✲★✇③♦❉✲✎s ♥ t①✲✎♦①✇③♣❦✈❉✇⑨✴■②◗ñ ❯✳ó➒✇⑧⑦❦✷✎②✱✈❉✇❛➓✉✷✹t✾✰➇✲★✴■②r②r✷✹✲❤✈①✷✹⑦ ✎ ✷❀④✳✇③✴✳②➺✲✎✴✳②✱✈❉✰✳✇⑨②r✇③②r④➙✰✮④✳♦❉✴✳s✉♣â✴✻⑩
⑩➼✰✻✇③✺⑨sr♦❉✷❀t ➅ ④✳✇③❺✳✷❀②✝✰❫♣r♦①✷✎❶❍✷✎➋❦✇③t❅✈①✇③②r④✧qr✇⑨✷❀♦❉✰✳♦❉✲❙q✉✇③✲❀✰✻✺✳♣⑥✰✻♦①✈①✇⑨✈①✇③✴✳②r✇③②r④✉➁❨á❫✷✎❺❬✇⑧✲★✷❀t✦✵❘✴✳♦❙⑦❦✷❀♦①✇③②r④✭✈❉qr✷✸⑩➼✰✻✇③✺❛❶
sr♦①✷➏✲★✺③✇ ♥ ✵✥✈①qr✷➏qr✇③✷✎♦❙✰✻♦❙✲❙q❬❷✝sr②✱✈❉✇⑨✺➳✈❉qr✷✎❷❿➓⑥②✉⑦✥✰✚✲★✺③✇ ➸ s✉✷✧✴✳⑩◗②r✷❀✇⑨④■q✱✵❘✴✳♦❙t✸❻❽qr✇⑧✲❙q✥✰✻♦❉✷➏✰✻✺③✺❘✷❀✇❛✈❉qr✷✎♦
t❂✈❉✇⑨✺③✺r✰✻✺③✇⑨❺■✷◆✴✳♦✦♣r♦❉✴❨❺➊✰✳✵r✺③❷✡⑦❦✷❀✰■⑦➉➬✻t❅s⑥✲❙q✝✰➏✲★✺③✇ ➸ sr✷❽✲✎✇⑨♦❙✲★s ♥ t❉✲★♦❉✇⑨✵❘✷❀t➃✈❉qr✷◆⑩➼✰✻✇③✺⑨s✉♦①✷❽✰✻②⑥⑦✡✈❉qr✷◆✺⑨✴❨❻✸✷❀t❅✈
t❅s✉✲❙q➀✲★✺③✇ ➸ sr✷✚✇③t✧②r✷✹✰✻♦❫✴✳♣❦✈❉✇ ♥ ✰✻✺➆⑩➈✴■♦✧✲✎✴✳②❬❺✳✷✎➋✥⑩➼✰✳✇⑨✺③sr♦❉✷❀t❀➁➳✶✸❷✏✇⑧⑦❦✷✎②✱✈①✇⑨⑩➈❷❬✇⑨②✉④⑤✰✥✲★✇③♦❉✲✎s ♥ t①✲✎♦①✇③✵r✇③②r④
✎ ✷✎④■✇⑨✴■② ➅ ✷★➋r✲★✷❀♣❦✈①✇③✴✳②⑤q✉✰✳②✉⑦❦✺③✇⑨②r④ ♥ ✇③④✳q✱✈❽✵⑥✷❼✺③✇ ♥ ✇⑨✈①✷✹⑦✥✈①✴✾✈①q✉✷✡✰✻♦❉✷❀✰✝✺⑨✴❦✲✎✰✳✺➳✈①✴✾✈❉qr✷➏⑩➼✰✻✇③✺⑨s✉♦①✷■➁
Ñ➃✇③②✉⑦❦✇③②r④❼✈❉qr✷ ✎ ✷✎④✳✇③✴✳②✾❻❽qr✇⑧✲❙q❹✲★✇③♦❙✲★s ♥ t❉✲★♦❉✇⑨✵❘✷❀t➒✰✧⑩➼✰✻✇③✺⑨sr♦❉✷✭♦❉✷ ➸ sr✇③♦①✷✹t✖t①♣✉✰✳✲✎✷→✰✻②✉⑦❿✲✎✴ ♥✾♥ sr❶

②r✇③✲❀✰❨✈❉✇⑨✴■②➺⑦❦✷✎②⑥t❅✇⑨✈❂❷➀✺③✴✳④✱✰✻♦❉✇❛✈❉q ♥ ✇③✲❹✇⑨②â✈❉qr✷✏⑦❦✇③✰ ♥ ✷★✈①✷❀♦✞✴✳⑩❽✈①qr✷➄⑩➼✰✻✇③✺⑨sr♦❉✷➄✴■♦✞✴■♣❦✈①✇ ♥ ✰✻✺◆✲★✇③♦❉✲✎s ♥ ❶
t①✲✎♦①✇③♣❦✈①✇③✴✳② ➅ ❻❽qr✇③✲❙q✉✷✎❺✳✷❀♦◆✇③t❽④■♦①✷✹✰❨✈❉✷✎♦ ➅ ✰✳②✉⑦✥♦①✷ ➸ s✉✇⑨♦❉✷❀t✸✈❉✇ ♥ ✷❼✺③✇⑨②r✷✹✰✻♦◆✇③②✥✈❉qr✷✡⑦❦✇⑧✰ ♥ ✷★✈❉✷✎♦✹➁

❱ ➜➟➞✣➠✖➡r➢✧↕✭➠❋➤❫➥❳❲ ➛❁❨❫➨❅➤❫➞ ❩✡➵☎➩✭➫➒➤✭➵✦➫✖➛

➎✭❻✸✰✳②✱✈❫✈❉✴✥✵❘✷✚✰✳✵r✺③✷✞✈❉✴✥♣r♦❉✴✳④■♦❉✰ ♥ ✰✳②➀✰ ♥ ✴■♦①♣✉qr✴✳s✉t❫✲★✴ ♥ ♣✉s❦✈①✇③②r④✏t❅❷❦t❅✈①✷ ♥ ✰■t❫✈①qr✴■sr④✳q➀✇❛✈➏✇③t
✰✥t①♣✉✰✳✲✎✷✡➓✉✺③✺③✷❀⑦✮❻❽✇⑨✈①q❸✰➄✲✎✴✳②✱✈①✇③②❬sr✴✳s⑥t ♥ ✷❀⑦r✇⑨s ♥ ✴✻⑩➒✲✎✴ ♥ ♣rs❦✈❙✰❨✈①✇③✴✳②⑥✰✻✺ ♥ ✰✻✈①✷❀♦①✇⑧✰✻✺❍➬✉✈❉qr✷❿✰✳✲★✈①s✉✰✳✺
✷★➋❦✷❀✲✎s❦✈①✇③②r④✏♣r♦❉✴✳④✳♦❙✰ ♥ t①qr✴✳sr✺⑧⑦➀♣r♦①✴❦⑦❦s⑥✲★✷❿✰✻②➙✰✻♣r♣r♦❉✴➊➋❦✇ ♥ ✰✻✈①✇③✴✳②✮✴✳⑩❋✈①q✉✇③t➏✵❘✷✎q✉✰➊❺❬✇③✴✳♦➏✴✳②❸✰⑤t❅✷✎✈
✴✻⑩➑⑦❦✇⑧t①✲✎♦①✷✎✈①✷✭♣❘✴✳✇③②✱✈❉t❀➁✱➂◆qr✇⑧t ♥ ✷✹✰✻②✉t✖✈①q✉✰✻✈✖✈①qr✷❀♦①✷❫t❅qr✴■sr✺⑧⑦❿✵⑥✷→②r✴✡✷★➋❦♣r✺③✇⑧✲★✇⑨✈✸t❅✈❉✰❨✈❉✷ ♥ ✷✎②✱✈❙t❋✰✻✵❘✴✳sr✈

91



✇⑨②✉⑦r✇⑨❺❬✇⑧⑦❦s✉✰✻✺❬⑦❦✷❀❺✱✇⑧✲★✷✹t➑✴■♦➃✲★✴ ♥✾♥ sr②r✇⑧✲✎✰✻✈①✇③✴✳②✡✵❘✷★✈❂❻✸✷✎✷❀②❼✈①q✉✷ ♥ ➁❀➎❁②⑥t❂✈❉✷❀✰✳⑦ ➅ ✈❉qr✷❋✺⑧✰✻②r④■s✉✰✻④■✷✖t❅q✉✴✳sr✺⑧⑦
⑦❦✷❀t❉✲★♦❉✇⑨✵❘✷➏✵⑥✷❀q✉✰➊❺❬✇⑨✴■♦❽✇⑨②✥✈①✷❀♦ ♥ t❽✴✳⑩➆t①♣✉✰❨✈❉✇③✰✳✺➉♦①✷❀④✳✇③✴✳②✉t❀➁
➂◆qr✷❋♣r♦❉✴✳④■♦❉✰ ♥ t①qr✴■sr✺③⑦✞✵⑥✷◆✰✻✵✉✺⑨✷➒✈①✴❫✵⑥✷❽t①♣⑥✷✹✲★✇⑨➓✉✷❀⑦✞❻❽✇❛✈❉qr✴✳s❦✈✦➐❬②r✴❨❻❽✺③✷❀⑦❦④■✷❋✴✻⑩❦✈❉qr✷◆♣✉✰✻♦①✈①✇⑧✲★sr❶

✺③✰✳♦❋✰ ♥ ✴✳♦❉♣rqr✴■s✉t ♥ ✷❀⑦❦✇③s ♥ ✴✳②✾❻❽qr✇⑧✲❙q✾✇❛✈❋❻❽✇③✺③✺✉✵❘✷❽♦①sr②◗➁❋☞✘✴■♦①✷❀✴❨❺✳✷✎♦ ➅ ④✳✇③❺✳✷❀②✞✈❉qr✷→t①q✉✰✻♣❘✷❽✴✻⑩➳✈①q✉✷
♥ ✷✹⑦❦✇③s ♥ t❅q✉✴✳sr✺⑧⑦✮✵❘✷✚✰✳✵r✺③✷✞✈❉✴✥✲❙q✉✰✳②r④✳✷✚✰✳t→✈①qr✷✚♣r♦❉✴✳④✳♦❙✰ ♥ ✇⑧t❫✷✎➋❦✷❀✲★sr✈①✇③②r④ ➅ ✈①qr♦❉✴✳s✉④✳q✘⑩➼✰✳✇⑨✺③sr♦❉✷
✰✻②✉⑦❿✰■⑦r⑦❦✇⑨✈①✇③✴✳②❿✴✻⑩➉⑦❦✷❀❺✱✇⑧✲★✷✹t ➅ ✰✻②✉⑦✚✈❉qr✷✭♦❉sr②r②r✇③②r④❼♣r♦❉✴✳④■♦❉✰ ♥ ✰✳⑦✔✓❂s✉t❂✈❋✈①✴✡✇⑨✈❉t❋②r✷✎❻❞✷✎②❬❺❬✇③♦①✴■② ♥ ✷✎②✱✈
❻❽✇❛✈❉qr✴✳s❦✈✭s✉②✉⑦❦sr✷✡⑦❦✇⑧t①♦①sr♣r✈①✇③✴✳②➑➁
Ñ➃✇③②✉✰✳✺⑨✺③❷ ➅ t①✇③②✉✲★✷✦⑩➼✰✳✇⑨✺③sr♦❉✷❀t➑✰✳②✉⑦➏✰✳⑦r⑦❦✇⑨✈①✇③✴✳②⑥t ♥ ✰➊❷❫⑦❦✇⑧t①✲✎✴✳②r②✉✷❀✲❤✈◗✰✳②✉⑦✧♦①✷✹✲★✴■②r②r✷❀✲★✈➉✈①qr✷ ♥ ✷✹⑦❦✇⑨s ♥⑤➅

✰✡♣r♦❉✴✳④■♦❉✰ ♥ ❻❽qr✇⑧✲❙q❹✇⑧t❋t①✷✎♣✉✰✳♦❉✰✻✈①✷❀⑦✾✇③②✱✈①✴✞✈❂❻➒✴✞⑦r✇❛ï➳✷✎♦❉✷✎②✱✈➒✷✎➋❦✷❀✲★sr✈①✇③✴✳②✉t ♥ s✉t❅✈➒✵❘✷❫✰✳✵r✺③✷✭✈①✴✝♦①✷❀✇⑨②r❶
✈①✷✎④■♦❉✰✻✈①✷➏❻❽qr✷❀②➄✈❉qr✷✡✲★✴ ♥ ♣❘✴✳②✉✷✎②✱✈❉t◆✴✳⑩➃✈❉qr✷ ♥ ✷❀⑦❦✇③s ♥ ♦❉✷❬✓❂✴■✇⑨②◗➁
➂◆qr✷ ♥ ✴❦⑦❦sr✺③✷❀t✡✴■s❦✈①✺③✇③②r✷❀⑦â✇③②â✈❉qr✷➄♣r♦❉✷✎❺❬✇③✴✳s✉t✞t❅✷✹✲❤✈①✇③✴✳②❾✰✳♣r♣❘✷❀✰✻♦✡✈①✴➇✵❘✷➄✰✮t①s❇❭❹✲★✇③✷✎②✱✈✾t❅✷✎✈

✴✻⑩❋♣r♦❉✇ ♥ ✇⑨✈①✇③❺✳✷✹t❫⑩➈♦①✴ ♥ ❻❽qr✇③✲❙q➙t❅s⑥✲❙q➙✰➄qr✇⑨④■q❦❶❏✺⑨✷❀❺✳✷✎✺ ♠→♥ ✴■♦①♣✉qr✴✳s✉t❪☞✘✷✹⑦❦✇⑨s ♥ å◗✰✳②r④✳s✉✰✳④✳✷ ♥ ✰➊❷
✵⑥✷✮⑦❦✷❀♦①✇③❺✳✷✹⑦➉➁❋➂◆qr✷✏✈❉♦①✷❀✷✏✴✻⑩ ✎ ✷✎④■✇⑨✴■②✉t❿✲✎✰✳②❞t①✷✎♦❉❺✳✷✘✰■t❿t❂✈❙✰✳✲❙➐â⑩➈♦❙✰ ♥ ✷❀t✚⑩➈✴■♦❿✈①q✉✷✘✷★➋❦✷❀✲✎s❦✈①✇③✴✳② ➅
❻❽✇❛✈❉q➟✵r♦❉✰✳②✉✲❙qr✷✹t✝✇ ♥ ♣r✺③✷ ♥ ✷✎②✱✈①✇③②r④❾♣⑥✰✻♦❙✰✻✺③✺⑨✷❀✺⑨✇⑧t ♥ ❒è✵⑥✴✳✈①q➟⑦❦✇⑧t❂✈❉♦①✇③✵rs❦✈❉✷❀⑦❞♣r♦❉✴❦✲★✷✹t①t①✇⑨②✉④➌➻➼②r✴✳②❦❶
✴❨❺✳✷✎♦❉✺⑧✰✻♣r♣r✇③②r④❫♦①✷❀④✳✇③✴✳②✉t❙➽◗✰✳②✉⑦ ♥ sr✺⑨✈①✇⑨✈①qr♦❉✷❀✰■⑦❦✇③②r④❿➻➼✰➏⑦❦✷✎❺❬✇⑧✲★✷❽❻❽qr✇⑧✲❙q✚✇③t☎✰ ♥ ✷ ♥ ✵⑥✷❀♦☎✴✻⑩ ♥ sr✺⑨✈①✇③♣r✺⑨✷
✵r♦❉✰✳②✉✲❙qr✷✹t❉➽★➁✶❫✖✰✻♦❉✇③✰✳✵r✺③✷❀t❽❻❽✇⑨✈①qr✇③②✮✰❿t❅✈❉✰✳✲❙➐➄⑩➈♦❉✰ ♥ ✷ ♥ ✰➊❷➄✵❘✷✡✇ ♥ ♣r✺③✷ ♥ ✷❀②■✈❉✷❀⑦✏✵❬❷⑤④✳✴■t❉t①✇⑨♣⑤✴✳♦✭✵❬❷
✰✮✲★✴■②✉t❅✷❀②✉t①s✉t✫✥❨♦①✷✹⑦❦s✉✲★✈①✇③✴✳②❸♣r♦❉✴❬✲✎✷❀t❉t✎➁➆á→✷✎➓✉②r✇③②r④➀✰➀t❅s✉✵✉t❅♣⑥✰✳✲★✷❹✈①✴➇✷✎➋❦✷❀✲★sr✈①✷➄✰✮⑩➈sr②✉✲❤✈❉✇⑨✴■②➺✲✎✰✳✺⑨✺
✲✎✰✻②✾✵❘✷→⑦❦✴■②r✷✭✵❬❷✝✰ ✎ ✷✎④✳✇③✴✳② ♥ ✷ ♥ ✵⑥✷❀♦❉t①qr✇③♣✾✈①✷❀t❅✈ ➅ ✴✳♦✖✵❬❷✚t❅♣❘✷❀✲✎✇❛⑩➈❷❬✇③②r④✡④✳✷❀✴ ♥ ✷★✈❉♦①✇⑧✲❽✰✻♦❉✷❀✰■t➆❻❽✇❛✈❉q
➮✦✷✎♦❙t❅✇⑧t❂✈❉✷✎②✱✈❴✖✭✴❦⑦❦✷❀t→✰✻②✉⑦✥④✳♦❙✰✳⑦❦✇③✷✎②✱✈❙t✎➁
➎✡♣r♦❉✴✳♣❘✴■t①✷❹✈①q⑥✰❨✈✾✈①qr✷✏✰✳✲★✈①s✉✰✳✺❽✲★✴ ♥ ♣rsr✈❉✰❨✈❉✇⑨✴■②➍t①qr✴✳s✉✺③⑦➺✵⑥✷✘t①♣⑥✷✹✲★✇⑨➓✉✷❀⑦➍②r✴✻✈❿✰✳t✚✇ ♥ ♣⑥✷❀♦❉✰✻❶

✈①✇③❺✳✷❿✇③②✉t❂✈❉♦①s⑥✲❤✈①✇③✴✳②⑥t ➅ ✵rs❦✈✝✰■t❼✇⑨②❬❺❨✰✻♦❉✇⑧✰✻②✱✈❉t✧✈❉✴✘✵⑥✷❹♦❉✷✎♣⑥✰✻✇③♦①✷✹⑦➉➁ ♠ ♣r♦❉✴❦✲★✷❀t❉t✡✲✎✴✳②✱✈❉✰✳✇⑨②✉t❼✰✘t①✷★✈✝✴✻⑩
✲★✴✳②⑥t❂✈❉♦❉✰✳✇⑨②✱✈✝t①♣⑥✷✹✲★✇⑨➓⑥✲✎✰✻✈①✇③✴✳②✉t✞⑩➈✴✳♦✝✈①q✉✷➄✇③②✱❺❨✰✳♦①✇⑧✰✻②✱✈❉t✡✈①✴➀✵⑥✷ ♥ ✰✻✇③②■✈❙✰✻✇③②r✷❀⑦➑➁➃➎❏⑩✭✈❉qr✷✥✲✎✴✳②✉t❅✈①♦❙✰✻✇③②✱✈
✇③t❫t①✰✻✈①✇⑧t❂➓✉✷✹⑦ ➅ ✈❉qr✷✎②➇②r✴➄✲★✴ ♥ ♣rs❦✈❉✰✻✈①✇③✴✳②✘②r✷❀✷❀⑦⑤✈❙✰✻➐✳✷❼♣✉✺③✰■✲★✷✳➁❘ß❋✰■✲❙q✏✲✎✴✳②✉t❅✈①♦❙✰✻✇③②✱✈→t❅♣❘✷❀✲✎✇❛➓❘✲✎✰❨✈❉✇⑨✴■②
t❅qr✴■sr✺⑧⑦➀✰✳✺③t①✴✏✇⑨②✉✲✎✺⑨s⑥⑦❦✷❿✰✥♦❉✷✎♣⑥✰✻✇③♦✧♦❉sr✺③✷❿❻❽qr✇⑧✲❙q➀✇⑧t➏✷★➋❦✷❀✲✎s❦✈①✷✹⑦➀✈①✴ ♥ ✴❨❺✳✷✝✈①✴❨❻◆✰✻♦❙⑦rt➏t①✰✻✈①✇⑧t❂⑩➈❷❬✇③②r④
✈①qr✷→✲✎✴✳②✉t❅✈①♦❙✰✻✇③②✱✈❋✰❨✈✖✷✹✰✳✲❙q❿t❂✈❉✷✎♣➑➁✱➂◆q❬s✉t☎✷★➋❦✷✹✲★s❦✈❉✇⑨✴■②❿✴✻⑩❘✈①qr✷→t①❷❦t❂✈❉✷ ♥ ✇③t✖✵⑥✷✎✈❅✈①✷❀♦✸⑦r✷❀t❉✲★♦❉✇⑨✵❘✷❀⑦✚②r✴✳✈
✰✳t✡✲✎✴✳♦❉♦①✷✹✲❤✈❼✴✳♣❘✷✎♦❙✰❨✈❉✇⑨✴■② ➅ ✵rs❦✈✝♦❉✰✻✈①qr✷❀♦✞✲★✴■②✱❺■✷✎♦❉④✳✷❀②✉✲★✷✝⑩➈♦①✴ ♥ ✰✳②❸✇⑨②✉✲✎✴✳♦❉♦①✷✹✲❤✈✞t❅✈❉✰✻✈①✷✾✈①✴❨❻◆✰✻♦❙⑦➙✰
✲★✴✳♦❉♦❉✷❀✲❤✈➒④✳✴■✰✳✺➔➁✱➂◆qr✇⑧t ♥ ✴❦⑦❦✷✎✺➉✰✳✺⑨✺③✴❨❻✭t☎⑩➈✴■♦❋✈❉♦❉✰✳②✉t❅♣⑥✰✻♦❉✷✎②✱✈➒✰✳⑦✉✰✻♣❦✈❙✰❨✈①✇③✴✳②✾✈❉✴✝✲❙q✉✰✳②r④✳✷✧✰✻②✉⑦❹♦①✷✹✲★✴❨❺✱❶
✷✎♦❉❷✘⑩➈♦①✴ ♥ ✷✎♦❉♦❉✴✳♦✹➬✉⑩➼✰✳✇⑨✺③sr♦❉✷❀t❼✰✻♦❉✷✾②r✴✻✈❼✷✎➋❦✲✎✷✎♣❦✈❉✇⑨✴■②✉t ➅ ✵rs❦✈ ♥ ✷✎♦❉✷✎✺③❷➇t①✷★✈①✵⑥✰✳✲❙➐❦t❫✈①q✉✰✻✈✡♣r✺③✰■✲★✷✚✈①q✉✷
t❅❷❦t❅✈①✷ ♥ ⑩➼✰✻♦①✈①qr✷❀♦◆⑩➈♦①✴ ♥ ✲★✴■②❬❺✳✷✎♦❉④✳✷❀②✉✲★✷■➁

✚✙✁☎✄ ❵ æ➑➪ràâÔ✦➶➼Ó❜❛ ❃ ➪❦Ö➊➴❀➘➈➴✹➘➼Ù❘Õ➃➘➔Õ➃×â➪ ✍ Ó❬×❘➘➼Ù❘Õ
Ñ➃✇③④✳s✉♦①✷❝◗✉➁✰✯✡t①qr✴❨❻✭t◆✈❉✷✎②✱✈❉✰✻✈①✇③❺✳✷✡♣⑥t❅✷❀s✉⑦❦✴❦✲★✴❦⑦❦✷❼⑩➈✴■♦❫✰✳② ♠ ☞✮å❾✇ ♥ ♣r✺③✷ ♥ ✷✎②✱✈❉✰✻✈①✇③✴✳②✘✴✳⑩➆✈❉qr✷✞♣⑥✰✻♦①❶
✈①✇⑨✈①✇③✴✳②❸t❅sr✵✉♣r♦①✴❦✲✎✷❀t❉t→s✉t①✷❀⑦➀✇③②➀✵rs✉✇⑨✺⑧⑦❦✇③②r④✘✰➄qr✇③✷✎♦❙✰✻♦❙✲❙qr✇⑧✲✎✰✳✺➃♣✉✰✳♦❅✈❉✇❛✈❉✇⑨✴■②➑➁➉➂◆qr✷✎♦❉✷✾✰✻♦❉✷✞⑩➈✴■sr♦❼✲★✴✳②r❶
t❂✈❉♦❉✰✳✇⑨②✱✈❉t◆⑦❦✷✎➓✉②r✇③②r④✝✈①qr✷➏✇③②✱❺❨✰✳♦①✇⑧✰✻②✱✈❉t➒⑩➈✴■♦◆t①s✉✲❙q⑤✰✞♣✉✰✳♦❅✈❉✇❛✈❉✇⑨✴■②➑➬❦✷✎❺■✷✎♦❉❷❿⑦❦✷✎❺❬✇⑧✲★✷➏t❅qr✴■sr✺⑧⑦➄✵❘✷➏②r✷❀✰✳♦
✰➏♣✉✰✻♦①✈①✇⑨✈①✇③✴✳②r✇③②r④❼♣❘✷✎♦❙t❅✇⑧t❅✈①✷✎②✱✈✖②r✴❦⑦❦✷ ➅ ✈❉qr✷❽♣⑥✷❀♦❉t①✇⑧t❂✈❉✷✎②✱✈❋②r✴❦⑦❦✷✹t✖⑦❦✷★➓⑥②r✇⑨②✉④➏✈①qr✷✭♣⑥✰✻♦①✈①✇⑨✈①✇③✴✳②❿t❅q✉✴✳sr✺⑧⑦
②r✴✻✈✭✴❨❺■✷✎♦❉✺③✰✳♣ ➅ ✰✾⑦❦✷❀❺❬✇③✲✎✷✡✲❙qr✴❬✴■t①✷❀t➏➻➈❻❽✇⑨✈①q✏q❬❷❦t❂✈❉✷✎♦❉✷❀t①✇③t❙➽❋✈①qr✷✡✲✎✺⑨✴✱t❅✷✹t❂✈❽♣❘✷✎♦❙t❅✇⑧t❂✈❉✷✎②✱✈❽②r✴❦⑦❦✷✡✰✳t◆✇⑨✈❉t
♣✉✰✻♦①✈①✇⑨✈①✇③✴✳② ➅ ✰✳②✉⑦✡✷✹✰✳✲❙q✞✲✎✴ ♥ ♣⑥✴■②r✷✎②✱✈✦q✉✰✳t✦✰❫t❅✷✎✈✦✴✳⑩✉②r✷❀✇⑨④■q✱✵❘✴✳♦❙t➃✷ ➸ s✉✰✻✺■✈①✴✧✇⑨✈❉t☎✲★✷❀②✱✈①✷✎♦✹➁➊Ñr✴✳♦✦✷✹✰✳✲❙q
✲★✴✳②⑥t❂✈❉♦❉✰✳✇⑨②✱✈ ➅ ✈①qr✷❀♦①✷✭✇⑧t✸✰❼♦①✷ ♥ ✷❀⑦❦❷✝✈①✴✡✵❘✷→✷✎➋❦✷❀✲★sr✈①✷❀⑦✾❻❽q✉✷✎②❿✈❉qr✷→✲★✴■②✉t❅✈①♦❙✰✻✇③②■✈➒✇③t❋❺✱✇③✴✳✺⑧✰❨✈❉✷❀⑦➉➁✱Ñr✴■♦
✷★➋r✰ ♥ ♣r✺③✷ ➅ ✇❛⑩➒✈①qr✷❀♦①✷✝✇③t✧②r✴⑤♣✉✰✳♦❅✈❉✇❛✈❉✇⑨✴■②✮♣⑥✷❀♦❉t①✇⑧t❂✈❉✷✎②✱✈✧②✉✴❬⑦r✷✡✈①✴❞✓❂✴✳✇③② ➅ ✈①q✉✷✚⑦❦✷❀❺❬✇③✲✎✷❝❈✉✇③♣✉t➏✰➄✲✎✴✳✇③②
✈①✴✘t❅✷❀✷✝✇⑨⑩◆✇❛✈✡t①qr✴✳sr✺⑧⑦➙t❂✈❙✰✻♦①✈✧✴■②r✷✳➁➉➎❏⑩ ➅ ✴■②➇✈❉qr✷✾✴✻✈①q✉✷✎♦➏q✉✰✻②⑥⑦ ➅ ✈①qr✷❿⑦❦✷❀❺❬✇③✲✎✷✚✇⑧t➏✇③②➇✈❉qr✷❿✲★✴✳♦❉✷✚✴✻⑩
✈❂❻➒✴⑤✴✳♦ ♥ ✴✳♦❉✷✝②r✴❦⑦❦✷✹t ➅ ✇⑨✈➏❻❽✇⑨✺③✺☎➐❬✇⑨✺③✺☎✴✻ï❾✰✻✺③✺☎✵rs❦✈➏✈❉qr✷✾qr✇⑨④■qr✷❀t❅✈➏♣r♦①✷✹✲★✷✹⑦❦✷✎②✉✲✎✷✝✴■②r✷✳➁➳➎❁②❦⑩➈✴■♦ ♥ ✰✻❶
✈①✇③✴✳②✮✰✻✵❘✴✳sr✈❽✈①qr✷✡②✉✷✎✇③④✳q❬✵⑥✴■♦❉t◆✇⑧t✭t①♣r♦❉✷❀✰✳⑦⑤✴■s❦✈❂❻✸✰✳♦❉⑦➄⑩➈♦❉✴ ♥ ✈❉qr✷✡✲★✷❀②✱✈①✷✎♦→✴✻⑩✦✈①qr✷✡✲✎✴ ♥ ♣❘✴✳②r✷❀②■✈❡✘ t
✰✳t❉t❅✴❦✲★✇⑧✰❨✈❉✷❀⑦✏♣❘✷✎♦❙t❅✇⑧t❅✈①✷✎②✱✈→②✉✴❬⑦r✷✞✵❬❷✘✰❿④✳✴✱t①t①✇⑨♣✏⑩➈s✉②✉✲❤✈❉✇⑨✴■② ➅ ✰✳②✉⑦✏✈❉qr✷✞qr✷❀sr♦❉✇③t❅✈①✇⑧✲✞⑦❦✇⑧✲❤✈❙✰❨✈❉✷❀t→✈①q✉✰✻✈
♣✉✰✻♦①✈①✇⑨✈①✇③✴✳②❾♣❘✷✎♦❙t①✇③t❅✈①✷❀②■✈✚②r✴❦⑦❦✷❀t✝❻❽✇③✺⑨✺❽✰➊❺✳✴■✇③⑦❸✴■②r✷✥✰✳②r✴✻✈❉qr✷✎♦✹➁✦Ñ➃✇③②✉✰✳✺⑨✺③❷ ➅ ✷❀✰■✲❙q➺✲★✴ ♥ ♣❘✴✳②✉✷✎②✱✈✝✇⑧t ➅
✇❛✈❙t❅✷❀✺❛⑩ ➅ ✰ ✎ ✷❀④✳✇③✴✳② ➅ ❻❽q✉✇③✲❙q ♥ ✰➊❷❹q✉✰➊❺■✷❫✴✳✈①qr✷❀♦❽♣r♦①✴❦✲✎✷❀t❉t❅✷✹t➒✷✎➋❦✷❀✲★sr✈①✷❀⑦⑤❻❽✇⑨✈①qr✇③②✏✇❛✈✹➁

92



❢❡❢✒❢✒❢❞❣✕❤❥✐✒❦✕❧❥❦✕❧✲♠❥♥♦❣✔✐♣♠✔q❥r♣s✒s❜t
✉✇✈ ✐♣♠✔q✲r✔s✒s
✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥
✉ ✐❏①②❢✒❢❄♠❥♥♣r ✈ ❤❥✐♣❤✫③❏r❡❦✒r❡✐✙t❍❦❡④♣r♦q✩④✕❤✲✐♣❤✒q❥❦✔r❡✐✕❧❡s❥❦✕❧✒q⑤✐♣❤✲⑥✕❧✦⑦❋s▲⑧♣♠✲✐ ✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥❋❧✦♥✔⑨
✉ q❡♠✫③ ✈ ♠❥♥♣r✲♥✔❦♦♥♣r✔❧❥⑨❡④✒⑩✕♠❥✐✕s♣①❊❢✒❢❍❦✲❶✕♠⑤❷✒♠✔q✲❤✒❷❹❸❡⑩✕❷✒s❜t❍❦❡④♣r❳q✲♠✫③ ✈ ♠❥♥✔r✲♥✔❦❺❤❥♥✔⑥❳❧❥❦✕s❻♥♣r✔❧❥⑨❡④✒⑩✕♠❥✐✕s

❢✒❢ ✈ r❡✐♣s✒❧✒s❥❦✔r❥♥✔❦⑤♥✕♠✲⑥✔r✔s♦s✩④✕♠❥⑦✕❷❥⑥❻③▼♠✲❸✔r⑤❦✔♠❼❤✲❸♣♠✒❧❥⑥❳r✔❤✔q✩④❳♠✲❦❡④♣r❡✐
✉ ⑥✔r❡⑧❡⑦❡♥ ✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥✕❽❥⑧❡♥ ✉ ①
✉ ♥✕♠✲⑥✒r✔❽✲⑧❡⑦✒♥✕q❥❦✕❧❡♠❥♥
✉ ❤✲❸✔♠✔❧❥⑥ ✉ ⑨✔r✲❦♣❽❥♥✕♠✲⑥✒r♣s❾t☎❦✒❿ ✈ r ✉☎✈ ❤✲✐❡❦✕❧❥❦✕❧❡♠✩♥✠✐❋①❊t☎✐✔r❡⑧✔❷❡r♣q❥❦♣♠❥✐❏①✒①✒①✒①

❢✒❢❞♥♣r♣❧✩⑨❡④✒⑩✕♠✲✐✠❧✦♥✔⑧♣♠✲✐✩③❏❤✲❦✕❧❡♠❥♥➀s ✈ ✐✔r✔❤✲⑥✕s▲⑩✒❿❼⑨♣♠✔s❡s✒❧ ✈
✉ ⑨♣♠✔s✒s❡❧ ✈ ♥♣r♣❧❥⑨✲④✒⑩✕♠✲✐✕s❾t✇✐✔r❡⑨✕❧❡♠✩♥➁q❡♠✫③ ✈ ♠✩♥♣r✲♥✔❦➂t✛③❋r❡✐✒⑨✔r♦➃➅➄✇♥♣r✲❶♣r❡✐❋①

❢✒❢❄r❡❸✒r❡✐✒❿♦⑥✔r❡❸♣❧✒q✲r♣s⑤s✦④✕♠❥⑦✕❷✲⑥⑤⑩✔r❳q❡♠✲❸✔r✲✐✔r❡⑥❼⑩✔❿♦❤ ✈ r❡✐✕s❡❧✒s❥❦✔r✲♥✒❦⑤♥✕♠✲⑥✔r
✉ q❡♠❥♥❋s✩❦✒✐♣❤✔❧✩♥✒❦
✉ ⑨✔r❡❦✔❽❥♥✕♠✲⑥✔r✔sPt✇❦✒❿ ✈ r ✉✇✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥❺✐❏①❊t✇✐♣❤✲⑥✕❧✒❧❹➆➅➇➉➈✕①
✉ ❶✒④♣r❥♥ ✉➋➊➌✉ ✐♣❤✩♥✔⑥♣♠✫③☛① ✉➉➍❺➎✞✉❬➏②✉ s❥➐❡⑦♣❤✲✐✔r ✉❬➏❹➑ ✐❏①✒① ✉➋➏❺➎ ➇➉➈❹✐❋①✒①✒①✒①
✉ ♥♣r❥❶✕❽❥♥✕♠✲⑥✒rPt☎❦✒❿ ✈ r ✉✇✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥❳✐❏①②t✛③▼♠✲❦✕❧✲♠❥♥ ✈ ❤✲✐✒❦♣❧❥❦✕❧❡♠❥♥♣❽✲⑧❡♥▼①✒①❡①

❢✒❢✪❧❥⑧⑤❦✲❶✕♠ ✈ r❡✐♣s✒❧✒s❥❦✔r❥♥✔❦⑤♥✕♠✲⑥✔r✔s❼❤✲✐✔r❼❦✔♠✒♠♦q❡❷✒♠✒s✲r⑤❦♣♠✲⑨✔r✲❦❡④♣r❡✐✂➒✪♠✩♥♣r❳s✩④✕♠✩⑦✕❷✲⑥❺s✩⑦✕❧✒q✒❧❥⑥✔r
✉ q❡♠❥♥❋s✩❦✒✐♣❤✔❧✩♥✒❦
✉➋➊❡➓❾✉ ❷❡r✲♥✔⑨✒❦✲④ ✉ ⑨✔r❡❦♣❽✩♥✕♠✲⑥✔r♣s➔t☎❦❡❿ ✈ r ✉☎✈ ❤✲✐✒❦✕❧❥❦♣❧❡♠❥♥❺✐❏①②t➉q❡♠✲✐✔r❋① ➎ ①✒①
✉ ❷❡r❡❦ ✉❡✉ s✩⑦✔✐✒❸♣❧❥❸♣♠✲✐ ✉ ③❏❤✲→ ✉ ③▼❤ ✈ q❡❤✲✐❳➃➅➄✇♥✕♠✲⑥✔r✔❽ ✈ ✐✔r♣q✲r✲⑥✔r✲♥❋q✲r

✉ ⑨✒r❡❦♣❽❥♥✕♠❥⑥✔r♣s➔t☎❦✒❿ ✈ r ✉☎✈ ❤✲✐❡❦✕❧❥❦✕❧❡♠✩♥❳✐❏①❊t➋q❡♠❥✐✔r❋①✒①✒①❡①✒①
✉ ③▼❤ ✈ ➃➅➄✇➣❏❧❡❷❡❷✒❽❥♥✕♠✲⑥✒r
✉ ✐✒r✦③▼♠✲❸✔r❺s✦⑦✔✐✒❸✕❧❥❸✔♠✲✐ ✉ ⑨✔r❡❦✔❽❥♥✕♠✲⑥✔r✔sPt✇❦✒❿ ✈ r ✉✇✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥❳✐❏①②t➋q❡♠✲✐✔r✕①

t✌➣✕r❡❿♦➃➅➄✇♥✕♠✲⑥✔r✔❽ ✈ ✐✔r♣q✲r✲⑥✔r✲♥❋q✲r✕①✒①✒①✒①

❢✒❢↔❤▲⑥✒r❡❸✕❧✒q✲r❺s✦④✕♠❥⑦✕❷✲⑥⑤⑩✔r✔❷✒♠❥♥✔⑨❼❦♣♠❹❦❡④♣r♦q❡♠✫③ ✈ ♠✩♥♣r✲♥✔❦❺♠✲⑧❼❦❡④♣r❳q❡❷❡♠✔s✲r♣s❥❦
❢✒❢ ✈ r❡✐♣s✒❧✒s❥❦✔r❥♥✔❦⑤♥✕♠✲⑥✔r ✉ ❶❁➇↕④✔❿♣s❥❦✔r❡✐✔r✔s✒❧✒s♣①
✉ q❡♠❥♥❋s✩❦✒✐♣❤✔❧✩♥✒❦
✉ ❤❥♥✔⑥✠q✲♠✫③ ✈ ♠❥♥✔r✲♥✔❦

✉➉➊➙✉ ❽ ✉ ✐♣❤✲⑥✕❧✩⑦✕s ✉ ⑨✔r❡❦♣❽✩♥✕♠✲⑥✔r❺q❡♠❀③ ✈ ♠❥♥♣r❥♥✔❦❏①✒①❹➛✂➇➉➈♣①
✉ ③❇❧✦♥ ✉ ③▼❤ ✈ ➃❜➄➜✐♣❤✲⑥✕❧✦⑦❋s

✉ ⑨✔r❡❦♣❽❥♥♣♠✲⑥✔r♣s❾t☎❦❡❿ ✈ r ✉☎✈ ❤✲✐✒❦✕❧❥❦♣❧❡♠❥♥❺✐❏①❊t☎✐✔❤✲⑥✕❧✒❧❼➆❜➇➉➈✕①✒①✒①❡①✒①
✉ ❷❡r❡❦ ✉❡✉ ⑩♣r♣s❥❦ ✉ ✐✔r❡⑥❡⑦✕q✲r♦➃➅➄☎⑩♣r✔s❥❦♣❽✲✐♣❤❥⑥✕❧✩⑦❋s

✉ ⑨✔r❡❦✔❽❥♥✕♠✲⑥✔r✔sPt✇❦✒❿ ✈ r ✉✇✈ ❤✲✐✒❦✕❧✩❦✕❧❡♠❥♥❳✐❏①②t☎✐♣❤✲⑥✕❧❡❧⑤➆➅➇➉➈✕①✒①❡①✒①
✉ s✲r✲❦✒⑧❺q❡♠✫③ ✈ ♠❥♥♣r✲♥✒❦❳⑩✔r♣s❥❦❏①✒①❡①

❢✒❢❞♥♣r♣❧✩⑨❡④✒⑩✕♠✲✐♣s⑤❤✲✐✔r❼❦❡④✔r ✈ r❡✐✕s❡❧✒s❥❦✔r✲♥✒❦❳♥♣♠✲⑥✔r♣s❻❶✙➇❝⑦❥③✕⑩✔✐✔❤✔s▲❦♣♠❥⑦✕q✩④❋❧✩♥✔⑨♦❦✲④♣r❳q✲r✲♥✒❦✔r❡✐
✉ q❡♠❥♥❋s✩❦✒✐♣❤✔❧✩♥✒❦
✉ ♠✲✐ ✉ ♥✕♠✲❦ ✉ q✲r❥♥✔❦✔r❡✐ ✈ q✲♠✫③ ✈ ♠❥♥✔r✲♥✔❦❏①✒①

✉ r❡➐❡⑦✕❤✒❷❹♥✕❧❡❷ ✉ s✲r✲❦♣❽✲⑥✕❧❥⑧❡⑧✔r❡✐✔r✲♥✕q✲r ✉ q❡♠❥♥❋s⑤q✲♠✫③ ✈ ♠❥♥✔r✲♥✔❦⑤♥♣r♣❧✩⑨❡④✒⑩✕♠✲✐♣s♣①
✉ ⑨✔r❡❦♣❽❥♥♣♠✲⑥✔r♣s❾t☎❦❡❿ ✈ r ✉☎✈ ❤✲✐✒❦✕❧❥❦♣❧❡♠❥♥❺✐❏①✒①✒①❡①✒①

✉ s✲r❡❦❡⑧⑤♥♣r♣❧❥⑨❡④❡⑩✕♠✲✐✕s ✉ ✐✒r✦③▼♠✲❸✔r❺q✲♠✫③ ✈ ♠❥♥✔r✲♥✔❦ ✉ ⑨✔r✲❦♣❽❥♥✕♠✲⑥✒r♣s➔t☎❦✒❿ ✈ r ✉☎✈ ❤✲✐✒❦♣❧❥❦✕❧❡♠❥♥❺✐❏①❡①✒①✒①✒①✒①

➝➟➞✭➠✤➡✔➢▼➡rP❘❇❙●❨❈❅✽★❈❂❑➥➤✹❇✧➦✱✿❁❇❉❆❬❵■▼❨❃❉▼✻❵■❇➒❖③▼❀❴✵➦❬✽★❴❁❈❂❑▲❈❂❑❛▼❀●✚✽✭❴❂❇❙❱✹❑❯▼❀●✚❑❯●❨❈❂▼✧✿❁❆✱❪✳❴❂❇❙❱✹❑❯▼❀●✱✿✻➧✖❑▲❈❂❄✝❃❅❄❬✽★❴❅✽❀❃❉❈❂❇①❴❂❑❛✿❏❈❂❑❯❃
❴❅✽❀❵■❑❯❆✱✿➟➨✻❳❬✽❫✿❁❆✱❪■❴❂▼❀❆■❈❂❑❯●✱❇✸❆✱✿❁❇❤❵✡❖⑧▼❀❴➒❄✱❑❯❇❉❴❅✽★❴❂❃①❄■❑❯❃❤✽❀❚✤➦❬✽✎❴❁❈❂❑▲❈❂❑❯▼✹●■❑❯●✱❱❋➩

93



➫ ➛❁➭❉➛◗➡r➛◗➩→➲➳➛➃➥

❢✲➩➲➯➳➩❘❜❋❪❦❇❙❚❯✿❁▼✹●✉❳✤➵➸➩❘❜❋❚❯❚❛❇❉●⑥❳☛➵❪➩❘❩➆▼❨▼❀❴❂❇✹❳➉❩➺➩☛➯◆✽❀●■✿❁▼✹●✉❳✂➻➸➩☛➯✸▼❀❭❼✿❏❲❨❳✉P✧➩☛➼❽●✱❑❯❱✹❄❨❈❤❳☛➽➳➩✶➾✸✽❀❱✲➦❬✽❀❚ä❳❜➚➟➩
➽➒✽❀❆■❃①❄✉❳✤➻➸➩➉❧✻❆✱✿❁✿❁❭✡✽❀●➄✽✎●❬❵➪➽❅➩❇➶✏❇❉❑❛✿❁✿✫➩➏❜➒❭❼▼✎❴❬➦✱❄✱▼❀❆✱✿➒❃❙▼✹❭●➦■❆■❈❂❑❯●✱❱✕➩➏❜❋❊◆✼✚❇❙❭❼▼❹❢✦➹✲➹✒➘❨❳➑✼✚❊❏P✸❳
❢❙✐✹✐✹✐♣➩

❡✔➩❴➴❋➩✒➷➆❇❤✽✎❚➬➩☛➮➳❇①❴❂✿❁❑❛✿❏❈❂❇❉●✻❈➃●✱▼✻❵✳❇❙✿➑❖⑧▼❀❴◗❴❂❇❙❚❯❑❛✽❀❪■❚❛❇❋❭❼❇❙❭❼▼✎❴❁❲✭❑❛●❼❱❀❇❙▼✹❱✎❴❅✽✲➦■❄✱❑❯❃❤✽❀❚❯❚▲❲❼❚❯▼❨❃❤✽✎❚❬●✱❇❉❈☎➧✦▼✎❴❬➱✳✿✫➩❦P❘❇❙❃❅❄
➽❋❇✫➦❦▼❀❴❁❈➒❜❋❊❁✼❞✃❍❡❀❝❀❝✹❣❥✃❂❢❀❢✹❳r✼✚❊❍P✸❳❦❡✎❝✹❝❀❣✕➩

❣♣➩❴➴❋➩▼➷➆❇❤✽✎❚➬➩➃❜➍❴❂▼❀❪✱❆■✿❏❈❋✽❀❭❼▼❀❴❬➦■❄✱▼❀❆✱✿☎❄✱❑❯❇❉❴❅✽★❴❂❃①❄❨❲✡❖③❴❂▼❀❭P➦❦❇❉❴❂✿❁❑❯✿❏❈❂❇❙●❨❈➒●■▼✻❵■❇❙✿✫➩◗❊➔●❹❐✂❒✕❮✸❳✱❡❀❝❀❝✹❣✕➩
❰✕➩❴➴❋➩▼➷➆❇❤✽✎❚➬➩❁➾➒❇❤✽✎❴➋✃➼▼❡➦✳❈❂❑❯❭✡✽❀❚⑥❵■❑❯✿❏❈❁❴❂❑❯❪✱❆■❈❂❇❙❵✞❖ä✽✎❑❯❚❛❆✳❴❂❇✭❃❙❑▲❴❂❃❙❆✱❭❼✿❁❃❉❴❂❑Ï➦✳❈❂❑❛▼❀●✤➩➑❊➔●↔ÐÒÑ●❐✂❒✱❳❬❡❀❝❀❝✹❣♣➩
➘✔➩❴➴❋➩✒➷➆❇❤✽✎❚➈❳✻❧✶➩♣➻✸❑❯❚❯❪❦❇❉❴❁❈✦➩❇➽➒✽❀❭❫❪❦▼❡➾➒▼✻❵■❇❙✿➉❖⑧▼✎❴➃❈❂❄■❇☎❭❼❇❉❈❁❴❂▼❡➦❦▼❀❚❯❑❯❈❅✽✎●❼✽✹❵➏❄■▼❨❃✖●✱❇❉❈☎➧✦▼❀❴❬➱❇➩❬P❘❇❙❃❅❄Ó➽➒❇❀➦❦▼❀❴❁❈

❜❋❊❁✼❞✃❍❡❀❝❀❝✹❣❥✃➔❝✹❡❡Ô✻❳r✼✚❊❏P✸❳❬❡❀❝✹❝❀❣✕➩
➹♣➩➲➵❽✽✎●✱❑❯❇❙❚r❩➆▼❨▼✎❴❂❇❡➩♣➚➑✿❏❈❅✽❀❪■❚❛❑❯✿❁❄■❑❛●■❱✧✽✭❩➆▼❨▼✎❴❅❵■❑❯●❬✽★❈❂❇◆❧❨❲✳✿❏❈❂❇❙❭ê▼✹●✡✽❀●➏❜➒❭❼▼❀❴❬➦■❄✱▼❀❆✱✿➃❩➆▼✹❭●➦■❆■❈❂❇❉❴✦➩➊✼✚❊❏P

❧❨❈❂❆❬❵■❇❉●✻❈Õ➶✏▼❀❴❬➱✻✿❁❄■▼❡➦✚▼❀●❄➯✸❑❯❱❀❄↔➮➳❇❉❴❁❖⑧▼✎❴❂❭✡✽❀●■❃❙❇→❩➆▼✹❭●➦■❆■❈❂❑❯●✱❱✳❳✉❢❙✐✹✐✲Ö✕➩
Ô✔➩➲➵❽✽✎●✱❑❯❇❙❚r❩➆▼❨▼✎❴❂❇✹❳✕➽✸✽❀❵■❄■❑➥➱❀✽✧➾✸✽❀❱❡➦✱✽❀❚❦✽✎●❬❵●➽❋▼✹●Ó➶✏❇❉❑❛✿❁✿✫➩✔➮➉✽✎❴❅✽✹❵✳❑❯❱✹❭❼✿➃❖③▼❀❴➆✿❏❈❁❴❂❆✱❃❉❈❂❆✳❴❂❇➒❑❯●✡✽❀●✞✽✎❭❼▼❀❴➋✃

➦■❄✱▼✹❆■✿✖❃❙▼✹❭●➦■❆■❈❂❇❉❴✦➩■✼✚❊❍P➍❜❋❊✦✼✚❇❙❭❼▼✝❢✦➹✳❢❀❰❋➩
Ö♣➩❴×✙➩❇×❘✽✎❭●➦❦▼❀❴❁❈✦➩◗P✦❄■❇➳➦✱✽✎❴❁❈➋✃➈❈❂❑❯❭❼❇✧➦✱✽✎❴❂❚❯❑❛✽❀❭❼❇❙●❨❈✦➩✻Ø➳❐❜ÙÛÚ❋Ü➋Ý✲Þ❋ß❀Ý❡à❀á✌â➬ã✲Þ❏ß➸ã✲Þ❻❐❁ã✲ä➺å▼æ♣á☎çèÜ❅❒❏é❥ß✗á☎çèä➸ß❂❳

❢✫➹❋ê➼❡❡ëèì❯❢❙❣✹❣✩í✱❢✦➹❀✐✳❳➑❢❤✐❀✐❡Ö✕➩
✐♣➩➲➵❪➩❋×✉❑❛❪❦❇❉●❋✃✇➾✸▼✦➧✦❇❉❚❛❚ä❳❋➯➸➩❋➷✦✽✎❚⑨✽❥➱❨❴❂❑❛✿❁❄■●❬✽✎●⑥❳❋➵❪➩✕➼✭✽✎❴❂❱✹❇①❴✦➩◗❜➒●❬✽✎❚▲❲■✿❁❑❯✿✖▼❀❖❘❈❂❄✱❇✸❇❀➤➊▼✹❚❯❆■❈❂❑❯▼❀●✚▼❀❖➅➦❦❇❙❇❉❴➋✃➈❈❂▼✲✃

➦❦❇❙❇①❴➒✿❏❲✳✿❏❈❂❇❙❭❼✿✫➩➑❊➔●↔Ð➲îÒÑ●❐➉❳✱❡✎❝✹❝➊❡✔➩
❢❙❝✕➩❴➾➳➩❋×✉❲✳●✱❃❅❄✤➩ÒÑ➲â✛ß❬á✌Üèâ✌ï❀æ✕á☎ç➋ð↕Ø➺ñ ò✒ã❥Üèâ✛á✭ó✔ä❪ß❬➩➆✼✚▼❀❴❂❱➊✽✎●↔➼✭✽❀❆✳❖⑧❭✡✽❀●✉❳r❢❤✐✹✐✲➹✕➩

94



Computations in Space and Space in Computations

Olivier Michel, Jean-Louis Giavitto, Julien Cohen, Antoine Spicher

LaMI∗– CNRS – Université d’Évry – Genopole

(draft paper)

The Analytical Engine weaves algebraic
patterns just as the Jacquard loom weaves
flowers and leaves.

Ada Lovelace1 Goals and Motivations

The emergence of terms like natural computing, mimetic computing, parallel problem solving from nature,
bio-inspired computing, neurocomputing, evolutionary computing, etc., shows the never ending interest of the
computer scientists for the use of “natural phenomena” as “problem solving devices” or more generally, as
a fruitful source of inspiration to develop new programming paradigms. It is the latter topic which interests
us here. The idea of numerical experiment can be reversed and, instead of using computers to simulate a
fragment of the real world, the idea is to use (a digital simulation of) the real world to compute. In this
perspective, the processes that take place in the real world are the objects of a new calculus:

description of the world’s laws = program

state of the world = data of the program

parameters of the description = inputs of the program

simulation = the computation

This approach can be summarized by the following slogan: “programming in the language of nature” and
was present since the very beginning of computer science with names like W. Pitts and W. S. McCulloch
(formal neurons, 1943), S. C. Kleene (inspired by the previous for the notion of finite state automata, 1951),
J. H. Holland (connectionist model, 1956), J. Von Neumann (cellular automata, 1958), F. Rosenblatt (the
perceptron, 1958), etc.

This approach offers many advantages from the teaching, heuristic and technical points of view: it is
easier to explain concepts referring to real world processes that are actual examples; the analogy with
the nature acts as a powerful source of inspirations; and the studies of natural phenomena by the various
scientific disciplines (physics, biology, chemistry...) have elaborated a large body of concepts and tools that
can be used to study computations (some concrete examples of this cross fertilization relying on the concept
of dynamical system are given in references [6, 5, 32, 11]).

There is a possible fallacy in this perspective: the description of the nature is not unique and diverse
concurent approaches have been developed to account for the same objects. Therefore, there is not a
unique “language of nature” prescribing a unique and definitive programming paradigm. However, there is
a common concern shared by the various descriptions of nature provided by the scientific disciplines: natural
phenomena take place in time and space.

In this paper, we propose the use of spatial notions as structuring relationships in a programming
language. Considering space in a computation is hardly new: the use of spatial (and temporal) notions
is at the basis of computational complexity of a program; spatial and temporal relationships are also
used in the implementation of parallel languages (if two computations occur at the same time, then the
two computations must be located at two different places, which is the basic constraint that drives the
scheduling and the data distribution problems in parallel programming); the methods for building domains
in denotational semantics have also clearly topological roots, but they involve the topology of the set of

∗LaMI umr 8042 CNRS – Université d’Évry, Tour Évry-2, 523 place des terrasses de l’agora, 91000 Évry, France.
Emails: [michel, giavitto, jcohen, aspicher]@lami.univ-evry.fr

This paper is a short version of a LaMI technical report.

1

95



values, not the topology of a value. In summary, spatial notions have been so far mainly used to describe
the running of a program and not as means to develop new programs.

We want to stress this last point of view: we are not concerned by the organization of the resources used
by a program run. What we want is to develop a spatial point of view on the entities built by the programmer
when he designs his programs. From this perspective, a program must be seen as a space where computation
occurs and a computation can be structured by spatial relationships. We hope to provide some evidences in
the rest of this paper that the concept of space can be as fertile as mathematical logic for the development
of programming languages. More specifically, we advocate that the concepts and tools developed for the
algebraic construction and characterization of shapes1 provide interesting teaching, heuristic and technical
alternatives to develop new data structures and new control structures for programming.

The rest of this paper is organized as follows. Section 2 and section 3 provide an informal discussion to
convince the reader of the interest of introducing a topological point of view in programming. This approach
is illustrated through the experimental programming language MGS used as a vehicle to investigate and
validate the topological approach.

Section 2 introduces the idea of seeing a data structure as a space where the computation and the values
move. Section 3 follows the spatial metaphor and presents control structures as path specifications. The
previous ideas underlie MGS. Section 4 sketches this language. The presentation is restricted to the notions
needed to follow the examples in the next section. Section 5 gives some examples and introduces the (DS)2

class of dynamical systems which exhibit a dynamical structure. Such kind of systems are hard to model
and simulate because the state space must be computed jointly with the running state of the system. To
conclude in section 6 we indicate some of the related work and we mention briefly some perspectives on the
use of spatial notions.

2 Data Structures as Spaces2

The relative accessibility from one element to another is a key point considered in a data structure definition:

• In a simply linked list, the elements are accessed linearly (the second after the first, the third after
the second, etc.).

• In a circular buffer, or in a double-linked list, the computation goes from one element to the following
or to the previous one.

• From a node in a tree, we can access the sons.

• The neighbors of a vertex V in a graph are visited after V when traveling through the graph.

• In a record, the various fields are locally related and this localization can be named by an identifier.

• Neighborhood relationships between array elements are left implicit in the array data-structure. Im-
plementing neighborhood on arrays relies on an index algebra: index computations are used to code
the access to a neighbor. The standard example of index algebra is integer tuples with linear mappings
λx.x ± 1 along each dimension (called “Von Neumann” or “Moore” neighborhoods).

This accessibility relation defines a logical neighborhood. The concept of logical neighborhood in a data
structure is not only an abstraction perceived by the programmer and vanishing at the execution, but it does
have an actual meaning for the computation. Very often the computation indeed complies with the logical
neighborhood of the data elements and it is folk’s knowledge that most of the algorithms are structured
either following the structure of the input data or the structure of the output data. Let us give some
examples.

1G. Gaston-Granger in [22] considers three avenues in the formalization of the concept of space: shape (the algebraic
construction and the transformation of space and spatial configurations), texture (the continuum) and measure (the process
of counting and coordinatization [37]). In this work, we rely on elementary concepts developed in the field of combinatorial
algebraic topology for the construction of spaces [23].

2The ideas exposed in this section are developed in [18, 13].

96



The recursive definition of the fold function on lists propagates an action to be performed along the
traversal of a list. More generally, recursive computations on data structures respect so often the logical
neighborhood, that standard high-order functions (e.g. primitive recursion) can be automatically defined
from the data structure organization (think about catamorphisms and other polytypic functions on inductive
types [27, 24]).

The list of examples can be continued to convince ourselves that a notion of logical neighborhood is
fundamental in the definition of a data structure. So to define a data organization, we adopt a topological
point of view: a data structure can be seen as a space, the set of positions between which the computation
moves. Each position possibly holds a value3. The set of positions is called the container and the values
labeling the positions constitute the content.

This topological approach is constructive: one can define a data type by the set of moves allowed in the
data structure. An example is given by the notion of “Group Based Fields” or GBF in short [20, 15]. In a
uniform data structure, i.e. in a data structure where any elementary move can be used against any position,
the set of moves possesses the structure of a mathematical group G. The neighborhood relationship of the
container corresponds to the Cayley graph of G. In this paper, we will use only two very simple groups
G corresponding to the moves |north> and |east> allowed in the usual two-dimensional grid and to the
moves allowed in the hexagonal lattice figured at the right of Fig. 3.

3 Control Structures as Paths

In the previous section, we suggested looking at data structure as spaces in which computation moves.
Then, when the computation proceeds, a path in the data structure is traversed. This path is driven by the
control structures of the program. So, a control structure can be seen as a path specification in the space
of a data structure. We elaborate on this idea into two directions: concurrent processes and multi-agent
systems.

3.1 Homotopy of a Program Run

Consider two sequential processes A and B that share a semaphore s. The current state of the parallel
execution P = A || B can be figured as a point in the plane A × B where A (resp. B) is the sequence of
instructions of A (resp. B). Thus, the running of P corresponds to a path in the plane A×B. However, there
are two constraints on paths that represent the execution of P. Such a path must be “increasing” because
we suppose that at least one of the two subprocesses A or B must progress. The second constraint is that the
two subprocesses cannot be simultaneously in the region protected by the semaphore s. This constraint has
a clear geometrical interpretation: the increasing paths must avoid an “obstruction region”, see Fig. 1. Such
representation is known at least from the 1970’s as “progress graph” [7] and is used to study the possible
deadlocks of a set of concurrent processes.

�✁�✁�✁�
�✁�✁�✁�
�✁�✁�✁�

✂✁✂✁✂✁✂
✂✁✂✁✂✁✂
✂✁✂✁✂✁✂

✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄
✄✁✄

☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎
☎✁☎

V(r)

P(r)

P(s)

V(s)

P(r) V(r)
V(s)P(s)

A

B

α

β

P(s)

V(s)

P(s) V(s) A

B

Figure 1: Left: The possible path taken by the process A || B is constrained by the obstruction resulting
of a semaphore shared between the processes A and B. Right: The sharing of two semaphores between two
processes may lead to deadlock (corresponding to the domain α) or to the existence of a “garden of Eden”
(the domain β that cannot be accessed outside from β and it can only be leaved.)

3A point in space is a placeholder awaiting for an argument, L. Wittgenstein, (Tractatus Logico Philosophicus, 2.0131).

97



Homotopy (the continuous deformation of a path) can be adapted to take into account the constraint
of increasing paths and provides effective tools to detect deadlocks or to classify the behavior of a parallel
program (for instance in the previous example, there are two classes of paths corresponding to executions
where the process A or B enters the semaphore first). Refer to [21] for an introduction to this domain.

3.2 The Topological Structure of Interactions4

In a multi-agent system (or an object based or an actor system), the control structures are less explicit and
the emphasis is put on the local interaction between two (sometimes more) agents. In this section, we want
to show that the interactions between the elements of a system exhibit a natural topology.

The starting point is the decomposition of a system into subsystems defined by the requirement that the
elements into the subsystems interact together and are truly independent from all other subsystems parallel
evolution.

In this view, the decomposition of a system S into subsystems S1, S2, . . . , Sn is functional : state si(t+1)
of the subsystem Si depends solely of the previous state si(t). However, the decomposition of S into the Si

can depend on the time steps. So we write St
1
, St

2
, . . . , St

nt
for the decomposition of the system S at time t

and we have: si(t + 1) = ht
i(si(t)) where the ht

i are the “local” evolution functions of the St
i . The “global”

state s(t) of the system S can be recovered from the “local” states of the subsystems: there is a function
ϕt such that s(t) = ϕt(s1(t), . . . , snt

(t)) which induces a relation between the “global” evolution function h
and the local evolution functions: s(t + 1) = h(s(t)) = ϕt(ht

1
(s1(t)), . . . , h

t
nt

(snt
(t))).

The successive decomposition St
1
, St

2
, . . . , St

nt
can be used to capture the elementary parts and the in-

teraction structure between these elementary parts of S. Cf. Figure 2. Two subsystems S′ and S′′ of S
interact if there are some St

j such that S′, S′′ ∈ St
j . Two subsystems S′ and S′′ are separable if there are

some St
j such that S′ ∈ St

j and S′′ 6∈ St
j or vice-versa. This leads to consider the set S, called the interaction

structure of S, defined by the smaller set closed by intersection that contains the St
j .

Set S has a topological structure: S corresponds to an abstract simplicial complex. An abstract simplicial
complex [23] is a collection S of finite non-empty set such that if A is an element of S, so is every nonempty
subset of A. The element A of S is called a simplex of S; its dimension is one less that the number of its
elements. The dimension of S is the largest dimension of one of its simplices. Each nonempty subset of A
is called a face and the vertex set V (S), defined by the union of the one point elements of S, corresponds
to the elementary functional parts of the system S. The abstract simplicial complex notion generalizes the
idea of graph: a simplex of dimension 1 is an edge that links two vertices, a simplex f of dimension 2 can
be thought of as a surface whose boundaries are the simplices of dimension 1 included in f , etc.

...

S

s(0)

S
1
1

s(1)

S
0
1

S1
i

s(t)

S ′ ∈ V (S)

Figure 2: The interaction structure of a system S resulting from the subsystems of elements in interaction
at a given time step.

4 MGS Principles

The two previous sections give several examples to convince the reader that a topological approach of the
data and control structures of a program present some interesting perspectives for language design: a data
structure can be defined as a space (and there are many ways to build spaces) and a control structure is a
path specification (and there are many ways to specify a path).

4This section is adapted from [34].

98



Such a topological approach is at the core of the MGS project. Starting from the analysis of the interaction
structure in the previous section, our idea is to define directly the set S with its topological structure and
to specify the evolution function h by specifying the set St

i and the functions ht
i:

• the interaction structure S is defined as a new kind of data structures called topological collections;

• a set of functions ht
i together with the specification of the St

i for a given t are called a transformation.

We will show that this abstract approach enables an homogeneous and uniform handling of several compu-
tational models including cellular automata (CA), lattice gas automata, abstract chemistry, Lindenmayer
systems, Paun systems and several other abstract reduction systems.

These ideas are validated by the development of a language also called MGS. This language embeds a
complete, strict, impure, dynamically or statically typed functional language.

4.1 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured by abstract topologies using
transformations [19]. A set of entities organized by an abstract topology is called a topological collection.
Here, topological means that each collection type defines a neighborhood relation inducing a notion of
subcollection. A subcollection S′ of a collection S is a subset of connected elements of S and inheriting
its organization from S. Beware that by “neighborhood relation” we simply mean a relationship that
specify if two elements are neighbors. From this relation, a cellular complex can be built and the classical
“neighborhood structure” in terms of open and closed sets can be recovered [33].

Collection Types. Different predefined and user-defined collection types are available in MGS, including
sets, bags (or multisets), sequences, Cayley graphs of Abelian groups (which include several unbounded,
circular and twisted grids), Delaunay triangulations, arbitrary graphs, quasi-manifolds [34] and some other
arbitrary topologies specified by the programmer.

Building Topological Collections. For any collection type T, the corresponding empty collection is
written ():T. The join of two collections C1 and C2 (written by a comma: C1,C2) is the main operation on
collections. The comma operator is overloaded in MGS and can be used to build any collection (the type
of the arguments disambiguates the collection built). So, the expression 1, 1+2, 2+1, ():set builds the set
with the two elements 1 and 3, while the expression 1, 1+2, 2+1, ():bag computes a bag (a set that allows
multiple occurrences of the same value) with the three elements 1, 3 and 3. A set or a bag is provided with
the following topology: in a set or a bag, any two elements are neighbors. To spare the notations, the empty
sequence can be omitted in the definition of a sequence: 1, 2, 3 is equivalent to 1, 2, 3,():seq.

4.2 Transformations

The MGS experimental programming language implements the idea of transformations of topological collec-
tions into the framework of a functional language: collections are just new kinds of values and transforma-
tions are functions acting on collections and defined by a specific syntax using rules. Transformations (like
functions) are first-class values and can be passed as arguments or returned as the result of an application.

The global transformation of a topological collection s consists in the parallel application of a set of
local transformations. A local transformation is specified by a rule r that specifies the replacement of a
subcollection by another one. The application of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,

2. computes a new collection s′i as a function f of si and its neighbors,

3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application strategy of rules, all distinct
instances si of the subcollections matched by the σ pattern are “simultaneously replaced” by the f(si).

99



Path Pattern. A pattern σ in the left hand side of a rule specifies a subcollection where an interaction
occurs. A subcollection of interacting elements can have an arbitrary shape, making it very difficult to
specify. Thus, it is more convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic filter BF matches one
element. The following (fragment of the) grammar of path patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>

where cte is a literal value, id ranges over the pattern variables and exp is a boolean expression. The
following explanations give a systematic interpretation for these patterns:

literal: a literal value cte matches an element with the same value.

empty element the symbol <undef> matches an element whose position does not have an associated value.

variable: a pattern variable a matches exactly one element with a well defined value. The variable a can
then occur elsewhere in the rest of pattern or in the r.h.s. of the rule and denotes the value of the
matched element.

neighbor: b, p is a pattern that matches a path which begins by an element matched by b and continues
by a path matched by p, the first element of p being a neighbor of b.

guard: p/exp matches a path matched by p when the boolean expression exp evaluates to true.

Elements matched by basic filters in a rule are distinct. So a matched path is without self-intersection. The
identifier of a pattern variable can be used only once as a basic filter. That is, the path pattern x,x is
forbidden. However, this pattern can be rewritten for instance as: x,y / y = x.

Right Hand Side of a Rule. The right hand side of a rule specifies a collection that replaces the
subcollection matched by the pattern in the left hand side. There is an alternative point of view: because
the pattern defines a sequence of elements, the right hand side may be an expression that evaluates to a
sequence of elements. Then, the substitution is done element-wise: element i in the matched path is replaced
by the element i in the r.h.s. This point of view enables a very concise writing of the rules.

5 Examples

5.1 The modeling of Dynamical Systems

In this section, we show through one example the ability of MGS to concisely and easily express the state
of a dynamical system and its evolution function. More examples can be found on the MGS web page
and include: cellular automata-like examples (game of life, snowflake formation, lattice gas automata...),
various resolutions of partial differential equations (like the diffusion-reaction à la Turing), Lindenmayer
systems (e.g. the modeling of the heterocysts differentiation during Anabaena growth), the modeling of a
spatially distributed signaling pathway, the flocking of birds, the modeling of a tumor growth, the growth
of a meristeme, the simulation of colonies of ants foraging for food, etc.

The example given below is an example of a discrete “classical dynamical system”. We term it “classical”
because it exhibits a static structure: the state of the system is statically described and does not change
with the time. This situation is simple and arises often in elementary physics. For example, a falling stone
is statically described by a position and a velocity and this set of variables does not change (even if the
value of the position and the value of the velocity change in the course of time). However, in some systems,
it is not only the values of state variables, but also the set of state variables and/or the evolution function,
that changes over time. We call these systems dynamical systems with a dynamic structure following [16],
or (DS)2 in short. As pointed out by [14], many biological systems are of this kind. The rationale and the
use of MGS in the simulation of (DS)2 is presented in [13, 14].

100



Figure 3: From left to right: the final state of a DLA process on a torus, a chess pawn, a Klein’s bottle and an
hexagonal meshes. The chess pawn is homeomorphic to a sphere and the Klein’s bottle does not admit a concretization
in Euclidean space. These two topological collections are values of the quasi-manifold type. Such collection are build
using G-map, a data-structure widely used in geometric modeling [25]. The torus and the hexagonal mesh are GBFs.

Diffusion Limited Aggreation (DLA). DLA, is a fractal growth model studied by T.A. Witten and
L.M. Sander, in the eighties. The principle of the model is simple: a set of particles diffuses randomly on a
given spatial domain. Initially one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. For the sake of simplicity, we suppose that they stick together forever
and that there is no aggregate formation between two mobile particles. This process leads to a simple CA
with an asynchronous update function or a lattice gas automata with a slightly more elaborate rule set.
This section shows that the MGS approach enables the specification of a simple generic transformation that
can act on arbitrary complex topologies.

The transformation describing the DLA behavior is really simple. We use two symbolic values ‘free and
‘fixed to represent respectively a mobile and a fixed particle. There are two rules in the transformation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed seed, then it becomes fixed
(at the current position);

2. the second one specifies the random diffusion process: if a mobile particle is neighbor of an empty
place (position), then it may leave its current position to occupy the empty neighbor (and its current
position is made empty).

Note that the order of the rules is important because the first has priority over the second one. Thus, we
have :

trans dla = {
‘free, ‘fixed => ‘fixed, ‘fixed

‘free, <undef> => <undef>, ‘free

}

This transformation is polytypic and can be applied to any kind of collection, see Fig. 3 for a few results.

5.2 Programming in the Small: Algorithmic Examples

The previous section advocates the adequation of the MGS programming style to model and simulate
various dynamical systems. However, it appears that the MGS programming style is also well fitted for the
implementation of algorithmic tasks. In this section, we show some examples that support this assertion.
More examples can be found on the MGS web page and include: the analysis of the Needham-Schroeder
public-key protocol [28], the Eratosthene’s sieve, the normalization of boolean formulas, the computation
of various algorithms on graphs like the computation of the shortest distance between two nodes or the
maximal flow, etc.

5.2.1 Gamma and the Chemical Computing Metaphor

In MGS, the topology of a multiset is the topology of a complete connected graph: each element is the
neighbor of any other element. With this topology, transformations can be used to easily emulate a Gamma

101



transformations [2, 3]. The Gamma transformation on the left is simply translated into the MGS transfor-
mation on the right:

M = do

rp x1, . . . , xn

if P (x1, . . . , xn)
by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

=⇒

trans M = {
x1, . . . , xn

/ P (x1, . . . , xn)
=> f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) }

and the application M(b) of a Gamma transformation M to a multiset b is replaced in MGS by the computation
of the fixpoint iteration M[iter=‘fixpoint](b). The optional parameter iter is a system parameter that
allows the programmer to choose amongst several predefined application strategies: f [iter=‘fixpoint](x0)

computes x1 = f(x0), x2 = f(x1), ..., xn = f(xn−1) and returns xn such that xn = xn−1.
As a consequence, the concise and elegant programming style of Gamma is enabled in MGS: refer to

the Gamma literature for numerous examples of algorithms, from knapsack to the maximal convex hull of
a set of points, through the computation of prime numbers. See also the numerous applications of multiset
rewriting developped in the projects Elan [36] and Maude [35].

One can see MGS as “Gamma with more structure”. However, one can note that the topology of a
multiset is “universal” in the following sense: it embeds any other neighborhood relationship. So, it is
always possible to code (at the price of explicit coding the topological relation into some value inspected at
run-time) any specific topology on top of the multiset topology. We interpret the development of “structured
Gamma” [10] in this perspective.

5.2.2 Two Sorting Algorithms

A kind of bubble-sort is straightforward in MGS; it is sufficient to specify the exchange of two non-ordered
adjacent elements in a sequence, see Fig. 4. The corresponding transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }

The transformation BubbleSort must be iterated until a fixpoint is reached. This is not a real a bubble sort
algorithm because swapping of elements happen at arbitrary places; hence an out-of-order element does not
necessarily bubble to the top in the characteristic way.

Bead sort is a new sorting algorithm [1]. The idea is to represent positive integers by a set of beads,
like those used in an abacus. Beads are attached to vertical rods and appear to be suspended in the air
just before sliding down (a number is read horizontally, as a row). After their falls, the rows of numbers
have been rearranged such as the smaller numbers appears on top of greater numbers, see Fig. 4. The
corresponding one-line MGS program is given by the transformation:

trans BeadSort = { ’empty |north> ’bead ⇒ ’bead, ’empty }

This transformation is applied on the usual grid. The constant ’empty is used to give a value to an empty
place and the constant ’bead is used to represent an occupied cell. The l.h.s. of the only rule of the
transformation BeadSort selects the paths of length two, composed by an occupied cell at north of an empty
cell. Such a path is replaced by a path computed in the r.h.s. of the rule. The r.h.s. in this example
computes a path of length two with the occupied and the empty cell swapped.

3 421

41 2 3

y,x

x,y / x>y

�✁�✁��✁�✁�
✂✁✂✁✂✂✁✂✁✂ ✄✁✄✄✁✄

☎✁☎☎✁☎

3

4

1

2

1

2

3

4

32

Figure 4: Left: Bubble sort. Right: Bead sort [1].

102



5.2.3 Hamiltonian Path.

A graph is a MGS topological collection. It is very easy to list all the Hamiltonian paths in a graph using
the transformation:

trans H = {
x* / size(x) = size(self) / Print(x) / false => assert(false)

}

This transformation uses an iterated pattern x* that matches a path (a sequence of elements neighbor two
by two). The keyword self refers to the collection on which the transformation is applied, that is, the all
graph. The size of a graph returns the number of its vertices. So, if the length of the path x is the same
as the number of vertices in the graph, then the path x is an Hamiltonian path because matched paths are
simple (no repetition of an element). The second guard prints the Hamiltonian path as a side effect and
returns its argument which is not a false value. Then the third guard is checked and returns false, thus, the
r.h.s. of the rule is never triggered. The matching strategy ensures a maximal rule application. In other
words, if a rule is not triggered, then there is no instance of a possible path that fulfills the pattern. This
property implies that the previous rule must be checked on all possible Hamiltonian paths and H(g) prints
all the Hamiltonian path in g before returning g unchanged.

6 Current Status and Related Work

The topological approach we have sketched here is part of a long term research effort [20] developed for
instance in [12] where the focus is on the substructure, or in [15] where a general tool for uniform neighbor-
hood definition is developed. Within this long term research project, MGS is an experimental language used
to investigate the idea of associating computations to paths through rules. The application of such rules
can be seen as a kind of rewriting process on a collection of objects organized by a topological relationship
(the neighborhood). A privileged application domain for MGS is the modeling and simulation of dynamical
systems that exhibit a dynamic structure.

Multiset transformation is reminiscent of multiset-rewriting (or rewriting of terms modulo AC). This
is the main computational device of Gamma [2], a language based on a chemical metaphor; the data are
considered as a multiset M of molecules and the computation is a succession of chemical reactions according
to a particular rule. The CHemical Abstract Machine (CHAM) extends these ideas with a focus on the
expression of semantic of non deterministic processes [4]. The CHAM introduces a mechanism to isolate some
parts of the chemical solution. This idea has been seriously taken into account in the notion of P systems. P
systems [29] are a recent distributed parallel computing model based on the notion of a membrane structure.
A membrane structure is a nesting of cells represented, e.g, by a Venn diagram without intersection and
with a unique superset: the skin. Objects are placed in the regions defined by the membranes and evolve
following various transformations: an object can evolve into another object, can pass trough a membrane
or dissolve its enclosing membrane. As for Gamma, the computation is finished when no object can further
evolve. By using nested multisets, MGS is able to emulate more or less the notion of P systems. In addition,
patterns like the iteration + go beyond what is possible to specify in the l.h.s. of a Gamma rule.

Lindenmayer systems [26] have long been used in the modeling of (DS)2 (especially in the modeling of
plant growing). They loosely correspond to transformations on sequences or string rewriting (they also
correspond to tree rewriting, because some standard features make particularly simple to code arbitrary
trees, Cf. the work of P. Prusinkiewicz [30]). Obviously, L systems are dedicated to the handling of linear
and tree-like structures.

There are strong links between GBF and cellular automata (CA), especially considering the work of Z.
Róka which has studied CA on Cayley graphs [31]. However, our own work focuses on the construction of
Cayley graphs as the shape of a data structure and we develop an operator algebra and rewriting notions
on this new data type. This is not in the line of Z. Róka which focuses on synchronization problems and
establishes complexity results in the framework of CA.

A unifying theoretical framework can be developed [17, 19], based on the notion of chain complex
developed in algebraic combinatorial topology. However, we do not claim that we have achieved a useful

103



theoretical framework encompassing the previous paradigm. We advocate that few topological notions and
a single syntax can be consistently used to allow the merging of these formalisms for programming purposes.

The current MGS interpreter is freely available at the MGS home page: http://mgs.lami.univ-evry.
fr. A compiler is under development where a static type discipline can be enforced [8, 9]) to enforce a
static type discipline [8, 9]. There are two versions of the type inference systems for MGS: the first one is a
classical extension of the Hindley-Milner type inference system that handles homogeneous collections. The
second one is a soft type system able to handle heterogeneous collection (e.g. a sequence containing both
integers and booleans is heterogeneous).

Acknowledgments

The authors would like to thanks Franck Delaplace at LaMI, Frédéric Gruau at University of Paris-Sud,
Florent Jacquemard at LSV-Cachan, C. Godin and P. Barbier de Reuille at CIRAD-Montpellier, Pierre-
Etienne Moreau at Loria-Nancy, Éric Goubault at CEA-Saclay, P. Prusinkiewicz at the University of Calgary
(who coined the term ”computation in space”) and the members of the Epigenomic group at GENOPOLE-
Évry, for stimulating discussions, thoughtful remarks and warm discussions. We gratefully acknowledge the
financial support of the CNRS, the GDR ALP, IMPBIO, the University of Évry and GENOPOLE-Évry.

References

[1] J. Arulanandham, C. Calude, and M. Dinneen. Bead-sort: A natural sorting algorithm. Bulletin of the European
Association for Theoretical Computer Science, 76:153–162, Feb. 2002. Technical Contributions.

[2] J.-P. Banâtre, A. Coutant, and D. L. Metayer. A parallel machine for multiset transformation and its program-
ming style. Future Generation Computer Systems, 4:133–144, 1988.

[3] J.-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction model: Fifteen years after.
Lecture Notes in Computer Science, 2235:17–??, 2001.

[4] G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record 17th ACM Symp. on Principles of
Programmming Languages, POPL’90, San Francisco, CA, USA, 17–19 Jan. 1990, pages 81–94. ACM Press,
New York, 1990.

[5] R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems.
Linear Algebra and its Applications, 146:79–91, 1991.

[6] K. M. Chandy. Reasoning about continuous systems. Science of Computer Programming, 14(2–3):117–132, Oct.
1990.

[7] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. Computing Surveys, 3(2):67–78, 1971.

[8] J. Cohen. Typing rule-based transformations over topological collections. In J.-L. Giavitto and P.-E. Moreau,
editors, 4th International Workshop on Rule-Based Programming (RULE’03), pages 50–66, 2003.

[9] J. Cohen. Typage fort et typage souple des collections topologiques et des transformations. In V. Ménissier-
Morain, editor, Journées Francophones des Langages Applicatifs (JFLA 2004), pages 37–54. INRIA, 2004.

[10] P. Fradet and D. L. Métayer. Structured Gamma. Science of Computer Programming, 31(2–3):263–289, July
1998.

[11] F. Geurts. Hierarchy of discrete-time dynamical systems, a survey. Bulletin of the European Association for
Theoretical Computer Science, 57:230–251, Oct. 1995. Surveys and Tutorials.

[12] J.-L. Giavitto. A framework for the recursive definition of data structures. In ACM-Sigplan 2nd International
Conference on Principles and Practice of Declarative Programming (PPDP’00), pages 45–55, Montral, Sept.
2000. ACM-press.

[13] J.-L. Giavitto. Invited talk: Topological collections, transformations and their application to the modeling and
the simulation of dynamical systems. In Rewriting Technics and Applications (RTA’03), volume LNCS 2706 of
LNCS, pages 208 – 233, Valencia, June 2003. Springer.

[14] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Modelling and Simulation of biological processes in
the context of genomics, chapter “Computational Models for Integrative and Developmental Biology”. Hermes,
July 2002. Also republished as an high-level course in the proceedings of the Dieppe spring school on “Modelling
and simumation of biological processes in the context of genomics”, 12-17 may 2003, Dieppes, France.

104



[15] J.-L. Giavitto and O. Michel. Declarative definition of group indexed data structures and approximation of
their domains. In Proceedings of the 3nd International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming (PPDP-01). ACM Press, Sept. 2001.

[16] J.-L. Giavitto and O. Michel. Mgs: a rule-based programming language for complex objects and collections.
In M. van den Brand and R. Verma, editors, Electronic Notes in Theoretical Computer Science, volume 59.
Elsevier Science Publishers, 2001.

[17] J.-L. Giavitto and O. Michel. MGS: a programming language for the transformations of topological collections.
Technical Report 61-2001, LaMI – Université d’Évry Val d’Essonne, May 2001.

[18] J.-L. Giavitto and O. Michel. Data structure as topological spaces. In Proceedings of the 3nd International
Conference on Unconventional Models of Computation UMC02, volume 2509, pages 137–150, Himeji, Japan,
Oct. 2002. Lecture Notes in Computer Science.

[19] J.-L. Giavitto and O. Michel. The topological structures of membrane computing. Fundamenta Informaticae,
49:107–129, 2002.

[20] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In I. Takayasu, R. H. J. Halstead, and
C. Queinnec, editors, Parallel Symbolic Languages and Systems (International Workshop PSLS’95), volume
1068 of LNCS, pages 209–215, Beaune (France), 2–4 Oct. 1995. Springer-Verlag.

[21] E. Goubault. Geometry and concurrency: A user’s guide. Mathematical Structures in Computer Science,
10:411–425, 2000.

[22] G.-G. Granger. La pensée de l’espace. Odile Jacob, 1999.

[23] M. Henle. A combinatorial introduction to topology. Dover publications, New-York, 1994.

[24] J. Jeuring and P. Jansson. Polytypic programming. Lecture Notes in Computer Science, 1129:68–114, 1996.

[25] P. Lienhardt. Topological models for boundary representation : a comparison with n-dimensional generalized
maps. Computer-Aided Design, 23(1):59–82, 1991.

[26] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal of
Theoretical Biology, 18:280–315, 1968.

[27] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses, Envelopes and Barbed
Wire. In 5th ACM Conference on Functional Programming Languages and Computer Architecture, volume 523
of Lecture Notes in Computer Science, pages 124–144, Cambridge, MA, August 26–30, 1991. Springer, Berlin.

[28] O. Michel and F. Jacquemard. An analysis of the needham-schroeder public-key protocol with MGS. In
G. Mauri, G. Paun, and C. Zandron, editors, Preproceedings of the Fifth workshop on Membrane Computing
(WMC5), pages 295–315. EC MolConNet - Universita di Milano-Bicocca, June 2004.

[29] G. Paun. From cells to computers: Computing with membranes (P systems). Biosystems, 59(3):139–158, March
2001.

[30] P. Prusinkiewicz and J. Hanan. L systems: from formalism to programming languages. In G. Ronzenberg and
A. Salomaa, editors, Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer Graphics and
Developmental Biology, pages 193–211. Springer Verlag, Feb. 1992.

[31] Z. Róka. One-way cellular automata on Cayley graphs. Theoretical Computer Science, 132(1–2):259–290,
26 Sept. 1994.

[32] M. Sintzoff. Invariance and contraction by infinite iterations of relations. In Research directions in high-level
programming languages, LNCS, volume 574, pages 349–373, Mont Saint-Michel, France, june 1991. Springer-
Verlag.

[33] R. D. Sorkin. A finitary substitute for continuous topology. Int. J. Theor. Phys., 30:923–948, 1991.

[34] A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the specification and the simulation of
discrete dynamical systems. In Sixth International conference on Cellular Automata for Research and Industry
(ACRI’04), LNCS, Amsterdam, October 2004. Springer. to be published.

[35] The MAUDE project. Maude home page, 2002. http://maude.csl.sri.com/.

[36] The PROTHEO project. Elan home page, 2002. http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/.

[37] H. Weyl. The Classical Groups (their invariants and representations). Princeton University Press, 1939. Reprint
edition (October 13, 1997). ISBN 0691057567.

105



Programming reaction-diffusion processors

Andrew Adamatzky

Faculty of Computing, Engineering and Mathematics,
University of the West of England, UK

andrew.adamatzky@uwe.ac.uk,
http://www.cems.uwe.ac.uk/~aadamatz

Abstract. In reaction (RD) processors, both the data and the results
of the computation are encoded as concentration profiles of the reagents.
The computation is performed via the spreading and interaction of wave
fronts. Most prototypes of RD computers are specialized to solve certain
problems, they can not be, in general, re-programmed. In the paper, we
try to show possible means of overcoming this drawback. We envisage
architecture and interface of programmable RD media capable of solving
a wide range of problems.

1 Reaction-diffusion computers

Reaction-diffusion (RD) chemical systems are well known for their unique ability
to efficiently solve combinatorial problems with natural parallelism [2]. In liquid-
phase parallel processors, both the data and the results of the computation are
encoded as concentration profiles of the reagents. The computation per se is per-
formed via the spreading and interaction of wave fronts. The RD computers are
parallel because the chemical medium’s micro-volumes update their states simul-
taneously, and molecules diffuse and react in parallel (see overviews in [1, 2, 8]).
RD information processing in chemical media became a hot topic of not simply
theoretical but also experimental investigations since implementation of basic
operations of image processing using the light-sensitive Belousov-Zhabotinsky
(BZ) reaction [28]. During the last decade a wide range of experimental and sim-
ulated prototypes of RD computing devices have been fabricated and applied to
solve various problems of computer science, including image processing [35, 3],
path planning [43, 12, 34, 6], robot navigation [7, 10], computational geometry [5],
logical gates [45, 39, 4], counting [24], memory units [30]. Despite promising pre-
liminary results in RD computing, the field still remains art rather then science,
most RD processors are produced on an ad hoc basis without structured top-
down approaches, mathematical verification, rigorous methodology, relevance to
other domains of advanced computing. There is a need to develop a coherent
theoretical foundation of RD computing in chemical media. Particular attention
should be paid to issues of programmability, because by making RD processors
programmable we will transform them from marginal outcasts and curious freaks
to enabled competitors of conventional architectures and devices.

106



2 How to program reaction-diffusion computers?

Controllability is inherent constituent of programmability. How do real chemical
media respond to changes in physical conditions? Are they controllable? If yes
then what properties of the media can be used most effectively to program these
chemical systems? Despite the fact that the problem of controlling RD media
did not receive proper attention until recently some preliminary although rather
mosaic results have become accessible in the last decade. There is no coherent
view on the subject and this will be a major future task to build a theoretical and
experimental framework of chemical medium controllability. Below we provide
an overview of the findings related to the external control of chemical media.
They demonstrate viability of our ideas and show that the present state-of-the-
art laboratory methods allow for the precise tuning of these chemical systems,
and thus offer an opportunity to program RD processors.

The majority of the literature, related to theoretical and experimental studies
concerning the controllability of RD medium, deals with application of an electric
field. In a thin-layer BZ reactor stimulated by an electric field the following
phenomena are observed: (a) the velocity of excitation waves is increased by a
negative and decreased by a positive electric field; (b) a wave is split into two
waves that move in opposite directions if a very high electric field is applied
across the evolving medium [40]; (c) crescent waves are formed not commonly
observed in the field absent evolution of the BZ reaction [23]; (d) stabilisation
and destabilisation of wave fronts [26]; (e) an alternating electric field generates
a spiral wave core that travels within the medium; the trajectory of the core
depends on the field frequency and amplitude [38]. Computer simulations with
the BZ medium confirm that (a) waves do not exist in a field-free medium
but emerge when a negative field is applied [33]; (b) an electric field causes
the formation of waves that change their sign with a change in concentration,
and applied constant field induces drift of vortices [32]; (c) externally applied
currents cause the drift of spiral excitation patterns [42]. It is also demonstrated
that by applying stationary two-dimensional fields to a RD system one can
obtain induced heterogeneity in a RD system and thus increase the morphological
diversity of the generated patterns (see e.g. [18]). These findings seem to be
universal and valid for all RD systems: (a) applying a negative field accelerates
wave fronts; (b) increasing the applied positive field causes wave deceleration,
wave front retardation, and eventually wave front annihilation; (c) recurrent
application of an electric field leads to formation of complex spatial patterns [41].
A system of methylene blue, sulfide, sulfite and oxygen in a polyacrylamide gel
matrix gives us a brilliant example of electric-field controlled medium. Typically
hexagon and strip patterns are observed in the medium. Application of an electric
field makes striped patterns dominate in the medium, even orientation of the
stripes is determined by the intensity of the electric field [31].

Temperature is a key factor in the parameterisation of the space-time dy-
namics of RD media. It is shown that temperature is a bifurcation parameter
in a closed non-stirred BZ reactor [29]. By increasing the temperature of the
reactor one can drive the space-time dynamic of the reactor from periodic oscil-

107



lations (0 − 3oC) to quasi-periodic oscillations (4 − 6oC) to chaotic oscillations
(7 − 8oC). Similar findings are reported in simulation experiments on discrete
media [2], where a lattice node’s sensitivity can be considered as an analogue of
temperature.

Modifications of reagent concentrations and structure of physical substrate
may indeed contribute to shaping space-time dynamics of RD media. Thus, by
varying the concentration of malonic acid in a BZ medium one can achieve (a) the
formation of target waves; (b) the annihilation of wave fronts; and, (c) the gener-
ation of stable propagating reduction fronts [26]. By changing substrate we can
achieve transitions between various types of patterns formed, see e.g. [22] on tran-
sitions between hexagons and stripes. This however could not be accomplished
‘on-line’, during the execution of a computational process, or even between two
tasks, the whole computing device should be ‘re-fabricated’, so we do not con-
sider this option prospective. Convection is yet another useful factor governing
space-time dynamics of RD media. Thus, e.g., convection 2nd order waves, gen-
erated in collisions of excitation waves in BZ medium, may travel across the
medium and affect, e.g. annihilate, existing sources of the wave generation [36].

Light was the first [27] and still remains the best, see overview in [35], way of
controlling spatio-temporal dynamics of RD media (this clearly applies mostly
to light-sensitive species as BZ reaction). Thus, applying light of varying in-
tensity we can control medium’s excitability [19] and excitation dynamic in
BZ-medium [17, 25], wave velocity [37], and patter formation [46]. Of particular
interest to implementation of programmable logical circuits are experimental ev-
idences of light-induced back propagating waves, wave-front splitting and phase
shifting [47].

3 Three examples of programming RD processors

In this section we briefly demonstrate a concept of control-based programmabil-
ity in models of RD processors. Firstly, we show how to adjust reaction rates in
RD medium to make it perform computation of Voronoi diagram over a set of
given points. Secondly, we provide a toy model of tunable three-valued logical
gates, and show how to re-program a simple excitable gate to implement several
logical operations by simply changing excitability of the medium’s sites. Thirdly,
we indicate how to implement logical circuits in architecture-less RD excitable
medium.

Consider a cellular automaton model of an abstract RD excitable medium.
Let a cell x of two-dimensional lattice takes four states: resting ◦, excited (+),
refractory and precipitated ⋆, and update their states in discrete time t depend-
ing on a number σt(x) of excited neighbors in its eight-cell neighborhood as
follows. Resting cell x becomes excited if 0 < σt(x) ≤ θ2 and precipitated if
θ2 < σt(x). Excited cell ‘precipitates’ if θ1 < σt(x) and becomes refractory oth-
erwise. Refractory cell recovers to resting state unconditionally, and precipitate
cell does not change its state. Initially we perturb medium, excite it in several
sites, thus inputting data. Waves of excitation are generated, they grow, collide

108



with each other and annihilate in result of the collision. They may form a sta-
tionary inactive concentration profile of a precipitate, which represents result of
the computation. Thus, we can only be concerned with reactions of precipitation:
+ →k1 ⋆ and ◦⊞ + →k2 ⋆, where k1 and k2 are inversely proportional to θ1 and
θ2, respectively. Varying θ1 and θ2 from 1 to 8, and thus changing precipitation
rates from maximum possible to a minimum one, we obtain various kinds of
precipitate patterns, as shown in Fig. 1. Precipitate patterns developed for rel-

θ2=1 θ2=2 θ2=3 θ2=4 θ2=5 θ2=6 θ2=7 θ2=8

θ1=1

θ1=2

θ1=3

θ1=4

θ1=5

θ1=6

θ1=7

θ1=8

Fig. 1. Final configurations of RD medium for 1 ≤ θ1 ≤ θ2 ≤ 2. Resting sites are black,
precipitate is white.

atively high ranges of reactions rates: 3 ≤ θ1, θ2 ≤ 4 represent discrete Voronoi
diagrams (given ‘planar’ set, represented by sites of initial excitation, is visible
in pattern θ1 = θ2 = 3 as white dots inside Voronoi cells) derived from the set

109



of initially excited sites. This example demonstrates that externally controlling
precipitation rates we can force RD medium to compute Voronoi diagram.

Consider a T-shaped excitable RD medium built of three one-dimensional
cellular arrays joined at one point (details are explained in [11]); two channels
are considered as inputs, and third channel as an output. Every cell of this
structure has two neighbors apart of end cells, which have one neighbor each, and
a junction cell, which has three neighbors. Each cell takes three states: resting (◦),
excited (+) and refractory (−). A cell switches from excited state to refractory
state, and from refractory to resting unconditionally. If resting cell excites when
certain amount of its neighbors is excited then waves of excitation, in the form
+−, travel along the channels of the gate. Waves generated in input channels,
meet at a junction, and may pass or not pass to the output channel. We represent
logical values as follows: no waves is False, one wave +− is Nonsense and two
waves + − · + − represent Truth. Assume that sites of the excitable gate are
highly excitable: every cell excites if at least one neighbor is excited. One or two
waves generated at one of the inputs pass onto output channel; two single waves
are merged in one single wave when collide at the junction; and, a single wave is
‘absorbed’ by train of two waves. Therefore, the gate with highly excitable sites
implements  Lukasiewicz disjunction (Fig. 2a). Let us decrease sites sensitivity

∨ L T F ⋆

T T T T

F T F ⋆

⋆ T ⋆ ⋆

(a)

∧ L T F ⋆

T T F ⋆

F F F F

⋆ ⋆ F ⋆

(b)

⊡ T F ⋆

T F T ⋆

F T F ⋆

⋆ ⋆ ⋆ F

(c)

Fig. 2. Operations of  Lukasiewics three-valued logic implemented in models of T-
shaped excitable gate: (a) disjunction, (b) conjunction, (c) NOT-Equivalence gate.

and make it depend on number k of cell neighbors: a cell excites if at least ⌈k

2
⌉

neighbors are excited. Then junction site can excite only when exactly two of its
neighbors are excited, therefore, excitation spreads to output channels only when
two waves meet at the junction. Therefore, when a single wave collide to a train
of two waves the only single wave passes onto output channel. In such conditions
of low excitability the gate implements  Lukasiewicz conjunction (Fig. 2b). By
further narrowing excitation interval: a cell is excited if exactly one neighbor
is excited, we achieve situation when two colliding wave fronts annihilate, and
thus output channel is excited only if either of input channels is excited, or if the
input channels got different number of waves. Thus, we implement combination
of  Lukasiewicz NOT and Equivalence gates (Fig. 2c).

Logical circuits can be also fabricated in uniform, architecture-less, where
not wires or channels are physically implemented, excitable RD medium, (e.g.
sub-excitable BZ medium as numerically demonstrated in [9]) by generation,
reflection and collision of traveling wave fragments. To study the medium we

110



integrate two-variable Oregonator equation, adapted to a light-sensitive BZ re-
action with applied illumination [17]

∂u

∂t
=

1

ǫ
(u − u2 − (fv + φ)

u − q

u + q
) + Du∇

2u

∂v

∂t
= u − v

where variables u and v represent local concentrations of bromous acid and ox-
idized catalyst ruthenium, ǫ is a ratio of time scale of variables u and v, q is a
scaling parameter depending on reaction rates, f is a stoichiometric coefficient, φ

is a light-induced bromide production rate proportional to intensity of illumina-
tion. The system supports propagation of sustained wave fragments, which may
be used as representations of logical variables (e.g. absence is False, presence
is Truth). To program the medium we should design initial configuration of
perturbations, that will cause excitation waves, and configurations of deflectors
and prisms, to route these quasi-particle wave-fragments. While implementation
of Boolean operations per se is relatively straightforward [9], control of signal
propagation, routing and multimplication of signals is of most importance when
considering circuits not simply singe gates. To multiply a signal or to change
wave-fragment trajectory we can temporarily apply illumination impurities to
change local properties of the medium on a way the wave. Thus we can cause
the wave-fragment to split (Fig. 3ab) or deflect (Fig. 3cd). A control impurity
(Fig. 3bd), or deflector, consists of a few segments of sites which illumination
level is slightly above or below overall illumination level of the medium. Com-
bining these excitatory and inhibitory segments we can precisely control wave’s
trajectory, e.g. realize U-turn of a signal (Fig. 3cd).

(a) (b) (c) (d)

Fig. 3. Operating wave fragments. Overlay of images taken every 0.5 time units. Ex-
citing domains of impurities are shown in black, inhibiting domains are gray. (a) Signal
branching with impurity: wave fragment traveling west is split by impurity (b) into two
waves traveling north-west and south-west. (d) Signal routing (U-turn) with impurities:
wave fragment traveling east is routed north and then west by two impurities (e).

111



4 Discussion

Sluggishness, narrow range of computational tasks solved, and seeming unsus-
ceptibility to a control are usually seen as main disadvantages of existing proto-
types of RD computers. In the paper we briefly outlined several ways of external
controlling, tuning, and ultimately programming, of spatially extended chemical
devices. We have also indicated how to ‘switch’ a RD computer, with fixed set of
reactions but variable reaction rates, between several domains of problems, and
thus make it more ‘omnivorous’. Thus we made grounds for partial dismissal
of specialization and uncontrollability statements. As to the speed, real-life RD
processors are slow indeed, due to limitations on speed of diffusion and phase
waves traveling in a liquid layer or a gel. We can argue, however, that future
applications of the chemical processors lie in the field of micro-scale computing
devices and soft robotic architectures, e.g. gel-made robots, where RD medium
forms an integral part of robot body [44]. A silicon fabrication is another way,
however possibly a step back from material implementation point of view, to im-
prove speed of RD computers. This route seems to be well developed, particularly
in designing RD media in non-linear circuits and cellular neural networks [20,
21, 10]. CMOS design and analog emulation of RD systems, BZ medium in par-
ticular, have already demonstrated feasibility of mapping chemical dynamics
onto silicon architectures [13–16]. Semiconductor devices based on minor carrier
transport [16], like arrays of p-n-p-n diod based reaction devices, give us a hope
for forthcoming designs of nano-scale RD processors.

Acknowledgement

I thank Ben De Lacy Costello for numerous discussions on laboratory prototypes
of reaction-diffusion computers, Tetsuya Asai for enlightening me in electronic
reaction-diffusion devices, and participants of the EPSRC Cluster in Novel Com-
putation Workshop “Non-Linear Media Based Computers” (Bristol, September,
2003) for help in shaping my ideas. I also thank Peter Dittrich for encouraging
me to think about programmability of reaction-diffusion processors.

References

1. Adamatzky, A.: Reaction-diffusion and excitable processors: a sense of the uncon-
ventional. Parallel and Distributed Computing 3 (2000) 113–132.

2. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives (Insti-
tute of Physics Publishing, 2001).

3. Adamatzky, A., De Lacy Costello, B. and Ratcliffe, N.M.: Experimental reaction-
diffusion pre-processor for shape recognition. Physics Letters A 297 (2002) 344–
352.

4. Adamatzky, A. and De Lacy Costello, B.P.J.: Experimental logical gates in a
reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 66 (2002)
046112.

112



5. Adamatzky, A. and De Lacy Costello, B.P.J.: On some limitations of reaction-
diffusion computers in relation to Voronoi diagram and its inversion. Physics Let-
ters A 309 (2003) 397–406.

6. Adamatzky, A. and De Lacy Costello, B.P.J.: Reaction-diffusion path planning in
a hybrid chemical and cellular-automaton processor. Chaos, Solitons & Fractals
16 (2003) 727–736.

7. Adamatzky, A., De Lacy Costello, B., Melhuish, C. and Ratcliffe, N.: Experimental
reaction-diffusion chemical processors for robot path planning. J. Intelligent &
Robotic Systems 37 (2003) 233–249.

8. Adamatzky, A.: Computing with waves in chemical media: massively parallel
reaction-diffusion processors. IEICE Trans. (2004), in press.

9. Adamatzky, A.: Collision-based computing in BelousovZhabotinsky medium.
Chaos, Solitons & Fractals 21 (2004) 1259–1264.

10. Adamatzky, A., Arena, P., Basile, A., Carmona-Galan, R., De Lacy Costello,
B., Fortuna, L., Frasca, M., Rodriguez-Vazquez, A.: Reaction-diffusion navigation
robot control: from chemical to VLSI analogic processors. IEEE Trans. Circuits
and Systems I, 51 (2004) 926–938.

11. Adamatzky, A. and Motoike, I.: Three-valued logic gates in excitable media, in
preparation (2004).

12. Agladze, K., Magome, N., Aliev, R., Yamaguchi, T. and Yoshikawa, K.: Finding
the optimal path with the aid of chemical wave. Physica D 106 (1997) 247–254.

13. Asai, T., Kato, H., and Amemiya, Y.: Analog CMOS implementation of diffusive
Lotka-Volterra neural networks, INNS-IEEE Int. Joint Conf. on Neural Networks,
P-90, Washington DC, USA, July 15–19, 2001.

14. Asai, T., Nishimiya, Y. and Amemiya, Y.: A CMOS reaction-diffusion circuit based
on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction.
IEICE Trans. on Fundamentals of Electronics, Communications and Computer,
E85-A (2002) 2093–2096.

15. Asai, T. and Amemiya, Y.: Biomorphic analog circuits based on reaction-diffusion
systems. Proc. 33rd Int. Symp. on Multiple-Valued Logic (Tokyo, Japan, May 16-
19, 2003) 197–204.

16. Asai, T., Adamatzky, A., Amemiya, Y.: Towards reaction-diffusion semiconductor
computing devices based on minority-carrier transport. Chaos, Solitons & Fractals
20 (2004) 863–876.

17. Beato, V., Engel, H.: Pulse propagation in a model for the photosensitive Belousov-
Zhabotinsky reaction with external noise. In: Noise in Complex Systems and
Stochastic Dynamics, Edited by Schimansky-Geier, L., Abbott, D., Neiman, A.,
Van den Broeck, C. Proc. SPIE 5114 (2003) 353–62.

18. Bouzat, S. and Wio, H.S.: Pattern dynamics in inhomogeneous active media. Phys-
ica A 293 (2001) 405–420.

19. Brandtstädter, H., Braune, M., Schebesch, I. and Engel, H.: Experimental study
of the dynamics of spiral pairs in light-sensitive BelousovZhabotinskii media using
an open-gel reactor. Chem. Phys. Lett. 323 (2000) 145–154.

20. Chua, L.O.: CNN: A Paradigm for Complexity (World Scientific Publishing, 1998).

21. Chua, L.O. and Roska, T.: Cellular Neural Networks and Visual Computing: Foun-
dations and Applications (Cambridge University Press, 2003).

22. De Kepper, P., Dulos, E., Boissonade, J., De Wit, A., Dewel, G. and Borckmans,
P.: Reaction-diffusion patterns in confined chemical systems. J. Stat. Phys. 101

(2000) 495–508.

113



23. Feeney, R., Schmidt, S.L. and Ortoleva, P.: Experiments of electric field-BZ chem-
ical wave interactions: annihilation and the crescent wave. Physica D 2 (1981)
536–544.

24. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J.
Phys. Chem. A 107 (2003) 1664–1669.

25. Grill, S., Zykov, V. S., Müller, S. C.: Spiral wave dynamics under pulsatory mod-
ulation of excitability. J. Phys. Chem. 100 (1996) 19082–19088.

26. Kastánek P., Kosek, J., Snita,D., Schreiber, I. and Marek, M.: Reduction waves in
the BZ reaction: Circles, spirals and effects of electric field, Physica D 84 (1995)
79–94.

27. Kuhnert, L.: Photochemische Manipulation von chemischen Wellen. Naturwis-
senschaften 76 (1986) 96–97.

28. Kuhnert, L., Agladze, K.L. and Krinsky, V.I.: Image processing using light–
sensitive chemical waves. Nature 337 (1989) 244–247.

29. Masia, M., Marchettini, N., Zambranoa, V. and Rustici, M.: Effect of temperature
in a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. Lett. 341 (2001)
285–291.

30. Motoike, I.N. and Yoshikawa, K.: Information operations with multiple pulses on
an excitable field. Chaos, Solitons & Fractals 17 (2003) 455–461.

31. Muenster, A.F, Watzl, M. and Schneider, F.W.: Two-dimensional Turing-like pat-
terns in the PA-MBO-system and effects of an electric field. Physica Scripta T67

(1996) 58–62.
32. Muñuzuri, A.P., Davydov, V.A., Pérez-Muñuzuri, V., Gómez-Gesteira, M. and

Pérez-Villar, V.: General properties of the electric-field-induced vortex drift in
excitable media. Chaos, Solitons, & Fractals 7 (1996) 585–595.

33. Ortoleva, P.: Chemical wave-electrical field interaction phenomena. Physica D 26

(1987) 67–84.
34. Rambidi, N.G. and Yakovenchuck, D.: Finding path in a labyrinth based on

reaction–diffusion media. Adv. Materials for Optics and Electron. 7 (1999) 67–
72.

35. Rambidi, N.: Chemical-based computing and problems of high computational com-
plexity: The reaction-diffusion paradigm, In: Seinko, T., Adamatzky, A., Rambidi,
N., Conrad, M., Editors, Molecular Computing (The MIT Press, 2003).

36. Sakurai, T., Miike, H., Yokoyama, E. and Muller, S.C.: Initiation front and an-
nihilation center of convection waves developing in spiral structures of Belousov-
Zhabotinsky reaction. J. Phys. Soc. Japan 66 (1997) 518–521.

37. Schebesch, I., Engel, H.: Wave propagation in heterogeneous excitable media. Phys.
Rev. E 57 (1998) 3905-3910.

38. Seipel, M., Schneider, F.W. and Mnster, A.F.: Control and coupling of spiral waves
in excitable media. Faraday Discussions 120 (2001) 395–405.

39. Sielewiesiuka, J. and Górecki, J.: On the response of simple reactors to regular
trains of pulses. Phys. Chem. Chem. Phys. 4 (2002) 1326-1333.

40. Sevćikova, H. and Marek, M.: Chemical waves in electric field. Physica D 9 (1983)
140–156.

41. Sevćikova, H. and Marek, M.: Chemical front waves in an electric field. Physica D
13 (1984) 379–386.

42. Steinbock O., Schutze J., Muller, S.C.: Electric-field-induced drift and deformation
of spiral waves in an excitable medium. Phys. Rev. Lett. 68 (1992) 248–251.

43. Steinbock, O., Tóth, A. and Showalter, K.: Navigating complex labyrinths: optimal
paths from chemical waves. Science 267 (1995) 868–871.

114



44. Tabata, O., Hirasawa, H., Aoki, S., Yoshida, R. and Kokufuta, E.: Ciliary motion
actuator using selfoscillating gel. Sensors and Actuators A 95 (2002) 234–238.

45. Tóth, A. and Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103

(1995) 2058–2066.
46. Wang, J.: Light-induced pattern formation in the excitable Belousov-Zhabotinsky

medium. Chem. Phys. Lett. 339 (2001) 357–361.
47. Yoneyama, M.: Optical modification of wave dynamics in a surface layer of the

Mn-catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 254 (1996) 191–
196.

115



From Prescriptive Programming of

Solid-state Devices

to Orchestrated Self-organisation of

Informed Matter

Klaus-Peter Zauner

School of Electronics and Computer Science
University of Southampton
SO17 1BJ, United Kingdom

kpz@ecs.soton.ac.uk

Abstract. Achieving real-time response to complex, ambiguous, high-
bandwidth data is impractical with conventional programming. Only
the narrow class of compressible input-output maps can be specified
with feasibly sized programs. Efficient physical realizations are embar-
rassed by the need to implement the rigidly specified instructions requi-
site for programmable systems. The conventional paradigm of erecting
stern constraints and potential barriers that narrowly prescribe struc-
ture and precisely control system state needs to be complemented with
a new approach that relinquishes detailed control and reckons with au-
tonomous building blocks. Brittle prescriptive control will need to be
replaced with resilient self-organisation to approach the robustness and
efficency afforded by natural systems.
Self-organising processes ranging from self-assembly to growth and de-
velopment will play a central role in mimicking the high integration den-
sity of nature’s information processing architectures in artificial devices.
Structure-function self-consistency will be key to the spontaneous gen-
eration of functional architectures that can harness novel molecular and
nano materials in an effective way for increased computational power.

1 Commanding the Quasi-universal Machine

The common conventional computer is an approximation of a hypothetical uni-
versal machine [1] limited by memory and speed constraints. Universal machines
are generally believed to be in principle able to compute any effectively com-
putable function [2]. Correspondingly it is assumed that if processing speed and
memory space of computers would indefinitely continue to increase, any com-
putable information processing problem would eventually come within reach of
practical devices. Accordingly time and space complexity of computation has
been studied in detail [3] and technological advances have focused on memory
capacity and switching speed [4]. But along with this there is another factor
that limits realizable computing devices: the length of the program required to

116



O

I

I O

... ...

A

000000

000001

000010

000011

000100

0

1

0

0

1

f
p

a

O=f(I)

O

I
B

Fig. 1. Communicating a desired input-output map to a machine. The input-output
map can in principle be thought of as a potentially very large lookup table that asso-
ciates an output response with every input that can be discerned by the machine (A).
For n bit input patterns I and a m bit output (O) response the, number of possible maps
is 2m2

n

. To implement an arbitrary one of these maps on a quasi-universal machine,
the mapping f has to be specified by the program p with respect of machine archi-
tecture a (B). Selecting an arbitrary map from the set of possible maps may require
a specification of length: log

2

[

2m2
n
]

= m2n. Even for moderate pattern recognition
problems (e.g., classifying low resolution images) the program length required for most
mappings is impractical [6].

communicate a desired behaviour to the device [5]. The length of this program
is limited by the state space of the device and the capacity of the programmers.
Both limits can be exhausted rather quickly (cf. figure 1). As a consequence
conventional computing architectures are in practice restricted to the imple-
mentation of highly compressible input-output maps [7]. The set of compressible
maps is a small subset of the potential input-output functions—most behaviours
cannot be programmed. Whether the incompressible and thus inaccessible map-
pings are useful is an open question. In the light of the ability of organisms to
cope with complex ambiguous pattern recognition problems it appears likely that
input-output mappings of limited compressibility can be valuable in practice.

The picture painted so far is too optimistic. It assumes that the machine
architecture is not degenerate, i.e., no two different programmes implement the
same input-output map. In practice, however, the mapping of input into out-
put is achieved by decomposing the transformation into a series of sequential
elementary information processing operations. Information processing is essen-
tially selective dissipation of information and each operation entails a, possibly
delayed, loss of information [8, 9]. Now if the transformation of input signal pat-
terns is decomposed into a large number of operations, all information pertaining
to the input may be dissipated in the processing sequence. And so it may happen
that the output response will be independent of the input and thus constant [10,

117



11]. This further reduces the number of input-output maps accessible through
programs.

For a machine to be programmable, additional restrictions come into play.
Programming is here equated with an engineering approach in which mental
conception precedes physical creation (cf. [12]). It necessitates the possibility
for the programmer to anticipate the actions of the available elementary opera-
tions. Only if the function of the elementary operations can be foreseen by the
programmer a desired input-output map can be implemented by incrementally
composing a program. Accordingly, the machine’s architecture has to adhere to
a fixed, finite user manual to facilitate programming. To achieve this, numerous
potential interactions among the components of the machine need to be sup-
pressed [13]. Programmability is achieved by using relatively large networks of
components with fixed behaviour. This however does not allow for the efficiency
afforded by networks of context sensitive components [14].

As outlined above, conventional programming is not always the most suitable
form of implementing an input-output map. Some maps cannot be compressed
into programs of practical length, and the need for programmability precludes
hardware designs that elicit functionality from a minimum of material.

2 Learning, Adaptation, Self-organisation

Programmability is not a prerequisite for the realization of information process-
ing systems as is exemplified by the enviable computing capabilities of cells and
organisms. Artificial neural networks provide a technological example of non-
programmed information processing [15]. They trade an effective loss of pro-
grammability for parallel operation. Freeing the computing architecture from
the need for predictable function of elementary components opens up new de-
sign degrees of freedom. Firstly, the fan-in for an elementary component could be
increased by orders of magnitude. It may be interesting to note that neurons in
the cortex of the mouse have on average 8000 input lines [16]. Secondly, there is
no need for all components to operate according to identical specifications. This
opens a path to broadening the material basis of computation by allowing for
computational substrates the structure of which cannot be controlled in detail.
And likewise, thirdly, the operation of the elementary components can be de-
pended on their context in the architecture, thus greatly increasing the number
of interactions among the components that can be recruited for signal fusion.

Utilising these degrees of freedom will abrogate present training algorithms
for artificial neural networks. At the same time however, the increased dimen-
sionality enhances the evolvability of such networks. The evolutionary paradigm
of using the performance of an existing system as an estimate for the expected
performance of an arbitrarily modified version of the system can cope with the
complexity and inhomogeneity of architectures based on context sensitive com-
ponents. In fact it is particularly effective in this domain [17].

118



3 Orchestrating Informed Matter

Techniques for producing biomaterials and manufacturing nano-materials are
rapidly developing. In the very near future we will see materials with unprece-
dented characteristics arriving at an increasing rate. But there is nothing to
indicate that we are on a path to harnessing these new materials for increased
computational power. Drilling the materials to act as logic gates is unlikely to
be fruitful. Present computing concepts enforce formalisms that are arbitrary
from the perspective of the physics underlying their implementation.

Nature’s gadgets process information in starkly different ways than conven-
tionally programmed machines do [18]. They exploit the physics of the materials
directly and arrive at problem solutions driven by free energy minimisation while
current computer systems are coerced by high potential barriers to follow a nar-
rowly prescribed, contrived course of computation. The practical implementation
of an input-output map can adhere in varying degrees to different paradigms as
illustrated in figure 2. Selecting functional structures from a pool of randomly
created structures is particularly suitable for nano-materials where detailed con-
trol is not feasible or not economical. If the process of structure formation is
repeatable then the selection from random variation can be iterated for evo-
lutionary progress. In general, however, evolving highly complex input-output
maps from scratch may be impractical. It is here where the concept of informed
matter [19], i.e., molecules deliberately designed to carry information that en-
ables them to interact individually, autonomously with other molecules, comes
into play. Combining the abstract concepts of artifical chemistry [20] with the
physics of supramolecular chemistry [21, 22] conceivably will enable the orches-
tration of self-organisation to arrive in practical time scales at physics driven
architectures.

orchestrated

self−organisation

detailed

prescriptive

control

selection

from random

variation

✘

Fig. 2. Implementation paradigms for a computational device. Present conventional
computer technology is indicated near the lower left corner. Random variation en-
ters unintentionally in the production process. With increasing miniaturisation control
will become increasingly more difficult (dashed arrow). Resilient architectures that can
cope with wide component variation and the deliberate use of self-organisation pro-
cesses provide the most likely path to complexification of computing architectures (bent
arrow).

119



4 Perspectives

A likely early application niche for the principles outlined in the previous section
is the area of autonomous micro robotic devices. With the quest for robots at
a scale of a cubic millimetre and below molecular controllers become increas-
ingly attractive [23, 24], and initial steps towards implementation are under-
way [25]. Coherent perception-action under real-time constraints with severely
limited computational resources does not allow for the inefficiency of a virtual
machine that abstracts physics away. For satisfactory performance the robot’s
control needs to adapt directly to the reality of its own body [26]. In fact the
body structure can be an integral part of the computational infrastructure [27,
28].

About 18 million organic compounds are known today—a negligible num-
ber if compared to the space of possible organic molecules, estimated to 1063

substances [29]. Nature offers a glimpse at what is available in this space of
possibilities with organised, adaptive, living, thinking matter. Following Lehn’s
trail-blazing call to “ultimately acquire the ability to create new forms of com-
plex matter” [19] will require information processing paradigms tailored to the
microphysics of the underlying computational substrate.

References

1. Turing, A.M.: On computable numbers with an application to the entschei-
dungsproblem. In: Proceedings of the London Mathematical Society. Volume 42.
(1937) 230–265 Corrections, Ibid vol. 43 (1937), pp. 544–546. Reprinted in The
Undecideable, M. Davis, ed., Raven Press, New York, 1965.

2. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, N.J. (1967)

3. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
4. Compañó, R.: Trends in nanoelectronics. Nanotechnology 12 (2001) 85–88
5. Chaitin, G.J.: On the length of programs for computing finite binary sequences.

J. Assoc. Comput. Mach. 13 (1966) 547–569
6. Conrad, M., Zauner, K.P.: Conformation-based computing: a rational and a recipe.

In Sienko, T., Adamatzky, A., Rambidi, N., Conrad, M., eds.: Molecular Comput-
ing. MIT Press, Cambridge, MA (2003) 1–31

7. Zauner, K.P., Conrad, M.: Molecular approach to informal computing. Soft Com-
puting 5 (2001) 39–44

8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal 5 (1961) 183–191

9. Landauer, R.: Fundamental limitations in the computational process. Berichte der
Bunsen-Gesellschaft 80 (1976) 1048–1059

10. Langdon, W.B.: How many good programs are there? How long are they? In
et. al., J.R., ed.: Foundations of Genetic Algorithms FOGA-7, Torremolinos, 4-6
September, Morgan Kaufmann (2002)

11. Langdon, W.B.: The distribution of reversible functions is normal. In Riolo, R., ed.:
Genetic Programming Theory and Practice, Ann Arbor, 15–17 May, Proceedings,
Dordrecht, Kluwer Academic Publishers (2003)

120



12. Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In
Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S., eds.: The Third NASA/DoD
Workshop on Evolvable Hardware—EH-2001, Long Beach, 12–14 July 2001, IEEE
Computer Society, Los Alamitos (2001) 14–20

13. Conrad, M.: Scaling of efficiency in programmable and non-programmable systems.
BioSystems 35 (1995) 161–166

14. Conrad, M.: The price of programmability. In Herken, R., ed.: The Universal
Turing Machine: A Fifty Year Survey. Oxford University Press, New York (1988)
285–307

15. Partridge, D.: Non-programmed computation. Communications of the ACM 43

(2000) 293–302
16. Schüz, A.: Neuroanatomy in a computational perspective. In Arbib, M.A., ed.:

The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge,
MA (1995) 622–626

17. Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box.
In: 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), July 15 - 18,
2002, Alexandria, Virginia, IEEE (2002) 167–176

18. Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology (now BioSystems) 5 (1972) 1–14

19. Lehn, J.M.: Supramolecular chemistry: from molecular information towards self-
organization and complex matter. Reports on Progress in Physics 67 (2004) 249–
265

20. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries—a review. Artificial
Life 7 (2001) 225–275

21. Lehn, J.M.: Supramolecular chemistry—scope and perspectives: Molecules, super-
molecules and molecular devices. Angewandte Chemie, Int. Ed. Engl. 27 (1988)
90–112

22. Whiteside, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and
nanochemistry: A chemical startegy for the synthesis of nanostructures. Science
254 (1991) 1312–1319

23. Ziegler, J., Dittrich, P., Banzhaf, W.: Towards a metabolic robot controller. In Hol-
combe, M., Paton, R., eds.: Information Processing in Cells and Tissues. Plenum
Press, New York (1998)

24. Adamatzky, A., Melhuish, C.: Parallel controllers for decentralized robots: towards
nano design. Kybernetes 29 (2000) 733–745

25. Adamatzky, A., de Lacy Costello, B., Melluish, C., Ratcliffe, N.: Experimental
implementation of mobile robot taxis with onboard belousov-zhabotinsky chemical
medium. Materials Science & Engineering C (2004) To appear.

26. Elliott, T., Shadbolt, N.R.: Developmental robotics: manifesto and application.
Phil. Trans. R. Soc. Lond. A 361 (2003) 2187–2206

27. Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems
(1995) 143–169

28. Rietman, E.A., Tilden, M.W., Askenazi, M.: Analog computation with rings
of quasiperiodic oscillators: the microdynamics of cognition in living machines.
Robotics and Autonomous Systems 45 (2003) 249–263

29. Scheidtmann, J., Weiß, P.A., Maier, W.F.: Hunting for better catalysts and
materials—combinatorial chemistry and high throughput technology. Applied
Catalysis A: General 222 (2001) 79–89

121



Relational growth grammars –  

a graph rewriting approach to dynamical systems  

with a dynamical structure 

Winfried Kurth1, Ole Kniemeyer1, and Gerhard Buck-Sorlin12 

1 Brandenburgische Technische Universität Cottbus, Department of Computer Science,  
Chair for Practical Computer Science / Graphics Systems, P.O.Box 101344,  

03013 Cottbus, Germany 
{wk, okn}@informatik.tu-cottbus.de 

2 Institute of Plant Genetics and Crop Plant Research (IPK), Dept. Cytogenetics, Corrensstr. 3, 
06466 Gatersleben, Germany 

buck@ipk-gatersleben.de 

1   Introduction 

Rule-based programming is one of the traditionally acknowledged paradigms of pro-
gramming [2], but its application was in most cases restricted to logical inference or 
to spaces with restricted forms of topology: Grids in the case of cellular automata 
[12], locally 1-dimensional branched structures in the case of classical L-systems [8]. 
Recently, there is growing interest in rule-based simulation of dynamical systems 
with a dynamical structure, using diverse types of data structures and topologies, 
motivated by biological and chemical applications [4]. 

In this paper we propose a rewriting formalism, "relational growth grammars" 
(RGG), acting on relational structures, i.e., graphs with attributed edges, which 
generalizes L-systems and allows the specification of dynamical processes on 
changing structures in a wide field of applications. By associating the nodes of the 
graphs with classes in the sense of the object-oriented paradigm, we gain further 
flexibility. Here we will explain the fundamental concepts and show simple examples 
to demonstrate the essential ideas and possibilities of this approach. 

Our work was motivated by the demand for a uniform modelling framework cap-
able to represent genomes and macroscopic structures of higher organisms (plants) in 
the same language [6]. In the context of a "virtual crops" project, we thus created the 
language XL, an extension of Java allowing a direct specification of RGGs, and the 
software GroIMP (Growth-Grammar related Interactive Modelling Platform) 
enabling interpretation of XL code and easy user interaction during the simulations 
[5].—This research was funded by the DFG under grant Ku847/5-1 and additionally 
supported by IPK. All support is gratefully acknowledged. 

122



2   Relational growth grammars 

An RGG rule is a quintuple (L, C, E, R, P) with L ∪ C ≠ ∅.  L, the left-hand side 

proper of the rule, is a set of graphs with node labels and edge labels. A derivation 

step of an RGG involves the removal of a copy ("match") of one rule's L from a 
(usually) larger graph and the insertion of the corresponding R, the right-hand side 

proper of the rule, which is also a set of graphs (with the underlying node sets not 
necessarily disjunct from those of L). C is again a set of labelled graphs (with the 
node set possibly but not necessarily overlapping with that of L) and is called the 
context of the rule. For a rule, in order to be applicable the set C must match with a 
set of subgraphs of the given graph in a way which is consistent with the match of L, 
but in the derivation step the context is not removed (except for the parts that are also 
in L). This notion of context generalizes the "left" and "right contexts" of context-
sensitive L-systems [8] and enables a flexible control of subgraph replacement by 
specifying a local situation which must be given before a rule can be applied. E is a 
set of logical expressions in some syntax which we are not going to define in detail 
here. These expressions usually contain some parameters referring to node labels 
from L ∪ C and are interpreted as conditions which must be met before the rule can 
be applied. Conditions may also contain some function calls evoking a random 
number generator—if this is the case the rule is called stochastic. Finally, P is a 
(possibly empty) list of commands which are also not specified syntactically here, 
possibly involving parameters referring to node labels from L ∪ C ∪ R and 
parameters from E. P specifies a procedural piece of code which is executed after rule 
application.—We write RGG rules in the form  

(* C  *), L, (E) ==>  R { P }; 
the arrangement of the C, L and E parts not being fixed. 

Figure 1 illustrates a simple example of an RGG rule with C = E = P = ∅ (upper 
part) and its application to a graph (lower part). A possible text notation for this rule 
in our XL syntax would be   i –b–> j, j –a–> k, k –a–> i  ==> j .  

 

 
Fig. 1. An RGG rule in graphical notation (upper part) and its application to a given graph 
(lower part). The shaded nodes are matched by the left-hand side of the rule. (From [6].) 

123



In our applications, we found it useful to have a short notation for rules with L = R = 
∅. In this case, only parameters from the context C (and possibly from E) appear in 
the procedural part, and we write 

C ,(E) ::>  P . 
 

A RGG is a set of RGG rules. In the language XL, RGG rules can be put together in 
blocks, thus enabling an additional hierarchy of rules and an explicit control of their 
order of application, like in table L-systems [9]. An RGG-based derivation is a 
sequence of discrete, successive derivation steps, starting from a given initial graph 
(axiom). In each step, one or all matching rules are applied, depending on the chosen 
mode of rule application (see below). 

RGGs were partly inspired by the PROGRES graph grammar system [11]. Further-
more, features from parametric L-systems were incorporated into the RGG 
formalism. Particularly, commands of turtle geometry (cf. [8]) are allowed as nodes 
and can serve to interpret the derived graphs geometrically. 

Pure rule-based programming does not in all situations allow an intuitive access. 
The notion of "programmed graph replacement systems" [10] was introduced to over-
come this limitation: Additional programming structures, following a different para-
digm, are supported. In the RGG approach, the inclusion of P in our definition allows 
the execution of code from a conventional object-oriented language. Additionally, in 
XL such a language (Java) serves as a framework for the whole RGG and allows the 
user to define constants, variables, classes and methods. Furthermore, graph nodes in 
XL are Java objects and can carry arbitrary additional information and functionalities, 
e.g., concerning geometry, visual appearance or animated behaviour. 

3   Key features of RGGs 

Two issues require special consideration in graph grammars: The mode of rule 

application and the embedding of the right-hand side into the graph immediately after 
rule application. Sequential and parallel mode of application are well known from 
Chomsky grammars and L-systems, respectively. In most physical, chemical and 
biological applications, the parallel mode turns out to be more appropriate. However, 
the parallel application of rules requires the specification of a conflict resolution 

strategy for overlapping matches of left-hand sides. Future extensions of the RGG 
formalism will contain explicit support for the most common conflict resolution 
schemes. Until now, we have considered only a special case: the multiple matching of 
L with one and the same copy of L in the graph. This occurs always when L allows 
some automorphism and when C and E do not enforce a selection between the 
matches. The standard mode of rule application realized in XL, which is basically the 
single-pushout approach (also known as the algebraic or Berliner approach) [1], tries 
to apply the rule to every match. In many applications it is more meaningful to apply 
a rule only once to an underlying node set of a match. (The selection among the iso-
morphic matches has then to be done either nondeterministically or following a 
specified strategy.) This option will be implemented in a later XL version; currently it 
must be emulated by additional conditions in part E of the rule. 

124



Our standard mechanism of embedding simply transfers incoming (outgoing) edges 
of the textually leftmost (rightmost) nodes of L to the textually leftmost (rightmost) 
nodes of R. Future versions of XL will allow other embedding strategies. 

We have shown in another paper [6] that it is straightforward to represent typical 
standard data structures like sets, multisets, lists or multiple-scaled trees as labelled 
graphs. The RGG formalism provides standard types of edges (i.e., special edge 
labels) to represent common relations occurring in these data structures, like the 
successor relation in lists or the membership relation in sets. Because the successor 
relation is used so often, it is denoted by a blank in our notation, i.e.,  a b is equi-
valent to a –successor–> b. Additionally, the user can define new relations, 
using e.g. algebraic operators like the transitive hull, which can be used in RGG rules 
in the same way as edges. 

4   Example 1: Spreading of a signal in a network 

We assume that a signal jumps in each time step from a cell to all adjacent cells of a 
network and changes the state of the reached cells from "inactive" (0) to "active" (1). 
In our implementation in XL we make use of the possibility to use objects as nodes 
which can carry arbitrary additional data, in this case the state of the cell. "Cell" is a 
predefined class which contains a variable called "state", but such a class could also 
be defined by the user. The signal propagation requires only one RGG rule: 

(* c1: Cell *) c2: Cell, (c1.state == 1) ==> c2(1). 
Here, the blank between *) and c2 denotes the successor relation in the network 
where the rule is to be applied. "Cell" is the node type (class), "c1" and "c2" are 
labels of nodes serving to distinguish them and to refer to them on the right-hand 
side, and "state" is a variable of "Cell" which can likewise be seen as a parameter 
of the nodes and which is forced to 1 at the node c2 on the right-hand side. The way 
in which the context is specified in this rule is a short notation for the definition-con-
forming rule 
(* c1: Cell c2: Cell *), c2, (c1.state == 1) ==> c2(1). 

The result of two steps of rule application is illustrated in Fig. 2. 

 

 
Fig. 2. Application of the signal propagation rule to a network. Dark nodes have state 1, light-
grey nodes 0. 

125



This example simulates the dynamics of some state variable, but there is no 
dynamical structure; the topology of the network remains unchanged. Hence this is a 
simple case, but using the same basic rule structure it is possible to simulate the 
dynamics of complex metabolic networks and gene regulation networks, using real-
valued concentrations and Michaelis-Menten kinetics in the state-changing rules (see 
[6] for an example). 

5   Example 2: "Game of Life" 

Cellular automata (CA) can easily be expressed as RGGs. This is demonstrated at the 
example of the "Game of Life", a well-known 2-dimensional CA with nontrivial 
longterm behaviour [3]. We use again the class "Cell", with state value 1 for "living" 
and 0 for "dead". In the following piece of XL code, we have omitted only the 
initialization of the grid, which can be done by a trivial rule creating cells at pre-
defined positions. 
 
boolean neighbour(Cell c1, Cell c2) 

  { return (c1 != c2) && (c1.distanceLinf(c2) < 1.1); } 

public void run() 

  [ 

  x:Cell(1),  

    (!(sum( (* x -neighbour-> #Cell *).state) in {2..3})) 

       ==> x(0); 

  x:Cell(0),  

    (  sum( (* x -neighbour-> #Cell *).state) == 3) 

       ==> x(1); 

  ] 

 
 
The first declaration defines the Moore neighbourhood as a new edge type between 
"Cell" nodes, based upon a geometric relation (chessboard distance lower than 1.1). 
The block "run" contains the transition function of the CA in the form of two RGG 
rules. These rules cover only the cases where the state switches from 0 to 1 or vice 
versa; no rule is necessary to force a cell not to change its state. The conditions in 
both rules make use of an arithmetical-structural operator, sum, which was first 
introduced in the context of L-systems [7]. Its argument is iteratively evaluated for all 
nodes matching with the node marked by # in the context specification (* ... *) and 
added up.—Figure 3 demonstrates the possibility of user interaction during RGG 
execution, which is provided by the GroIMP software. (a) and (b) show successive 
steps in the undisturbed development of a "Game of Life" configuration (living cells 
are black and enlarged). After every step, the user can stop the RGG derivation pro-
cess and interfere manually; e.g., he may change the state of a cell. In (c), a cell was 
even removed from its position and placed at an irregular location on the grid. Rule 
application can nevertheless be resumed, leading to a "disturbed" dynamics (d). 

 

126



(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Fig. 3. A symmetric configuration in the Game of Life (a) and its successor configuration (b). 
In (c), one "living" cell of (b) was translated by the user. The disturbed configuration develops 
asymmetrically, shown in (d) after several steps. 

In this example, structural change can only be obtained by an intervention of the user. 
The next example shows the growth of a geometrical structure. 

6   Example 3: A distance-sensitive plant 

The following rules simulate the growth of a plant which consists of a main axis, 
ending in an apical meristem m, and short lateral branches (emanating from invisible 
nodes of type "s") with the capacity of flowering. The apical bud of such a branch is 
transformed into a visible flower only if there is no other bud or flower closer to the 
bud than a given threshold distance. The corresponding RGG is similar to a classical 
L-system, but the global character of the sensitivity involved in the distance criterion 
excludes a realization as a "context-sensitive" L-system (with "context" interpreted 
with respect to strings).—We omit again the initialization rule. 
 
module m(int x) extends Sphere(3); 

module s; 

module inflor; 

module bud extends inflor; 

(...) 
m(x)  ==> F(12) if (x>0) ( RH(180) [s] m(x-1) ); 

s     ==> RU(irandom(50, 70)) F(irandom(15, 18)) bud; 

127



b:bud ==> inflor 

          if (forall(distance(b,(* #x:inflor,(b!=x)*))  

                     > 13) 

             ( RL(70) [ F(4) RH(50) 

                        for (1..5) ( RH(72)  

                                   [ RL(80) F(3) ]) ] ); 

 
The system uses the turtle commands F (creation of a cylinder) and RH, RL, RU 
(spatial rotations), cf. [8, 7]. The second rule is stochastic and introduces some 
randomness in the branching angles and branch lengths. The third rule makes again 
use of arithmetical-structural operators (forall, distance) and iterative evaluat-
ion of a set defined by a context definition. Note that the class hierarchy specified in 
the module declarations is used to count not only inflorescences, but also buds as 
potentially flower-inhibiting objects (bud extends inflor). Furthermore, con-
ditional and loop structures (if, for) are used to organize the right-hand side. The 
"for" construction generalizes the repetition operator used in L-systems [7].— 
Figure 4 shows two stages of a derivation which started with three "m" nodes 
(meristems). Flowering turns out to be partially inhibited for the central plant, due to 
a lack of free space. 

 

  

Fig. 4. Growth of a "sensitive" plant with flowering restricted to conditions where a distance 
threshold to the nearest competing object must be surpassed. 

Our last example combines structural changes with dynamic, physically-based 
simulation of state variables. It shows also the applicability of RGGs in the field of 
chemistry. 

128



7   Example 4:  A polymerization model with mass-spring kinetics 

Spherical "monomers" are enclosed in a rectangular region and move in random 
initial directions with constant velocity. The region boundaries are reflecting. Each 
time two monomers have a close encounter, a chemical bond is formed between them 
which is modelled in analogy to a spring. Impulse is conserved in the resulting dimer. 
Reactions resulting in a binding can also happen between yet unsaturated ends of a 
polymer. It is assumed that each monomer has only two binding sites. Thus the 
resulting polymers have either a chain or a ring topology (see Fig. 5). 

The RGG specifying this behaviour consists of not more than 2 module definitions 
("Monomer" and "Spring") and 4 rules—one for initialization, one for constant move-
ment with reflection at the walls, one for spring mechanics and one for chemical 
binding. This RGG will be documented in detail in a forthcoming version of this 
paper. 

 
(a) 

 

(b) 

 

(c) 

 

Fig. 5. Development simulated by the polymerisation model. (a) initial situation, (b) after 
several collisions, two chains and one ring (of three monomers, one of them being occluded in 
the picture) have formed, (c) finally one large chain and the small ring remain. 

8   Conclusions 

Relational growth grammars permit the writing of short and comprehensible model 
specifications for a wide field of scientific applications, ranging from physical and 
chemical simulations (Example 4) to the growth of plants (Example 3), genetic 
processes and metabolic networks [6]. They are essentially rule-based, but because 
they operate on unordered sets of graphs, they share also some characteristics with 
chemical computing. Furthermore, in the language XL they are implemented in a way 
that enables straightforward combination with procedural and object-oriented 
constructions as well. Hence we see an important potential for future applications of 
this flexible approach. 

129



References 

1. Ehrig, H., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic 
approaches to graph transformation—part II:  Single pushout approach and comparison with 
double pushout approach. In: G. Rozenberg (ed.): Handbook of Graph Grammars and Com-
puting by Graph Transformation, Vol. 1, Foundations. World Scientific, Singapore (1997) 
247–312. 

2. Floyd, R.: The paradigms of programming. Communications of the ACM 22 (1979) 455–
460. 

3. Gardner, M.: Wheels, Life, and Other Mathematical Amusements. W.H. Freeman, New 
York (1983). 

4. Giavitto, J.-L., Michel, O.: MGS: A rule-based programming language for complex objects 
and collections. Electronic Notes in Theoretical Computer Science 59 (4) (2001). 

5. Kniemeyer, O.: Rule-based modelling with the XL/GroIMP software. In: H. Schaub, F. 
Detje, U. Brüggemann (eds.): The Logic of Artificial Life. Proceedings of 6th GWAL, April 
14–16, 2004, Bamberg, Germany. AKA, Berlin (2004) 56–65. 

6. Kniemeyer, O., Buck-Sorlin, G., Kurth, W.: A graph grammar approach to Artificial Life. 
Artificial Life 10 (4) (2004) 413–431. 

7. Kurth, W.: Some new formalisms for modelling the interactions between plant architecture, 
competition and carbon allocation. Bayreuther Forum Ökologie 52 (1998) 53–98. 

8. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York 
(1990). 

9. Rozenberg, G.: T0L systems and languages. Information and Control 23 (1973) 357–381. 
10. Schürr, A.: Programmed graph replacement systems. In: G. Rozenberg (ed.): Handbook of 

Graph Grammars and Computing by Graph Transformation, Vol. 1, Foundations. World 
Scientific, Singapore (1997) 479–546. 

11. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and environ-
ment. In: G. Rozenberg (ed.): Handbook of Graph Grammars and Computing by Graph 
Transformation, Vol. 2, Applications, Languages and Tools. World Scientific, Singapore 
(1999) 487–550. 

12. Wolfram, S.: Cellular Automata and Complexity. Collected papers. Addison-Wesley, 
Reading (1994). 

 

130



� ✁✄✂✆☎ ✝✄✞✠✟☛✡☞✞✠✌✎✍✏✍✏✑✒✁✄✡✓✝✄✌✔✞✠✌✔✕✖✑✗✡☞✍ ✑✗✁✄✘✙✝✚✑✛✞✠✂✜✕✣✢✥✤
�✦✞★✧✠✑✪✩✖✫✜✑✛✌✎✬✮✭✰✯✄✂✱✍✲✑✛✘✳✧★✞✴✑✗✂✜✘

✵✷✶✹✸✻✺✽✼✹✾✗✿✹✺✽❀❂❁✱✺❃✼✹❄✖❅❆✶❈❇✳✺❊❉❋✺❃●■❍✗✾✗❏▲❑◆▼
❖✥P✻◗■❘▲❙✗❚❱❯❳❲✔◗■❨✽❯✙❩✒❬❪❭★❩❫❲✔❘❊❴❊❯❳◗■❚❛❵✽❜❞❝❡◗❞❨❢❜■◗❫❣◆❤✐◗■❲✔❩✒❚❳❝❥❙✒❦✹❧♠❨❊❝❥♥❫◗■❚❳♦❱❝♣❯❂q☛❩✒❬sr❛◗■t✠❬✉❩✒❴❢❨▲✈❃❦❥❙✒❨▲✈❈❣◆❵✇❯✪①

② ❩❫③❢❨✹④ ♦❛r♠⑤⑦⑥✱⑧❞⑨❶⑩✒❷✻❸✽❣▲❭✙⑥❛r✻⑥❹P♠⑥❺ P✻◗■❘▲❙✗❚❱❯❳❲✔◗■❨✽❯✙❩✒❬❪❭★❩❫❲✔❘❊❴❊❯❳◗■❚❛❵✽❜❞❝❡◗❞❨❢❜■◗❫❣❢❧❛❨❢❝❡♥❻◗■❚❳♦❱❝♣❯❼q☞❩✗❬❽P✻❩✗❚❱❯❳❲❾❴❢❨❢✈✹❣✽P❛❿❻➀❫➀❻➁❫➁✽⑧✜P♠❩✒❚❱❯❳❲❾❴❊❨▲✈❈❣
➂✻➃s➄ ❤✥⑥❛r❛➅

➆✎➇❽➈❞➉❞➊✛➋▲➌✒➉❫➍➏➎ ❨❾❯❳③❢❝❡♦✳❜❞❩❫❨✇❯❱❚❳❝❡➐❢❴❃❯❳❝❥❩✒❨❾t✙◗❹♦❱③▲❙✗❦❡❦▲❝❡❨✽❯❱❚❳❩✽✈❃❴❢❜❞◗✴❙✆❨❊◗■t➑❲✔◗❋❯❳③❢❩✽✈❆❩✗❬✹❘❊❚❳❩✒➒
➓ ❚➔❙✒❲→◗■➣❃◗❞❜■❴❊❯❳❝❡❩❫❨✹❣s➐▲❙✒♦❱◗❞✈↔❩✒❨↕❨❊❩✒❯❳❝❡❩❫❨❊♦✔❩✒❬✆⑥✴❚❱❯❳❝♣➙▲❜❞❝❥❙✒❦❹❭★③❊◗❞❲✔❝❡♦➛❯❱❚❳❝❡◗❞♦❞① ➎ ❨❢♦➛❯❳◗❞❙❫✈✖❩✒❬◗■➣❃◗❞❜■❴❊❯❳❝❡❨ ➓ ❝❥❨❊♦➛❯❱❚❳❴❢❜■❯❳❝❡❩✒❨❢♦✎❝❡❨❶❙➜❘❃❚❳◗✪✈❊◗■➙❢❨❢◗✪✈↔♦❱◗✪➝✇❴❢◗❞❨✇❯❳❝❥❙✒❦✴❩✗❚➔✈❊◗■❚✪❣❪◗■➣❃◗❞❜❞❴❃❯❳❝❥❩✒❨↕t✴❝❡❦❡❦➐◆◗❛❝❥❨✎❚➔❙✒❨❢✈❊❩✒❲➞❩✒❚➔✈❃◗■❚✠❝❡❨☞❙✒❨▲❙✗❦❡❩ ➓ q✎❯❳❩✱❜❋③❊◗❞❲✔❝❡❜✪❙✒❦▲❚❳◗❞❙✒❜■❯❳❝❡❩❫❨❊♦✠③▲❙✗❘❢❘◆◗❞❨❊❝❥❨ ➓ ➐◆◗❋❯❂t✙◗■◗❞❨♦❱❴❊➐❢♦➛❯➔❙✒❨❊❜❞◗❞♦❞① ➎ ❯➟❯❳❴❊❚❳❨❊♦➠❩❫❴❃❯➠❯❳③❢❙✗❯❽♦❱❴❊❜❋③✱❙✴❲✔❩✽✈❊◗❞❦❻❩✗❬❢❘❃❚❳❩ ➓ ❚➔❙✒❲➡◗■➣❃◗❞❜■❴❊❯❳❝❡❩❫❨✜❝❡♦❽❙✒➐❊❦❡◗❪❯❳❩❙✗❜❋③❊❝❥◗■♥❻◗♠✈❃◗❞♦❱❝♣❚➔❙✒➐❊❦❥◗ ➓ ❩❫❙✒❦❡♦✠❝♣❬➠❙✗❴ ➓ ❲✔◗❞❨✇❯❳◗✪✈➏➐✇q✔❙✒❨☛❙✗❴❊❯❳❩❫❲✎❙✛❯❳❝❡❜❛❘❃❚❳❩ ➓ ❚➔❙✗❲➞♦❱◗✪❙✛❚❳❜❋③❊❝❡❨ ➓❲✔◗■❯❳③❊❩✽✈❾❦❡❝❡➢❻◗ ➂ ◗■❨❢◗■❯❳❝❡❜❛➤s❚❳❩ ➓ ❚➔❙✒❲✔❲✔❝❡❨ ➓ ①❫➥⑦◗❹✈❊◗❞❲✔❩✒❨❢♦➛❯❱❚➔❙✗❯❳◗✠❯❳③❊◗❹❘❃❚❳❝❡❨❢❜❞❝❡❘❢❦❡◗✴❩✒❬✹❯❳③❢❝❡♦❙✗❘❢❘❊❚❳❩❫❙✒❜➔③✐❙✗❨▲✈✔✈❃❝❥♦❱❜■❴❢♦❱♦✙❘❃❚❳❩❫♦❱❘◆◗❞❜■❯❳♦✙❙✒❨▲✈✔❜❞❩✒❨❢♦❱◗✪➝✇❴❊◗❞❨❢❜❞◗■♦❪❬✉❩✗❚✠❘▲❙✛❚➔❙✒❦❡❦❡◗❞❦❈◗■➣❃◗❞❜■❯❳❴❃❯❳❝❥❩✒❨❩✗❬s♦❱❴❢❜➔③✐❘❊❚❳❩ ➓ ❚➔❙✗❲✔♦❞①

➦ ➧❢➨❹➩◆➫❈➭✆➯❆➲✱➳➠➩❈➵❳➭❹➨
➸❱✼➻➺■✿❈➼➽❉✆❍✗➾❃✼❢➺❋●■➼➽➚❈➪◆➺❋➼➽➾❃✼⑦➶♠➹❾❉❋✿✹✺✽➘➽➘❽➼➽✼❊➺■●❋➾◆❄◆➪➟❍✛➹➏✺☞✼✹➹✗➶➴➶✻✺❻❏✥➾✽❀★➘➷➾▲➾❃❑▲➼➽✼❈➬✥✺✇➺✻➺❋●❞✺✽✼✹❉➔❀➮➾❃●■➱✃✺✇➺■➼➷➾❊✼✹❉
❀➮●❋➾❊➱❐➼➷✼❈❒✹➪◆➺✄➺❋➾❮➾❃➪◆➺■❒❈➪◆➺✖❄◆➼➷❰➠➹✒●❋➹✒✼❊➺✄❀➮●■➾❃➱Ï✺Ð❒❈●■➹✒❉■❍✛●■➼➷➚➠➹✒❄Ñ❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹↔➾✽❀✥❍✛➾❊➱✐❒✹➪◆➺■✺✽➺❋➼➽➾❃✼✹✺❃➘
❉❳➺■➹✗❒✹❉✒✶➟➸❱✼➟❉❳➺■➹✒✺❃❄sÓ❈➺❋✿✹➹☛➹✗➘➽➹✗➱✥➹✒✼❊➺❞❉✱➾❃❀✙➺❋✿❈➹☛➺❋●❞✺✽✼✹❉➔❀➮➾❃●■➱✃✺✇➺❋➼➽➾❃✼✳Ó✹➶✆✿❈➼✉❍❞✿✚➼➷✼↔➾❃➪❈●❾❍✗✺❃❉❋➹☛✺❃●❋➹☛❉❋➼➽✼❈➬❃➘➽➹
➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✻❀➮●■➾❃➱Ô✺✥➱☛➪❈➘➷➺❋➼✉❉❋➹✛➺❆Õ✃ÖØ×❫Õ ❁✽Ù Õ ▼❃Ù Õ✛Ú Ù Õ ▼✽Ù Õ✗Ú Ù Õ ❁✇Ù✒Û➷Û➽Û➷Ü ✺✽●■➹➏❄❈●■✺❻➶✆✼✄➼➽✼✖✺✥●■✺❃✼✹❄◆➾❃➱➾❃●❞❄◆➹✗●♠➺❋➾✥❒❈●■➾◆❄◆➪✹❍✗➹❾✺☞➺❋●❞✺✽✼➟❉❳❀➮➾❊●❋➱✃✺✇➺■➼➷➾❊✼Ý●■➹✒❉❋➪❈➘❥➺❫✶◆➸❱✼➻➺■✿❈➼✉❉✻➶♠✺❻❏✃➶♠➹✔❄◆➼➽❉■❉❋➾❃➘➽Þ❃➹✜➺■✿❈➹✎❉❋➹✒Ò❢➪❈➹✗✼❢➺■➼➽✺❃➘
➾❃●❞❄◆➹✗●✔➪✹❉❋➪✹✺❃➘➷➘➽❏↔✺❃❉■❉❋➾▲❍✗➼➽✺✽➺❋➹❫❄↔➶✆➼➷➺❋✿❶✺✽✼❶✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱ß❀➮➾❃●✔➾❊➪❈●✎❒❈●■➾❃➬❊●■✺❃➱✃❉✗✶➠➸➛➺☛➶✆➼➽➘➷➘✠➺■➪❈●■✼➑➾❊➪◆➺✒Ó
➺❋✿✹✺✽➺❛❉➔➪➟❍❞✿Ý✺✽✼Ý✺✽●■●❞✺✽✼❈➬❊➹✗➱✥➹✗✼❢➺✙➼➽❉❛❉❳➺■➼➷➘➽➘➟✺❃➚❈➘➷➹✜➺❋➾✎❒❈●■➾◆❄◆➪✹❍✗➹✆➶✆➼➽❉❋✿❈➹✒❄◆à❼❀➮➾❊●✴●❋➹❫❉➔➪✹➘❥➺❞❉✗Ó❃➺❋✿❈➾❊➪❈➬❃✿✥➾❃✼✹➘➷❏
➪❈✼✹❄◆➹✒●❪➺■✿❈➹✻●❋➹✒➼➷➬❊✼☛➾❃❀➟✺✱❒✹●❋➾❊➬❃●❞✺✽➱✥➱✥➼➷✼❈➬❆➱✥➹✛➺❋✿✹➾▲❄☛➺❋✿➟✺✇➺✠➚✹✺✽✼✹❑▲❉❪➾❃✼✐➼➷➺■❉✙❉❳➺■➾◆❍❞✿✹✺❃❉➔➺❋➼✉❍❛❍❞✿➟✺✽●❞✺❃❍✪➺■➹✗●❫✶
á✻✿❈➼➽❉✜➱✐➹✗➺❋✿❈➾◆❄⑦➶✆➼➽➘➷➘s➚➠➹☛â❾➹✗✼✹➹✛➺❋➼✉❍✔ã✴●■➾❃➬❊●■✺❃➱✥➱✐➼➽✼❈➬➟✶
ä ❒✹●❋➾❊➬❃●❞✺✽➱å➼➽✼➜➺■✿❈➼✉❉✜❉➔➹✒✼✹❉❋➹❾➼✉❉♠➺❋✿▲➪✹❉✜✼❈➾✽➺✜✺✥❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹➏➾✽❀✙➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✻➚❈➪❈➺✜●■✺✽➺❋✿❈➹✒●✻✺❃✼

✺❃❉■❉➔➹✒➱☛➚❈➘✉✺✽➬❊➹❛➾❃❀æ➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✙➺■✿✹✺✇➺❹❍✒✺✽✼✥➚➟➹✱➹✛ç◆➹✒❍✗➪◆➺❋➹❫❄☞➼➽✼Ý✺✽●■➚❈➼➷➺❋●❞✺✽●■❏✔➾❃●❞❄◆➹✗●❫✶✽✸♠❏☛●❞✺✽✼✹❄❈➾❃➱✥➘➷❏
❍❞✿❈➾▲➾❊❉❋➼➷✼❈➬➻➾❃✼❈➹☞➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼↕✺✽➺❾✺Ý➺❋➼➽➱✐➹❊Ó➠➺❋✿❈➹✐❒❈●■➾❃➬❃●❞✺✽➱Ô❒❈●■➾◆❍✛➹✗➹❫❄❈❉✆➺■✿❈●■➾❃➪❈➬❊✿✖➼❥➺❞❉❆➺❋●❞✺✽✼✹❉➔❀➮➾❃●❋à
➱✥✺✽➺❋➼➽➾❃✼✹❉❛➪❈✼❢➺❋➼➽➘æ✺✎❒❈●■➹✒❄◆➹✗➺❋➹✒●❋➱✥➼➽✼❈➹✒❄✃✼▲➪❈➱☞➚➟➹✒●❛➾❃❀s➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉❛✿✹✺❊❉✴➚➠➹✗➹✗✼➜➹✛ç◆➹✒❍✗➪◆➺❋➹❫❄❽✶❢➸❱✼Ý➺❋✿✹➹
❒❈●❋➹❫❉➔➹✒✼❢➺Ý➶❛➾❊●❋❑è➶♠➹✚❉➔➹✗➺Ý➺❋✿✹➹✚✼❢➪✹➱☛➚➠➹✗●Ý➾❃❀➏➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✥➺■➾❶➚➟➹✚➹✗ç▲➹❫❍✛➪◆➺■➹✒❄✮✺✽➺✃é✹Þ❃➹✄➺■➼➷➱✥➹✒❉
➺❋✿❈➹☛❉❋➼➽✾✗➹✔➾✽❀✙➺■✿❈➹✎➱☛➪✹➘❥➺■➼➽❉❋➹✛➺❫Ó❈➺❋✿✹➼➽❉✆➶✻✺❻❏➻➬❊➼➷Þ▲➼➽✼❈➬✃✺✽➱✥❒❈➘➽➹☛❍❞✿✹✺❃✼✹❍✛➹➏➺■➾✃➹✒✺❃❍❞✿✄➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼➜➺■➾Ý➚➠➹
➹✛ç◆➹✒❍✗➪◆➺❋➹❫❄⑦✺✽➺✆➘➷➹❫✺❃❉➔➺✻➾❊✼✹❍✛➹✔✺❃✼✹❄➜➺❋➾✥➹✛ç◆➹✗●❋➺✆➼❥➺❞❉✆❒❈●■➾❃❒➠➹✗●✆➼➽✼◆ê✹➪❈➹✒✼✹❍✛➹✔➾❊✼➻➺■✿❈➹✔●■➹✒❉❋➪❈➘❥➺❫✶
ë✱➼➷❰➠➹✒●❋➹✒✼❢➺❾➱☞➪❈➘❥➺■➼❥à❱❉❋➹✛➺■❉➏❍✒✺✽✼↔➚➠➹✃❍✛➾❊✼✹❉➔➼✉❄◆➹✒●❋➹❫❄✖❄◆➼➷❰➠➹✒●❋➹✒✼❊➺➏❒❈●■➾❃➬❊●■✺❃➱✥❉✒Ó✹➶✆✿✹➹✗●■➹✒✺❃❉❾❄◆➼➷❰➠➹✒●❋➹✒✼❢➺

❒✹✺❃❉■❉➔➹❫❉✆➺■✿❈●❋➾❊➪❈➬❃✿↕✺Ý➱☛➪✹➘❥➺■➼❡ì◆❉➔➹✗➺➏❍✒✺✽✼✖➚➠➹✐❍✗➾❃✼✹❉❋➼✉❄◆➹✗●■➹✒❄✚❄◆➼➷❰æ➹✗●■➹✗✼❢➺❾➚➠➹✗✿➟✺❻Þ❢➼➽➾❃●❞✺✽➘❪Þ✇✺✽●■➼➽✺❃✼❊➺❞❉✜➾❃❀❹✺
❉➔➼➽✼❈➬❃➘➽➹✻❒❈●■➾❃➬❃●❞✺✽➱✄✶❻ã✴●■➾❃➬❊●■✺❃➱✥❉❪➾✽❀➟➺❋✿❈➼✉❉✙➺❳❏▲❒➠➹✜❍✗✺✽✼✐➚➠➹✻❉❋➹✗➹✒✼✃✺❃❉✙✺✽●❋➺❋➼➷é➟❍✛➼✉✺✽➘❈❍❞✿✹➹✗➱✥➼➽❉➔➺❋●■➼➽➹✒❉✒Ó✇➶✆✿❈➹✗●■➹
➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉♠➼➽✼❊➺■➹✗●❞✺❃❍✛➺❛➶✆➼➷➺❋✿➻➹❫✺❃❍❞✿➜➾✽➺❋✿✹➹✗●➏í➮➚▲❏✥➺■✺❃❑❢➼➽✼❈➬☛➺❋✿❈➹❾➺❋●❞✺✽✼➟❉❳❀➮➾❊●❋➱✃✺✇➺■➼➷➾❊✼✃●❋➹❫❉➔➪✹➘❥➺❞❉✴❀➮●■➾❃➱
➾❃✼❈➹✠➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✎✺✽✼✹❄❾❀➮➹✒➹✒❄◆➼➽✼❈➬✜➼➷➺✳➼➽✼❊➺■➾✱✺✽✼✹➾✽➺❋✿✹➹✗●✪î✪✶ ä ❉s➼➷➺✳➶✆➼➷➘➽➘✽➺■➪❈●■✼✔➾❃➪◆➺❫Ó✗➱✃✺✽✼▲❏✱➼➽✼❢➺❋➹✒●■✺❊❍✪➺❋➼➽➾❃✼➟❉

131



➾✽❀❢➺❋✿❈➼✉❉❽➺❳❏▲❒➠➹❹✺✽●■➹❃Ó✪➶✆✿✹✺✽➺✳➼➽✼✎✺✽✼ ä ●❋➺❋➼➷é➟❍✛➼✉✺✽➘▲❅❛✿❈➹✗➱✥➼✉❉❳➺■●❋❏❆➼➽❉❪❍✗✺✽➘➽➘➽➹✒❄✁�✽➹✒➘➽✺❊❉❳➺■➼➽❍✂�❈Ó✪➼➽✼❆➺■✿✹✺✇➺❪✼❈➾✽➺■✿❈➼➷✼✹➬
✿✹✺✽❒❈❒➠➹✗✼➟❉❹✺❃❉❹✺✔●❋➹❫❉➔➪✹➘❥➺❫Ó✇❀➮➾❃●❛➼➷✼✹❉➔➺■✺❃✼✹❍✛➹✆➚➠➹✒❍✒✺✽➪✹❉❋➹✆➺■✿❈➹✜➹✒✺❃●❋➘➽➼➽➹✗●✠➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼Ý❄❈➼➽❄✥✼❈➾❃➺✴❀➮➹✗➹❫❄✥➼➷✼❢➺■➾
➺❋✿❈➹✎✺❃●❋➬❊➪❈➱✥➹✗✼❢➺■❉♠➾✽❀★➺❋✿✹➹✔➘➽✺✽➺❋➹✗●❫✶ Ú
✸❛➹❫❍✗✺❃➪✹❉➔➹✆➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉❹✺❃●❋➹✜❄❈●■✺❻➶✆✼✃●❞✺✽✼✹❄❈➾❃➱✥➘➷❏☞➼➷✼Ý➺❋✿❈➹❆➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼✃➾❃❀➠➺■✿❈➹✱❒✹●❋➾❊➬❃●❞✺✽➱✄Ó✽➼➷➺

➼➽❉❛●❋➹❫✺✽➘➽➘➷❏✐➺■✿❈➹❾❍✗➾❃✼✹❍✗➹✗✼❢➺❋●❞✺✇➺■➼➷➾❊✼✃➾✽❀s➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✴➺■✿✹✺✇➺✻➱✃✺✇➺❋➺❋➹✗●❞❉❛➱✐➾❢❉❳➺❫✶❊➸➛➺✻➼✉❉✴➺■✿❢➪➟❉❛➹✗ç◆❒➟➹❫❍✪➺❋➹❫❄
➺❋✿✹✺✽➺✄�❃❒❈●■➾❃➬❃●❞✺✽➱✥➱✥➼➽✼❈➬☎�✥➾❃❀❛❉➔➪➟❍❞✿↕✺⑦❉➔❏◆❉➔➺❋➹✗➱ ●❋➹❫Ò❊➪✹➼➷●■➹✒❉✱➺❋✿❈➹✐❒❈●■➾❃❒➠➹✗●✔❍❞✿❈➾❊➼➽❍✗➹☛➾✽❀✻❍✛➾❊✼✹❍✛➹✒✼❊➺■●■✺✽à
➺❋➼➽➾❃✼✹❉❾➾✽❀♠➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉✒Ó❽❉➔➼➽➱✥➼➷➘✉✺✽●❾➺■➾➜➶✆✿✹✺✽➺❾➼✉❉➏●■➹✒Ò❢➪❈➼➽●❋➹❫❄✄❀➮●❋➾❊➱→➺❋✿❈➹✐❀➮➪❈✼➟❍✪➺❋➼➽➾❃✼✹➼➷✼❈➬✄➾❃❀❹➘➷➼➽Þ▲➼➷✼✹➬
❍✛➹✗➘➽➘✉❉✗Ó❢➶✆✿❈➹✗●■➹✱✺✽➺❛➹✒✺❊❍❞✿✃➬❃➼➽Þ❃➹✒✼✥➺❋➼➽➱✐➹❆➱✃✺✽✼▲❏☞●■➹✒✺❊❍✪➺■➼➷➾❊✼✹❉✴✿✹✺❃❒❈❒➠➹✗✼➻❉❋➼➷➱☞➪❈➘➷➺■✺✽✼✹➹✗➾❃➪➟❉➔➘➽❏☛➚❈➪❈➺♠➶✆➼➷➺❋✿◆à
➾❃➪◆➺✱✺✐✼❈➹✒➹✒❄➜➺❋➾✃❉❋❏❢✼➟❍❞✿❈●❋➾❊✼❈➼✉❍✛➼➷➺❳❏❃✶

✆ ✝✟✞✠➳✡✠☞☛✴➫✹➭❹➲✱➨❆➯
ä ➘➽➬❃➾❃●■➼➷➺❋✿❈➱✥➼✉❍✥❅❛✿❈➹✒➱✥➼➽❉➔➺❋●■➼➷➹❫❉❾➶❛➹✒●❋➹✥❍✛➾❊✼✹❉➔➼✉❄◆➹✒●❋➹❫❄✚➹✒✺❃●❋➘➽➼➷➹✒●❆➼➽✼↕➺❋✿❈➹✥➶♠➾❃●■❑⑦➾❃❀✍✌✹➾❃✼❢➺■✺❃✼✹✺✏✎ ✑✓✒➛✶æ➸❱✼
➺❋✿✹✺✽➺✜➶❛➾❊●❋❑æÓ◆✺✥❉➔❏◆❉➔➺❋➹✗➱ ➾✽❀✕✔❈à❱❍✗✺✽➘✉❍✛➪✹➘➷➪✹❉✻➹✗ç◆❒❈●❋➹❫❉❋❉❋➼➽➾❃✼✹❉♠➶✻✺❃❉♠➹✛ç❈✺✽➱✥➼➽✼❈➹✒❄➜➼➽✼➜➺■✿❈➹✗➼➽●✆➼➽✼❊➺■➹✗●❞✺❃❍✛➺❋➼➽➾❃✼
➶✆➼❥➺■✿✃➹✒✺❃❍❞✿✐➾✽➺■✿❈➹✗●❫✶❃ë❆➪❈➹✆➺■➾➏➺❋✿❈➹✜✼➟✺✇➺❋➪✹●❋➹✆➾❃❀➟➺■✿❈➹✖✔❈à➛❍✒✺✽➘✉❍✛➪❈➘➽➪✹❉✒Ó✽➹✒✺❊❍❞✿☞➹✗ç▲❒✹●❋➹❫❉❋❉❋➼➷➾❊✼✐❍✗➾❃➪❈➘✉❄✥❉➔➹✒●❋Þ❊➹
➚➟➾❃➺❋✿➴✺❊❉➜✺ ❀➮➪✹✼✹❍✪➺■➼➷➾❊✼Ñ✺✽✼➟❄✮✺❃❉⑦✺✽✼ ✺✽●■➬❃➪✹➱✐➹✒✼❢➺Ý➺❋➾❮✺ ❀➮➪❈✼✹❍✛➺❋➼➽➾❃✼s✶✆á✻✿❈➹↕●❋➹❫❉➔➪❈➘➷➺❋➼➽✼❈➬ ❉❋❏◆❉❳➺■➹✗➱
❒❈●❋➾◆❄◆➪➟❍✛➹✒❄sÓ◆➪❈❒➟➾❊✼✄➹✗✼✹❍✗➾❃➪❈✼❢➺❋➹✒●✆➾✽❀✗✔◆à➛➹✛ç◆❒❈●■➹✒❉■❉❋➼➷➾❊✼✹❉✗Ó▲✼❈➹✒➶✘✔❈à❂➹✗ç◆❒❈●❋➹❫❉❋❉❋➼➽➾❃✼✹❉✒✶
➸❱✼Ð➾❊➪❈●Ý❍✛➾❊✼❊➺■●❋➼➽➚❈➪◆➺■➼➷➾❊✼Ð➶♠➹✄➪✹❉❋➹✄➺❋✿❈➹✄➺■➹✗●■➱ ✺❃❉✃✺❃✼Ð➪❈➱☞➚❈●■➹✗➘➽➘➽✺↕➺❋➹✒●❋➱ ❀➮➾❃●✥➺■✿❈➾❊❉❋➹✄❑❢➼➽✼✹❄❈❉

➾✽❀✎✺✽●❋➺❋➼➷é➟❍✛➼✉✺✽➘❆❍❞✿❈➹✗➱✥➼✉❉❳➺■●❋➼➽➹✒❉✏✎ ✙✚✒✱➺❋✿➟✺✇➺➜✺❃➼➷➱ ✺✇➺➜✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✃❉✗✶ ä ❉Ý➾❊❒❈❒➠➾❊❉❋➹✒❄❮➺❋➾è➺❋➹✗●■➱✃❉✃➘➽➼➷❑❊➹
●■✺❃✼✹❄◆➾❃➱✥➼➽✾✗➹❫❄✔➾❃●✙❒❈●■➾❃➚✹✺❃➚❈➼➽➘➷➼✉❉❳➺■➼➽❍❛✺✽➘➽➬❃➾❊●❋➼➷➺❋✿❈➱✃❉✒Ó✒➼➽✼☛➶✆✿✹➼➽❍❞✿✐✺❆❍✗➹✗●❋➺■✺✽➼➽✼☞❄❈➹✗➬❃●■➹✗➹❛➾✽❀➟❉➔➺❋➾◆❍❞✿✹✺❊❉❳➺■➼➽❍✗➼❥➺❳❏
➼➽❉➏➼➽✼❢➺❋●■➾▲❄❈➪✹❍✛➹❫❄↕➹✗ç◆❒❈➘➷➼✉❍✛➼➷➺❋➹✒➘➷❏❊Ós➾❃➪✹●➏✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✃❉➏✿✹✺❻Þ❃➹✥✺✽✼➑➼➽➱✐❒✹➘➷➼✉❍✛➼➷➺✎➺❳❏▲❒➟➹✥➾❃❀✻❉➔➺❋➾◆❍❞✿✹✺❊❉❳➺■➼➽❍✗➼❥➺❳❏❊✶
✛✠ç◆➹✒❍✗➪◆➺❋➼➽✼❈➬✄➺❋✿✹➹➻❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹✃➾✽❀✆➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➟❉✔➹✗Þ❊➹✗●■❏✖➺❋➼➽➱✥➹Ý➼➽✼è✺✚❄◆➼❥❰æ➹✗●■➹✗✼❢➺☛➾❊●■❄❈➹✗●✔✿✹✺❊❉✔➺❋✿✹➹
❒➟➾❃➺❋➹✗✼❢➺■➼➽✺❃➘s➾✽❀★❒❈●❋➾◆❄◆➪➟❍✛➼➽✼❈➬✥✿❈➼➷➬❊✿❈➘➽❏Ý➪❈✼❈❒❈●■➹✒❄❈➼➽❍✛➺■✺✽➚✹➘➷➹✔●■➹✒❉❋➪❈➘➷➺■❉✒✶
➸➛➺✻➶✆➼➽➘➽➘æ➺❋➪❈●■✼➜➾❊➪◆➺✒Ó◆✿✹➾✇➶❛➹✒Þ❃➹✗●❫Ó✽➺■✿✹✺✇➺✆➹✒Þ❃➹✗✼➜➺❋✿✹➾❃➪❈➬❊✿Ý➺❋✿✹➹✔●❋➹❫❉➔➪❈➘➷➺❋➼➽✼❈➬✥❍✛➾❊➱✐❒✹➪◆➺■✺✽➺❋➼➽➾❃✼➻➼✉❉✻➪❈✼◆à

❒❈●❋➹❫❄◆➼✉❍✪➺■✺❃➚❈➘➽➹✜➼➷✼➻❒❈●❋➼➽✼✹❍✗➼➷❒❈➘➽➹❃Ó❊➹✗Þ❊➾❃➘➽➪◆➺❋➼➽➾❃✼✃➶✆➼➽➘➷➘✹❀ ✺❻Þ❃➾❊●✠➺❋✿❈➾❢❉➔➹✱➱☛➪❈➘➷➺❋➼➷à➛❉❋➹✛➺❞❉✴➾❃❀s➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✴➺❋✿✹✺✽➺
➺❋➪❈●■✼✎➾❃➪❈➺✳➺❋➾❆❒❈●■➾▲❄❈➪✹❍✛➹♠✺✽❒❈❒❈●■➾❻ç◆➼➷➱✃✺✽➺❋➹✗➘➽❏❆❍✗➾❃●■●❋➹❫❍✪➺✳●■➹✒❉❋➪❈➘➷➺■❉★✺✇❀ ➺■➹✗●✳➹✗ç◆➹✒❍✛➪❈➺❋➼➽➾❃✼s✶❻á✻✿❈➼✉❉s❀➮➹❫✺✇➺❋➪✹●❋➹❛➾✽❀
✺✽❒❈❒❈●■➾❻ç◆➼➷➱✃✺✽➺❋➼➽✼❈➬✔➺❋✿✹➹❆➶✆➼✉❉➔✿✹➹✒❄▲à❂❀➮➾❃●❛●❋➹❫❉➔➪❈➘➷➺■❉❛➼✉❉❛✺✐❍✛➾❊✼✹❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹✜➾✽❀✳➺❋✿❈➹❆➹✗Þ❃➾❊➘➷➪❈➺❋➼➽➾❃✼✹✺❃●❋❏☞❀➮➾❃●❞❍✛➹❫❉
➾✽❀✙➱☛➪◆➺❞✺✇➺❋➼➽➾❃✼✳Ó❈●❋➹❫❍✛➾❊➱☛➚❈➼➽✼✹✺✇➺■➼➷➾❊✼⑦✺❃✼✹❄✄❉➔➹✒➘➷➹❫❍✪➺■➼➷➾❊✼sÓ✹✺✽✼➟❄➜➶✆➼➽➘➽➘✳✿✹✺❻Þ❊➹❾✼✹➾✽➺❋✿✹➼➷✼❈➬✥➺■➾Ý❄◆➾✃➶✆➼➷➺❋✿✄➺❋✿✹➹
✺❃❍✪➺■➪✹✺✽➘æ➾❊●■❄◆➹✒●❛➼➽✼➻➶✆✿✹➼➽❍❞✿➜➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✻✺✽●■➹✱➚➠➹✗➼➽✼❈➬✥➹✛ç◆➹❫❍✛➪◆➺■➹✒❄❽✶▲➸❱●■●❋➹❫❉➔❒➠➹✒❍✛➺❋➼➽Þ❃➹✱➾❃❀✳✿❈➾✇➶ ➱✃✺❃✼❢❏
❒❈●❋➾◆❍✗➹✒❉■❉➔➾❊●■❉❾➶♠➾❃➪❈➘✉❄ ➶❛➾❊●❋❑↔➾❃✼➑➺❋✿❈➹➻➱☛➪❈➘➷➺❋➼➷à➛❉❋➹✛➺❫Ós➺■✿❈➹Ý●■➹✒❉❋➪❈➘❥➺❞❉✔➾✽❀✻➺■✿❈➹➻❍✛➾❊➱✥❒❈➪◆➺■✺✽➺❋➼➽➾❃✼ ➶♠➾❃➪❈➘✉❄
➺❋➹✗✼➟❄ ➺❋➾↔❀ ✺✽➘➽➘❛➼➽✼❢➺❋➾✚➺■✿❈➹➜❉■✺✽➱✥➹Ý➚✹✺❃✼✹❄❶➾❃❀✱✺✽❒❈❒❈●■➾❻ç◆➼➷➱✃✺✽➺❋➼➽➾❃✼s✶❽✵➑➹⑦❉❋➪❈➚❈➱✥➼➷➺✒Ó❪➺❋✿❈➹✒●❋➹✗❀➮➾❃●■➹❃Ó✳➺❋✿✹✺✽➺
➱✐➹✗➺❋✿❈➾◆❄❈❉✜➘➷➼➽❑❃➹❾➺❋✿✹➼➽❉✜❍✒✺✽✼⑦➚➟➹✔Þ❊➹✗●■❏Ý➪✹❉❋➹✛❀➮➪❈➘✳➼➷✼⑦❒✹✺✽●❞✺✽➘➽➘➽➹✗➘s✺✽✼➟❄➜❄◆➼✉❉➔➺❋●■➼➷➚❈➪❈➺❋➹✒❄⑦➹✒✼❢Þ▲➼➽●❋➾❊✼❈➹✗➱✥➹✒✼❊➺❞❉✗✶

✜ ➪❈●✃❒❈●■➹✗Þ▲➼➷➾❊➪✹❉✃➶♠➾❃●■❑è➾❃✼ ä ●➔➺■➼❥é➟❍✗➼➽✺❃➘❾❅❛✿❈➹✒➱✐➼✉❉➔➺❋●■➼➷➹❫❉✖í ❉❋➹✗➹❊Ó✠❀➮➾❃●Ý➹✗ç❈✺✽➱✥❒❈➘➽➹✢✎ ✣❈Ó✥✤◆Ó✧✦❈Ó✩★✚✣✚✒➮î
❄◆➼➽❄❈✼✫✪ ➺✔✺❃❄✹❄◆●❋➹❫❉❋❉✱➺❋✿✹➹☞Ò❢➪❈➹✒❉➔➺❋➼➽➾❃✼↔➾✽❀❹✿❈➾✇➶ ➺■➾➻➶✆●■➼❥➺■➹☞✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✃❉✬�❃❍❞✿✹➹✗➱✥➼➽❍✒✺✽➘➽➘➷❏✭�✃➼➽✼↔➹✒✼❈➾❃➪✹➬❃✿
❄◆➹✛➺❞✺✽➼➽➘❼✶★➸❱✼✮✎ ✯✰✒♠➶♠➹Ý➼➽✼❢➺❋●■➾▲❄❈➪✹❍✛➹❫❄❶✺✚Þ❃➹✒●❋❏➑➬❃➹✒✼❈➹✗●❞✺✽➘❹✺❃✼✹✺✽➘➽➾❃➬❊❏↔➚➠➹✛➺❳➶♠➹✗➹✒✼è❍❞✿❈➹✗➱✥➼✉❍✗✺✽➘❛●❋➹❫✺❃❍✛➺❋➼➽➾❃✼
✺✽✼✹❄❶✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✥➼➽❍✃❍✗➾❃➱✥❒❈➪◆➺❞✺✇➺❋➼➽➾❃✼✳Ó✳✺✽●■➬❃➪❈➼➽✼❈➬✄➺■✿✹✺✇➺☞❍✗➾❃✼✹❍✗➹✗✼❢➺❋●❞✺✇➺■➼➷➾❊✼✹❉➏➾✽❀✆●■➹✒❉❋➪❈➘➷➺■❉✔➶♠➾❃➪❈➘✉❄ ➚➠➹
➼➷➱✥❒➠➾❃●❋➺■✺✽✼❢➺❫✶➟á✻✿❈➹✎❒✹●❋➹❫❉➔➹✒✼❊➺❾❍✛➾❃✼❢➺■●❋➼➽➚❈➪◆➺■➼➷➾❊✼✄✺❃➼➷➱✃❉✜➺❋➾✃é✹➘➽➘s➺■✿✹✺✇➺❾➬❊✺❃❒✄✺❃✼✹❄⑦➺❋➾➻❒❈➪◆➺✱❀➮➾❊●❋➶✻✺✽●❞❄⑦✺
❒❈●❋➾❊❒➟➾❢❉❋✺❃➘❽✺❃❉♠➺❋➾✃✿✹➾✇➶➴❉➔➪➟❍❞✿✄✺❃✼⑦✺❃●➔➺■➼❥é➠❍✛➼✉✺✽➘s❍❞✿❈➹✒➱✐➼✉❉➔➺❋●■❏➻❍✛➾❊➪❈➘➽❄➜➘➽➾❢➾❊❑Ý➘➽➼➷❑❊➹❃✶

✱ ✲✴✳✶✵✸✷✹✵❽➩✡✳✱➭✻➯
â❾➹✗✼❈➹✗➺❋➼✉❍✚ã✴●■➾❃➬❃●❞✺✽➱✥➱✥➼➽✼❈➬❮í❂â➏ã❛î✺✎✻★✂✼✹Ó✾✽✰✒✱➚➠➹✗➘➽➾❃✼✹➬❊❉✐➺❋➾ ➺■✿❈➹✄❀ ✺✽➱✥➼➽➘➷❏Ð➾✽❀✄✛✴Þ❊➾❃➘➽➪◆➺❋➼➽➾❃✼✹✺❃●❋❏ ä ➘❥à
➬❃➾❃●■➼➷➺❋✿❈➱✃❉↔í✿✛ ä î✪✶✆á✻✿❈➹✒❉❋➹↔✿✹➹✗➪❈●■➼➽❉➔➺❋➼✉❍↔✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✃❉✃➺■●❋❏❮➺❋➾Ð➼➷➱✥❒❈●■➾✇Þ❃➹↔➾❃●■➼➷➬❊➼➷✼✹✺❃➘➷➘➽❏❮●■✺❃✼✹❄◆➾❃➱
❀ ➃ ❦❥❙✗♦➛❯❳❝❥❜✜❝❡❨✇❯❳◗■❚➔❙✒❜❋❯❳❝❥❩✒❨❢♦❹③▲❙✪♥❻◗✻♦❱❩✒❲✔◗✻➐◆◗✪❙✛❚❳❝❥❨ ➓ ♦❹❩❫❨✥❨❊◗❞❴❊❯❱❚➔❙✗❦❈❜❞❩✽✈❊◗❫❣❢➐❢❴❃❯✠❯❳③❢◗■q☛❙✛❚❳◗✱❨❊❩✒❯✴❝❥✈❊◗■❨✽❯❳❝❡❜✪❙✗❦ ①

132



❉➔➾❊➘➷➪◆➺■➼➷➾❊✼✹❉✆➺■➾➜✺➻❒❈●❋➾❊➚❈➘➽➹✗➱ÔÞ❢➼✉✺✃➺■✿❈➹☛➱✥➹❫❍❞✿✹✺✽✼❈➼✉❉❋➱✥❉✱➾✽❀✴●■➹✒❍✗➾❃➱☛➚✹➼➷✼✹✺✽➺❋➼➽➾❃✼sÓ➟➱☛➪◆➺❞✺✇➺■➼➷➾❊✼↔✺✽✼✹❄↔❉➔➹✗à
➘➷➹❫❍✪➺❋➼➽➾❃✼✳✶✁�✖✺❃✼❢❏➑✺✽❒❈❒✹➘➷➼✉❍✗✺✽➺❋➼➽➾❃✼✹❉✔➾❃❀✆â➏ã ❍✗✺✽✼ ➚➠➹➻❄◆➹❫❉❋❍✗●❋➼➽➚➟➹❫❄❶✺❃❉✔➹✒Þ❃➾❊➘➷➪◆➺■➼➷➾❊✼ ➾✽❀✆➱✥➾▲❄❈➹✗➘✉❉ ✎ ✂✰✒❂✶
á✻✿❈➹Ý➹✗➘➽➹✗➱✥➹✒✼❊➺❞❉✔➾✽❀✆➱✥➾◆❄◆➹✗➘✉❉✎✺❃●❋➹✃➪✹❉❋➪✹✺❃➘➷➘➽❏↕✺❃●❋➼➷➺❋✿❈➱✥➹✗➺❋➼✉❍✥➹✛ç◆❒❈●■➹✒❉■❉➔➼➽➾❃✼✹❉✒Ó❽➘➽➾❃➬❃➼✉❍✗✺❃➘✴➹✛ç◆❒❈●■➹✒❉■❉❋➼➷➾❊✼✹❉
➾❃●✆➹✛ç◆➹❫❍✛➪◆➺❞✺✽➚❈➘➽➹➏❒❈●❋➾❊➬❃●❞✺✽➱✃❉✒✶

✄✜➹✗●■➹❃Ó✠➶♠➹✖❉❋✿✹✺✽➘➽➘✜➪✹❉❋➹✚➹✗Þ❊➾❃➘➽➪◆➺❋➼➽➾❃✼❮➾✽❀✎✺✽❒✹❒❈●❋➾❻ç◆➼➽➱✃✺✇➺❋➼➽➾❃✼❮✺✽✼✹❄➡❍✗➘➽✺❊❉❋❉❋➼❥é➠❍✗✺✇➺■➼➷➾❊✼Ð❒✹●❋➾❊➚❈➘➷➹✒➱✃❉
➺❋➾è❄◆➹✒➱✐➾❊✼✹❉➔➺❋●❞✺✇➺❋➹➜➺❋✿✹➹✄❀➮➹✒✺❃❉❋➼➽➚❈➼➷➘➽➼➷➺❳❏ ➾✽❀❆➺❋✿❈➹✖✺❃❒❈❒❈●■➾❊✺❊❍❞✿s✶✙✵↕➹✚●■➹✗❒❈●■➹✒❉❋➹✗✼❢➺Ý✺➑❒❈●■➾❃➬❃●❞✺✽➱ ✺❊❉✃✺
❉➔➹✗➺❆➾✽❀✴➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✜➾❊✼❈➘➽❏✄❉➔➺❋➾❊●❋➹❫❄✚✺❃❉❆✺Ý➘➽➼➷✼❈➹❫✺✽●❾❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✎➼➷✼↔➱✐➹✒➱✥➾❃●■❏⑦❄◆➪✹➹☛➺■➾✃➺❋➹❫❍❞✿❈✼❈➼✉❍✗✺✽➘
➘➷➼➽➱✥➼❥➺❞✺✇➺❋➼➽➾❃✼➟❉✗✶❽á✻✿❈➹❫❉➔➹☞➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉❾✺✽●■➹ ✣➻✺✽✼✹❄✏✯➻✺❃❄✹❄◆●❋➹❫❉❋❉✱➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉❆➶✆✿❈➼✉❍❞✿↔➶♠➾❃●■❑➜➾❊✼
✺✐❉❋➹✛➺✜➾❃❀❪●■➹✗➬❊➼➽❉➔➺❋➹✒●■❉✒✶

☎✝✆✟✞ ✠☛✡✌☞✎✍✑✏✓✒✕✔✕✖✘✗✙✡✛✚✢✜✤✣✝✍✦✥★✧✎✍✑☞✎✩✪✍✬✫✭✍✦☞✎✍✮✒✯✏✰✚✢✱✲✒✯✳

✄✜➹✗●■➹✜➶♠➹✱❉❋✿✹✺✽➘➽➘✹➪✹❉❋➹✬✯✽à➛✺❊❄❈❄◆●■➹✒❉■❉✙➱✥✺❊❍❞✿❈➼➽✼❈➹✜➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➟❉✗✶❢á✻✿❈➹✜➬❃➹✒✼❈➾✽➺❳❏▲❒➠➹✜➾✽❀s✺❃✼✃➼➷✼✹❄❈➼➷Þ▲➼✉❄◆➪✹✺✽➘
➼➽❉✆✺✐➘➽➼➽❉➔➺✜➾✽❀❪➺❋✿❈➾❢❉➔➹➏➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➟❉✗✶✡✛❛✺❃❍❞✿⑦➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✄❍✛➾❃✼➟❉➔➼✉❉❳➺❞❉♠➾✽❀✠✺✽✼⑦➾❃❒➠➹✗●❞✺✇➺❋➼➽➾❃✼✳Ó▲✺✥❄◆➹❫❉❳➺■➼❥à
✼✹✺✇➺■➼➷➾❊✼⑦●■➹✗➬❊➼➽❉➔➺❋➹✒●✒Ó◆✺❃✼✹❄Ý➺❳➶♠➾✃❉➔➾❊➪❈●❞❍✛➹➏●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉✵✴✇✶✹➸❱✼❈➼❥➺■➼➽✺❃➘➷➘➽❏❃Ó✹➼➷✼✹❄❈➼➷Þ▲➼✉❄◆➪✹✺✽➘✉❉✜✺❃●❋➹➏❒❈●■➾◆❄◆➪✹❍✛➹❫❄➻➚▲❏
●■✺❃✼✹❄◆➾❃➱✥➘➽❏➜❍❞✿❈➾▲➾❢❉➔➼➽✼❈➬✥➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉✒✶ ä ❉✜➼✉❉✜➪✹❉❋➪✹✺❃➘❼Ó❈➶♠➹✎➹✒➱✐❒✹➘➷➾✇❏⑦✺✃❉➔➹✗➺✱➾✽❀✙é❈➺■✼❈➹✒❉■❉✱❍✒✺❃❉❋➹✒❉✆➼➽✼
➾❃●❞❄◆➹✗●♠➺❋➾✃➹✒Þ✇✺✽➘➽➪✹✺✇➺■➹✥í❼✺✽✼✹❄✄❉❋➪❈➚✹❉❋➹✒Ò❢➪❈➹✒✼❊➺■➘➷❏➜❉➔➹✒➘➷➹❫❍✪➺❞î♠➼➽✼✹❄◆➼➽Þ▲➼➽❄❈➪✹✺✽➘✉❉✗✶

✌❪➼➽➬❃➪✹●❋➹ ★✔❉➔✿❈➾✇➶✜❉❛➺■✿❈➹➏➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼⑦➾✽❀✙✺✽✼⑦➼➷✼✹❄❈➼➷Þ▲➼✉❄◆➪✹✺✽➘✳➼➷✼⑦➘➷➼➽✼❈➹❫✺✽●✱â➏ã✙✶ ä ❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹➏➬❃➹✗✼❈à

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

sequencer

linear

next()

next()

next()

next()

next()

start()

Execution OrderMemory Order

✶✸✷✺✹ ➍✯✻▲➍ ➃ ➣❃◗❞❜❞❴❃❯❳❝❥❩✒❨✚❩✒❬❛❙✒❨✚❝❡❨❢✈❊❝❡♥✽❝➷✈❃❴▲❙✗❦★❝❡❨✖❦❥❝❡❨❊◗✪❙✗❚ ➂ ➤❽①❽❤✐◗❞❲✔❩✒❚❱q⑦❩✒❚➔✈❃◗■❚✔❙✗❨▲✈✄◗■➣❃◗❞❜❞❴❃❯❳❝❡❩❫❨✚❩✒❚➔✈❃◗■❚❜■❩✒❚❱❚❳◗❞♦❱❘◆❩✒❨▲✈➑❯❳❩✚◗✪❙✗❜❋③ ❩✗❯❳③❢◗■❚✪①✙⑥❹❚❱❚❳❩✪t✴♦☛❝❥❨❢✈❊❝❡❜✪❙✛❯❳◗Ý❚❳◗❋❯❳❴❊❚❳❨❢◗❞✈↕♥✒❙✒❦❡❴❢◗❞♦☛❩✒❬✜❜❞❙✒❦❡❦❡♦☞❯❳❩⑦❯❳③❊◗✃♦❱◗✪➝✇❴❢◗❞❨❊❜❞◗
➓ ◗❞❨❢◗❋❚➔❙✗❯❳❩✒❚✪①

➹✗●❞✺✇➺❋➾❊●✴➼✉❉✴➪✹❉❋➹✒❄✐➺■➾☞❄◆➹✗➺❋➹✗●■➱✥➼➷✼✹➹✆➺❋✿❈➹❾❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹✜➾✽❀❽➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✗✶ ✛❹✺❊❍❞✿✐➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✃➼➽❉❛➹✛ç◆➹✗à
❍✛➪◆➺■➹✒❄❽Ó❻➶✆➼➷➺❋✿✐●❋➹❫❉➔➪❈➘➷➺❋➼➽✼❈➬❾❄❈✺✇➺❞✺✱❉➔➺❋➾❃●■➹✒❄✎➼➷✼☞➼❥➺❞❉✠❄◆➹✒❉➔➺❋➼➽✼✹✺✇➺■➼➷➾❊✼✎●■➹✗➬❃➼✉❉➔➺❋➹✗●❫✶✽✼✱❉❋➪✹✺✽➘➽➘➷❏❊Ó✗➺■✿❈➹✆❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹
➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●❪➱✥➾✇Þ❊➹✒❉✳➺❋✿❈●■➾❃➪❈➬❊✿✎➺■✿❈➹✻❒❈●❋➾❊➬❃●❞✺✽➱✷❉❋➹✒Ò❢➪❈➹✗✼➟❍✛➹♠➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼☛➚▲❏✎➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼s✶✇á✻✿▲➪✹❉✗Ó
➺❋✿❈➹✆➘➽➾◆❍✗✺✇➺■➼➷➾❊✼☞➼➽✼✥➱✥➹✗➱✥➾❃●■❏✎❉➔❒➟✺❃❍✛➹✆❄◆➹✗➺❋➹✒●❋➱✥➼➽✼❈➹✒❉✙➺■✿❈➹✆❒✹✺❃●➔➺■➼➽❍✗➪❈➘➽✺❃●✠❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹♠➾❃❀➟➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✗✶
❅❛➘➽✺❊❉❋❉❋➼➽❍✒✺✽➘➽➘➷❏❊Ó❢➺❋✿❈➼✉❉✆➼✉❉✆●❋➹❫✺✽➘➽➼➷✾✒➹✒❄➻➚❢❏➻➺❋✿❈➹✔❒✹●❋➾❊➬❃●❞✺✽➱å❍✛➾❊➪❈✼❢➺❋➹✗●❫✶ ✾
✿❁❀ ❘◆◗■❚➔❙✗❯❳❝❡❩✒❨❢♦✙t✴③❢❝❡❜➔③☛❚❳◗❞➝✽❴❊❝♣❚❳◗❛❩✒❨❢❦♣q✎❩❫❨❊◗♠♦❱❩❫❴❃❚❳❜❞◗♠❚❳◗ ➓ ❝❡♦➛❯❳◗■❚✴♦❱❝❡❲✔❘❢❦♣q✔❝ ➓ ❨❊❩✒❚❳◗♠❯❳③❊◗❛♦❱◗❞❜■❩❫❨▲✈✔❚❳◗ ➓ ❝❥♦➛❯❳◗❋❚✪①
❂❄❃ ❭★❩❫❨❢✈❊❝♣❯❳❝❡❩❫❨▲❙✗❦❆❅★❇❂❴❢❲✔❘❢♦✴❙✛❚❳◗✜❙➏✈❊◗■♥❃❝❥❙✛❯❳❝❥❩✒❨✐❬➽❚❳❩✒❲ ❯❳③❢❝❡♦✴➐◆◗❞③▲❙✪♥✽❝❡❩✒❚✪①

133



★✪ì▲ã✙➾❊➼➷✼❢➺➔ì✁�✄✂✆☎✞✝✟✝✠☎☛✡☛☞✠✂❪❍✗✺❃✼✃➚➟➹❆❄◆➹✒❉■❍✛●■➼➷➚➠➹✒❄✐➪✹❉❋➼➽✼❈➬✔➺❳➶♠➾✎❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✆➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●■❉✒✶✇á✻✿❈➹✆é✹●❞❉➔➺
➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●❛➼✉❉✆✺❃❍✛➺❋➼➽✼❈➬✥➾❃✼➜➺❋✿❈➹❾é✹●❞❉➔➺✻❒➟✺✽●■➹✗✼❢➺✻✺❃✼✹❄➜●❋➹✗➺❋➪❈●■✼✹❉✻➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➟❉✆✺✇➺✆➼❥➺❞❉✻➚➟➹✒➬❃➼➽✼❈✼❈➼➽✼❈➬✹✶
á✻✿❈➹✒❉❋➹↔➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉Ý❀➮➾❊●❋➱ ➺■✿❈➹↕é✹●■❉➔➺➜❒➟✺✽●❋➺➜➾✽❀✔➺■✿❈➹➑➾✽❰❽❉➔❒❈●■➼➽✼❈➬✹✶✻á✻✿❈➹ ❉➔➹❫❍✛➾❃✼➟❄ ❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹
➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●✃➾❃❒➠➹✗●❞✺✇➺■➹✒❉✃➾❊✼➡➺❋✿❈➹↕➾✽➺❋✿✹➹✗●➻❒➟✺✽●■➹✗✼❢➺✒✶✴✵➑➹↔➼➽➬❃✼✹➾❃●■➹✄➺❋✿❈➹↔é✹●■❉➔➺➻➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✃➺■✿❈➼➽❉
➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●❛●■➹✛➺■➪❈●■✼✹❉✆✌❃✶✹á✻✿❈➹➏➾✽➺■✿❈➹✗●❞❉♠❀➮➾❃●■➱å➺■✿❈➹➏➺■✺❃➼➷➘s➾❃❀✳➺■✿❈➹✔➾✽❰❽❉➔❒✹●❋➼➽✼❈➬❊❉✻➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼➜➘➽➼✉❉❳➺❫✶

�✚➪◆➺■✺✽➺❋➼➽➾❃✼è❍❞✿✹✺❃✼❈➬❃➹❫❉✎❉❋➼➷✼❈➬❊➘➷➹➻➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉☛➚❢❏ ❍❞✿✹✺❃✼❈➬❃➼➽✼❈➬✚➹✗➼➷➺❋✿✹➹✗●☛➾❊❒➟➹✒●■✺✽➺❋➼➽➾❃✼sÓ✳➾❃●☛❄◆➹❫❉❳à
➺❋➼➽✼✹✺✇➺■➼➷➾❊✼❮●■➹✗➬❊➼➽❉➔➺❋➹✒●✥➾❃●✥➺❋✿✹➹↔❉➔➾❊➪❈●❞❍✛➹⑦●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉✐✺❊❍✗❍✗➾❃●❞❄◆➼➷✼✹➬↕➺■➾❶✺ ❒❈●❋➹❫❉❋❍✗●❋➼➽➚➠➹✒❄Ð❒❈●❋➾❊➚✹✺✽➚✹➼➷➘➽➼❥➺❳❏
❄◆➼➽❉➔➺❋●■➼➽➚❈➪◆➺❋➼➽➾❃✼✳✶

☎✝✆✎✍ ✏ ✒✯✍✦✫✭✡✟✳ ✚✢✍✮✒✒✑ ✏✓✩✽✜✁✡✟☞✁✍ ✏✓✳✙✏✓☞✓✏✕✔✌✫ ✱✭✒✽✡✌✚ ✜✁✑ ✡✌✩✗✖ ✜✎✍✘✑ ✡✌✳ ✚ ✒✞✙

á✻✿❈➹✗●■➹Ý➼✉❉☛✺✖❉❋➼➷➱✥❒❈➘➽➹➻➶✻✺❻❏✖➺■➾↔●■➹✒✺❃➘➷➼➽✾✗➹Ý✺❃✼è❍❞✿❈➹✗➱✥➼✉❉❳➺■●❋❏➑➚▲❏➑✺✚●■➹✗➬❊➼➽❉➔➺❋➹✒●✎➱✃✺❃❍❞✿❈➼➽✼❈➹❊✶❪✸♠❏➑❉❋➪❈➚◆à
❉❳➺■➼❥➺■➪◆➺❋➼➽✼❈➬ ➺❋✿✹➹↔❉➔❏◆❉➔➺❋➹✒➱✥✺✽➺❋➼✉❍⑦➼➷✼✹❍✗●❋➹✒➱✥➹✗✼❢➺■✺❃➘✜❉❳➺■➹✗❒❈❒❈➼➽✼❈➬❶➾❃❀❆➺■✿❈➹✖❉➔➹❫Ò❢➪❈➹✗✼✹❍✗➹✄➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●✥➚❢❏Ð✺
●■✺❃✼✹❄◆➾❃➱ ❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✐➶♠➹Ý✺✽●■●■➼➷Þ❊➹✐✺✽➺➏➾❊➪❈●☛❉❋❏◆❉❳➺■➹✗➱✄✶sá✻✿✹✺✇➺✎➼✉❉➏➺■➾✄❉■✺❻❏❃Óæ➺■✿❈➹Ý➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✔✺✽●■➹
❄◆●■✺❻➶✆✼⑦●❞✺✽✼✹❄◆➾❊➱✥➘➷❏➻❀➮●❋➾❊➱ ➺❋✿✹➹✎❉➔➹✗➺✱➾✽❀✠✺✽➘➽➘s➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➟❉✆➼➷✼✄➺■✿❈➹✔❒❈●■➾❃➬❊●■✺❃➱✛✚✽✶✢✜❢➺❋➼➽➘➽➘❼Ó➟➶❛➹✔✿✹✺❻Þ❊➹
➺❋➾✄❒❈●■➾✇Þ❢➼✉❄◆➹☞➺❋✿❈➹✃✼▲➪❈➱☞➚➟➹✒●✔➾✽❀♠●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉✗Ó❽❉➔➺■✺✽●❋➺❋➼➽✼❈➬✄❍✛➾❊✼✹❄◆➼➷➺❋➼➽➾❃✼✹❉✔✺❃✼✹❄↕❄❈➹✛➺❋➹✒●❋➱✥➼➽✼❈➹✃✺➜➺■✺✽●■➬❃➹✗➺
●❋➹✒➬❃➼✉❉❳➺■➹✗●♠❀➮●❋➾❊➱ ➶✆✿❈➼✉❍❞✿✄➾❃➪◆➺■❒❈➪◆➺✜➼✉❉✻➺❋➾✥➚➠➹✎❄◆●■✺❻➶✆✼✳✶
ä ❉➏❉➔✿✹➾✇➶✆✼↔➼➽✼✴✌★➼➽➬❃➪❈●■➹ ✣Ý➺❋✿✹➹✥❍❞✿✹➹✗➱✥➼➽❉➔➺❋●■❏✚➶♠➾❃●■❑▲❉❆➚▲❏✚➹✛ç◆➹✒❍✗➪◆➺❋➼➽✼❈➬➜➺❋✿❈➹✥➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉❾➾✽❀

✺✽✼➑➼➷✼✹❄❈➼➷Þ▲➼✉❄◆➪✹✺✽➘❛✺✽✼✹✺❃➘➷➾❊➬❃➾❃➪➟❉✜➺■➾⑦➶✆✿➟✺✇➺✎➶♠➾❃➪❈➘✉❄↔✿➟✺✽❒❈❒➠➹✗✼ ➼➽✼➑✺⑦➘➽➼➷✼❈➹❫✺✽●☛â➏ã✠ì✣✜▲❏◆❉➔➺❋➹✗➱ í ❍✪❀❳✶ ★❫î✪Ó
➹✛ç❈❍✛➹✒❒◆➺✆➺❋✿✹✺✽➺✆➺❋✿❈➹✔❉❋➹✒Ò❢➪❈➹✒✼✹❍✛➹✔➾❊●■❄◆➹✒●✻➼➽❉✆❄◆➼➷❰æ➹✗●■➹✗✼❢➺✒✶

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1 R2=R2/R6

R1=R2−R4

R1=R2+R4

R1=R2+R4

R4=R0+R1

R1=R2−R4

Execution OrderMemory Order

start()

sequencer

random

next()

next()

next()

next()

next()

✶✸✷✺✹ ➍✥✤✹➍ ➃ ➣❃◗❞❜❞❴❃❯❳❝❥❩✒❨Ý❝❥❨✥❯❳③❊◗✱⑥❛❭è♦➛q❃♦➛❯❳◗❞❲✥①✣✦✙③❊◗❆♦❱◗✪➝✇❴❊◗❞❨❢❜❞◗ ➓ ◗❞❨❢◗■❚➔❙✛❯❳❩✒❚✻❚❳◗❋❯❳❴❊❚❳❨❢♦❛❙➏❚➔❙✒❨❢✈❊❩❫❲ ❩✒❚➔✈❃◗■❚❬➽❩✒❚❛◗■➣❃◗❞❜❞❴❃❯❳❝❥❩✒❨➟①

➸➛➺✆❉❋✿❈➾❊➪❈➘➽❄➻➚➟➹➏✼❈➾❃➺❋➹❫❄Ý➺■✿✹✺✇➺✻➺❋✿✹➹✗●■➹❾✺❃●❋➹❾●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉❹➶✆➼➷➺❋✿✄❄◆➼➷❰➠➹✒●❋➹✒✼❢➺♠❀➮➹❫✺✇➺■➪❈●❋➹❫❉✠✧★✜▲➾❊➱✥➹❆●■➹✗➬❃à
➼➽❉➔➺❋➹✒●■❉❾✺✽●■➹☛●■➹✒✺❊❄▲à❂➾❊✼❈➘➽❏❃✶æá✻✿❈➹✗❏✖❍✒✺✽✼✖➾❊✼❈➘➷❏✚➚➠➹✥➪✹❉❋➹✒❄✖✺❊❉❾❉❋➾❃➪✹●■❍✗➹☛●■➹✗➬❃➼✉❉➔➺❋➹✗●❞❉✒✶➟á✻✿❈➹❫❉➔➹✐●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉
❍✛➾❃✼❢➺❞✺✽➼➽✼➑❍✗➾❃✼✹❉➔➺■✺❃✼❊➺✔Þ✇✺✽➘➽➪❈➹❫❉✎✺✽✼✹❄ ✺❃●❋➹✥➼➽✼❈➼❥➺■➼➽✺❃➘➷➼➽✾✗➹❫❄↕❀➮➾❃●✔➹✒✺❊❍❞✿➑é❈➺❋✼❈➹❫❉❋❉✔❍✒✺❃❉❋➹Ý✺✇➺➏➺❋✿✹➹➻❉❳➺❞✺✽●❋➺✔➾✽❀
✩ ❵❃③❊❩❫❴❢❦❥✈✎❜■❚❳❩❫♦❱♦❱❩✛♥❻◗❋❚ ➓ ◗❞❨❊◗■❚➔❙✗❯❳◗♠❯❼t✙❩❆❩✥✪❈♦❱❘❊❚❳❝❡❨ ➓ ❣✽❯❳③❢◗❛❝❥❨❊♦➛❯❱❚❳❴❢❜■❯❳❝❡❩✒❨❢♦✙❨❊❩✒❯✴❜❞❩✒❘❢❝❡◗✪✈✔t✴❝❥❦❡❦✹➐◆◗♠❴❊♦❱◗✪✈✎❬➽❩✒❚❙❾♦❱◗❞❜❞❩✒❨▲✈✐❩✠✪❈♦❱❘❊❚❳❝❡❨ ➓ ①
✫✭✬ ❩✒❚❆❯❳◗❞❜➔③❢❨❢❝❡❜✪❙✗❦✙❚❳◗✪❙✒♦❱❩✒❨❢♦➏❝❡❨❊♦➛❯❱❚❳❴❢❜■❯❳❝❡❩❫❨❊♦➏❙✛❚❳◗✐❩✒❚➔✈❃◗■❚❳◗✪✈✚❝❡❨✖❲✔◗❞❲✔❩✒❚❱q➜♦❱❘▲❙✗❜❞◗❫❣s➐❢❴❃❯➏❙✗❜❞❜❞◗❞♦❱♦➏❯❳❩➻❙✗❨❝❡❨❢♦➛❯❱❚❳❴❢❜❋❯❳❝❥❩✒❨ ❃ ❙✒❨❢✈☞♦❱❴❊➐❢♦❱◗✪➝✇❴❢◗■❨✽❯✴◗❋➣❊◗■❜❞❴❊❯❳❝❡❩❫❨✦❅✙❙✗❚❳◗✜✈❃❩❫❨❢◗✆❝❡❨☛❚➔❙✒❨▲✈❃❩❫❲✷❩✗❚➔✈❊◗■❚✪①

134



❒❈●❋➾❊➬❃●❞✺✽➱ ➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼s✶ ä ➘➽➘æ➾✽➺■✿❈➹✗●❛●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉❹❍✗✺❃✼✃➚➟➹❾●■➹✒✺❃❄✐❀➮●■➾❃➱å✺❃✼✹❄✃➶✆●■➼❥➺❋➺❋➹✗✼➻➼➷✼❢➺❋➾➟✶❢á✻✿✹➹✒❉❋➹
✺✽●■➹✱➺■✿❈➹✔❍✛➾❃✼✹✼❈➹✒❍✛➺❋➼➽➾❃✼⑦●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉❛✺❃➱✐➾❊✼❈➬✐➶✆✿❈➼➽❍❞✿➜➼➷✼❈❀➮➾❃●■➱✥✺✽➺❋➼➽➾❃✼➜ê✹➾✇➶✜❉♠➼➷✼➜➺❋✿✹➹➏❍✗➾❃➪❈●❞❉❋➹❆➾❃❀✳➺❋✿✹➹
❍✛➾❃➱✥❒❈➪❈➺■✺✇➺■➼➷➾❊✼s✶◆➸❱✼❈➼➷➺❋➼✉✺✽➘➽➘➷❏➻➺❋✿❈➹✒❏➜✺❃●❋➹➏❉➔➹✗➺✆➺❋➾✃✾✒➹✗●■➾✹✶

✄✜➾✇➶❶✺✆❒❈●■➾❃➬❊●■✺❃➱ ➚➟➹✒✿✹✺❻Þ❃➹❫❉✳❄◆➪✹●❋➼➽✼❈➬✜➹✗ç▲➹❫❍✛➪◆➺■➼➷➾❊✼✔➶✆➼➷➘➽➘▲❄◆➼❥❰æ➹✗●✳❀➮●❋➾❊➱ ➼➷✼✹❉➔➺■✺❃✼✹❍✛➹✴➺❋➾✜➼➽✼✹❉➔➺■✺✽✼➟❍✛➹❃✶
á✻✿❈➹✗●■➹➏➼➽❉✆✼✹➾✃➬❃➪✹✺❃●■✺❃✼❊➺■➹✗➹❆➺❋✿✹✺✽➺✱✺✽✼⑦➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✄➼✉❉✆➹✛ç◆➹✒❍✗➪◆➺❋➹❫❄❽Ó❈✼❈➾❊●✆➼➽❉✻➼➷➺✱➬❊➪✹✺✽●❞✺✽✼❢➺❋➹✒➹✒❄Ý➺❋✿✹✺✽➺
➺❋✿❈➼✉❉♠✿✹✺✽❒❈❒➠➹✗✼➟❉❛➼➽✼➜✺☞❄◆➹✛é➟✼❈➼❥➺■➹❆➾❊●■❄❈➹✗●❹➾❊●❹❀➮●■➹✒Ò❢➪❈➹✒✼✹❍✛❏❊✶▲➸➛❀❳Ó❢✿✹➾✇➶❛➹✒Þ❃➹✗●❫Ó❃✺❃✼➻➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼➻➼➽❉♠➱✥➾❃●■➹
❀➮●❋➹❫Ò❊➪✹➹✗✼❢➺✜➼➷✼✄➺■✿❈➹✔➱☛➪✹➘❥➺■➼❥à❱❉➔➹✗➺✒Ó✹➺❋✿❈➹✒✼✚➼❥➺❞❉✆➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼✄➶✆➼➽➘➷➘❪➚➟➹☛➱✐➾❊●❋➹➏❒❈●■➾❃➚➟✺✽➚❈➘➽➹❃✶✢✜◆➼➷➱✥➼➽➘➽✺❃●❋➘➽❏❃Ó◆➼➷❀
➼❥➺☞❉❋✿❈➾❊➪❈➘➽❄➑➚➠➹➻✺❃❄❈Þ❻✺❃✼❢➺■✺✽➬❊➹✗➾❊➪✹❉❆➺❋➾✖❑❊➹✗➹✗❒ ➼➽✼✹❄◆➹✒❒➟➹✒✼✹❄◆➹✗✼➟❍✛➹Ý➚➠➹✛➺❳➶♠➹✗➹✒✼ ❄✹✺✇➺■✺✄❒➟✺✇➺❋✿➟❉✗Ó❽➺■✿❈➹➻❍✗➾❃●❋à
●❋➹❫❉➔❒➠➾❃✼✹❄❈➼➷✼❈➬✃●■➹✗➬❊➼➽❉➔➺❋➹✒●■❉✱❉➔✿❈➾❊➪❈➘✉❄➜➚➠➹☞❄❈➼❥❰æ➹✗●■➹✗✼❢➺✱➼➽✼✖❉➔➪➟❍❞✿✖✺✃➶♠✺❻❏➻➺❋✿✹✺✽➺✜➺❋✿✹➹✎➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉❆✺✽●■➹
✼❈➾✽➺✜❍✛➾❊✼❈✼❈➹❫❍✪➺❋➼➽✼❈➬✐➺❋➾✥➹❫✺❃❍❞✿➻➾❃➺❋✿❈➹✒●✒✶❈✸♠➾❃➺❋✿➜❀➮➹✒✺✇➺■➪❈●■➹✒❉♠➶❛➾❊➪❈➘✉❄➻➚➠➹✔➹✛ç◆❒➠➹✒❍✪➺■➹✒❄➻➺❋➾✥➚➠➹✎❉➔➪❈➚✁�❳➹✒❍✪➺✻➺■➾
➹✗Þ❃➾❊➘➷➪❈➺❋➼➽➾❃✼✹✺❃●❋❏✥❀➮➾❊●■❍✗➹✒❉✒✶
☎✝✆ ☎ ✂☎✄✭✱ ✔✌✧✁✚ ✡✟✱✭☞ ✱✝✆ ✏✓☞ ✏✕✔✟✫✭✱✭✒✯✡✛✚✢✜ ✑ ✡✟✩ ✖ ✜✁✍✘✑ ✡✟✳ ✚ ✒✞✙

â❾➹✗✼❈➹✗➺❋➼✉❍✔❒❈●■➾❃➬❃●❞✺✽➱✥➱✥➼➽✼❈➬☞➾❃❀✙➺❋✿❈➼✉❉✱✺❃➘➷➬❊➾❃●■➼❥➺■✿❈➱✥➼➽❍➏❍❞✿❈➹✒➱✐➼✉❉➔➺❋●■❏↕í ä ❅✻â➏ã♠î✻➼✉❉✜❉➔➼➽➱✥➼➷➘✉✺✽●✜➺❋➾Ý➾❃➺❋✿❈➹✒●
â➏ã✄Þ❻✺❃●❋➼✉✺✽✼❢➺❞❉✗✶✗á✻✿✹➹✠➪✹❉➔➹❹➾✽❀◆✺✆❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✠➬❃➹✗✼✹➹✗●❞✺✇➺❋➾❊●s❉➔✿✹➾❃➪❈➘✉❄❾✿❈➹✗➘➽❒✔➪❈✼✹❄◆➹✒●■❉➔➺■✺❃✼✹❄❆➺❋✿❈➼✉❉✳❉❋➼➽➱✐➼➽➘✉✺✽●❋à
➼❥➺❳❏❊✶✇✵↕➹✻✿✹✺❻Þ❊➹♠❉❋➹✗➹✒✼☞✺✽➘➽●■➹✒✺❃❄❈❏❾➼➽✼ ✜▲➹✒❍✛➺❋➼➽➾❃✼ ✯❈✶ ✣✜✿❈➾✇➶Ð✺✽✼☛➼➽✼✹❄◆➼➽Þ▲➼➽❄❈➪✹✺✽➘◆➼➽✼ ä ❅✻â➏ã➑➼✉❉★➹✗Þ✇✺✽➘➽➪✹✺✇➺■➹✒❄❽✶
✞ ☞✁✡✌✚ ✡✟✏★✔✌✡✠✟✪✏✰✚✢✡✌✱ ☞ ✏✓☞☛✡ ✑ ✧ ✚✢✏✰✚ ✡✟✱✭☞ ➸❱✼❈➼➷➺❋➼✉✺✽➘➽➼➷✾❫✺✇➺❋➼➽➾❃✼⑦✺✽✼✹❄➜➱☛➪❈➺■✺✇➺■➼➷➾❊✼➜➾❃❀❪✺✽✼⑦➼➽✼✹❄◆➼➽Þ❢➼✉❄◆➪✹✺❃➘s✺✽●■➹
➺❋✿❈➹✎❉■✺✽➱✥➹❾❀➮➾❃●✆➚➠➾✽➺■✿➜➺■✿❈➹ ä ❅✻â➏ã➡✺✽✼✹❄⑦➪✹❉❋➪✹✺❃➘❽➘➷➼➽✼❈➹✒✺❃●✱â➏ã✙✶

�✚➪◆➺■✺✽➺❋➼➽➾❃✼✥➶✆➼➽➘➷➘➠❍❞✿✹✺✽✼❈➬❊➹✻➾❃❒➠➹✗●❞✺✇➺❋➾❊●✴✺✽✼✹❄✥●■➹✗➬❊➼➽❉➔➺❋➹✒●✠✼▲➪❈➱☛➚➠➹✗●❞❉✴✺❃❍✒❍✛➾❊●■❄◆➼➽✼❈➬❾➺❋➾✎✺➏❒✹●❋➾❊➚✹✺✽➚❈➼➽➘➷à
➼❥➺❳❏✥❄◆➼✉❉❳➺■●❋➼➽➚❈➪◆➺■➼➷➾❊✼s✶❃➸❱✼✐➺❋✿✹➹✱❒❈●■➹✒❉❋➹✗✼❢➺✴➼➽➱✐❒✹➘➷➹✒➱✐➹✒✼❢➺■✺✇➺■➼➷➾❊✼✥●❋➹✒➬❃➼✉❉❳➺■➹✗●✴Þ✇✺✽➘➽➪❈➹❫❉✴✺✽●■➹✜❍❞✿✹✺✽✼✹➬❃➹✒❄☞➪✹❉❋➼➷✼✹➬
✺✥â➏✺❃➪✹❉■❉➔➼✉✺✽✼⑦➶✆➼❥➺■✿✄➱✐➹❫✺✽✼✄✺✇➺✜❒❈●■➹✒❉❋➹✗✼❢➺✆Þ✇✺✽➘➽➪❈➹✔✺✽✼✹❄✄❉➔➺■✺❃✼✹❄❈✺✽●❞❄➻❄❈➹✗Þ▲➼➽✺✽➺❋➼➽➾❃✼✴★❃✶
✖ ✒✯✱ ✳ ✳✢✱☞✄✭✍✑✒ ❅❛●❋➾❢❉❋❉❋➾✇Þ❃➹✒●❛➱✃✺✽❑❊➹✒❉✻➪✹❉❋➹✔➾✽❀✙➺■✿❈➹✔●■✺❃✼✹❄◆➾❊➱✐➼➽✾✗➹❫❄✄❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✒❉✻❒❈●■➾◆❄◆➪✹❍✛➹❫❄✄➚▲❏Ý➺❋✿✹➹
❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹⑦➬❊➹✗✼❈➹✒●■✺✽➺❋➾❊●✒✶ ä ❉✃❉❋✿❈➾✇➶✆✼ ➼➽✼ ✌★➼➷➬❊➪❈●❋➹✺✯ ✺➑●■✺❃✼✹❄◆➾❃➱ ❉❋➹✒Ò❢➪❈➹✒✼✹❍✛➹⑦➾✽❀❾➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉
➼➽❉☞❍✛➾❃❒✹➼➷➹❫❄➑❀➮●❋➾❊➱ ➺■✿❈➹Ý❒✹✺❃●❋➹✒✼❊➺❞❉➏➺❋➾✖➺❋✿❈➹➜➾✽❰❽❉➔❒❈●■➼➽✼❈➬✹✶✳á✻✿✹➾❃➪❈➬❊✿ ➺❋✿❈➹Ý➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✎➼➽✼❈✿❈➹✒●❋➼➷➺❋➹❫❄

sequencer

random

R3=R1−R1

R1=R2−R4

R4=R0+R1

R2=R2/R6

R7=R3*R1

R1=R2+R4

Parent 1 Offspring Parent 2

R2=R1+R7

R0=R4−R2

R5=R1*R1

R3=R1*R4

R6=R2+R3

R0=R5*R1

sequencer

random

start()

next()

next()

next()

next()

next()

next()

next()

R1=R2−R4

R7=R3*R1

R5=R1*R1

R0=R4−R2

R3=R1*R4

R3=R1*R4

start()

✶✸✷✺✹ ➍✍✌❈➍ ❭❪❚❳❩✒♦❱♦❱❩✛♥❻◗■❚❛❝❥❨✐❙✒❨✃⑥✴❚❱❯❳❝♣➙▲❜❞❝❥❙✒❦➠❭★③❢◗■❲✔❝❥♦➛❯❱❚❱q✇①

❀➮●❋➾❊➱ ➹❫✺❃❍❞✿Ý➾❃❀❽➺❋✿❈➹❾❒✹✺❃●❋➹✒✼❊➺❞❉❹✺❃●❋➹❆➘➷➾◆❍✗✺✽➺❋➹❫❄✃➼➷✼➜❍✛➾❃✼❢➺■➼➷➬❊➪❈➾❃➪✹❉❛➱✥➹✗➱✥➾❃●■❏✐➘➷➾◆❍✗✺✽➺❋➼➽➾❃✼✹❉✒Ó❊➺❋✿❈➹➏✺❃❍✛➺❋➪✹✺❃➘

135



❉➔➹❫Ò❊➪✹➹✗✼✹❍✗➹✔➾✽❀✙➺❋✿❈➹☛➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼✚➼✉❉✆✼❈➾❃➺❆❄◆➹✗❒➠➹✗✼➟❄◆➹✗✼❢➺✱➾❊✼✄➺❋✿✹✺✽➺✱➾❃●❞❄◆➹✗●❫✶❈á✻✿❈➹✎❒✹●❋➾❊➚✹✺✽➚❈➼➽➘➽➼❥➺❳❏➻➺❋✿✹✺✽➺
✺✃❒✹✺✽●❋➺❋➼✉❍✛➪✹➘➽✺❃●✜➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✚➼✉❉❆❍✗➾❃❒❈➼➽➹✒❄✄➼➽✼❢➺❋➾➻✺❃✼✚➾✽❰❽❉➔❒✹●❋➼➽✼❈➬Ý❄◆➹✒❒➟➹✒✼✹❄❈❉❆➾❃✼✄➺❋✿✹➹✎❀➮●■➹✒Ò❢➪❈➹✗✼➟❍✛❏⑦➾✽❀
➺❋✿✹✺✽➺❛➼➽✼✹❉❳➺■●❋➪➟❍✪➺❋➼➽➾❃✼✃➼➽✼✃➺■✿❈➹✱❒✹✺❃●❋➹✒✼❢➺✒✶✽➸❱✼❈✿✹➹✗●■➼❥➺❞✺✽✼✹❍✗➹✆➺❋✿❈➹✒●❋➹✗❀➮➾❃●■➹✜➼✉❉✴➼➽✼❈✿❈➹✗●■➼➷➺■✺✽✼➟❍✛➹✜➾❃❀❽❀➮●❋➹❫Ò❊➪✹➹✗✼✹❍✗➼➷➹❫❉
➾✽❀✙➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✒Ó◆●■✺✽➺❋✿❈➹✒●♠➺❋✿✹✺❃✼⑦➾❃❀★❒➟✺✽●❋➺❋➼✉❍✛➪❈➘✉✺✽●✆❉❋➹✒Ò❢➪❈➹✗✼➟❍✛➹✒❉✻➾❃❀❪➼➽✼✹❉➔➺❋●■➪✹❍✪➺■➼➷➾❊✼✹❉✗✶
❅❛➾❃✼✹❉➔➺■✺❃✼❊➺✴●■➹✗➬❊➼➽❉➔➺❋➹✒●✴Þ✇✺✽➘➽➪❈➹✒❉❹➶✆➼➷➘➽➘➠➚➟➹✱❍✗➾❃❒❈➼➽➹✒❄✥➶✆➼➷➺❋✿➻➹✒Ò❢➪✹✺✽➘➟❒❈●■➾❃➚✹✺❃➚❈➼➷➘➽➼➷➺❳❏☛❀➮●■➾❃➱ ➹✒✺❊❍❞✿✐❒➟✺✽●❋à

➹✗✼❢➺✒Ó✹✺❊❉✻➼➽❉✆❄❈➾❃✼❈➹➏❀➮➾❊●✜❍❞✿❈➾❃➼✉❍✛➹❾➾✽❀★➺❋✿❈➹✔●■➹✒❉❋➪❈➘➷➺✆●❋➹✒➬❃➼✉❉❳➺■➹✗●❫✶

� ✁ ✵✄✂▲➲✆☎❳➩✝✂ ✞✠➨✱➯✟✞ ➲✆➩✝☎❳➭✻➭✗✠
✼✱❉❋➼➷✼❈➬ ➹✗ç◆✺❃➱✥❒❈➘➷➹❫❉✐❀➮●❋➾❊➱ ●■➹✗➬❃●■➹✒❉■❉❋➼➷➾❊✼ ✺✽✼✹❄❮❍✛➘✉✺❃❉■❉❋➼❥é➟❍✒✺✇➺■➼➷➾❊✼ ➶♠➹✄❉❋✿❈➾✇➶å➺■✿✹✺✇➺Ý➬❊➾❊✺❃➘❥à➛➾❃●■➼➷➹✒✼❢➺❋➹✒❄
➚➟➹✒✿✹✺❻Þ▲➼➷➾❊➪❈●✆➼➽❉✜❒➟➾❢❉❋❉❋➼➷➚✹➘➷➹✔➶✆➼➷➺❋✿✖✺✃❉❋➹✗➹✒➱✐➼➽✼❈➬❊➘➷❏➜➪❈✼✹❍✛➾▲➾❊●■❄◆➼➽✼✹✺✽➺❋➹✒❄⑦❉➔➺❋●■➪✹❍✪➺■➪❈●❋➹✔➾❃❀★❒✹●❋➾❊➬❃●❞✺✽➱å➹✗➘➽➹✛à
➱✐➹✒✼❢➺■❉✒✶
á✻✿❈➹♠❉❋➼➽➱✐➼➽➘✉✺✽●■➼❥➺❳❏➏➾✽❀✹➺❋✿❈➼✉❉✙✺✽❒❈❒❈●■➾❊✺❊❍❞✿✔➺❋➾➏❄❈✺✽➺■✺✇ê➟➾✇➶è✺✽●❞❍❞✿❈➼❥➺■➹✒❍✛➺❋➪❈●■➹✒❉ ✎ ★✩✒▲➼✉❉★➾❃➚▲Þ▲➼➷➾❊➪✹❉✒✶❫á❪●■✺❊❄◆➼➷à

➺❋➼➽➾❃✼✹✺❃➘❊●■➹✒❉➔➺❋●■➼➽❍✛➺❋➼➽➾❃✼✹❉❪➾✽❀✹➺❋✿✹✺✽➺✙✺❃●■❍❞✿❈➼➷➺❋➹❫❍✪➺■➪❈●❋➹❊Ó✗✿❈➾✇➶♠➹✗Þ❊➹✗●❫Ó✒❍✒✺✽✼✎➚➠➹❛➘➽➾▲➾❊❉❋➹✗✼❈➹❫❄✔➶✆➼➷➺❋✿☞➺❋✿❈➹♠❒❈●■➹✒❉❋➹✗✼❢➺
➱✐➾◆❄◆➹✒➘✻➾✽❀✱✼❈➾❊✼◆à❱❄◆➹✛➺■➹✗●■➱✐➼➽✼❈➼✉❉❳➺■➼➽❍⑦❍✛➾❊➱✥❒❈➪◆➺■✺✽➺❋➼➽➾❃✼sÓ �❃❒❈●❋➾❊➬❃●❞✺✽➱✥➱✥➹✒❄✡�✄➚▲❏❶➹✒Þ❃➾❃➘➽➪◆➺■➼➷➾❊✼s✶✡✠✜➹✒❍✛➹✒✼❢➺
➶❛➾❊●❋❑↕➼➷✼❶➺■✿❈➹➜❄✹✺✇➺■✺✽ê✹➾✇➶å❍✛➾❊➱✐➱☞➪❈✼❈➼➷➺❳❏ ✎✻★ ★✩✒❛➱✥➼➽➬❃✿❢➺☛➺■✿❈➹✗●■➹✛❀➮➾❊●❋➹✥é✹✼➟❄ ❉❋➪❈❒❈❒➠➾❃●❋➺☛➼➷✼Ð❉➔➪✹❍❞✿è✺❃✼
✺✽❒❈❒❈●■➾❊✺❊❍❞✿s✶
á✻✿❈➹⑦❉➔➺❋●■➹✗✼✹➬✽➺❋✿Ð➾✽❀❆➺❋✿❈➼✉❉✃✺✽❒❈❒✹●❋➾❢✺❃❍❞✿è➶✆➼➽➘➷➘✻➾❊✼❈➘➷❏Ð✺✽❒❈❒➠➹✒✺❃●☞➼➷❀➏❄❈➼➽❉➔➺❋●■➼➷➚✹➪◆➺❋➹❫❄◆✼❈➹✒❉■❉✐➼➽❉✐➺❞✺✽❑❊➹✗✼

➼➷✼❢➺❋➾✐✺❃❍✒❍✛➾❃➪✹✼❊➺❫✶❊á✻✿❈➹❾●■➹✒✺❃❉❋➾❃✼✹➼➷✼❈➬✔➶♠➾❃➪✹➘➽❄✃➚➠➹✜➺■✿❈➹❆❀➮➾❃➘➽➘➷➾✇➶✆➼➽✼❈➬ ✧✘✜▲❏◆❉❳➺■➹✗➱✃❉❛➾✽❀❽➺❋✿✹➼➽❉♠❑▲➼➷✼➟❄Ý❉➔✿✹➾❃➪❈➘✉❄
❍✛➾❃✼➟❉➔➼✉❉❳➺✥➾✽❀➏✺➑➘➽✺❃●❋➬❊➹➜✼▲➪❈➱☞➚➟➹✒●✐➾❃❀❆❒❈●■➾◆❍✛➹❫❉❋❉❋➼➷✼✹➬↕➹✒➘➷➹✒➱✐➹✒✼❢➺■❉✥➶✆✿❈➼✉❍❞✿Ð➶♠➾❃➪✹➘➽❄Ð❉➔✿✹✺❃●❋➹⑦❒❈●■➾❃➬❊●■✺❃➱
❉❳➺■➾❃●❞✺✽➬❃➹❛✺✽✼✹❄✔●■➹✗➬❊➼➽❉➔➺❋➹✒●❪❍✗➾❃✼❢➺❋➹✒✼❊➺❫✶ ✛❹➘➷➹✒➱✥➹✗✼❢➺■❉❪➶❛➾❊➪❈➘✉❄✎✺❃❉❋❏▲✼✹❍❞✿❈●■➾❃✼❈➹✒➾❃➪✹❉❋➘➷❏❆✺❃❍✗❍✗➹✒❉■❉❪❉➔➺❋➾❊●■✺❃➬❃➹✴✺❃✼✹❄
●❋➹✒➬❃➼✉❉❳➺■➹✗●❫✶➠á✻✿❈➹✥❒❈●■➾❃➬❊●■✺❃➱✺✪ ❉✱➬❃➹✗✼✹➾❃➱✥➹☞➶♠➾❃➪✹➘➽❄◆✼ ✪ ➺✎❉❋❒➟➹❫❍✛➼➷❀➮❏↔✺✽✼↕➾❃●❞❄◆➹✗●❾❀➮➾❃●❾➺■✿❈➹✥➹✛ç◆➹✒❍✗➪◆➺❋➼➽➾❃✼↕➾✽❀
➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉✒✶✗➸❱✼✹❉➔➺❋➹❫✺❃❄❽Ó✗➹✒✺❃❍❞✿✔➹✒➘➷➹✒➱✥➹✗✼❢➺✳➶♠➾❃➪❈➘✉❄❾●■✺❃✼✹❄◆➾❃➱✥➘➽❏✱❒❈➼✉❍❞❑❾➼➷✼✹❉➔➺❋●■➪✹❍✛➺❋➼➽➾❃✼✹❉s✺❃✼✹❄➏➹✛ç◆➹❫❍✛➪◆➺■➹
➺❋✿❈➹✒➱⑦✶✹❅❛➾❊➱✐➱☞➪❈✼❈➼✉❍✗✺✽➺❋➼➽➾❃✼Ý➶✆➼➷➺❋✿✃➺■✿❈➹❾➹✛ç▲➺❋➹✒●❋✼✹✺❃➘➟➶♠➾❃●■➘✉❄✥➶❛➾❊➪❈➘➽❄Ý➚➟➹❆❒➟➹✒●➔❀➮➾❊●❋➱✥➹✒❄ÝÞ❢➼✉✺☛✺☞❉➔➼➽➱✥❒❈➘➽➹
❍✛➾❃✼❢➺■●❋➾❊➘➠➪✹✼❈➼❥➺❫✶
➸➛➺❾➬❊➾❢➹❫❉✱➶✆➼➷➺❋✿✹➾❃➪◆➺✎❉■✺❻❏❢➼➽✼❈➬➻➺❋✿✹✺✽➺➏❉❋➪✹❍❞✿↕✺⑦❉❋❏▲❉➔➺❋➹✒➱ß➶❛➾❊➪❈➘✉❄✚➚➟➹✥➶♠➹✗➘➽➘✠❉➔➪❈➼➷➺❋➹❫❄✖❀➮➾❊●❆❒➟✺✽●❞✺✽➘➽➘➷➹✒➘

❒❈●❋➾◆❍✗➹✒❉■❉➔➼➽✼❈➬✹✶ ✛❛✺❃❍❞✿✔✺❃❄✹❄◆➼❥➺■➼➷➾❊✼✹✺✽➘❃❒❈●❋➾◆❍✗➹✒❉■❉➔➼➽✼❈➬✻➹✗➘➽➹✗➱✥➹✗✼❢➺✳➶♠➾❃➪✹➘➽❄➏✺❃❍✒❍✛➹✒➘➷➹✒●■✺✽➺❋➹★➺❋✿❈➹❹➹✗Þ✇✺✽➘➽➪✹✺✇➺■➼➷➾❊✼➏➾✽❀
❒❈●❋➾❊➬❃●❞✺✽➱✃❉✒✶❊á✻✿❈➹✒●❋➹❾➶❛➾❊➪❈➘✉❄✃➚➟➹➏✼❈➾✐✼❈➹✒➹✒❄✃❀➮➾❊●✻➱✥✺❊❉❋❉❋➼➽Þ❃➹❆❍✗➾❃➱✥➱☛➪✹✼❈➼➽❍✒✺✇➺■➼➷➾❊✼➻✺✽✼✹❄Ý❀➮➾❃●✆❉❋❏❢✼➟❍❞✿❈●❋➾❃à
✼❈➼➷✾❫✺✇➺■➼➷➾❊✼✎➚➟➹✗➺❳➶❛➹✒➹✗✼☞❒❈●❋➾◆❍✗➹✒❉■❉➔➼➽✼❈➬✜➹✒➘➷➹✒➱✐➹✒✼❢➺■❉✒✶❻á✻✿✹➹♠❉❋❏◆❉❳➺■➹✗➱ ➶❛➾❊➪❈➘✉❄✎➚➠➹♠❉■❍✗✺❃➘➽✺❃➚❈➘➷➹❛✺✇➺✙●❋➪❈✼❈à❼➺■➼➷➱✥➹ ✧
☛✜➹✗➶✮➹✒➘➷➹✒➱✥➹✗✼❢➺■❉♠❍✛➾❊➪❈➘➽❄✥➚➠➹❆✺❊❄❈❄◆➹❫❄✃➾❃●❛●❋➹✒➱✐➾✇Þ❊➹✒❄✐➶✆➼➷➺❋✿❈➾❊➪◆➺♠✺❊❄◆➱✥➼➷✼❈➼✉❉➔➺❋●❞✺✇➺❋➼➽Þ❃➹✱➾✇Þ❃➹✗●■✿❈➹❫✺❃❄❽✶❃á✻✿✹➹
❉➔❏◆❉➔➺❋➹✗➱Ô✺❃❉✜✺✥➶✆✿✹➾❃➘➽➹✔➶❛➾❊➪❈➘➽❄⑦➚➠➹✔❀ ✺✽➪✹➘❥➺❋à❼➺■➾❃➘➽➹✗●❞✺✽✼❢➺✒Ó◆❀ ✺❃➼➷➘➽➪❈●■➹✔➾✽❀✙❒❈●■➾▲❍✗➹✒❉■❉➔➼➽✼❈➬✥➹✗➘➽➹✗➱✥➹✒✼❊➺❞❉✆➶♠➾❃➪❈➘✉❄
✺✽❒❈❒➠➹✒✺❃●✜➱✥➹✗●■➹✗➘➽❏➜✺❃❉✱✺Ý❉➔➘➽➾✇➶♠➹✒❄▲à❱❄◆➾✇➶✆✼➻➹✗ç◆➹✒❍✛➪❈➺❋➼➽➾❃✼s✶➠❇s➾❊❉■❉✻➾✽❀✠➼➽✼◆❀➮➾❃●■➱✃✺✇➺■➼➷➾❊✼⑦➶♠➾❃➪✹➘➽❄⑦✼❈➾❃➺✱➚➟➹☞✺
❒❈●❋➾❊➚❈➘➽➹✗➱✄Ó➟✺❃✼✹❄✚✼❈➹✒➶➞❒✹●❋➾◆❍✛➹❫❉❋❉❋➹✒❉✜✼❈➹✗➹❫❄✚✼❈➾✽➺❾➚➟➹✐❉❳➺❞✺✽●❋➺❋➹❫❄✄➼➷✼✹❉➔➺❋➹❫✺❃❄✄➾❃❀✴➘➷➾❢❉❳➺✱➾❊✼❈➹✒❉✒✶☞✠✜➹✒❄◆➪✹❍✗➼➷✼✹➬
➺❋✿❈➹✻✼▲➪❈➱☛➚➠➹✗●✠➾❃❀➟❒❈●■➾◆❍✛➹❫❉❋❉❋➾❃●❞❉❛í❼✺✽✼✹❄☛➺❋✿▲➪✹❉✠❉❋➘➽➾✇➶✆➼➷✼❈➬➏❄◆➾✇➶✆✼✐❍✛➾❃➱✥❒❈➪❈➺■✺✇➺■➼➷➾❊✼➟î★❍✛➾❊➪❈➘➽❄☞➚➠➹✻✺❃➘➷➘➽➾✇➶♠➹✒❄
➹✗Þ❃➹✒✼➻❀➮➾❊●✆❒➟➾✇➶♠➹✗●✆➱✃✺❃✼✹✺✽➬❊➹✗➱✥➹✗✼❢➺✒✶

✛✠ç◆❒❈➘➽➼➽❍✗➼❥➺✳❉■❍❞✿❈➹✒❄❈➪❈➘➷➼➽✼❈➬✆➾❃❀❊➺❞✺❃❉❋❑▲❉s➶❛➾❊➪❈➘➽❄❆✼❈➾❃➺✳➚➟➹❹✼❈➹✒❍✗➹✒❉■❉❋✺❃●❋❏❊✶❞á✻➶♠➾✜✺✽➘➽➬❃➾❊●❋➼➷➺❋✿✹➱✐➼✉❍✙❍❞✿❈➹✗➱✥➼✉❉❳➺■●❋➼➽➹✒❉
➹✛ç◆➹✒❍✗➪◆➺❋➼➽✼❈➬Ð❄❈➼❥❰æ➹✗●■➹✗✼❢➺⑦➺■✺❃❉❋❑◆❉➜❍✗➾❃➪❈➘✉❄✮➚➠➹↕➪✹✼❈➼❥é➟➹✒❄ ➼➽✼❢➺❋➾Ð➾❃✼❈➹➑➹✗Þ❊➹✗✼sÓ♠❒❈●■➾✇Þ❢➼✉❄◆➹❫❄❮➺❋✿❈➹✒❏✮➪✹❉➔➹❫❄
❄◆➼❥❰æ➹✗●■➹✗✼❢➺Ý❍✛➾❊✼❈✼❈➹❫❍✪➺❋➼➽➾❃✼Ð●❋➹✒➬❃➼✉❉❳➺■➹✗●❞❉✗✶★✵➑➾❃➪❈➘✉❄❮➼❥➺✃➚➠➹⑦✼✹➹✒❍✛➹❫❉❋❉■✺✽●■❏➑➺❋✿✹✺✽➺✃➾❃✼❈➹⑦➺■✺❊❉➔❑è❉❋✿❈➾❊➪❈➘➽❄Ð➚➠➹
❒❈●❋➼➽➾❃●■➼➷➺❋➼➽✾✗➹✒❄✚✺➻✿❈➼➽➬❃✿❈➹✒●❆❍✛➾❊✼✹❍✛➹✒✼❢➺❋●❞✺✇➺❋➼➽➾❃✼✚➾❃❀✴➼➷✼➟❉❳➺■●❋➪✹❍✛➺❋➼➽➾❃✼✹❉✱➶❛➾❊➪❈➘✉❄✚➚➟➹✐❉➔➪✝✌✃❍✗➼➷➹✒✼❢➺✱➺❋➾⑦✺❃❍❞✿❈➼➽➹✗Þ❊➹
➺❋✿✹✺✽➺✒✶

✍ ➳✡✠✆➨✜➭✏✎✑☎✾✵❪➯✶☛✗✵✄✒ ✵✳➨❛➩
á✻✿❈➹✴✺✽➪◆➺■✿❈➾❃●❞❉❽➬❊●■✺✽➺❋➹✛❀➮➪✹➘➷➘➽❏✱✺❃❍❞❑▲✼❈➾✇➶✆➘➽➹✒❄❈➬❃➹✙❉➔➪❈❒✹❒➟➾❊●➔➺s❀➮●■➾❃➱➞✺✻➬❃●❞✺✽✼❢➺❽➾✽❀❢➺❋✿❈➹❛ë✱➹✒➪◆➺■❉■❍❞✿❈➹✗✌❈➾❊●■❉■❍❞✿▲➪❈✼❈➬❢❉❳à
➬❃➹✗➱✥➹✒➼➷✼✹❉■❍❞✿✹✺✽❀ ➺✆ë ✌❪âØ➺❋➾✃✵✷✶ ✸❾✶❈➪❈✼✹❄❈➹✗●✜✸✻✺ ★✂✼✰✽ ✣✔✓☎✙✒ì ✯✹✶

136



✁ ✵✁�✥✵✳➫✡✵✳➨✱➳ ✵✏✂
⑧❫①✄✂✆☎✞✝✠✟☛✡✌☞✁✍✏✎✌✡✑☞✓✒✔✎✖✕✘✗✘✎✌✟✚✙✛✍✏✜✣✢➠⑥ ❲❾❴❊❦♣❯❳❝❥❘❊❦❡◗❹❘❃❚❳❩✇❜❞◗❞♦❱♦❱❩✗❚✴✈❢❙✛❯➔❙✆✤❢❩✪t ❲✎❙✒❜➔③❢❝❡❨❊◗✴❯❳③❢❙✗❯❪♦❱❴❢❘❊❘◆❩✒❚❱❯❳♦
➓ ◗❞❨❢◗❋❚➔❙✒❦❡❝✦✥❞◗✪✈❶❘❊❚❳❩✇❜❞◗❞✈❊❴❊❚❳◗■♦❞① ➎ ❨★✧✪✩✏✫✭✬✯✮✯✩✱✰✲✫✴✳✶✵✲✩✱✰✸✷✺✹✁✵✲✩✼✻✽✬✯✮✾✬✯✩✱✿✯✬❀✵❁✩❂✹✁✵❁❃❅❄✱❆✖✫✭✬✯✮❈❇❉✮❊✿✪❋✖✳✚✫✭✬✾✿●✫✴❆✖✮❊✬
❍❏■ ✳✚✩✛✩✑✬❊✰✯❄❑✵✲✷ ✳❏▲✄▼✸◆✸❖P▼✯◗ ❃ ⑤➟❩✒♦❛⑥❹❦❥❙✒❲✔❝♣❯❳❩❫♦❞❣▲❭✙⑥✱❣✹⑧✽❘✲❙❃⑧ ❅❋❣ ➎ ➃✳➃❪➃ ❭★❩❫❲✔❘❢❴❃❯❳◗■❚❛❵❃❩✇❜■❝❥◗❋❯❂q✇①➁✽①❯❚❉✎✌✡✌❱✲✗✘✎❳❲✘✍✖❨❩✢➠❵❃◗❞❦♣❬➷➒ ❚❳◗■❘❢❦❡❝❡❜✪❙✗❯❳❝❡❨ ➓ ♦❱◗✪➝✇❴❢◗■❨❢❜❞◗❞♦❪❩✒❬➟➐❢❝❡❨▲❙✛❚❱q➏❨✽❴❢❲❆➐◆◗■❚❳♦❞①❬✹✁✵✲❃❭❄✱❆✖✫✭❪ ■ ✰✲✫✚❋✏❪✘❇❬❄✸❄✘✷❫❪
❴✖❵ ❃ ⑧✽❘✸❘✒⑩✽❅❋❣➟⑧❋❿✖❙✽①⑩❃①❯❚❉✎✌✡✌❱✲✗✘✎❳❲✘✍❛❨❜✢✮❵❃◗❞❦♣❬➷➒❼❩✗❚ ➓ ❙✗❨❢❝✦✥❞❝❡❨ ➓ ⑥❛❦ ➓ ❩✒❚❳❝♣❯❳③❢❲✔♦✎P✻◗■❚❳❝❡♥❻◗❞✈↕❬➽❚❳❩✒❲ ➄ r✻⑥ ➎ ❨✇❯❳◗■❚➔❙✗❜■❯❳❝❡❩❫❨❊♦❞① ➎ ❨
❝❬❞ ✵✸✷ ❆✖✫✴✳✶✵✲✩❡✰❁✩✘❢❅❣❤✳✶✵✽✿✾✵✲❃❅❄✛❆❑✫✴✳✚✩✖✐✒❣✗➥➡①✒⑨✙❙✒❨✏✥❞③▲❙✛❬❈❙✒❨❢✈ ✬ ① ➃ ◗■❜❋➢✽❲✎❙✒❨✹❣ ➃ ✈❃♦❞①❥❣✗♥❻❩✒❦ ①❥❙✲❘✸❘♠❩✗❬✑❦♠❧✺✹♦♥❢①❵✽❘❊❚❳❝❡❨ ➓ ◗■❚✪❣❢⑨★◗■❚❳❦❡❝❡❨➟❣✹⑧✽❘✸❘❫❸✽❣◆❘❊❘➟①✏♣✸❘✪❿▲⑧✼q❫⑩❃①➀❊①❯❚❉✎✌✡✌❱✲✗✘✎❳❲✘✍✘❨❜✢❏✍sr❯t✌☎✘☞❳✟☛✡✁✍s✉✈✢❏✍s✒✔✇✏✙✲✙✸✇❑☎♦✍s①②✢❏✍✌✎✌✡✌☞④③⑤☎✱✎❳✡✑⑥✱t✌✡✑✇❳✍❳③❅✢✠⑦❉✬✯✩✘✬✯✫✴✳✶✿❯⑧❛✮⑨✵✾✐✲✮❊✰✲❃✺⑩
❃✔✳❏✩✖✐②⑩⑤❇❉✩❶✧✪✩✛✫✴✮⑨✵✽❢✲❆✏✿●✫✴✳✶✵✲✩❊①✴❤✐❩✒❚ ➓ ❙✒❨❈❷✜❙✗❴❊❬➽❲✎❙✒❨❢❨✹❣❢❵❊❙✒❨ ✬ ❚➔❙✒❨❊❜❞❝❡♦❱❜❞❩❊❣◆❭✙⑥✱❣✹⑧✽❘✸❘✲❙❃①❸✽①❯☞✌✟❉③❸✇❑✡✌✟☛❱✸✟☛t⑤✍❸✉✈✢❉❹♦✢✚✍❬❺✔✟❫✕✱✕✘☎✘✟☛⑥✱✗❻✍❛✉✈✢❏✍❬❚❉✎❳✡✑❱✲✗✑✎✌❲✘✍✁❨❩✢❏✍❸✎✌✡✑☞❽❼s✟✚✇❑❾s✙✲✇✏☎♦✍❛❿✑✢ ✦➠❩✪t✙❙✗❚➔✈❊♦➏❙
✦✙③❊◗❞❩✒❚❱q⑦❩✒❬ ❀ ❚ ➓ ❙✗❨❢❝✦✥✪❙✛❯❳❝❥❩✒❨❢♦❞① ➎ ❨➀⑧❛✮⑨✵✽✿✯✬✾✬❊❢✲✳❏✩P✐✲▲❈✵➁✻✣✫✚❋✛✬➂⑦❉✬✯✮✯❃✠✰✲✩➄➃✲✫✚❋➆➅❶✵✲✮✾➇❁▲⑨❋✏✵✪❄➈✵✲✩➀❇❉✮✯✫✴✳❏⑩
➉ ✿●✳✶✰✸✷s❦❻✳ ✻✼✬ ❃ ⑨✙❙❞q✽❚❳◗❞❴❃❯❳③➟❣ ➂ ◗■❚❳❲✎❙✒❨✇q✇❣æ➁✲q✸q✲q✽❅❋❣✳❤➜①s➊✻❙✗❴❢③❢♦❆❙✒❨❢✈➋➊❆①➠⑤➠❙✗❨ ➓ ◗❫❣ ➃ ✈❊♦❞①❡❣❽⑨✙❙❞q✽❚❳◗❞❴❃❯❳③❧❛❨❢❝❡♥❻◗■❚❳♦❱❝♣❯❼q☛➤s❚❳◗❞♦❱♦❞①

♣❃①❯❺✄✟☛✕✛✕✘☎✘✟✚⑥✱✗❻✍✑✉✈✢❏✍✘✎✌✡✑☞❀❚❭✎✌✡✑❱✸✗✘✎✌❲✘✍✛❨❜✢❪❵✽◗❞❦♣❬➽➒ ➃ ♥❻❩❫❦❡❴❊❯❳❝❡❩✒❨✐❝❡❨✐❙❾❭★❩❫❨❊♦➛❯❱❚❳❴❢❜■❯❳❝❡♥❻◗✆⑨❪❝❥❨❢❙✗❚❱q✐❵✽❯❱❚❳❝❡❨ ➓❵✇q❃♦➛❯❳◗❞❲✥①⑤❇❉✮✪✫✴✳ ➉ ✿●✳✶✰✲✷✱❦♦✳ ✻✽✬❤➌❊❣◆➁ ❃ ⑧✽❘✸❘✲❙✽❅❋❣◆➁✲q❫⑩✪❿❃➁✒➁✲q❃①
➍ ①❯❺✄✟☛✕✛✕✘☎✘✟✚⑥✱✗❻✍✏✉✈✢❏✍✑❼s✟☛✇✏❾❳✙✸✇❑☎♦✍✛❿✑✢❏✍✏✎✌✡✑☞➂❚❭✎✌✡✑❱✸✗✘✎✌❲✘✍P❨❩✢❈⑥❹❚❱❯❳❝♣➙▲❜■❝➷❙✗❦❈❭★③❢◗■❲✔❝❥♦➛❯❱❚❳❝❡◗❞♦s➒➠⑥ ➄ ◗■♥❃❝❡◗■t✆①
❇❉✮✪✫✴✳ ➉ ✿●✳✶✰✸✷✛❦❻✳ ✻✽✬✔➎ ❃ ➁✲q✲q❃⑧ ❅❋❣❈➁❫➁✒❸✪❿✽➁ ➍ ❸✇①

❙❃①✄➏❬✟☛➐✛✇❑✡❻✍❉➑➒✢❏✍❬✎✌✡✑☞➓❹✱➔❤✟☛✕✘✗❻✍❛❿✑✢➈✧✪✩✏✫✴✮❊✵✽❢✲❆✏✿●✫✴✳✶✵❁✩→✫➣✵ ❝❛❞ ✵✲✷ ❆❑✫✴✳✴✵✲✩✘✰✲✮✪↔➄✹✁✵❁❃❅❄✱❆✖✫✴✳❏✩P✐✒①↕❵❃❘❊❚❳❝❡❨ ➓ ◗■❚✪❣⑨❪◗■❚❳❦❡❝❥❨✹❣ ➂ ◗■❚❳❲✎❙✗❨✇q✇❣❊➁✲q✸q✒⑩❃①
❘❃①❯③❻t✌✡✘✕❥✎✌✡✑✎✁✍❻❨❩✢☛⑥❛❦ ➓ ❩✗❚❳❝♣❯❳③❢❲✔❝❡❜✔❜❋③❊◗❞❲✔❝❡♦➛❯❱❚❱q✇① ➎ ❨➀❇❉✮✯✫✴✳ ➉ ✿●✳✶✰✸✷s❦❻✳ ✻✽✬✺✧❊✧ ❃ ➄ ◗✪✈❃t★❩✇❩✽✈✚❭★❝♣❯❂q✇❣æ❭✙⑥✱❣⑧✼❘✸❘❫➁✢❅❋❣▲❭❛① ➂ ①❊⑤➟❙✒❨ ➓ ❯❳❩❫❨✹❣▲❭❛① ✦æ❙❞q❃❦❡❩✒❚✪❣ ② ①❃P❾① ✬ ❙✗❚❳❲✔◗❋❚✪❣❃❙✒❨▲✈☞❵❈① ➄ ❙✒♦❱❲❆❴❢♦❱♦❱◗❞❨✹❣ ➃ ✈❃♦❞①❡❣▲⑥❛✈❢✈❊❝❡♦❱❩✒❨❊➒➥⑦◗❞♦❱❦❡◗■q✇❣❃❘❢❘✹①✹⑧✪❸✲❘✪❿❃➁✽⑧✼q❃①⑧✼q❃①❯✒❯t✌❱✲✎✁✍✌❿✌✢✄⑦❉✬✯✩✑✬✯✫✴✳✶✿❅⑧❛✮⑨✵✾✐✲✮❊✰✲❃✔❃✺✳❏✩P✐✒①✠❤ ➎ ✦è➤s❚❳◗❞♦❱♦❞❣◆❭✙❙✒❲❆➐❊❚❳❝❥✈ ➓ ◗❫❣◆❤✥⑥✜❣➟⑧✼❘✸❘❫➁✽①⑧✒⑧❫①✔❹✏✝❤✎✌✡✑↕✼t✌✡✁✍✱❹♠✢❏✍❑➙➋✟✚⑥✱✗✑✇❑✙✸↕✼t✌✡❻✍✛✒➒✢❏✍❑✎✌✡✑☞➂➛❯↕✼➜❳✟☛✡❻✍✱➙➄✢❢➥✄❙✛♥❫◗❞♦❱❜✪❙✒❦❥❙✛❚✪①✣✦➠◗❞❜➔③➟①✗❚❳◗❞❘✹①❥❣❫❧♠❨❊❝❥♥❫◗■❚❳♦❱❝♣❯❂q❩✗❬æ➥✚❙✗♦❱③❢❝❡❨ ➓ ❯❳❩❫❨✹❣❢P✻◗■❘❊❯✪①❊❩✒❬✳❭★❩✒❲✔❘❢❴❊❯❳◗❋❚❛❵❃❜❞❝❡◗❞❨❊❜❞◗✜❙✒❨❢✈ ➃ ❨ ➓ ❝❡❨❊◗❞◗■❚❳❝❡❨ ➓ ❣❈➁✲q✲q❫⑩✽①⑧✪➁✽①✔❼s✟☛✇✏❾❳✙✸✇❑☎♦✍✆❿✑✢❏✍❅✎✌✡✑☞❜❚❭✎✌✡✑❱✸✗✘✎✌❲✘✍❭❨❜✢ ➃ ♥❻❩❫❦❡♥✽❝❡❨ ➓ ❭★❩❫❨✇❯❱❚❳❩❫❦✱❤✐◗❋❯➔❙✒➐◆❩❫❦❡❝❡♦❱❲✔♦✐❬➽❩✒❚Ý❙ ➄ ❩✒➐◆❩✒❯✪①❇❉✮✪✫✴✳ ➉ ✿●✳✶✰✸✷✛❦❻✳ ✻✽✬✔➎ ❃ ➁✲q✲q❃⑧ ❅❋❣➠⑧ ➍ ⑧❋❿❢⑧✽❘✸q✽①

137



Higher-order Chemical Programming Style

J.-P. Banâtre1, P. Fradet2 and Y. Radenac1

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
(jbanatre,yradenac)@irisa.fr

2 INRIA Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France
Pascal.Fradet@inria.fr

Abstract. The chemical reaction metaphor describes computation in
terms of a chemical solution in which molecules interact freely accord-
ing to reaction rules. Chemical solutions are represented by multisets of
elements and computation proceeds by consuming and producing new
elements according to reaction conditions and transformation rules. The
chemical programming style allows to write many programs in a very ele-
gant way. We go one step further by extending the model so that rewrite
rules are themselves molecules. This higher-order extension leads to a
programming style where the implementation of new features amounts
to adding new active molecules in the solution representing the system.

1 Introduction

The chemical reaction metaphor has been discussed in various occasions in the
literature. This metaphor describes computation in terms of a chemical solu-
tion in which molecules (representing data) interact freely according to reaction
rules. Chemical solutions are represented by multisets. Computation proceeds by
rewritings of the multiset which consume and produce new elements according
to reaction conditions and transformation rules.

To the best of our knowledge, the Gamma formalism was the first “chemical
model of computation” proposed as early as in 1986 [1] and later extended
in [2]. A Gamma program is a collection of reaction rules acting on a multiset of
basic elements. A reaction rule is made of a condition and an action. Execution
proceeds by replacing elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is obtained when a stable
state is reached, that is to say, when no reaction can take place any more. Figure 1
gives three short examples illustrating the Gamma style of programming. The

max = replace x, y by x if x > y

primes = replace x, y by y if multiple(x, y)
maj = replace x, y by{} if x 6= y

Fig. 1. Examples of Gamma programs

138



reaction max computes the maximum element of a non empty set. The reaction
replaces any couple of elements x and y such that x > y by x. This process
goes on till a stable state is reached, that is to say, when only the maximum
element remains. The reaction primes computes the prime numbers lower or
equal to a given number N when applied to the multiset of all numbers between
2 and N (multiple(x, y) is true if and only if x is multiple of y). The majority
element of a multiset is an element which occurs more than card(M)/2 times in
the multiset. Assuming that such an element exists, the reaction maj yields a
multiset which only contains instances of the majority element just by removing
pairs of distinct elements. Let us emphasize the conciseness and elegance of these
programs. Nothing had to be said about the order of evaluation of the reactions.
If several disjoint pairs of elements satisfy the condition, the reactions can be
performed in parallel.

Gamma makes it possible to express programs without artificial sequentiality.
By artificial, we mean sequentiality only imposed by the computation model and
unrelated to the logic of the program. This allows the programmer to describe
programs in a very abstract way. In some sense, one can say that Gamma pro-
grams express the very idea of an algorithm without any unnecessary linguistic
idiosyncrasies. The interested reader may find in [2] a long series of examples
(string processing problems, graph problems, geometry problems, . . . ) illustrat-
ing the Gamma style of programming and in [3] a review of contributions related
to the chemical reaction model.

This article presents a higher-order extension of the Gamma model where
all the computing units are considered as molecules reacting in a solution. In
particular, reaction rules are molecules which can react or be manipulated as
any other molecules. In Section 2, we exhibit a minimal higher-order chemical
calculus, called the γ-calculus, which expresses the very essence of chemical mod-
els. This calculus is then enriched with conditional reactions and the possibility
of rewriting atomically several molecules. This model suggests a programming
style where the implementation of new features amounts to adding new ac-
tive molecules in the solution representing the system. Section 3 illustrates the
characteristics of the model through the example of an autonomic mail system.
Section 4 concludes and suggests several research directions.

2 A minimal chemical calculus

In this section, we introduce a higher-order calculus, the γ0-calculus [4], that can
be seen as a formal and minimal basis for the chemical paradigm (in much the
same way as the λ-calculus is the formal basis of the functional paradigm).

2.1 Syntax and semantics

The fundamental data structure of the γ0-calculus is the multiset. Computation
can be seen either intuitively, as chemical reactions of elements agitated by
Brownian motion, or formally, as higher-order associative and commutative (AC)

139



rewritings of multisets. The syntax of γ0-terms (also called molecules) is given in
Figure 2. A γ-abstraction is a reactive molecule which consumes a molecule (its

M ::= x ; variable
| γ〈x〉.M ; γ-abstraction
| M1, M2 ; multiset
| 〈M〉 ; solution

Fig. 2. Syntax of γ0-molecules

argument) and produces a new one (its body). Molecules are composed using the
AC multiset constructor “,”. A solution encapsulates molecules (e.g., multiset)
and keeps them separate. It serves to control and isolate reactions.

The γ0-calculus bears clear similarities with the λ-calculus. They both rely
on the notions of (free and bound) variable, abstraction and application. A
λ-abstraction and a γ-abstraction both specify a higher-order rewrite rule. How-
ever, λ-terms are tree-like whereas the AC nature of the application operator “,”
makes γ0-terms multiset-like. Associativity and commutativity formalizes Brow-
nian motion and make the notion of solution necessary, if only to distinguish
between a function and its argument.

The conversion rules and the reduction rule of the γ0-calculus are gathered
in Figure 3. Chemical reactions are represented by a single rewrite rule, the γ-

(γ〈x〉.M), 〈N〉 −→γ M [x := N ] if Inert(N) ∨ Hidden(x,M) ; γ-reduction

γ〈x〉.M ≡ γ〈y〉.M [x := y] with y fresh ; α-conversion
M1, M2 ≡ M2, M1 ; commutativity
M1, (M2, M3) ≡ (M1, M2), M3 ; associativity

Fig. 3. Rules of the γ0-calculus

reduction, which applies a γ-abstraction to a solution. A molecule (γ〈x〉.M), 〈N〉
can be reduced only if:

Inert(N): the content N of the solution argument is a closed term made ex-
clusively of γ-abstractions or exclusively of solutions (which may be active),

or Hidden(x, M): the variable x occurs in M only as 〈x〉. Therefore 〈N〉 can be
active since no access is done to its contents.

140



So, a molecule can be extracted from its enclosing solution only when it has
reached an inert state. This is an important restriction that permits the order-
ing of rewritings. Without this restriction, the contents of a solution could be
extracted in any state and the solution construct would lose its purpose. Reac-
tions can occur in parallel as long as they apply to disjoint sub-terms. A molecule
is in normal form if all its molecules are inert.

Consider, for example, the following molecules:

w ≡ γ〈x〉.x, 〈x〉 Ω ≡ w, 〈w〉 I ≡ γ〈x〉.〈x〉
Clearly, Ω is an always active (non terminating) molecule and I an inert molecule
(the identity function in normal form). The molecule 〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x re-
duces as follows:

〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x −→ 〈Ω〉, γ〈y〉.I −→ I

The first reduction is the only one possible: the γ-abstraction extracts x from its
solution and 〈I〉 is the only inert molecule (Inert(I)∧¬Hidden(x, γ〈y〉.x)). The
second reduction is possible only because the active solution 〈Ω〉 is not extracted
but removed (¬Inert(Ω) ∧Hidden(y, I))

2.2 Two fundamental extensions

The γ0-calculus is a quite expressive higher-order calculus. However, compared to
the original Gamma [2] and other chemical models [5,6], it lacks two fundamental
features:

– Reaction condition. In Gamma, reactions are guarded by a condition that
must be fulfilled in order to apply them. Compared to γ0 where inertia
and termination are described syntactically, conditional reactions give these
notions a semantic nature.

– Atomic capture. In Gamma, any fixed number of elements can take part in
a reaction. Compared to a γ0-abstraction which reacts with one element at
a time, a n-ary reaction takes atomically n elements which cannot take part
in any other reaction at the same time.

These two extensions are orthogonal and enhance greatly the expressivity of
chemical calculi. So from now, we consider the γ-calculus extended with booleans,
integers, arithmetic and booleans operators, tuples (written x1: . . . :xn) and the
possibility of naming molecules (ident = M). Furthermore, γ-abstractions (also
called active molecules) can react according to a condition and can extract ele-
ments using pattern-matching. The syntax of γ-abstractions is extended to:

γP ⌊C⌋.M
where M is the action, C is the reaction condition and P a pattern extracting
the elements participating in the reaction. Patterns have the following syntax:

P ::= x | ω | ident = P | P, P | 〈P 〉
where

141



– variables (x) match basic elements (integers, booleans, tuples, ...),
– ω is a named wild card that matches any molecule (even the empty one),
– ident = P matches any molecule m named ident which matches P ,
– P1, P2 matches any molecule (m1, m2) such that m1 matches P1 and m2

matches P2,
– 〈P 〉 matches any solution 〈m〉 such that m matches P .

For example, the pattern Sol = 〈x, y, ω〉 matches any solution named Sol con-
taining at least two basic elements named x and y. The rest of the solution (that
may be empty) is matched by ω.

γ-abstractions are one-shot: they are consumed by the reaction. However,
many programs are naturally expressed by applying the same reaction an arbi-
trary number of times. We introduce recursive (or n-shot) γ-abstractions which
are not consumed by the reaction. We denote them by the following syntax:

replace P by M if C

Such a molecule reacts exactly as γP ⌊C⌋.M except than it remains after the
reaction and can be used as many times as necessary. If needed, they can be
removed by another molecule, thanks to the higher-order nature of the language.
If the condition C is true, we omit it in the definition of one-shot or n-shot
molecules.

A higher-order Gamma program is an unstable solution of molecules. The
execution of that program consists in performing the reactions (modulo A/C)
until a stable state is reached (no more reaction can occur).

3 Towards an autonomic mail system

In this section, we describe an autonomic mail system within the Gamma frame-
work. This example illustrate the adequacy of the chemical paradigm to the
description of autonomic systems.

3.1 General description: self-organization.

The mail system consists in servers, each one dealing with a particular ad-
dress domain, and clients sending their messages to their domain server. Servers
forward messages addressed to other domains to the network. They also get
messages addressed to their domain from the network and direct them to the
appropriate clients. The mail system (see Figure 4) is described using several
molecules:

– Messages exchanged between clients are represented by basic molecules whose
structure is left unspecified. We just assume that relevant information (such
as sender’s address, recipient’s address, etc.) can be extracted using appro-
priate functions (such as sender, recipient, senderDomain, etc.).

– Solutions named ToSenddi
contain the messages to be sent by the client i of

domain d.

142



– Solutions named Mboxdi
contain the messages received by the client i of

domain d.

– Solutions named Poold contain the messages that the server of domain d
must take care of.

– The solution named Network represents the global network interconnecting
domains.

– A client i in domain d is represented by two active molecules senddi
and

recvdi
.

– A server of a domain d is represented by two active molecules putd and getd.

A1
ToSend

A1
send

A1
recv

A1
Mbox

A2
ToSend A2

send

A2
recv

A2
Mbox

A3
send

A3
recv

APool

A3
ToSend

A3
Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

B

get

put Network

get

B

B

put

Pool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

Fig. 4. Mail system.

Clients send messages by adding them to the pool of messages of their domain.
They receive messages from the pool of their domain and store them in their
mailbox. The senddi

molecule sends messages of the client i (i.e., messages in
the ToSenddi

solution) to the client’s domain pool (i.e., the Poold solution).
The recvdi

molecule places the messages addressed to client i (i.e., messages in
the Poold solution whose recipient is i) in the client’s mailbox (i.e., the Mboxdi

solution).

Servers forward messages from their pool to the network. They receive mes-
sages from the network and store them in their pool. The putd molecule forwards
only messages addressed to other domains than d. The molecule get

d
extracts

messages addressed to d from the network and places them in the pool of do-
main d. The system is a solution, named MailSystem, containing molecules rep-
resenting clients, messages, pools, servers, mailboxes and the network. Figure 4
represents graphically the solution with five clients grouped into two domains A
and B and Figure 5 provides the definition of the molecules.

143



senddi
= replace ToSenddi

= 〈msg,ωt〉, Poold = 〈ωp〉
by ToSenddi

= 〈ωt〉, Poold = 〈msg,ωp〉

recvdi
= replace Poold = 〈msg,ωp〉, Mboxdi

= 〈ωb〉
by Poold = 〈ωp〉, Mboxdi

= 〈msg,ωb〉
if recipient(msg) = i

putd = replace Poold = 〈msg,ωp〉, Network = 〈ωn〉
by Poold = 〈ωp〉, Network = 〈msg,ωn〉

if recipientDomain(msg) 6= d

getd = replace Network = 〈msg,ωn〉, Poold = 〈ωp〉
by Network = 〈ωn〉, Poold = 〈msg,ωp〉
if recipientDomain(msg) = d

MailSystem = 〈 sendA1
, recvA1

, ToSendA1
= 〈. . .〉, MboxA1

= 〈. . .〉,
sendA2

, recvA2
, ToSendA2

= 〈. . .〉, MboxA2
= 〈. . .〉,

sendA3
, recvA3

, ToSendA3
= 〈. . .〉, MboxA3

= 〈. . .〉,
putA, getA, PoolA, Network, putB, getB, PoolB,

sendB1
, recvB1

, ToSendB1
= 〈. . .〉, MboxB1

= 〈. . .〉,
sendB2

, recvB2
, ToSendB2

= 〈. . .〉, MboxB2
= 〈. . .〉

〉

Fig. 5. Self-organization molecules.

3.2 Self-healing.

We now assume that a server may crash. To prevent the mail service from being
discontinued, we add an emergency server for each domain (see Figure 6). The

A1
ToSend

A1
send

A1
recv

A1
Mbox

A2
ToSend A2

send

A2
recv

A2
Mbox

A3
send

A3
recv

APool

A3
ToSend

A3
Mbox

1B

1B

2B

2B

send
1B

1B

2B

2B

A

A

put Network
BPool

ToSend

Mbox

ToSend

Mbox

send

recv

recv

PoolB’PoolA’

get

Up
A

put

get

DownIn

DownOut
B’

B’

B’

B’

Fig. 6. Highly-available mail system.

144



crashServerd = replace putd, getd, Upd

by putd′ , getd′ , DownInd, DownOutd

if failure(d)

repairServerd = replace putd′ , getd′ , DownInd, DownOutd

by putd, getd, Upd

if recover(d)

DownOutd = replace Poold = 〈msg,ωp〉, Poold′ = 〈ωn〉
by Poold = 〈ωp〉, Poold′ = 〈msg,ωn〉
if domain(msg) 6= d

DownInd = replace Poold = 〈ωp〉, Poold′ = 〈msg,ωn〉
by Poold = 〈msg,ωp〉, Poold′ = 〈ωn〉
if domain(msg) = d

Upd = replace Poold′ = 〈msg,ωp〉, Poold = 〈ωn〉
by Poold′ = 〈ωp〉, Poold = 〈msg,ωn〉

MailSystem = 〈. . . , UpA, UpB, Pool′A, Pool′B, crashServerA, repairServerA,

crashServerB, repairServerB〉

Fig. 7. Self-healing molecules.

emergency servers work with their own pool as usual but are active only when
the corresponding main server has crashed. The modeling of a server crash can be
done using the reactive molecules described in Figure 7. When a failure occurs,
the active molecules representing a main server are replaced by molecules repre-
senting the corresponding emergency server. The boolean failure denotes a (po-
tentially complex) failure detection mechanism. The inverse reaction repairServer
represents the recovery of the server.

The two molecules Up
d

and (DownInd, DownOutd) represent the state of
the main server d in the solution, but they are also active molecules in charge of
transferring pending messages from Poold to Poold′ ; then, they may be forwarded
by the emergency server.

The molecule DownOutd transfers all messages bound to another domain
than d from the main pool Poold to the emergency pool Poold′ . The molecule
DownInd transfers all messages bound to the domain d from the emergency pool
Poold′ to the main pool Poold.

After a transition from the Down state to the Up state, it may remain some
messages in the emergency pools. So, the molecule Upd brings back all the mes-
sages of the emergency pool Poold′ into the the main pool Poold to be then
treated by the repaired main server. In our example, self-healing can be im-
plemented by two emergency servers A′ and B′ and boils down to adding the
molecules of Figure 7 into the main solution.

145



Other self-management features have been developed in [7]: self-optimization
(by enabling the emergency server and load-balancing messages between it and
the main server), self-protection (detect and suppress spams) and self-configuration
(managing mobile clients).

Our description should be regarded as a high-level parallel and modular spec-
ification. It allows to design and reason about autonomic systems at an appropri-
ate level of abstraction. Let us emphasize the beauty of the resulting programs
which rely essentially on the higher-order and chemical nature of Gamma. A
direct implementation of this program is likely to be quite inefficient and further
refinements are needed; this is another exciting research direction, not tackled
here.

4 Conclusion

We have presented a higher-order multiset transformation language which can be
described using a chemical reaction metaphor. The higher-order property of our
model makes it much more powerful and expressive than the original Gamma [2]
or than the Linda language as described in [8]. In this article, we have shown the
fundamental features of the chemical programming paradigm. The γ0-calculus
embodies the essential characteristics (AC multiset rewritings) in only four syn-
tax rules. This minimal calculus has been shown to be expressive enough to
express the λ-calculus and a large class of non-deterministic programs [4]. How-
ever, in order to come close to a real chemical language, two extensions must be
considered: reaction conditions and atomic capture. With appropriate syntac-
tic sugar (recursion, constants, operators, pattern-matching, etc.), the extended
calculus can easily express most of the existing chemical languages.

In this higher-order model, molecules representing reaction rules can be seen
as catalysts that perform computations and implements new features. This pro-
gramming style has been illustrated by the example of an autonomic mail system
described as molecules and transformation rules. These rules may apply as soon
as a predefined condition holds without external intervention. In other words, the
system configures and manages itself to face predefined situations. Our chemical
mail system shows that our approach is well-suited to the high-level description
of autonomic systems. Reaction rules exhibit the essence of “autonomy” without
going into useless details too early in the development process.

An interesting research direction is to take advantage of these high-level
descriptions to carry out proofs of properties of autonomic systems (in the same
spirit as [9]). For example, “not losing any messages” would be an important
property to prove for our mail system. Another direction would be to extend our
language to prevent clumsy encodings (e.g., using advanced data structures and
others high-level facilities).

References

1. Banâtre, J.P., Le M�etayer, D.: A new computational model and its discipline of
programming. Technical Report RR0566, INRIA (1986)

146



2. Banâtre, J.P., Le M�etayer, D.: Programming by multiset transformation. Commu-
nications of the ACM (CACM) 36 (1993) 98–111

3. Banâtre, J.P., Fradet, P., Le M�etayer, D.: Gamma and the chemical reaction model:
Fifteen years after. In: Multiset Processing. Volume 2235 of LNCS., Springer-Verlag
(2001) 17–44

4. Banâtre, J.P., Fradet, P., Radenac, Y.: Principles of chemical programming. In:
RULE’04. ENTCS, Elsevier (2004) (to appear).

5. Le M�etayer, D.: Higher-order multiset programming. In (AMS), A.M.S., ed.: Proc.
of the DIMACS workshop on specifications of parallel algorithms. Volume 18 of
Dimacs Series in Discrete Mathematics. (1994)

6. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61 (2000) 108–143

7. Banâtre, J.P., Fradet, P., Radenac, Y.: Chemical specification of autonomic systems.
In: IASSE’04. (2004) (to appear).

8. Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM 32

(1989) 444–458
9. Barradas, H.: Systematic derivation of an operating system kernel in Gamma. Phd

thesis (in french), University of Rennes, France (1993)

147



Enabling Autonomic Applications: Models and

Infrastructure ⋆

Manish Parashar, Zhen Li, Hua Liu, Cristina Schmidt, Vincent Matossian and
Nanyan Jiang

The Applied Software Systems Laboratory
Rutgers University, Piscataway NJ 08904, USA,

parashar@caip.rutgers.edu

Abstract. The increasing complexity, heterogeneity and dynamism of
networks, systems and applications have made our computational and
information infrastructure brittle, unmanageable and insecure. This has
necessitated the investigation of a new paradigm for system and appli-
cation design, which is based on strategies used by biological systems
to deal with similar challenges of complexity, heterogeneity, and uncer-
tainty, i.e. autonomic computing. This paper introduces Project Auto-
Mate. The overall goal of Project AutoMate is to enable the development
and execution of self-managed autonomic Grid applications. It supports
the definition of autonomic elements, the development of autonomic ap-
plications as the dynamic and opportunistic composition of these auto-
nomic elements, and the policy, content and context driven definition,
execution and management of these applications. In this paper we in-
troduce the key components of AutoMate and describe their underlying
conceptual models and implementations.

1 Introduction

The emergence of pervasive wide-area distributed computing environments, such
as pervasive information systems and computational Grid, has enabled a new
generation of applications that are based on seamless access, aggregation and in-
teraction. For example, it is possible to conceive a new generation of scientific and
engineering simulations of complex physical phenomena that symbiotically and
opportunistically combine computations, experiments, observations, and real-
time data, and can provide important insights into complex systems such as
interacting black holes and neutron stars, formations of galaxies, and subsurface
flows in oil reservoirs and aquifers, etc. Other examples include pervasive ap-
plications that leverage the pervasive information Grid to continuously manage,

⋆ The research presented in this paper is supported in part by the National Sci-
ence Foundation via grants numbers ACI 9984357 (CAREERS), EIA 0103674
(NGS), EIA-0120934 (ITR), ANI-0335244 (NRT), CNS-0305495 (NGS) and by DOE
ASCI/ASAP (Caltech) via grant number 82-1052856.

148



adapt, and optimize our living context, crisis management applications that use
pervasive conventional and unconventional information for crisis prevention and
response, medical applications that use in-vivo and in-vitro sensors and actuators
for patient management, and business applications that use anytime-anywhere
information access to optimize profits.

However, the underlying computing environment is inherently large, com-
plex, heterogeneous and dynamic, globally aggregating large numbers of indepen-
dent computing and communication resources, data stores and sensor networks.
Furthermore, these emerging applications are similarly complex and highly dy-
namic in their behaviors and interactions. Together, these characteristics result
in application development, configuration and management complexities that
break current paradigms based on passive components and static compositions.
Clearly, there is a need for a fundamental change in how these applications are
developed and managed. This has led researchers to consider alternative pro-
gramming paradigms and management techniques that are based on strategies
used by biological systems to deal with complexity, dynamism, heterogeneity
and uncertainty. The approach, referred to as autonomic computing, aims at
realizing computing systems and applications capable of managing themselves
with minimum human intervention.

The overall goal of Project AutoMate is to investigate conceptual models
and implementation architectures that can enable the development and execu-
tion of such self-managed autonomic applications. Specifically, it investigates
programming models and frameworks and middleware services that support the
definition of autonomic elements, the development of autonomic applications as
the dynamic and opportunistic composition of these autonomic elements, and
the policy, content and context driven definition, execution and management of
these applications.

A schematic overview of AutoMate [1] is presented in Figure 1. In this paper,
we introduce AutoMate and its key components, and describe their underlying
conceptual models and implementations. Specfically, we describe the Accord
programming framework, the Rudder decentralized coordination framework and
deductive engine, and the Meteor content-based middleware providing support
for content-based routing, discovery and associative messaging. Project Auto-
Mate additionally includes the Sesame [6] context-based security infrastructure,
the DIAS self-protection service and the Discover/DIOS collaboratory services
[8], which are not discussed in this paper.

2 Accord, A Programming Framework for Autonomic

Applications

Accord programming framework [3] consists of four concepts: (1) an applica-
tion context that defines a common semantic basis for components and the ap-
plication, (2) definition of autonomic components as the basic building blocks
for an autonomic application, (3) definition of rules and mechanisms for the
management and dynamic composition of autonomic components, and (4) rule
enforcement to enable autonomic application behaviors.

149



Fig. 1. AutoMate Architecture

Application Context: Autonomic components should agree on common
semantics for defining and describing application namespaces, and component
interfaces, sensors and actuators. Using such a common context allows definition
of rules for autonomic management of components and dynamic composition and
interactions between the components. In Accord, functional and non-functional
aspects of components are described using an XML-based language.

Autonomic Component: An autonomic component is the fundamental
building block for an autonomic application. It extends the traditional defini-
tion of components to define a self-contained modular software unit of composi-
tion with specified interfaces and explicit context dependencies. Additionally, an
autonomic component encapsulates rules, constraints and mechanisms for self-
management and dynamically interacts with other components and the system.
An autonomic component shown in Figure 2 is defined by 3 ports:

– A functional port that defines the functional behaviors provided and used
by the component;

– A control port that defines a set of sensors and actuators exported by the
component for external monitoring and control, and a constraint set that
defines the access to and operation of the sensors/actuators based on state,
context and/or high-level access policies;

– An operational port that defines the interfaces to formulate, inject and man-
age the rules which are used to manage the component runtime behaviors.

These aspects enhance component interfaces to export information and poli-
cies about their behaviors, resource requirements, performance, interactivity and

150



Computational 
Component

Rule Agent

Operational Port

Functional Port

Control Port

Sensor 
invocation

Rule Agent

Internal 
state

Contextual 
events

rules

Actuator 
invocation

Autonomic Component

Fig. 2. An autonomic component

adaptability to system and application dynamics. An embedded rule agent mon-
itors the component’s state and controls the execution of rules. Rule agents co-
operate across application compositions to fulfill overall application objectives.

Rule Definition: Rules incorporate high-level guidance and practical hu-
man knowledge in the form of an IF-THEN expression. The condition part of a
rule is a logical combination of component/environment sensors and events. The
action part of a rule consists of a sequence of component/system sensor/actuator
invocations. A rule fires when its condition expression evaluates to be true and
the corresponding actions are executed. Two class of rules are defined: (1) Be-
havioral rules that control the runtime functional behaviors of an autonomic
component and (2) Interaction rules that control the interactions among compo-
nents, between components and their environment, and the coordination within
an autonomic application.

Rule Enforcement: Rules are injected into components at run time and
enable self-managing behavior for an autonomic application. Behavioral rules are
executed by a rule agent embedded within a single component without affecting
other components. Interaction rules define interactions among components. For
each interaction pattern, a set of interaction rules are defined and dynamically
injected into the interacting components. The coordinated execution of these
rules result in the realization of interaction and coordination behaviors between
the components.

The key concepts of Accord have been prototyped and evaluated in the con-
text of distributed scientific/engineering simulations as the part of the DIOS++
project [2]. In this prototype, computational objects were enhanced with sensors,
actuators and behavior rules. The objects can be dynamically created, deleted
or migrated, and rules can span multiple objects across multiple processors.

3 Rudder, An Agent-based Coordination Middleware

Rudder [4] is an agent-based middleware infrastructure for autonomic Grid ap-
plications. The goal of Rudder is to provide the core capabilities for supporting
autonomic compositions, adaptations, and optimizations. Specifically, Rudder
employs context-aware software agents and a decentralized tuple space coordi-
nation model to enable context and self awareness, application monitoring and

151



analysis, and policy definition and its distributed execution. Rudder effectively
supports the Accord programming framework and enables self-managing auto-
nomic applications. The overall architecture builds on two concepts:

– Context-aware agents provide context information at different system and
application levels to trigger autonomic behaviors. Agents can control, com-
pose and manage autonomic components, monitor and analyze system run-
time state, sense changes in environment and application requirements, dy-
namically define and enforce rules to locally enable component self-managing
behaviors.

– A robust decentralized reactive tuple space can scalably and reliably support
distributed agent coordination. It provides mechanisms for deploying and
routing rules, decomposing and distributing them to relevant agents, and
enforcing the interactions between components that are required for global
system and application properties to emerge.

Agent framework: The Rudder agent framework consists of three types
of peer agents: Component Agent (CA), System Agent (SA), and Composition
Agent (CSA). CA and SA exist as system services, while composition agents
are transient and are generated to satisfy specific application requirements. CAs
manage the computations performed locally within components and define inter-
action rules to specify component interaction and communication behaviors and
mechanisms. They are integrated with component rule agents to provide com-
ponents with uniform access to middleware services, control their functional and
interaction behaviors and manage their life cycles. SAs are embedded within Grid
resource units, exist at different levels of the system, and represent their collective
behaviors. CSAs enable dynamic composition of autonomic components by defin-
ing and executing workflow-selection and component-selection rules. Workflow-
selection rules are used to select appropriate composition plans to enact, which
are then inserted as reactive tuples into the tuple space. Component-selection
rules are used to semantically discover, and select registered components, allow-
ing tasks to optimize the execution and tolerate some failure in components,
connections, and hosts. CSAs negotiate to decide interaction patterns for a spe-
cific application workflow and coordinate with the associated component agents
to execute the interaction rules at runtime. This enables autonomic applications
to dynamically change flows, components and component interactions to address
application and system dynamics and uncertainty.

Decentralized tuple space: The Rudder decentralized reactive tuple space
(DRTS) provides the coordination service for distributed agents, and mecha-
nisms for rule definition, deployment and enforcement. Rudder extends the tra-
ditional tuple space with a distributed, guaranteed and flexible content-based
matching engine and reactive semantics to enable global coordination in dy-
namic and ad hoc agent communities. Runtime adaptive polices defined by
the context-aware agents can be inserted and executed using reactive tuples
to achieve coordinated application execution and optimized computational re-
source allocation and utilization. The DRTS builds on a resilient self-organizing

152



peer-to-peer content-based overlay, and supports the definition and execution of
coordination policies through programmable reactive behaviors. These behaviors
are dynamically defined using stateful reactive tuples. A reactive tuple consists
of three parts: (1) Condition associates reactions to triggering events, (2) Reac-
tion specifies the computation associated with the tuple’s reactive behavior, and
(3) Guard defines the execution semantics of the reactive behavior (e.g., immedi-
ately and once). Policies and constraints dynamically defined by administrators
or agents can be triggered and executed to satisfy specific application require-
ments (e.g., prevent undesired malicious operations to defend system integrity).
The current prototype of the DRTS builds on Meteor infrastructure decribed
below.

4 Meteor: A Content-based Middleware

Meteor [5] is a scalable content-based middleware infrastructure that provides
services for content routing, content discovery and associative interactions. A
schematic overview of the Meteor stack is presented in Figure 3. It consists of
3 key components: (1) a self-organizing overlay, (2) a content-based routing and
discovery infrastructure (Squid), and (3) the Associative Rendezvous Messaging
Substrate (ARMS). The Meteor overlay network is composed of Rendezvous

 

 

  

 

M
et

eo
r 

st
a
ck

 

P2P substrate (JXTA) 

Overlay network (e.g. Chord) 

Associative Rendezvous Messaging

Application

Content-based Routing (Squid)

Fig. 3. A schematic overview of the Meteor stack

Peer (RP) nodes, which may be access points or message forwarding nodes in
ad-hoc sensor networks and servers or end-user computers in wired networks. RP
nodes can join or leave the network at any time. The current Meteor overlay net-
work uses Chord to provide a single operation: lookup(identifier) which requires
an exact identifier from the layers above. Given an identifier, this operation lo-
cates the node that is responsible for it (e.g., the node with an identifier that
is the closest identifier greater than or equal to the queried identifier). However,
note that the upper layers of Meteor can work with different overlay structures.

153



Squid [7] is the Meteor content-based routing engine and decentralized infor-
mation discovery service. It support flexible content-based routing and complex
queries containing partial keywords, wildcards, and ranges, and guarantees that
all existing data elements that match a query will be found with bounded costs
in terms of number of messages and number of nodes involved. The key innova-
tion of Squid is the use of a locality preserving and dimension reducing indexing
scheme, based on the Hilbert Space Filling Curve (SFC), which effectively maps
the multidimensional information space to the peer identifier space. Squid effec-
tively maps complex queries consisting of keyword tuples (multiple keywords,
partial keywords, wildcards, and ranges) onto clusters of identifiers, and guaran-
tees that all peers responsible for identifiers in these clusters will be found with
bounded costs in terms of number of messages and the number of intermediate
RP nodes involved. Keywords can be common words or values of globally defined
attributes, depending on the nature of the application that uses Squid, and are
based on common ontologies and taxonomies.

The ARMS layer implements the Associative Rendezvous (AR) interaction
paradigm. AR is a paradigm for content-based decoupled interactions with pro-
grammable reactive behaviors. Rendezvous-based interactions provide a mech-
anism for decoupling senders and receivers. Senders send messages to a ren-
dezvous point without knowledge of which or where the receivers are. Similarly,
receivers receive messages from a rendezvous point without knowledge of which
or where the senders are. Note that senders and receivers may be decoupled in
both space and time. Such decoupled asynchronous interactions are naturally
suited for large, distributed, and highly dynamic systems such as pervasive Grid
environments.

AR extends the conventional name/identifier-based rendezvous in two ways.
First, it uses flexible combinations of keywords (i.e, keyword, partial keyword,
wildcards, ranges) from a semantic information space, instead of opaque identi-
fiers (names, addresses) that have to be globally known. Interactions are based
on content described by keywords, such as the type of data a sensor produces
(temperature or humidity) and/or its location, the type of functionality a ser-
vice provides and/or its QoS guarantees, and the capability and/or the cost of
a resource. Second, it enables the reactive behaviors at the rendezvous points
to be encapsulated within messages increasing flexibility and expressibility, and
enabling multiple interaction semantics (e.g. broadcast, multicast, notification,
publisher/subscriber, mobility, etc.).

At each Meteor RP, ARMS consists of two components: the profile manager
and the matching engine. Meteor messaging layer receives the application specific
profiles embedded as a header in the message. All communication from appli-
cations of information provider and consumer is carried out by executing the
post primitive, which includes in the outgoing message a sender-specified profile
in the header. It will also be encapsulated with data dependent on the applica-
tion to the messaging system; when the matched message is available from the
messaging system, it will be sent to the application for further processing. For
example, at the Associative Rendezvous Point, action(notify) will be executed
when information becomes available.

154



The current implementation of Meteor builds on Project JXTA and has been
deployed on a distributed testbed with about 100 nodes. Initial evaluations of
Meteor using simulations and the testbed demonstrate its scalability and effec-
tiveness as a paradigm for pervasive Grid environments.

5 Conclusion

In this paper, we introduced Project AutoMate and described its key compo-
nents. The overarching goal of AutoMate is to enable the development, deploy-
ment and management of autonomic self-managing applications in widely dis-
tributed and highly dynamic Grid computing environments. Specifically, Auto-
Mate provides conceptual and implementation models for the definition of auto-
nomic elements, the development of autonomic applications as the dynamic and
opportunistic composition of these autonomic elements, and the policy, content
and context driven definition, execution and management of these applications.

The core components of AutoMate have been prototyped and are being cur-
rently used to enable self-managing applications in science and engineering (e.g.
autonomic oil reservoir optimizations, autonomic runtime management of adap-
tive simulations, etc.) and to enable sensor-based pervasive applications. Fur-
ther information about AutoMate and its components can be obtained from
http://automate.rutgers.edu/.

References

1. Agarwal, M. and et all.: AutoMate: Enabling Autonomic Applications on the Grid.
In Proceedings of the 5th Annual International Active Middleware Services Workshop,
Seattle, WA, (2003).

2. Liu, H. and Parashar, M.: DIOS++: A Framework for Rule-Based Autonomic Man-
agement of Distributed Scientific Applications. International Conference on Parallel
and Distributed Computing,Klagenfurt, Austria, (2003).

3. Liu, H. and Parashar, M.: A Component Based Programming Framework for Au-
tonomic Applications. In Proceedings of the International Conference on Autonomic
Computing, New York, NY, (2004).

4. Li, Z. and Parashar, M.: Rudder: A Rule-based Multi-agent Infrastructure for Sup-
porting Autonomic Grid Applications. In Proceedings of the International Confer-
ence on Autonomic Computing, New York, NY, (2004).

5. Jiang, N., Schmidt, C., Matossian, V. and Parashar, M.:Content-based Middleware
for Decoupled Interactions in Pervasive Envionments, Technical Report Number-252,
Rutgers University, Wireless Information Network Laboratory (WINLAB),(2004).

6. Zhang, G. and Parashar, M.: Dynamic Context-aware Access Control for Grid Ap-
plications. In Proceedings of the 4th International Workshop on Grid Computing
(Grid 2003), IEEE Computer Society Press, Phoenix, AZ, (2003).

7. Schmidt, C. and Parashar, M.:Flexible Information Discovery in Decentralized Dis-
tributed Systems, In Proceedings of the 12th High Performance Distributed Comput-
ing (HPDC), Seattle, WA, (2003).

8. Bhat, V. and Parashar, M.:A Middleware Substrate for Integrating Services on the
Grid, Journal of Supercomputing, Special Issue on Infrastructures and Applications
for Cluster and Grid Computing Environments,(2004).

155



Grassroots Approach to Self-Management in
Large-Scale Distributed Systems⋆

Ozalp Babaoglu, Márk Jelasity⋆⋆, and Alberto Montresor

Department of Computer Science, University of Bologna, Italy

e-mail: babaoglu,jelasity,montreso@cs.unibo.it

Abstract. Traditionally, autonomic computing is envisioned as replacing the hu-

man factor in the deployment, administration and maintenance of computer sys-

tems that are ever more complex. Partly to ensure a smooth transition, the de-

sign philosophy of autonomic computing systems remains essentially the same as

traditional ones, only autonomic components are added to implement functions

such as monitoring, error detection, repair, etc. In this position paper we out-

line an alternative approach which we call “grassroots self-management”. While

this approach is by no means a solution to all problems, we argue that recent re-

sults from fields such as agent-based computing, the theory of complex systems

and complex networks can be efficiently applied to achieve important autonomic

computing goals, especially in very large and dynamic environments. Unlike in

traditional compositional design, the desired properties like self-healing and self-

optimization are not programmed explicitly but rather “emerge” from the local

interactions among the system components. Such solutions are potentially more

robust to failures, are more scalable and are extremely simple to implement. We

discuss the practicality of grassroots autonomic computing through the examples

of data aggregation, topology management and load balancing in large dynamic

networks.

1 Introduction

The desire to build fault tolerant computer systems with an intuitive and effi cient user

interface has always been part of the research agenda of computer science. Still, the

current scale and heterogeneity of computer systems is becoming alarming, especially

because our everyday life has come to depend on such systems to an increasing de-

gree. There is a general feeling in the research community that to cope with this new

situation—which emerged as a result of Moore’s Law, the widespread adoption of

the Internet and computing becoming pervasive in general—needs radically new ap-

proaches to achieve seamless and effi cient functioning of computer systems.

Accordingly, more and more effort is devoted to tackle the problem of self-manage-

ment. One of the most influential and widely publicized approach is IBM’s autonomic

computing initiative, launched in 2001 [8]. The term “autonomic”is a biological anal-

ogy referring to the autonomic nervous system. The function of this system in our body

⋆ This work was partially supported by the Future & Emerging Technologies unit of the Euro-

pean Commission through Projects BISON (IST-2001-38923) and DELIS (IST-001907).
⋆⋆ also with RGAI, MTA SZTE, Szeged, Hungary

156



is to control “routine” tasks like blood pressure, hormone levels, heart rate, breathing

rate, etc. At the same time, our conscious mind can focus on high level tasks like plan-

ning and problem solving. The idea is that autonomic computing should do just the

same: computer systems would take care of routine tasks themselves while system ad-

ministrators and users would focus on the actual task instead of spending most of their

time troubleshooting and tweaking their systems.

Since the original initiative, the term has been adopted by the wider research com-

munity although it is still strongly associated with IBM and, more importantly, IBM’s

specifi c approach to autonomic computing. It is somewhat unfortunate because the term

autonomic would allow for a much deeper and more far-reaching interpretation, as we

explain soon. In short, we should not only take it seriously what the autonomic nervous

system does but also how it does it. We believe that the remarkably successful self-

management of the autonomic nervous system, and biological organisms in general lies

exactly in the way they achieve this functionality. Ignoring the exact mechanisms and

stopping at the shallow analogy at the level of function description misses some impor-

tant possibilities and lessons that can be learned by computer science.

The meaning of “self”. The traditional approach to autonomic computing is to replace

human system administrators with software or hardware components that continuously

monitor some subsystem assigned to them, forming so called control loops [8] which

involve monitoring, knowledge based planning and execution (see Figure 1(a)). Biolog-

ical systems however achieve self-management and control through entirely different,

often fully distributed and emergent ways of processing information. In other words, the

usual biological interpretation of self-management involves no managing and managed

entities. There is often no subsystem responsible for self-healing or self-optimization;

instead, these properties simply follow from some simple local behavior of the compo-

nents typically in a highly non-trivial way. The term “self”is meant truly in a grassroots

sense, and we believe that this fact might well be the reason of many desirable prop-

erties like extreme robustness and adaptivity, with the additional benefi t of a typically

very simple implementation.

Trust. There are a few practical obstacles in the way of the deployment of grassroots

self-management. One is the entirely different and somewhat un-natural way of thinking

and the relative lack of understanding of the principles of self-organization and emer-

gence [11]. Accordingly, trust delegation represents a problem: psychologically it is

more relaxing to have a single point of control, an explicit controlling entity. In the case

of the autonomic nervous system we cannot do anything else but trust it, although prob-

ably many people would prefer to have more control, especially when things go wrong.

Indeed, the tendency in engineering is to try to isolate and create central units that are

responsible for a function. A good example is the car industry that gradually places

more and more computers into our cars that explictly control the different functions,

thereby replacing old and proven mechanisms that were based on some, in a sense, self-

optimizing mechanism (like the carburetor) and so also sacrifi cing the self-healing and

robustness features of these functions to some degree.

157



Decide

Resource

c
o
n
t
r
o
l

m
e
a
s
u
r
e

Resource

Grassroots Conceptual

(a) models of self-management

structured topology

T−Man, SG−1
data aggregation

load balancing
unstructured topology

newscast

monitoring

control

clustering

sortingsearch

(b) dependence relations between com-

ponents

Fig. 1. Conceptual models of self-management and composition.

Modularity. To exploit the power and simplicity of emergent behavior yet to ensure that

these mechanisms can be trusted and be incorporated in systems in an informed man-

ner, we believe that a modular paradigm is required. The idea is to identify a collection

of simple and predictable services as building blocks and combine them in arbitrarily

complex functions and protocols. Such a modular approach presents several attractive

features. Developers will be allowed to plug different components implementing a de-

sired function into existing or new applications, being certain that the function will

be performed in a predictable and dependable manner. Research may be focused on

the development of simple and well-understood building blocks, with a particular em-

phasis on important properties like robustness, scalability, self-organization and self-

management.

The goal of this position paper is to promote this idea by describing our preliminary

experiences in this direction. Our recent work has resulted in a collection of simple

and robust building blocks, which include data aggregation [6, 10], membership man-

agement [5], topology construction [4, 9] and load balancing [7]. Our building blocks

are typically no more complicated than a cellular automaton or a swarm model which

makes them ideal objects for research. Practical applications based on them can also

benefi t from a potentially more stable foundation and predictability, a key concern in

fully distributed systems. Most importantly, they are naturally self-managing, without

dedicated system components. In the rest of the paper, we briefly describe these com-

ponents.

2 A Collection of Building Blocks

Under the auspices of the BISON project [1], our recent activity has been focused on

the identifi cation and development of protocols for several simple basic functions. The

components produced so far can be informally subdivided into two broad categories:

overlay protocols and functional protocols. An overlay protocol is aimed at maintaining

158



do forever
wait(T time units)

p← GETPEER()
send s to p

sp ← receive(p)

s← UPDATE(s, sp)

(a) active thread

do forever
sp ← receive(*)

send s to sender(sp)

s← UPDATE(s, sp)

(b) passive thread

Fig. 2. The skeleton of a gossip-based protocol. Notation: s is the local state, sp is the state of the

peer p.

application-layer, connected communication topologies over a set of distributed nodes.

These topologies may constitute the basis for functional protocols, whose task is to

compute a specifi c function over the data maintained at nodes.

Our current bag of protocols includes: (i) protocols for organizing and manag-

ing structured topologies like super-peer based networks (SG-1 [9], grids and tori (T-

MAN [4]); (ii) protocols for building unstructured networks based on the random topol-

ogy (NEWSCAST [5]); (iii) protocols for the computation of a large set of aggregate

functions, including maximum and minimum, average, sum, product, geometric mean,

variance, etc [6, 10]; and (iv) a load balancing protocol [7].

The relationships between overlay and functional protocols may assume several

different forms. Topologies may be explicitly designed to optimize the performance

of a specifi c functional protocol (this is the case of NEWSCAST [5] used to maintain a

random topology for aggregation protocols). Or, a functional protocol may be needed to

implement a specifi c overlay protocol (in superpeer networks, aggregation can be used

to identify the set of superpeers).

All the protocols we have developed so far are based on the gossip-based para-

digm [2,3]. Gossip-style protocols are attractive since they are extremely robust to both

computation and communication failures. They are also extremely responsive and can

adapt rapidly to changes in the underlying communication structure, just by their nature,

without extra measures.

The skeleton of a generic gossip-based protocol is shown in Figure 2. Each node

possesses a local state and executes two different threads. The active one periodically

initiates an information exchange with a peer node selected randomly, by sending a

message containing the local state and waiting for a response from the selected node.

The passive one waits for messages sent by an initiator and replies with its local state.

Method UPDATE builds a new local state based on the previous local state and the

state received during the information exchange. The output of UPDATE depends on the

specifi c function implemented by the protocol. The local states at the two peers af-

ter an information exchange are not necessarily the same, since UPDATE may be non-

deterministic or may produce different outputs depending on which node is the initiator.

Even though our system is not synchronous, it is convenient to talk about cycles

of the protocol, which are simply consecutive wall clock intervals during which every

node has its chance of performing an actively initiated information exchange.

159



In the following we describe the components. Figure 1(b) illustrates the dependence

relations between them as will be described in the text as well.

2.1 Newscast

In NEWSCAST [5], the state of a node is given by a partial view, which is a set of peer

descriptors with a fi xed size c. A peer descriptor contains the address of the peer, along

with a timestamp corresponding to the time when the descriptor was created.

Method GETPEER returns an address selected randomly among those in the current

partial view. Method UPDATE merges the partial views of the two nodes involved in

an exchange and keeps the c freshest descriptors, thereby creating a new partial view.

New information enters the system when a node sends its partial view to a peer. In this

step, the node always inserts its own, newly created descriptor into the partial view. Old

information is gradually and automatically removed from the system and gets replaced

by new information. This feature allows the protocol to “repair” the overlay topology

by forgetting dead links, which by defi nition do not get updated because their owner is

no longer active.

In NEWSCAST, the overlay topology is defi ned by the content of partial views. We

have shown in [5] that the resulting topology has a very low diameter and is very close

to a random graph with out-degree c. According to our experimental results, choosing

c = 20 is already suffi cient for very stable and robust connectivity.

We have also shown that, within a single cycle, the number of exchanges per node

can be modeled by a random variable with the distribution 1 + Poisson(1). The impli-

cation of this property is that no node is more important (or overloaded) than others.

2.2 T-Man

Another component is T-MAN [4], a protocol for creating a large set of topologies. The

idea behind the protocol is very similar to that of NEWSCAST. The difference is that

instead of using the creation date (freshness) of descriptors, T-MAN applies a ranking

function that ranks any set of nodes according to increasing distance from a base node.

Method GETPEER returns neighbors with a bias towards closer ones, and, similarly, UP-

DATE keeps peers that are closer, according to the ranking.

Figure 3 illustrates the protocol, as it constructs a torus topology. In [4] it was shown

that the protocol converges in logarithmic time also for network sizes as large as 220

and for other topologies as well including the ring and binary tree topologies. With the

appropriate ranking function T-MAN can be also applied to sort a set of numbers.

This component, T-MAN, relies on another component for generating an initial ran-

dom topology which is later evolved into the desired one. In our case this service is

provided by NEWSCAST.

2.3 SG-1

SG-1 [9] is yet another component based on NEWSCAST, whose task is to self-organize

a superpeer-based network. This special kind of topology is organized through a two-

level hierarchy: nodes that are faster and/or more reliable than “normal” nodes take

160



after 3 cycles after 5 cycles after 8 cycles after 15 cycles

Fig. 3. Illustrative example of T-MAN constructing a torus over 50× 50 = 2500 nodes, starting

from a uniform random topology with c = 20. For clarity, only the nearest 4 neighbors (out of

20) of each node are displayed.

on server-like responsibilities and provide services to a set of clients. The superpeer

paradigm allows decentralized networks to run more effi ciently by exploiting hetero-

geneity and distributing load to machines that can handle the burden. On the other hand,

it does not inherit the flaws of the client-server model, as it allows multiple, separate

points of failure, increasing the health of large-scale networks.

In our model, each node is characterized by a capacity parameter, that defi nes the

maximum number of clients that can be served by a node. The task of SG-1 is to form

a network where the role of superpeers is played by the nodes with highest capacity.

All other nodes become clients of one or more superpeers. The goal is to identify the

minimal set of superpeers that are able to provide the desired quality of service, based

on their capacity.

In SG-1, NEWSCAST is used in two ways. First, it provides a robust underlying topol-

ogy that guarantee the connectivity of the network in spite of superpeer failures. Second,

NEWSCAST is used to maintain, at each node, a partial view containing a random sam-

ple of superpeers that are currently underloaded with respect to their capacity. At each

cycle, each superpeer s tries to identify a superpeer t that (i) has more capacity than

s, and (ii) is underloaded. If such superpeer exist and can be contacted, s transfers the

responsibility of parts of its clients to t. If the set of clients of s ends to be empty, s
becomes a client of t.

Experimental results show that this protocol converges to the target superpeer topol-

ogy in logarithmic time for network sizes as large as 106 nodes, producing very good

approximation of the target in a constant number of cycles.

2.4 Gossip-Based Aggregation

In the case of gossip-based aggregation [6, 10], the state of a node is a numeric value.

In a practical setting, this value can be any attribute of the environment, such as the

load or the storage capacity. The task of the protocol is to calculate an aggregate value

over the set of all numbers stored at nodes. Although several aggregate functions may

be computed by our protocol, in this paper provide only the details for the average

function.

161



In order to work, this protocol needs an overlay protocol that provides an implemen-

tation of method GETPEER. Here, we assume that this service is provided by NEWSCAST,

but any other overlay could be used.

To compute the average, method UPDATE(a, b) must return (a + b)/2. After one

state exchange, the sum of the values maintained by the two nodes does not change,

since they have just balanced their values. So the operation does not change the global

average either; it only decreases the variance over all the estimates in the system.

In [6] it was shown that if the communication topology is not only connected but

also suffi ciently random, at each cycle the empirical variance computed over the set

of values maintained by nodes is reduced by a factor whose expected value is 2
√

e.

Most importantly, this result is independent from the size of the network, showing the

extreme scalability of the protocol.

In addition to being fast, our aggregation protocol is also very robust. Node failures

may perturb the fi nal result, as the values stored in crashed nodes are lost; but both

analytical and empirical studies have shown that this effect is generally marginal [10].

As long as the overlay network remains connected, link failures do not modify the fi nal

value, they only slow down the aggregation process.

2.5 A Load-Balancing Protocol

The problem of load balancing is similar, to a certain extent, to the problem of aggre-

gation. Each node has a certain amount of load and the nodes are allowed to transfer

some portions of their load between themselves. The goal is to reach a state where each

node has the same amount of load. To this end, nodes can make decisions for sending

or receiving load based only on locally available information. Differently from aggre-

gation, however, the amount of load that can be transfered in a given cycle is bounded:

the transfer of a unit of load may be an expensive operation. In our present discussion,

we use the term quota to identify this bound and we denote it by Q. Furthermore, we

assume that the quota is the same at each node.

A simple, yet far from optimal idea for a completely decentralized algorithm could

be based on the aggregation mechanism illustrated above. Periodically, each node con-

tacts a random node among its neighbors. The loads of the two nodes are compared;

if they differ, a quantity q of load units is transfered from the node with more load to

the node with less load. q is clearly bounded by the quota Q and quantity of load units

needed to balance the nodes.

If the network is connected, this mechanism will eventually balance the load among

all nodes. Nevertheless, it fails to be optimal with respect to load transfers. The reason

is simple: if the loads of two nodes are both higher than the average load, transferring

load units from one to the other is useless. Instead, they should contact nodes whose

load is smaller than the average, and perform the transfer with them.

Our load-balancing algorithm is based exactly on this intuition. The nodes obtain an

estimate of the current average load through the aggregation protocol described above.

This estimate is the target load; based on its value, a node may decide if it is overloaded,

underloaded, or balanced. Overloaded nodes contact their underloaded neighbors in or-

der to transfer their excess load and underloaded nodes contact their overloaded neigh-

bors to perform the opposite operation. Nodes that have reached the target load stop

162



participating in the protocol. Although this was a simplifi ed description, it is easy to

see that this protocol is optimal with respect to load transfer, because each node trans-

fers exactly the amount of load needed to reach its target load. As we show in [7], the

protocol is also optimal with respect to speed under some conditions on the initial load

distribution.

3 Conclusions

In this abstract, we presented examples for simple protocols that exhibit self-managing

properties without any explicit management components or control loops; in other

words, without increased complexity. We argued that a modular approach might be

the way towards effi cient deployment of such protocols in large distributed systems. To

validate our ideas, we have briefly presented gossip based protocols as possible building

blocks: topology and membership management (T-MAN, SG-1 and NEWSCAST), aggre-

gation, and load balancing.

References

1. The Bison Project. http://www.cs.unibo.it/bison .

2. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,

and D. Terry. Epidemic algorithms for replicated database management. In Proceedings of

the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC’87), pages

1–12, Vancouver, August 1987. ACM.

3. P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. Epidemic information

dissemination in distributed systems. IEEE Computer, 37(5):60–67, May 2004.

4. M. Jelasity and O. Babaoglu. T-Man: Fast gossip-based construction of large-scale over-

lay topologies. Technical Report UBLCS-2004-7, University of Bologna, Department of

Computer Science, Bologna, Italy, May 2004.

5. M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast computing. Technical Report IR-

CS-006, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The

Netherlands, November 2003.

6. M. Jelasity and A. Montresor. Epidemic-style proactive aggregation in large overlay net-

works. In Proceedings of The 24th International Conference on Distributed Computing Sys-
tems (ICDCS 2004), pages 102–109, Tokyo, Japan, March 2004. IEEE Computer Society.

7. M. Jelasity, A. Montresor, and O. Babaoglu. A modular paradigm for building self-

organizing peer-to-peer applications. In G. Di Marzo Serugendo, A. Karageorgos, O. F.

Rana, and F. Zambonelli, editors, Engineering Self-Organising Systems, number 2977 in

Lecture Notes in Artificial Intelligence, pages 265–282. Springer, 2004.

8. J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, January 2003.

9. A. Montresor. A robust protocol for building superpeer overlay topologies. In Proceedings
of the 4th IEEE International Conference on Peer-to-Peer Computing, Zurich, Switzerland,

August 2004. IEEE. To appear.

10. A. Montresor, M. Jelasity, and O. Babaoglu. Robust aggregation protocols for large-scale

overlay networks. In Proceedings of The 2004 International Conference on Dependable
Systems and Networks (DSN), pages 19–28, Florence, Italy, June 2004. IEEE Computer So-

ciety.

11. J. M. Ottino. Engineering complex systems. Nature, 427:399, January 2004.

163



Autonomic Runtime System for Large Scale Parallel and Distributed 
Applications 

 

Huoping Chen, Byoung uk Kim, Jingmei Yang, and Salim Hariri 

Dept. of Electrical and Computer Engineering 

University of Arizona, Tucson AZ 

Email: hariri@ece.arizona.edu 

 

Manish Parashar 

Dept. of Electrical & Computer Engineering 

Rutgers, The State University of New Jersey 

94 Brett Road, Piscataway, NJ 08854 

Email: parashar@caip.rutgers.edu 

 

 

Abstract 

 

This paper presents a novel autonomic runtime system framework for addressing the fundamental 

challenges of scale and complexity inherent in emerging Grids and their applications. The autonomic 

framework is inspired by the approach used by biological systems to address similar challenges of scale 

and complexity. It will be used to develop and deploy self-managing autonomic runtime solutions and 

application/system components that are capable of continuously monitoring, adapting, and optimizing 

behaviors based on the runtime state and dynamically changing requirements. The runtime solutions will 

enable scalable and robust realizations of scientific and engineering simulations that will achieve 

unprecedented scales and resolutions and will provide important insights into complex phenomena, 

enabling revolutionary advances in science and engineering. Our approach to implement this framework 

is based on a collection of autonomous modules (e.g., agents, managers) that provide four basic services 

(self-management, self-optimizing, self-protecting and self-healing) that are essential to achieve the 

required autonomic operations. In this paper, we will describe the overall architecture of the autonomic 

runtime system and  show how this system can self-optimize the computations of a large scale fire 

propagation simulations. Our initial results show significant performance gains can be achieved with the 

system exploit both the spatial and temporal characteristics of application states as well as the states of the 

underlying computing and communication resources. 

 

164

mailto:hariri@ece.arizona.edu
mailto:parashar@caip.rutgers.edu


 

1. Introduction  
 

The Grids introduce a new set of challenges due to their scale and complexity. These systems will be 

constructed hierarchically with computational, communication, and storage heterogeneity across its levels. 

In capacity mode, these systems will be shared amongst users, resulting in highly dynamic runtime 

behaviors due to the sharing of processors, memories, and communication channels. Most currently used 

programming models and system software build on the abstraction of flat processor topologies and flat 

memories, resulting in intractable programming complexities, unmanageable codes, and applications that 

can achieve only a fraction of the system’s peak performance. Furthermore, as the system approach 

petascales, the probability of failure of system components during the lifetime of an application quickly 

becomes a reality. As a result, reliability and fault tolerance become an increasing concern. 

 

In addition to the system challenges, multiphysics simulation codes and the phenomena they model are 

similarly large complex, multi-phased, multi-scale, dynamic, and heterogeneous (in time, space, and state). 

They implement various numerical algorithms, physical constitutive models, domain discretizations, 

domain partitioners, communication/interaction models, and a variety of data structures. Codes are 

designed with parameterization in mind, so that numerical experiments may be conducted by changing a 

small set of inputs. The choices of algorithms and models have performance implications which are not 

typically known a priori. Advanced adaptive solution techniques, such as variable step time integrators 

and adaptive mesh refinement, add a new dimension to the complexity - the application realization 

changes as the simulation proceeds. This dynamism poses a new set of application development and 

runtime management challenges. For example, component behaviors and their compositions can no 

longer be statically defined. Further, their performance characteristics can no longer be derived from a 

small synthetic run as they depend on the state of the simulations and the underlying system. Algorithms 

that worked well at the beginning of the simulation become suboptimal as the solution deviates from the 

space the algorithm was optimized for.  

 

The application and system challenges outlined above represent a level of complexity, heterogeneity, 

and dynamism that is rendering our programming environments and infrastructure brittle, unmanageable, 

and insecure. This, coupled with real-life constraints and the mathematical and scientific intricacies of 

future simulation codes (an increase in computing power will engender a commensurate increase in the 

expectations of what might be achieved with them), indicates that there needs to be a fundamental change 

in how these applications are formulated and managed on a large system. It is this fundamental change 

that we seek to identify and realize in this proposed research. 

This paper presents a novel Autonomic Runtime System (ARS) to address the challenges of scale and 

complexity that is based on using autonomous agents for continuous runtime monitoring, estimation, 

analysis, and adaptation. The ARS provides the required key services to support autonomic control and 

management of Grid applications and systems. Specifically, ARS services include application/system 

monitoring and modeling, policy definition and enforcement, dynamic application composition, 

adaptation, fault management, and optimization. 

The organization of the paper is as follows. In Section 2, we give a brief overview of related works. In 

Section 3, we discus the architecture of the ARS and the algorithms to implement its main services. In 

Section 4, we discuss the fire propagation simulation that will be used to benchmark and evaluate the 

performance gains that can be achieved by using the ARS self-optimization service. In Section 5, we 

discuss the experimental environment and results. In Section 6, we summarize the paper and discuss 

future research direction. 

 

1. Previous Studies and Related Work 
The related efforts [1,2,6,7,14,24,25,33,34,37,38,44] can be grouped into the following two areas of 

(a) autonomic frameworks and adaptive runtime systems, and (b) component-based software for large 

parallel scientific simulations are discussed below. 

  

 

 

 

165



 

Autonomic Frameworks and Adaptive Runtime Systems: The prototype Autonomia [3,16] and 

AutoMate [4,5,21,23,28,29,30,39,40,45,46] autonomic runtimes are proof-of-concept prototypes for the 

autonomic runtime system that will be developed as part of this research. These systems demonstrate, 

both, the feasibility and the effectiveness of the autonomic approach. Autonomia provides an agent-based 

framework of autonomic management while AutoMate provides key services for the autonomic 

formulation, composition, and runtime management of large applications. The proposed research will 

build on these experiences and will develop and deploy an integrated autonomic runtime for petascale 

systems. 

The Pragma [11,20,41,42,47,48] and ARMaDA [8,9,12,13] adaptive runtime management, 

partitioning, and load-balancing frameworks developed by the PIs support proactive and reactive 

management of dynamic (adaptive mesh refinement) applications. The systems provide capabilities for 

runtime system characterization and abstraction, application characterization, active control, and policy 

definition. Reactive system partitioning [41] uses system state to select and configure distribution 

strategies and parameters at runtime. Application aware partitioning [9,12,13,42,43] uses current runtime 

state to characterize the adaptive application in terms of its computation/communication requirements, its 

dynamics, and the nature of adaptations, and selects and configures the appropriate partitioner that 

matches current application requirements. Proactive runtime partitioning [47] strategies are based on 

performance prediction functions and estimate the expected performance of a particular application 

distribution.  

These systems will be used to define policies for autonomic runtime management as well as to 

construct a suite of autonomic self-optimizing computational components. GridARM [10,18,19] is a 

prototype of such an autonomic partitioning framework. It optimizes the performance of structured 

adaptive mesh refinement (SAMR) applications. The framework has 3 components: (1) services for 

monitoring resource capabilities and application dynamics and characterizing the monitored state into 

natural regions – i.e., regions with relatively uniform structures and requirements; (2) deduction engine 

and objective function that define the appropriate optimization strategy based on runtime state and 

policies; and (3) the autonomic runtime manager that is responsible for hierarchically partitioning, 

scheduling, and mapping application working-sets onto virtual resources, and tuning application 

execution within the Grid environment. The adaptation schemes within GridARM include application 

aware partitioning [9], adaptive hierarchical partitioning [20], system sensitive partitioning [41], 

architecture sensitive communication mechanisms, and workload sensitive load balancing. GridARM has 

been shown to significantly improve applications’ performance [10]. 

Autonomic Component/Object Framework: DIOS++ [22,32] is an infrastructure for enabling rule-

based autonomic adaptation and control of distributed scientific applications and is a conceptual prototype 

of the Accord autonomic component architecture that will be developed as part of this proposal. DIOS++ 

provides (1) abstractions for enhancing existing application objects with sensors and actuators for runtime 

interrogation and control, (2) a control network that connects and manages the distributed sensors and 

actuators, and enables external discovery, interrogation, monitoring and manipulation of these objects at 

runtime, and (3) a distributed rule engine that enables the runtime definition, deployment, and execution 

of rules for autonomic application management. The DIOS++ framework, along with the Discover 

[15,17,26,27,31,32,35,36] computational collaboratory, is currently being used to enable autonomic 

monitoring and control of a wide range of scientific applications including oil reservoir, compressible 

turbulence, and numerical relativity simulations.  

 

3. Autonomic Runtime System Architecture  
 

The Autonomic Runtime System (ARS) exploits the temporal and heterogeneous characteristics of the 

scientific computing applications, and the architectural characteristics of the petascale computing and 

storage resources available at runtime to achieve high-performance, scalable, and robust scientific 

simulations that previously were not possible or ever attempted. ARS provides appropriate control and 

management services to deploy and configure the required software and hardware resources to run 

  

 

 

 

166



 

autonomically (e.g., self-optimize, self-heal) large scale scientific Grid applications. The ARS 

architecture is shown in Figure 1. 

The ARS can be viewed as an application-based operating system that provides applications with all 

the services and tools required to achieve the desired autonomic behaviors (self-configuring, self-healing, 

self-optimizing, and self-protection). A proof of concept prototype of ARS has been successfully 

developed by the PIs involved in this project. The primary modules of ARS are the following: 

Application Information and Knowledge (AIK) Repository: The AIK repository stores the application 

information status, the application requirements, and knowledge about optimal management strategies for 

both applications and system resources that have proven to be successful and effective. In addition, AIK 

contains the Component Repository (CR) that stores the components that are currently available for the 

users to compose their applications. 

Event Server: The Event server receives events from the component managers that monitor 

components and systems and then notifies the corresponding engines subscribed to these events.  

Autonomics Middleware 

Services (Self-Configuration, Self-

Optimization, Self-healing, etc.): 

These runtime services maintain 

the autonomic properties of 

applications and system resources 

at runtime. To simplify the control 

and management tasks, we dedicate 

one runtime service for each 

desired attribute or functionality 

such as self-healing, self-

optimizing, self-protection, etc. The 

event series notifies the appropriate 

runtime service whenever its events 

become true.  

Monitoring Service: There are 

two kinds of monitoring services: 

Resource Monitoring Service and 

Component Monitoring Service. 

Resource Monitoring Service 

(RMS) monitors the workload information and performance metrics at system level, which includes three 

parts: CPU/memory information, disk I/O information, and network information. Component Monitoring 

Service (CMS) defines a general interface for the autonomic components. Through the interface, the 

component can expose its status data such as execution time and current state as defined by the autonomic 

component architecture to CMS. 

Application Management EditorUser’s  Application

Event Server Coordinator

Monitoring 

&Analysis 

Engine

Scheduling

Engine

Planning

Engine

AIK Repository
�ACA Specifications 

� Policy

� Component State 

� Resource StatePolicy Engine

Self ProtectingSelf OptimizingSelf HealingSelf Configuring

Autonomic Middleware Services

CRM: 

Component 

Runtime 

Manager

VEE: Virtual 

Execution 

Environment

VEE(App1) VEE(Appn)VEE(App2)

…

Application Runtime 

Manager (ARM)

Know-

ledge

High Performance Computing Environment (HPCE)

Autonomic Runtime System

ACAm

ACA2

ACA3

ACA3

ACA1 ACA2

ACA3

ACA1 ACA2

ACAj

CRM

ACA1

Computational 

Component

…
…

Figure 1. Autonomic Runtime System 

Application Runtime Manager (ARM): The ARM performs online monitoring to collect the status 

and state information using the component sensors. It analyzes component behaviors and when detecting 

any anomalies or state changes (for example, degradation in performance, component failure), ARM takes 

the appropriate control and management actions as specified in its control policy. 

Autonomic Middleware Services (AMS) 

The AMS provides four important services: Self-configuring, Self-optimizing; Self-protecting; and 

Self-healing. In this paper, we will focus on the self-optimizing service. The overall self-management 

algorithm is shown in Figure 2. The state of each active component is monitored by the Component 

Runtime Manager (CRM) monitors to determine if there is any severe deviation from the desired state 

(steps 1-3). When an unacceptable change occurs in the component behavior, CRM generates an event 

into the Event Server, which notifies ARM (step 4-6). Furthermore, CRM analyzes the event and 

determines the appropriate plan to handle that event (step 7 and step 8) and then executes the appropriate 

self-management routines (steps 9-10). However, if the problem cannot be handled by CRM, the ARM is 

  

 

 

 

167



 

  

 

 

 

invoked to take the appropriate management functions (steps 12-13) at a higher granularity (e.g., migrate 

the components to another machine due to failure or degradation in performance). 

The self-management algorithm defines the main activities that must be performed to achieve 

autonomic behaviors of applications as well as system resources. In what follow, we describe the 

development the self-optimization service and use the fire simulation as a running example.  

 

1 While (Component ACAi is running) do 

2 State = CRMi Monitoring (ACAi) 

3 State_Deviation = State_Compare(State, DESIRED_STATE) 

4 If (state_deviation == TRUE) 

5  CRMi Send_Event(State) 

6  Event Server Notify ARM 

7  Event_Type = CRM_Analysis (State) 

8       If (CRMi ABLE) Then 

8   Actions = CRM_Planning(State, Event_Type) 

9   Autonomic_Service ASj ∈ {ASconfig,ASheal,ASoptimization,ASsecurity} 

10   Execute ASj (Actions) 

11  Else 

12   Actions = ARM_Analysis (State, Event_Type) 

13   Execute Asj (Actions) 

14      EndIf 

15 EndIf 

16 EndWhile 

Figure 2: Self Management Algorithm 

3.1 Forest Fire Simulation – Running Example 

The forest fire simulation model could be used to locate area of potential wildfires, predict the spread of 

wildfires based on both static conditions, such as vegetation conditions, and dynamic conditions, such as 

wind direction and speed, and help disaster coordinators to make the best use of available resources when 

fighting a wildfire.  Our fire simulation model is based on fireLib [49] which is a C function library for 

predicting the spread rate and intensity of free-burning wildfires. It is derived directly from the BEHAVE 

[50] fire behavior algorithms for predicting fire spread in two dimensions, but is optimized for highly 

iterative applications such as cell- or wave-based fire growth simulation.  

 

In our fire simulation model, the forest is represented as a 2-D cell-space composed of cells of dimensions 

l x b (l: length, b:  breadth). For each cell there are eight major wind directions N, NE, NW, S, SE, SW, E, 

W as shown below. The weather and vegetation conditions are assumed to be uniform within a cell, but 

may vary in the entire cell space. A cell interacts with its neighbors along all the eight directions as shown 

below.  
 

 
When a cell is ignited, its state will change from “unburned” to “burning”. During the “burning” phase, 

the fire will propagate to its eight neighbors along the eight directions. . The direction and the value of the 

Figure 3: Fire directions after ignition

168



 

maximum fire spread rate within the burning cell is computed using Rothermel’s fire spread model [51], 

which takes into account the wind speed and direction, the vegetation type, the fuel moisture and terrain 

type, such as slope and aspect, in calculating the fire spread rate. The fire behavior in eight compass 

directions including the spread rate, the time for fire to spread to eight neighbors, and the flame length 

could be determined using the elliptical growth model developed by Anderson [52]. When the fire 

propagates to one neighbor, the neighbor cell will ignite and its state will change from “unburned” to 

“burning”. With different terrain, vegetation and weather conditions, the fire propagation could form 

different spread patterns within the whole region.  

 

We extended the sequential fire simulation program from [49] to work with multiple processors using 

MPI. This parallel version partitions the entire cell space among multiple processors and each processor 

works on its own part and exchange the necessary data with each other after each time step.  Below is the 

pseudo code for the parallel version of our forest fire simulation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

169



 

 

 

 

1. All processors read their parts of cells from the partitioning data 

2. Initialize the cell conditions including fuel bed and fuel particle characteristics, wind speed and 

direction, slope and aspect, and fuel moisture 

3. Set up the first ignition cell 

4. WHILE there are more cells that can ignite AND fire does not reach the edge of the whole space

1) Set the current time with the next cell ignition time 

2) INCREMENT the time step 

3) FOR each cell within its part, each processor do 

a) IF the cell is not the next cell to ignite, THEN 

Continue   //Skip this cell  

END IF 

b) IF the cell is on the edge, THEN 

Set the edge flag to 1 to indicate the fire has reached the edge 

END IF 

c) Calculate the direction and the value of the maximum spread rate of the fire 

within this cell; 

d) Change the cell state from “unburned” to “burning” 

e) FOR each neighbor of this cell  

IF this neighbor’s position exceed the whole space, THEN 

Continue  //Skip this neighbor 

END IF  

   END FOR 

f) Calculate the flame length and the time when fire spread to this neighbor 

g) IF the ignition time of this neighbor is greater than this fire spread time, 

THEN 

Update the ignition time of this neighbor with this fire spread time  

 END IF 

h) IF the next cell ignition time is greater than this fire spread time, THEN 

Update the next cell ignition time with this fire spread time 

  END IF 

END FOR 

4) Each processor exchanges the ignition time and state changes of cells within its part 

with other processors and updates the ignition time of cells with the minimum value 

5) Each processor exchanges the next cell ignition time with other processors and 

updates it with the minimum value 

6) Each processor exchanges the edge flag with other processors and set it to 1 

whichever processor set it to 1 

7) IF it is output time, THEN 

Output the cell state changes since last output time 

END IF 

8) IF the repartitioning flag is set, THEN 

 Read the repartitioning data 

Unset the repartition flag 

END IF 

END WHILE 

5. Save the ignition map and flame length maps to files 

Figure 4. Parallel Forest Fire Simulation. 

 

  

 

 

 

170



 

3.2 Self-Optimization Service 

3.21 Online Monitoring and Analysis  

 There are two types of monitoring services. One collects information about the component/task state 

and another one to monitor the physical resource status such as CPU utilization, number of processes, 

available memory etc. Based on the current states of the application and the system resources, the analysis 

engine determine whether or not the current allocation of the applications components/tasks need to be 

changed. For example, if the current allocation leads to sever imbalance conditions among the processors 

running the application components, the online planning and scheduling is invoked to adopt the allocation 

in order to improve the application performance.    

3.2.2 Online planning and Scheduling 

 The online planning engine partitions the forest fire simulation domain into two Natural Regions 

(NRs): Burning and Unburned regions where each region has the same temporal and spatial 

characteristics. In our planning algorithm, we use Z-curve to translate the two-dimension cell location into 

one dimension address to maintain the cell location adjacency.  The Z-Curve is named for the ‘Z’ pattern 

that is traced when you access sequential objects from the database.  An object Z-value is determined by 

interleaving the bits of its x and y coordinates, and then translating the resulting number into a decimal 

value.  This new value is the index to be used to locate that object. Once the planning engine partitions the 

cells into two natural  regions: Burning and Unburned regions and order them according to their z values 

such that the adjacent cells will be assigned to the same processor. The next step is to schedule these cells 

to processors by taking into consideration the state of the application (number of burning and unburned 

cells) and current load on the machines involved in the application execution. 

 The scheduling algorithm is shown in Figure 5. The scheduling algorithm will be triggered only 

when the load imbalance increases above a given threshold. In our approach, the online monitoring and 

analysis that monitors will set the partitioning flag once that event becomes true which in turn triggers the 

scheduling algorithm (Step 1 in the algorithm shown in Figure 5). In order to take into consideration both 

the system load (Step 2), and application state (number of burning and unburned cells (Step 3)). Once that 

is done, the execution time of a burning cell is estimated on each processor as well as the overall average 

execution time (Step 4). Based on these estimates, we can estimate the appropriate processor load ratio 

that will eliminate the imbalance conditions (Steps 5-6). Once the processor load ration (PLR) is 

determined, we use this ration to partition the current application load on all the processors (Step 7-8).   

 

 

 

 

 

  

 

 

 

171



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cell scheduling algorithm 

 

4. Experimental Results 

We are currently evaluating the performance of our algorithm on a cluster of workstations. The 

preliminary results indicate that a significant performance can be gained by exploiting the application and 

resources states at runtime.  

 

1 While Schedule_Flag is true Do 

2  Get System State 

N = Number of Processors   

 _ ( )
i

System Load t , Ni ,...,2,1=∀  

3 Get Cell Application State ( ( )BNR t , ( )UBNR t ) 

       
1

( ) _ ( )

N

B i

i

NR t B Cell t
=

=∑   // Number of burning cells running on processor i 

1

( ) _ ( )

N

UB i

i

NR t UB Cell t
=

=∑  // Number of unburned cells running on processor i 

Ni ,...,2,1=∀  

4 Estimate Burning cell execution time on each processor ( )(_ tt
iCellB ) and 

average execution time ( )(__ tt CellBavg )  

  1

__ *)(_)( CellBiiCellB ttLoadSystemtt = ,  

//
1

_ CellBt : Execution time of one burning cell with system load 1 

  
_

1

_ _

( )

( )

N

B Cell i

i

avg B Cell

t t

N
t t ==

∑
,  Ni ,...,2,1=∀  

5 Estimate Processor Allocation Factor (PAF) 

  _ _

_

( )

( )
( )

avg B Cell

B Cell i

i

t t

t t
PAF t = , Ni ,...,2,1=∀  

6 Estimate Processor Load Ratio (PLR) 

  

1

( )

( )

( ) i

N

i

i

i

PAF t

PAF t

PLR t

=

=
∑

, Ni ,...,2,1=∀  

7 Estimate Application Partition Ratio (APR) 

  _ ( ) ( ) ( )
B UB

Application Load t NR t NR t= +  

  ( ) _ ( ) * ( )
i i

APR t Application Load t PLR t=  , Ni ,...,2,1=∀   

8 For i = 1, to Number_of_processor do 

  Assign the cells in BNR  and UBNR  according to APRi (t) 

 End For 

End While 

 

 

172



 

References 

 

[1] Agent Building and Learning Environment, http://www.alphaworks.ibm.com/tech/able, IBM. 

[2] The Anthill project, http://www.cs.unibo.it/projects/anthill/index.html. 

[3] AUTONOMIA: An Autonomic Computing Environment, http://www.ece.arizona.edu/~hpdc/-

projects/AUTONOMIA/. 

[4] Agarwal, M., V. Bhat, et al. (2003). AutoMate: Enabling Autonomic Applications on the Grid. 

Proceedings of the Autonomic Computing Workshop, 5th Annual International Active Middleware 

Services Workshop (AMS2003), Seattle, WA, IEEE Computer Society Press. 

[5] Agarwal, M. and M. Parashar (2003). Enabling Autonomic Compositions in Grid Environments. 

Proceedings of the 4th International Workshop on Grid Computing (Grid 2003), Phoenix, AZ, 

IEEE Computer Society Press. 

[6] Beynon, M. D., T. Kurc, et al. (2001). "Distributed Processing of Very Large Datasets with 

DataCutter." Journal of Parallel Computing 27(11): 1457-1478. 

[7] Bramley, R., K. Chiu, et al. (2000). A Component Based Services Architecture for Building 

Distributed Applications. 9th IEEE International Symposium on High Performance Distributed 

Computing Conference, Pittsburgh, PA. 

[8] Chandra, S. and M. Parashar (2001). An Evaluation of Partitioners for Parallel SAMR Applications. 

Proceedings of the 7th International Euro-Par Conference (Euro-Par 2001), Springer-Verlag. 

[9] Chandra, S. and M. Parashar (2002). ARMaDA: An Adaptive Application-Sensitive Partitioning 

Framework for SAMR Applications. Proceedings of the 14th IASTED International Conference on 

Parallel and Distributed Computing and Systems (PDCS 2002), Cambridge, MA, ACTA Press. 

[10] Chandra, S., M. Parashar, et al. (2003). GridARM: An Autonomic Runtime Management 

Framework for SAMR Applications in Grid Environments. Proceedings of the Autonomic 

Applications Workshop, 10th International Conference on High Performance Computing (HiPC 

2003), Hyderabad, India, Elite Publishing. 

[11] Chandra, S., S. Sinha, et al. (2002). Adaptive Runtime Management of SAMR Applications. 

Proceedings of the 9th International Conference on High Performance Computing (HiPC 2002), 

Bangalore, India, Springer-Verlag. 

[12] Chandra, S., J. Steensland, et al. (2001). Adaptive Application Sensitive Partitioning Strategies for 

SAMR Applications. Denver, CO, Poster publication at IEEE/ACM Supercomputing 2001. 

[13] Chandra, S., J. Steensland, et al. (2001). An Experimental Study of Adaptive Application Sensitive 

Partitioning Strategies for SAMR Applications. Proceedings of the 2nd LACSI (Los Alamos 

Computer Science Institute) Symposium 2001, Santa Fe, NM. 

[14] Chaudhuri, S. AutoAdmin: Self-Tuning and Self-Administering Databases, 

http://research.microsoft.com/research/dmx/autoadmin, Microsoft Research Center. 

[15] Chen, J., D. Silver, et al. (2003). Real Time Feature Extraction and Tracking in a Computational 

Steering Environment. Proceedings of the 11th High Performance Computing Symposium (HPC 

2003), International Society for Modeling and Simulation, Orlando, FL. 

[16] Hariri, S., L. Xue, et al. (2003). Autonomia: An Autonomic Computing Environment. Proceedings 

of the 2003 IEEE International Conference on Performance, Computing, and Communications. 

[17] Jiang, L., H. Liu, et al. (2004). Rule-based Visualization in a Computational Steering Collaboratory. 

Proceedings of the International Workshop on Programming Paradigms for Grid and 

Metacomputing Systems, International Conference on Computational Science 2004 (ICCS 2004), 

Krakow, Poland. 

[18] Khargharia, B., S. Hariri, et al. (2003). vGrid: A Framework for Development and Execution of 

Autonomic Grid Applications. Proceedings of the Autonomic Applications Workshop, 10th 

International Conference on High Performance Computing (HiPC 2003), Hyderabad, India, Elite 

Publishing. 

[19] Khargharia, B., S. Hariri, et al. (2003). vGrid: A Framework for Building Autonomic Applications. 

Proceedings of the 1st International Workshop on Challenges for Large Applications in Distributed 

Environments (CLADE 2003), Seattle, WA, Computer Society Press. 

  

 

 

 

173



 

[20] Li, X. and M. Parashar (2003). Dynamic Load Partitioning Strategies for Managing Data of Space 

and Time Heterogeneity in Parallel SAMR Applications. Proceedings of 9th International Euro-Par 

Conference (Euro-Par 2003), Klagenfurt, Austria, Springer-Verlag. 

[21] Li, Z. and M. Parashar (2004). Rudder: A Rule-based Multi-agent Infrastructure for Supporting 

Autonomic Grid Applications. Proceedings of The International Conference on Autonomic 

Computing, New York, NY. 

[22] Liu, H. and M. Parashar (2003). DIOS++: A Framework for Rule-Based Autonomic Management 

of Distributed Scientific Applications. Proceedings of the 9th International Euro-Par Conference 

(Euro-Par 2003), Lecture Notes in Computer Science, Klagenfurt, Austria, Springer-Verlag. 

[23] Liu, H. and M. Parashar (2004). A Component Based Programming Framework for Autonomic 

Applications. Submitted to the International Conference on Autonomic Computing (ICAC-04). 

[24] Lohman, G. M. and S. Lightstone (2002). SMART: Making DB2 (More) Autonomic. Very Large 

Data Bases Conference (VLDB'02). 

[25] Lu, Q., M. Parashar, et al. (2003). "Parallel Implementation of Multiphysics Multiblock 

Formulations for Multiphase Flow in Subsurface." submitted for publication to Parallel Computing, 

Elsevier Publishers. 

[26] Mann, V., V. Matossian, et al. (2001). "DISCOVER: An Environment for Web-based Interaction 

and Steering of High-Performance Scientific Applications." Concurrency and Computation: 

Practice and Experience 13(8-9): 737-754. 

[27] Mann, V. and M. Parashar (2002). "Engineering an Interoperable Computational Collaboratory on 

the Grid." Concurrency and Computation: Practice and Experience, Special Issue on Grid 

Computing Environments 14(13-15): 1569-1593. 

[28] Matossian, V., V. Bhat, et al. (2003). "Autonomic Oil Reservoir Optimization on the Grid." 

accepted for publication in Concurrency and Computation: Practice and Experience, John Wiley 

and Sons. 

[29] Matossian, V. and M. Parashar (2003). Autonomic Optimization of an Oil Reservoir using 

Decentralized Services. Proceedings of the 1st International Workshop on Challenges for Large 

Applications in Distributed Environments (CLADE 2003), Seattle, WA, Computer Society Press. 

[30] Matossian, V. and M. Parashar (2003). Enabling Peer-to-Peer Interactions for Scientific 

Applications on the Grid. Proceedings of the 9th International Euro-Par Conference (Euro-Par 

2003), Klagenfurt, Austria, Springer-Verlag. 

[31] Muralidhar, R., S. Kaur, et al. (2000). An Architecture for Web-based Interaction and Steering of 

Adaptive Parallel/Distributed Applications. Proceedings of the 6th International Euro-Par 

Conference (Euro-Par 2000), Springer-Verlag. 

[32] Muralidhar, R. and M. Parashar (2003). "A Distributed Object Infrastructure for Interaction and 

Steering." Concurrency and Computation: Practice and Experience, Special Issue Euro-Par 2001 

15(10): 957-977. 

[33] Parashar, M. and J. C. Browne (2000). "System Engineering for High Performance Computing 

Software: The HDDA/DAGH Infrastructure for Implementation of Parallel Structured Adaptive 

Mesh Refinement." IMA: Structured Adaptive Mesh Refinement (SAMR) Grid Methods 117: 1-18. 

[34] Parashar, M., J. C. Browne, et al. (1997). A Common Data Management Infrastructure for Parallel 

Adaptive Algorithms for PDE Solutions. Proceeding of Supercomputing '97 (ACM Sigarch and 

IEEE Computer Society), San Jose, CA, online publication, IEEE Computer Society Press. 

[35] Parashar, M., G. v. Laszewski, et al. (2002). "A CORBA Commodity Grid Kit." Grid Computing 

Environments, Special Issue of Concurrency and Computations: Practice and Experience 14(13-

15): 1057-1074. 

[36] Parashar, M., R. Muralidhar, et al. "Enabling Interactive Oil Reservoir Simulations on the Grid." 

Concurrency and Computation: Practice and Experience, John Wiley and Sons. 

[37] Parashar, M., J. A. Wheeler, et al. (1997). A New Generation EOS Compositional Reservoir 

Simulator: Framework and Multiprocessing. Proceedings of the Society of Petroleum Engineers, 

Reservoir Simulation Symposium, Paper No. 37977, Dallas, TX. 

  

 

 

 

174



 

  

 

 

 

[38] Parashar, M. and I. Yotov (1998). An Environment for Parallel Multi-Block, Multi-Resolution 

Reservoir Simulations. Proceedings of the 11th International Conference on Parallel and 

Distributed Computing Systems (PDCS 98), Chicago, IL, International Society for Computers and 

their Applications (ISCA). 

[39] Schmidt, C. and M. Parashar (2003). Flexible Information Discovery in Decentralized Distributed 

Systems. Proceedings of the 12th International Symposium on High Performance Distributed 

Computing, Seattle, WA, IEEE Computer Society Press. 

[40] Schmidt, C. and M. Parashar (2003). A Peer to Peer Approach to Web Service Discovery. 

Accepted for publication Proceedings of the 2003 International Conference on Web Service (ICWS 

'03), Las Vegas, NV, Computer Science Research, Education and Applications (CSREA). 

[41] Sinha, S. and M. Parashar (2002). "Adaptive System-Sensitive Partitioning of AMR Applications 

on Heterogeneous Clusters." Cluster Computing: The Journal of Networks, Software Tools, and 

Applications 5(4): 343-352. 

[42] Steensland, J., S. Chandra, et al. (2002). "An Application-Centric Characterization of Domain-

Based SFC Partitioners for Parallel SAMR." IEEE Transactions on Parallel and Distributed 

Systems 13(12): 1275-1289. 

[43] Steensland, J., M. Thune, et al. (2000). Characterization of Domain-based Partitioners for Parallel 

SAMR Applications. Proceedings of the IASTED International Conference on Parallel and 

Distributed Computing Systems (PDCS'00), Las Vegas, NV, ACTA Press. 

[44] Wang, P., I. Yotov, et al. (1997). A New Generation EOS Compositional Reservoir Simulator: 

Formulation and Discretization. Proceedings of the Society of Petroleum Engineers, Reservoir 

Simulation Symposium, Paper No. 37979, Dallas, TX. 

[45] Zhang, G. and M. Parashar (2003). Dynamic Context-aware Access Control for Grid Applications. 

Proceedings of the 4th International Workshop on Grid Computing (Grid 2003), Phoenix, AZ, 

IEEE Computer Society Press. 

[46] Zhang, G. and M. Parashar (2004). Context-aware Dynamic Access Control for Pervasive 

Applications. Accepted for publication in the Proceedings of  the Communication Networks and 

Distributed Systems Modeling and Simulation Conference (CNDS 2004),  2004 Western 

MultiConference (WMC), San Diego, CA. 

[47] Zhang, Y., J. Yang, et al. (2004). Autonomic Proactive Runtime Partitioning Strategies for SAMR 

Applications. Proceedings of the NSF Next Generation Software Systems (NGS) Program 

Workshop, held in conjunction with IPDPS 2004, Santa Fe, NM. 

[48] Zhu, H., M. Parashar, et al. (2003). Self Adapting, Self Optimizing Runtime Management of Grid 

Applications Using PRAGMA. Proceedings of the NSF Next Generation Systems Program 

Workshop, IEEE/ACM 17th International Parallel and Distributed Processing Symposium, Nice, 

France, IEEE Computer Society Press. 

[49] http://www.fire.org 

[50] Andrews, Patricia L. BEHAVE: fire behavior prediction and fuel modeling system – BURN 

Subsystem, part 1. General Technical Report INT-194. Ogden, UT: U.S. Department of 

Agriculture, Forest Service, Intermountain Research Station; 1986. 130 p. 

[51] Rothermel, Richard C. A mathematical model for predicting fire spread in wildland fuels. Research 

Paper INT-115. Ogden,UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest 

and Range Experiment Station; 1972. 40 p. 

[52] Anderson, Hal E. Predicting wind-driven wildland fire size and shape. Research Paper INT-305. 

Ogden,UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range 

Experiment Station; 1983. 26 p. 

175

http://www.fire.org/


●❡♥❡r❛t✐✈❡ Pr♦❣r❛♠♠✐♥❣ ❢r♦♠ ❛ ❉❙▲ ❱✐❡✇♣♦✐♥t

❈❤❛r❧❡s ❈♦♥s❡❧

■◆❘■❆✴▲❛❇❘■
❊◆❙❊■❘❇ ✕ ✶✱ ❛✈❡♥✉❡ ❞✉ ❞♦❝t❡✉r ❆❧❜❡rt ❙❝❤✇❡✐t③❡r✱

❉♦♠❛✐♥❡ ✉♥✐✈❡rs✐t❛✐r❡ ✲ ❇P ✾✾
✸✸✹✵✷ ❚❛❧❡♥❝❡ ❈❡❞❡①✱ ❋r❛♥❝❡

❝♦♥s❡❧❅❧❛❜r✐✳❢r ❤tt♣✿✴✴❝♦♠♣♦s❡✳❧❛❜r✐✳❢r

✶ ■♥tr♦❞✉❝t✐♦♥

❆ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ❧❛♥❣✉❛❣❡ ✭❉❙▲✮ ✐s t②♣✐❝❛❧❧② ❝r❡❛t❡❞ t♦ ♠♦❞❡❧ ❛ ♣r♦❣r❛♠ ❢❛♠✲
✐❧② ❬✶❪✳ ❚❤❡ ❝♦♠♠♦♥❛❧✐t✐❡s ❢♦✉♥❞ ✐♥ t❤❡ t❛r❣❡t ♣r♦❣r❛♠ ❢❛♠✐❧② s✉❣❣❡st ❛❜str❛❝✲
t✐♦♥s ❛♥❞ ♥♦t❛t✐♦♥s t❤❛t ❛r❡ ❞♦♠❛✐♥ s♣❡❝✐✜❝✳ ■♥ ❝♦♥tr❛st ✇✐t❤ ❣❡♥❡r❛❧✲♣✉r♣♦s❡
❧❛♥❣✉❛❣❡s ✭●P▲✮✱ ❛ ❉❙▲ ✐s r❡❛❞❛❜❧❡ ❢♦r ❞♦♠❛✐♥ ❡①♣❡rts✱ ♦❢t❡♥ ❝♦♥❝✐s❡✱ ❛♥❞ ✉s✉✲
❛❧❧② ❞❡❝❧❛r❛t✐✈❡✳ ❆s ❛♥ ✐❧❧✉str❛t✐♦♥✱ ❝♦♥s✐❞❡r ❛ ♣r♦❣r❛♠ ❢❛♠✐❧② ❛✐♠❡❞ t♦ ❝♦♠✲
♠✉♥✐❝❛t❡ ❞❛t❛ ✐♥ ❛ ❞✐str✐❜✉t❡❞ ❤❡t❡r♦❣❡♥❡♦✉s s②st❡♠✳ ❙✉❝❤ ❛ ❧❛②❡r ✐s ❝♦♠♠♦♥❧②
♥❡❡❞❡❞ ✐♥ ❛ ✈❛r✐❡t② ♦❢ ❞✐str✐❜✉t❡❞ ❛♣♣❧✐❝❛t✐♦♥s ❛♥❞ r❡❧✐❡s ♦♥ ❛ ♠❡❝❤❛♥✐s♠ ❧✐❦❡
t❤❡ ❙✉♥ ❘❡♠♦t❡ Pr♦❝❡❞✉r❡ ❈❛❧❧ ✭❘P❈✮ ❬✷❪✳ ❚❤❡ ❳❉❘ ❧❛②❡r ♦❢ t❤❡ ❙✉♥ ❘P❈
❝♦♥s✐sts ♦❢ ♠❛rs❤❛❧✐♥❣ ❛♥❞ ✉♥✲♠❛rs❤❛❧✐♥❣ ❜♦t❤ ❛r❣✉♠❡♥ts ❛♥❞ r❡t✉r♥❡❞ ✈❛❧✉❡
t♦✴❢r♦♠ ❛ ♠❛❝❤✐♥❡✲✐♥❞❡♣❡♥❞❡♥t ❢♦r♠❛t✳ ❚❤❡ ♣r♦❣r❛♠ ❢❛♠✐❧②✱ r❡♣r❡s❡♥t❡❞ ❜② ❛❧❧
t❤❡ ♣♦ss✐❜❧❡ ✭✉♥✲✮♠❛rs❤❛❧✐♥❣ ✈❛r✐❛t✐♦♥s✱ ❤❛s ❧❡❛❞ t♦ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❛ ❉❙▲
t❤❛t ❛❧❧♦✇s ❛ ♣r♦❣r❛♠♠❡r t♦ ❝♦♥❝✐s❡❧② ❡①♣r❡ss t❤❡ t②♣❡ ♦❢ t❤❡ r❡♠♦t❡ ♣r♦❝❡❞✉r❡
❛r❣✉♠❡♥ts ❛♥❞ r❡t✉r♥❡❞ ✈❛❧✉❡✱ ❛♥❞ t♦ ♦❜t❛✐♥ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♠❛rs❤❛❧✐♥❣ ❧❛②❡r
♦♥ ❜♦t❤ t❤❡ ❝❧✐❡♥t ❛♥❞ s❡r✈❡r s✐❞❡s✳

❋r♦♠ ❛ ❉❙▲ ✈✐❡✇♣♦✐♥t✱ ❣❡♥❡r❛t✐✈❡ ♣r♦❣r❛♠♠✐♥❣ ❬✸❪ ♣r♦✈✐❞❡s ❛ ✈❛r✐❡t② ♦❢
❛♣♣r♦❛❝❤❡s ❛♥❞ t❡❝❤♥✐q✉❡s t♦ ♣r♦❞✉❝❡ ❛♥❞ ♦♣t✐♠✐③❡ ❛ ❉❙▲ ✐♠♣❧❡♠❡♥t❛t✐♦♥ s✉❝❤
❛s t❤❡ ♠❛rs❤❛❧✐♥❣ ❧❛②❡r ✐♥ t❤❡ ❳❉❘ ❝❛s❡✳

❖✉t❧✐♥❡✳ ❙❡❝t✐♦♥ ✷ ❞✐s❝✉ss❡s ❤♦✇ ❣❡♥❡r❛t✐✈❡ t♦♦❧s ❝❛♥ ❜❡ ✉s❡❞ t♦ ❝♦♠♣✐❧❡ ❉❙▲
♣r♦❣r❛♠s ✐♥t♦ ●P▲ ♣r♦❣r❛♠s✱ ❢r♦♠ ❛ ❉❙▲ ✐♥t❡r♣r❡t❡r✳ ❲❤❡♥ ❝♦♠♣✐❧❡❞ ✐♥t♦ ❛
●P▲✱ ❛ ❉❙▲ ♣r♦❣r❛♠ ❝❛♥ ❜❡ ♣r♦❝❡ss❡❞ ❜② ❡①✐st✐♥❣ ❣❡♥❡r❛t✐✈❡ t♦♦❧s ❢♦r ✈❛r✐✲
♦✉s ♣✉r♣♦s❡s✱ ✐♥❝❧✉❞✐♥❣ ♦♣t✐♠✐③❛t✐♦♥✱ ✐♥str✉♠❡♥t❛t✐♦♥ ❛♥❞ ✈❡r✐✜❝❛t✐♦♥✳ ■♥ t❤✐s
❝♦♥t❡①t✱ t❤❡ ❣❡♥❡r❛t✐✈❡ t♦♦❧s ❛r❡ ❞r✐✈❡♥ ❜② ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ✐♥❢♦r♠❛t✐♦♥ t❤❛t ✐s
tr❛♥s❧❛t❡❞ ✐♥t♦ ❞✐✛❡r❡♥t ❢♦r♠s✿ ❞❡❝❧❛r❛t✐♦♥s ✭❙❡❝t✐♦♥ ✸✮✱ ❛♥♥♦t❛t✐♦♥s ✭❙❡❝t✐♦♥ ✹✮✱
❛♥❞ ♠❡t❛✲♣r♦❣r❛♠s ✭❙❡❝t✐♦♥ ✺✮✳ ■♥ ❡ss❡♥❝❡✱ t❤❡s❡ ❢♦r♠s ❡♥❛❜❧❡ ❛ ❉❙▲ t♦ ❜❡
✐♥t❡r❢❛❝❡❞ ✇✐t❤ ❡①✐st✐♥❣ ❣❡♥❡r❛t✐✈❡ t♦♦❧s✳

✷ ❍✐❣❤✲▲❡✈❡❧ ❈♦♠♣✐❧❛t✐♦♥

❙♦♠❡ ❧❡✈❡❧ ♦❢ ❝♦♠♣✐❧❛t✐♦♥ ❝❛♥ ❜❡ ❛❝❤✐❡✈❡❞ ❜② s♣❡❝✐❛❧✐③✐♥❣ ❛♥ ✐♥t❡r♣r❡t❡r ✇✐t❤
r❡s♣❡❝t t♦ ❛ ❉❙▲ ♣r♦❣r❛♠✳ ❚r❛❞✐t✐♦♥❛❧❧②✱ t❤✐s ❛♣♣r♦❛❝❤ ❤❛s ❜❡❡♥ ✉s❡❞ t♦ ❣❡♥❡r❛t❡

176



✷

❝♦♠♣✐❧❡rs ❢r♦♠ ❞❡♥♦t❛t✐♦♥❛❧✲st②❧❡ ❧❛♥❣✉❛❣❡ ❞❡✜♥✐t✐♦♥s ❬✹✱ ✺❪✳ ❚❤✐s ❛♣♣r♦❛❝❤ ✇❛s
❧❛t❡r ♣r♦♠♦t❡❞ ❜② ❈♦♥s❡❧ ❛♥❞ ▼❛r❧❡t ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❉❙▲s✱ ✇❤❡r❡ t❤❡ ❧❛♥❣✉❛❣❡
✉s❡r ❜❛s❡ ♦❢t❡♥ ❢♦r❜✐❞s ♠❛❥♦r ❝♦♠♣✐❧❡r ❞❡✈❡❧♦♣♠❡♥t✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ❤✐❣❤✲❧❡✈❡❧
♥❛t✉r❡ ♦❢ ❉❙▲s ❢❛❝✐❧✐t❛t❡s t❤❡ ✐♥tr♦❞✉❝t✐♦♥ ♦❢ ♦♣t✐♠✐③❛t✐♦♥s✳

❆♥ ❡①❛♠♣❧❡ ♦❢ s✉❝❤ ❛ ❝♦♠♣✐❧❛t✐♦♥ str❛t❡❣② ✇❛s ✉s❡❞ ❢♦r ❛ ❉❙▲✱ ♥❛♠❡❞ P❧❛♥✲
P✱ ❛✐♠❡❞ t♦ s♣❡❝✐❢② ❛♣♣❧✐❝❛t✐♦♥✲s♣❡❝✐✜❝ ♣r♦t♦❝♦❧s ✭❡✳❣✳✱ str❡❛♠✲s♣❡❝✐✜❝ ❞❡❣r❛✲
❞❛t✐♦♥ ♣♦❧✐❝✐❡s✮ t♦ ❜❡ ❞❡♣❧♦②❡❞ ♦♥ ♣r♦❣r❛♠♠❛❜❧❡ r♦✉t❡rs ❬✻❪✳ Pr♦❣r❛♠ s♣❡❝✐❛❧✲
✐③❛t✐♦♥ ✇❛s ✉s❡❞ ❛t r✉♥ t✐♠❡ t♦ ❛❝❤✐❡✈❡ t❤❡ ❡✛❡❝t ♦❢ ❛ ❏✉st ■♥ ❚✐♠❡ ❝♦♠♣✐❧❡r✱
❜② s♣❡❝✐❛❧✐③✐♥❣ t❤❡ P❧❛♥✲P ✐♥t❡r♣r❡t❡r ✇✐t❤ r❡s♣❡❝t t♦ ❛ P❧❛♥✲P ♣r♦❣r❛♠✳ ❚❤❡
r❡s✉❧t✐♥❣ ❝♦♠♣✐❧❡❞ ♣r♦❣r❛♠s r✉♥ ✉♣ t♦ ✺✵ t✐♠❡s ❢❛st❡r t❤❛♥ t❤❡✐r ✐♥t❡r♣r❡t❡❞
❝♦✉♥t❡r♣❛rts ❬✻❪✳ ■♠♣♦rt❛♥t❧②✱ s✉❝❤ ❧❛t❡ ❝♦♠♣✐❧❛t✐♦♥ ♣r♦❝❡ss ❡♥❛❜❧❡❞ t❤❡ s❛❢❡t②
❛♥❞ s❡❝✉r✐t② ♦❢ ♣r♦❣r❛♠s t♦ ❜❡ ❝❤❡❝❦❡❞ ❛t t❤❡ s♦✉r❝❡ ❧❡✈❡❧ ❜② t❤❡ ♣r♦❣r❛♠♠❛❜❧❡
r♦✉t❡rs✱ ❜❡❢♦r❡ ❜❡✐♥❣ ❞❡♣❧♦②❡❞✳ ❚❤❡ ✉s❡ ♦❢ s♣❡❝✐❛❧✐③❛t✐♦♥ ❛❧❧♦✇❡❞ t♦ ❛❝❤✐❡✈❡ ❧❛t❡
❝♦♠♣✐❧❛t✐♦♥ ✇✐t❤♦✉t r❡q✉✐r✐♥❣ ❛♥② s♣❡❝✐✜❝ ❞❡✈❡❧♦♣♠❡♥t✱ ❜❡s✐❞❡s ✇r✐t✐♥❣ t❤❡ ✐♥✲
t❡r♣r❡t❡r✳

❆t ❛ ❧♦✇❡r ❧❡✈❡❧✱ ♠❡t❛✲♣r♦❣r❛♠♠✐♥❣ ♣r♦✈✐❞❡s ❛♥ ❛❧t❡r♥❛t✐✈❡ ❛♣♣r♦❛❝❤ t♦ ❞❡✲
r✐✈✐♥❣ ❛ ❝♦♠♣✐❧❡r ❢r♦♠ ❛♥ ✐♥t❡r♣r❡t❡r ❬✼✱ ✽❪✳ ❚❤✐s ❛♣♣r♦❛❝❤ ✐♥✈♦❧✈❡s ❛ ❝❛r❡❢✉❧
❛♥♥♦t❛t✐♦♥✱ ❛♥❞ s♦♠❡t✐♠❡s r❡✲str✉❝t✉r✐♥❣✱ ♦❢ t❤❡ ✐♥t❡r♣r❡t❡r✳

✸ ❋r♦♠ ❛ ❉❙▲ Pr♦❣r❛♠ t♦ ❉❡❝❧❛r❛t✐♦♥s

❆ ❦❡② ❢❡❛t✉r❡ ♦❢ t❤❡ ❉❙▲ ❛♣♣r♦❛❝❤ ✐s t♦ ♠❛❦❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ✐♥❢♦r♠❛t✐♦♥ ❛♥ ✐♥✲
t❡❣r❛❧ ♣❛rt ♦❢ t❤❡ ♣r♦❣r❛♠♠✐♥❣ ♣❛r❛❞✐❣♠✳ ❆s s✉❝❤ t❤❡ ♣r♦❣r❛♠♠❡r ❝❛♥ ❜❡ ✈✐❡✇❡❞
❛s ❜❡✐♥❣ ♣r♦♠♣t❡❞ ❜② t❤❡ ❧❛♥❣✉❛❣❡ t♦ ♣r♦✈✐❞❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ✐♥❢♦r♠❛t✐♦♥✳ ❚❤✐s
✐♥❢♦r♠❛t✐♦♥ ♠❛② t❛❦❡ t❤❡ ❢♦r♠ ♦❢ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ t②♣❡s✱ s②♥t❛❝t✐❝ ❝♦♥str✉❝ts
❛♥❞ ♥♦t❛t✐♦♥s✳ ❚❤✐s ❧❛♥❣✉❛❣❡ ❡♥r✐❝❤♠❡♥t ♦✈❡r ●P▲s ✐s t②♣✐❝❛❧❧② ❣❡❛r❡❞ t♦✇❛r❞s
❝♦❧❧❡❝t✐♥❣ s✉✣❝✐❡♥t ✐♥❢♦r♠❛t✐♦♥ t♦ ♠❛❦❡ s♦♠❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ♣r♦♣❡rt✐❡s ❞❡❝✐❞✲
❛❜❧❡ ❬✾❪ ❛♥❞ t❤✉s t♦ ❡♥❛❜❧❡ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ✈❡r✐✜❝❛t✐♦♥s ❛♥❞ ♦♣t✐♠✐③❛t✐♦♥s✳ ❚❤❡
❝♦❧❧❡❝t✐♦♥ ♦❢ ✐♥❢♦r♠❛t✐♦♥ ♠❛② ❜❡ ❛❝❤✐❡✈❡❞ ❜② ❞❡❞✐❝❛t❡❞ ♣r♦❣r❛♠ ❛♥❛❧②s❡s✱ ✇❤✐❝❤
❛r❡✱ ❜② ❞❡s✐❣♥ ♦❢ t❤❡ ❉❙▲✱ s✐♠♣❧❡r t❤❛♥ t❤❡ ♦♥❡s ❞❡✈❡❧♦♣❡❞ ❢♦r ●P▲s✳

❇❡❝❛✉s❡ t❤❡ s❝♦♣❡ ♦❢ ❝♦♠♣✉t❛t✐♦♥s t♦ ❜❡ ❡①♣r❡ss❡❞ ❜② ❛ ❉❙▲ ✐s ✉s✉❛❧❧②
♥❛rr♦✇✱ ●P▲ ❝♦♥str✉❝ts ❛♥❞ ♦♣❡r❛t✐♦♥s ❛r❡ r❡str✐❝t❡❞ ♦r ❡①❝❧✉❞❡❞✳ ❋✉rt❤❡r♠♦r❡
t❤✐s ❧❛♥❣✉❛❣❡ ♥❛rr♦✇✐♥❣ ♠❛② ❛❧s♦ ❜❡ ♥❡❝❡ss❛r② t♦ ❡♥❛❜❧❡ ❦❡② ♣r♦♣❡rt✐❡s t♦ ❜❡
st❛t✐❝❛❧❧② ❞❡t❡r♠✐♥❡❞✳ ■♥ ❢❛❝t✱ ❛ ❉❙▲ ✐s ❝♦♠♠♦♥❧② ❜♦t❤ ❛ r❡str✐❝t❡❞ ❛♥❞ ❛♥
❡♥r✐❝❤❡❞ ✈❡rs✐♦♥ ♦❢ ❛ ●P▲✳

❖♥❝❡ ❦❡② ♣r♦♣❡rt✐❡s ❛r❡ ❡①❤✐❜✐t❡❞✱ t❤❡ ❉❙▲ ♣r♦❣r❛♠ ❝❛♥ ❜❡ ❝♦♠♣✐❧❡❞ ✐♥t♦
❛ ●P▲ ♣r♦❣r❛♠✳ ❚♦ r❡t❛✐♥ ❞♦♠❛✐♥✲s♣❡❝✐✜❝ ✐♥❢♦r♠❛t✐♦♥✱ t❤❡ ❣❡♥❡r❛t❡❞ ♣r♦❣r❛♠
♥❡❡❞s t♦ ❜❡ ❛❝❝♦♠♣❛♥✐❡❞ ❜② s♦♠❡ ❢♦r♠ ♦❢ ❞❡❝❧❛r❛t✐♦♥s s♣❡❝✐❢②✐♥❣ ✐ts ♣r♦♣❡rt✐❡s✳
❖❢ ❝♦✉rs❡✱ t❤❡ ❞❡❝❧❛r❛t✐♦♥s ❛r❡ t❛✐❧♦r❡❞ t♦ ❛ s❡t ♦❢ ✈❡r✐✜❝❛t✐♦♥ ❛♥❞✴♦r ♦♣t✐♠✐③❛✲
t✐♦♥ t♦♦❧s✳

■♥ t❤❡ ❳❉❘ ❝❛s❡✱ ❛♥ ❳❉❘ ❞❡s❝r✐♣t✐♦♥ ♦❢t❡♥ ❞❡✜♥❡s ✜①❡❞✲s✐③❡ ❘P❈ ❛r❣✉✲
♠❡♥ts✳ ❲❤❡♥ t❤✐s ❞❡s❝r✐♣t✐♦♥ ✐s ❝♦♠♣✐❧❡❞ ✐♥t♦ ●P▲ ❝♦❞❡✱ ✐t ❝❛♥ ❜❡ ❛❝❝♦♠♣❛♥✐❡❞
❜② ❞❡❝❧❛r❛t✐♦♥s ❛✐♠❡❞ t♦ ❞r✐✈❡ s♦♠❡ tr❛♥s❢♦r♠❛t✐♦♥ t♦♦❧✳ ❚❤✐s s✐t✉❛t✐♦♥ ✐s ✐❧❧✉s✲
tr❛t❡❞ ❜② t❤❡ ❳❉❘ ❝♦♠♣✐❧❡r t❤❛t ❝♦♥✈❡♥t✐♦♥❛❧❧② ❣❡♥❡r❛t❡s ❈ ❝♦❞❡ ❣❧✉✐♥❣ ❝❛❧❧s
t♦ ❛ ❣❡♥❡r✐❝ ❧✐❜r❛r②✳ ❲❡ ❤❛✈❡ ♠♦❞✐✜❡❞ t❤❡ ❳❉❘ ❝♦♠♣✐❧❡r t♦ ❣❡♥❡r❛t❡ ❜✐♥❞✐♥❣

177



✸

t✐♠❡ ♦❢ ❘P❈ ❛r❣✉♠❡♥t s✐③❡s✱ ❜❡s✐❞❡s ♠❛rs❤❛❧✐♥❣ ❝♦❞❡✳ ❆s ❛ r❡s✉❧t✱ ❛ ❞❡❝❧❛r❛t✐♦♥
✐s ❛tt❛❝❤❡❞ t♦ t❤❡ ♠❛rs❤❛❧✐♥❣ ❝♦❞❡ ♦❢ ❡❛❝❤ ❞❛t❛ ✐t❡♠ t♦ ❜❡ tr❛♥s♠✐tt❡❞✳ ❚❤✐s
❞❡❝❧❛r❛t✐♦♥ ❞❡✜♥❡s t❤❡ s✐③❡ ♣❛r❛♠❡t❡r ❛s st❛t✐❝✱ ✐❢ ✐t ❝♦rr❡s♣♦♥❞s t♦ ❛ ❞❛t❛ ✐t❡♠
t❤❛t ❤❛s ❛ ✜①❡❞ s✐③❡❀ ✐t ✐s ❞②♥❛♠✐❝ ♦t❤❡r✇✐s❡✶✳ ■♥ t❤✐s ✇♦r❦✱ t❤❡ ❣❡♥❡r❛t❡❞ ❞❡❝✲
❧❛r❛t✐♦♥s ❛r❡ t❛r❣❡t❡❞ ❢♦r ❛ ♣r♦❣r❛♠ s♣❡❝✐❛❧✐③❡r ❢♦r ❈✱ ♥❛♠❡❞ ❚❡♠♣♦ ❬✶✵❪✳ ❚❤✐s
t♦♦❧ ♣❡r❢♦r♠s ❛ ♥✉♠❜❡r ♦❢ ♦♣t✐♠✐③❛t✐♦♥s ♦♥ ❜♦t❤ t❤❡ ♠❛rs❤❛❧✐♥❣ ❝♦❞❡ ❛♥❞ t❤❡
❣❡♥❡r✐❝ ❳❉❘ ❧✐❜r❛r②✱ ✐♥❝❧✉❞✐♥❣ r❡♠♦✈❛❧ ♦❢ ❜✉✛❡r ♦✈❡r✢♦✇ ❝❤❡❝❦s ❛♥❞ ❝♦❧❧❛♣s✐♥❣
♦❢ ❢✉♥❝t✐♦♥ ❧❛②❡rs✳

❚❤❡ ❳❉❘ ❝❛s❡ ✐s ✐♥t❡r❡st✐♥❣ ❜❡❝❛✉s❡ ✐t ❞❡♠♦♥str❛t❡s t❤❛t✱ ❛❧t❤♦✉❣❤ ❛ ❉❙▲
✐♥tr♦❞✉❝❡s ❛ ♥❡✇ ♣r♦❣r❛♠♠✐♥❣ ♣❛r❛❞✐❣♠✱ ✐t ❝❛♥ st✐❧❧ ❝♦♥✈❡r❣❡ ✇✐t❤ ❛♥❞ r❡✲
✉s❡ ●P▲ t❡❝❤♥♦❧♦❣②✳ ❆❞❞✐t✐♦♥❛❧❧②✱ ❜❡❝❛✉s❡ t❤❡ ❡①✐st✐♥❣ t♦♦❧ ✐s ♦❢t❡♥ ✉s❡❞ ✐♥ ❛
♥❛rr♦✇❡r ❝♦♥t❡①t✱ t❤❡ r❡s✉❧ts ♠❛② ❜❡ ♠♦r❡ ♣r❡❞✐❝t❛❜❧❡✳ ■♥ t❤❡ ❳❉❘ ❝❛s❡ ❢♦r
✐♥st❛♥❝❡✱ s✐♥❝❡ t❤❡ ❝♦♠♣✐❧❛t✐♦♥ s❝❤❡♠❛s✱ t❤❡ ❳❉❘ ❧✐❜r❛r②✱ ❛♥❞ t❤❡ s♣❡❝✐❛❧✐③❛t✐♦♥
❝♦♥t❡①ts ❛r❡ ✜①❡❞✱ s♣❡❝✐❛❧✐③❛t✐♦♥ ✐s ❢✉❧❧② ♣r❡❞✐❝t❛❜❧❡✳ ❚❤✐s s✐t✉❛t✐♦♥ ♦❜✈✐♦✉s❧②
❞♦❡s ♥♦t ❡①✐st ❢♦r ❛♥ ❛r❜✐tr❛r② ♣r♦❣r❛♠ ✇✐t❤ ❛♥ ❛r❜✐tr❛r② s♣❡❝✐❛❧✐③❛t✐♦♥ ❝♦♥t❡①t✳

❆s♣❡❝t✲♦r✐❡♥t❡❞ ❞❡❝❧❛r❛t✐♦♥s ❝♦✉❧❞ ❛❧s♦ ❜❡ ❣❡♥❡r❛t❡❞ ❢r♦♠ ❛ ❉❙▲ ♣r♦❣r❛♠✳
❋♦r ❡①❛♠♣❧❡✱ ♦♥❡ ❝♦✉❧❞ ✐♠❛❣✐♥❡ ❛❞❞✐♥❣ ❛ ❞❛t❛ ❝♦♠♣r❡ss✐♦♥ ♣❤❛s❡ t♦ ♠❛rs❤❛❧✐♥❣
♠❡t❤♦❞s ✇❤❡♥ ✐♥✈♦❦❡❞ ✇✐t❤ ❞❛t❛ ❣r❡❛t❡r t❤❛♥ ❛ ❣✐✈❡♥ s✐③❡✳ ■♥ t❤✐s ❝❛s❡✱ t❤❡
♣♦✐♥t❝✉t ❧❛♥❣✉❛❣❡ ❤❛s t♦ ❜❡ ❡①♣r❡ss✐✈❡ ❡♥♦✉❣❤ t♦ ❡♥❛❜❧❡ ❛♥② ♣r♦❣r❛♠ ♣♦✐♥t ♦❢
✐♥t❡r❡st t♦ ❜❡ ❞❡s✐❣♥❛t❡❞ t♦ ✐♥s❡rt t❤❡ ❝♦♠♣r❡ss✐♦♥ ♣❤❛s❡✳ ❖t❤❡r✇✐s❡✱ ❛♥♥♦t❛t✐♦♥s
♥❡❡❞ t♦ ❜❡ ✐♥❥❡❝t❡❞ ✐♥ t❤❡ ❣❡♥❡r❛t❡❞ ♣r♦❣r❛♠✳

✹ ❋r♦♠ ❛ ❉❙▲ Pr♦❣r❛♠ t♦ ❆♥♥♦t❛t✐♦♥s

■♥st❡❛❞ ♦❢ ❣❡♥❡r❛t✐♥❣ ❛ ●P▲ ♣r♦❣r❛♠ t♦❣❡t❤❡r ✇✐t❤ ❞❡❝❧❛r❛t✐♦♥s✱ ❛♥♥♦t❛t✐♦♥s
❝❛♥ ❜❡ ❞✐r❡❝t❧② ✐♥s❡rt❡❞ ✐♥t♦ t❤❡ ❣❡♥❡r❛t❡❞ ♣r♦❣r❛♠✳ ❚❤✐s str❛t❡❣② ❛❧❧♦✇s ✐♥❢♦r✲
♠❛t✐♦♥ t♦ ❜❡ ❛❝❝✉r❛t❡❧② ♣❧❛❝❡❞ ✐♥ t❤❡ ♣r♦❣r❛♠✳ ▲✐❦❡ ❞❡❝❧❛r❛t✐♦♥s✱ t❤❡s❡ ❛♥♥♦t❛✲
t✐♦♥s ❛r❡ ❣❡❛r❡❞ t♦✇❛r❞s s♣❡❝✐✜❝ t♦♦❧s✳ ❚❤❡② ❝❛♥ ❡✐t❤❡r ❜❡ ♣r♦❝❡ss❡❞ ❛t ❝♦♠♣✐❧❡
t✐♠❡ ♦r r✉♥ t✐♠❡✳

❆t ❝♦♠♣✐❧❡ t✐♠❡✱ ❛♥♥♦t❛t✐♦♥s ❝❛♥ ❜❡ ✉s❡❞ t♦ ❣✉✐❞❡ t❤❡ ❝♦♠♣✐❧❛t✐♦♥ ♣r♦❝❡ss
t♦✇❛r❞s ✐♠♣r♦✈✐♥❣ ❝♦❞❡ q✉❛❧✐t② ♦r ❝♦❞❡ s❛❢❡t②✳ ■♥ t❤❡ ❳❉❘ ❝❛s❡✱ ❢♦r ❡①❛♠♣❧❡✱
♦♥❡ ❝♦✉❧❞ ✐♠❛❣✐♥❡ ❛ ❧✐❜r❛r② ✇❤❡r❡ t❤❡r❡ ✇♦✉❧❞ ❜❡ t✇♦ s❡ts ♦❢ ❜✉✛❡r ♦♣❡r❛t✐♦♥s✱
✇✐t❤ ♦r ✇✐t❤♦✉t ♦✈❡r✢♦✇ ❝❤❡❝❦s✳ ❚❤❡ s❡❧❡❝t✐♦♥ ♦❢ ❛♥ ♦♣❡r❛t✐♦♥ ✇♦✉❧❞ ❞❡♣❡♥❞ ♦♥
❛♥♥♦t❛t✐♦♥s ✐♥s❡rt❡❞ ✐♥ t❤❡ ♣r♦❣r❛♠✳

❆t r✉♥ t✐♠❡✱ ❛♥♥♦t❛t✐♦♥s ❝❛♥ tr✐❣❣❡r s♣❡❝✐✜❝ ❛❝t✐♦♥s ✉♣♦♥ r✉♥✲t✐♠❡ ✈❛❧✉❡s✳
❋♦r ✐♥st❛♥❝❡✱ ❛ ❞❛t❛ ♦❢ ❛♥ ✉♥❦♥♦✇♥ s✐③❡ ❝♦✉❧❞ ❜❡ t❡st❡❞ ❜❡❢♦r❡ ❜❡✐♥❣ tr❛♥s♠✐tt❡❞
❛♥❞ ❜❡ ❝♦♠♣r❡ss❡❞ ✐❢ ✐t ✐s ❧❛r❣❡r t❤❛♥ ❛ ❣✐✈❡♥ t❤r❡s❤♦❧❞✳

✺ ❋r♦♠ ❛ ❉❙▲ Pr♦❣r❛♠ t♦ ▼❡t❛✲♣r♦❣r❛♠♠✐♥❣

❆ ❉❙▲ ♣r♦❣r❛♠ ❝❛♥ ❛❧s♦ ❜❡♥❡✜t ❢r♦♠ ♠❡t❛✲♣r♦❣r❛♠♠✐♥❣ t❡❝❤♥♦❧♦❣②✳ ■♥ t❤✐s
❝♦♥t❡①t✱ t❤❡ ❝♦♠♣✐❧❛t✐♦♥ ♦❢ ❛ ❉❙▲ ♣r♦❣r❛♠ ♣r♦❞✉❝❡s ❛ ❝♦❞❡ tr❛♥s❢♦r♠❡r ❛♥❞

✶ ◆♦t❡ t❤❛t t❤❡s❡ ❞❡❝❧❛r❛t✐♦♥s ❣♦ ❜❡②♦♥❞ ❞❛t❛ s✐③❡s✳ ❆ ❞❡t❛✐❧❡❞ ❞❡s❝r✐♣t✐♦♥ ♦❢ t❤❡
❧❛♥❣✉❛❣❡ ♦❢ s♣❡❝✐❛❧✐③❛t✐♦♥ ❞❡❝❧❛r❛t✐♦♥s ❛♥❞ ✐ts ❛♣♣❧✐❝❛t✐♦♥ t♦ t❤❡ ❳❉❘ ❡①❛♠♣❧❡ ❝❛♥
❜❡ ❢♦✉♥❞ ❡❧s❡✇❤❡r❡ ❬✶✵✱ ✶✶❪✳

178



✹

❝♦❞❡ ❢r❛❣♠❡♥ts✳ ❋♦r ❡①❛♠♣❧❡✱ ✐♥ ❛ ♠✉❧t✐✲st❛❣❡ ❧❛♥❣✉❛❣❡ ❧✐❦❡ ▼❡t❛❖❈❛♠❧ ❬✼❪✱
t❤❡ ❝♦❞❡ tr❛♥s❢♦r♠❡r ❝♦♥s✐sts ♦❢ ❧❛♥❣✉❛❣❡ ❡①t❡♥s✐♦♥s t❤❛t ❡♥❛❜❧❡ t❤❡ ❝♦♥❝✐s❡
❡①♣r❡ss✐♦♥ ♦❢ ♣r♦❣r❛♠ tr❛♥s❢♦r♠❛t✐♦♥s✳

■♥ t❤❡ ❳❉❘ ❝❛s❡✱ ♠✉❧t✐✲st❛❣❡ ♣r♦❣r❛♠♠✐♥❣ ✇♦✉❧❞ ❛♠♦✉♥t t♦ ❣❡♥❡r❛t❡ ❝♦❞❡
t❤❛t ❡①♣❡❝ts s♦♠❡ ❞❛t❛ s✐③❡ ❛♥❞ ♣r♦❞✉❝❡s ❝♦❞❡ ♦♣t✐♠✐③❡❞ ❢♦r t❤❛t s✐③❡✳ ▲✐❦❡
♣r♦❣r❛♠ s♣❡❝✐❛❧✐③❛t✐♦♥✱ ♠✉❧t✐✲st❛❣❡ ♣r♦❣r❛♠♠✐♥❣ ❝♦rr❡s♣♦♥❞s t♦ ❣❡♥❡r✐❝ t♦♦❧s
❛♥❞ ❝❛♥ ❜❡ ❞✐r❡❝t❧② ✉s❡❞ ❜② ❛ ♣r♦❣r❛♠♠❡r✳ ■♥ t❤❡ ❝♦♥t❡①t ♦❢ ❉❙▲s✱ ❡①✐st✐♥❣
t♦♦❧s ❝❛♥ ✐♠♣❧❡♠❡♥t ❛ s♣❡❝✐✜❝ ♣❤❛s❡ ♦❢ ❛♥ ❛♣♣❧✐❝❛t✐♦♥ ❣❡♥❡r❛t♦r✳

✻ ❈♦♥❝❧✉s✐♦♥

❲❡ ❡①❛♠✐♥❡❞ ❣❡♥❡r❛t✐✈❡ ♣r♦❣r❛♠♠✐♥❣ ❛♣♣r♦❛❝❤❡s ❛♥❞ t❡❝❤♥✐q✉❡s ❢r♦♠ ❛ ❉❙▲
✈✐❡✇♣♦✐♥t✳ ❲❡ s❤♦✇❡❞ t❤❛t ❛ ❉❙▲ ❝❛♥ ♠❛❦❡ ✉s❡ ♦❢ t❤❡s❡ ❛♣♣r♦❛❝❤❡s ❛♥❞ t❡❝❤✲
♥✐q✉❡s ✐♥ ✈❡r② ❡✛❡❝t✐✈❡ ✇❛②s✳ ■♥ ❡ss❡♥❝❡✱ t❤❡ ❉❙▲ ❛♣♣r♦❛❝❤ ❡①♣♦s❡s ✐♥❢♦r♠❛t✐♦♥
❛❜♦✉t ♣r♦❣r❛♠s t❤❛t ❝❛♥ ❜❡ ♠❛♣♣❡❞ ✐♥t♦ t❤❡ r❡❛❧♠ ♦❢ ❣❡♥❡r❛t✐✈❡ ♣r♦❣r❛♠♠✐♥❣
❛♥❞ ❜❡ tr❛♥s❧❛t❡❞ ✐♥t♦ ❞❡❝❧❛r❛t✐♦♥s ♦r ❛♥♥♦t❛t✐♦♥s✱ ✇❤✐❝❤ ✇♦✉❧❞ ♥♦r♠❛❧❧② ❜❡
♣r♦✈✐❞❡❞ ❜② ❛ ♣r♦❣r❛♠♠❡r✳ ❚❤✐s s✐t✉❛t✐♦♥ ✐❧❧✉str❛t❡s t❤❡ ❤✐❣❤✲❧❡✈❡❧ ♥❛t✉r❡ ♦❢ t❤❡
❉❙▲ ❛♣♣r♦❛❝❤✳

❘❡❢❡r❡♥❝❡s

✶✳ ❈♦♥s❡❧✱ ❈✳✿ ❋r♦♠ ❆ Pr♦❣r❛♠ ❋❛♠✐❧② ❚♦ ❆ ❉♦♠❛✐♥✲❙♣❡❝✐✜❝ ▲❛♥❣✉❛❣❡✳ ◆✉♠❜❡r
✸✵✶✻ ✐♥ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✱ ❙t❛t❡✲♦❢✲t❤❡✲❆rt ❙✉r✈❡②✳ ■♥✿ ❉♦♠❛✐♥✲
❙♣❡❝✐✜❝ Pr♦❣r❛♠ ●❡♥❡r❛t✐♦♥❀ ■♥t❡r♥❛t✐♦♥❛❧ ❙❡♠✐♥❛r✱ ❉❛❣st✉❤❧ ❈❛st❧❡✳ ❙♣r✐♥❣❡r✲
❱❡r❧❛❣ ✭✷✵✵✹✮ ✶✾✕✷✾

✷✳ ❙✉♥ ▼✐❝r♦s②st❡♠✿ ◆❋❙✿ ◆❡t✇♦r❦ ✜❧❡ s②st❡♠ ♣r♦t♦❝♦❧ s♣❡❝✐✜❝❛t✐♦♥✳ ❘❋❈ ✶✵✾✹✱ ❙✉♥
▼✐❝r♦s②st❡♠ ✭✶✾✽✾✮

✸✳ ❈③❛r♥❡❝❦✐✱ ❑✳✱ ❊✐s❡♥❡❝❦❡r✱ ❯✳✿ ●❡♥❡r❛t✐✈❡ Pr♦❣r❛♠♠✐♥❣✳ ❆❞❞✐s♦♥✲❲❡s❧❡② ✭✷✵✵✵✮
✹✳ ❈♦♥s❡❧✱ ❈✳✱ ❉❛♥✈②✱ ❖✳✿ ❚✉t♦r✐❛❧ ♥♦t❡s ♦♥ ♣❛rt✐❛❧ ❡✈❛❧✉❛t✐♦♥✳ ■♥✿ ❈♦♥❢❡r❡♥❝❡ ❘❡❝♦r❞

♦❢ t❤❡ ❚✇❡♥t✐❡t❤ ❆♥♥✉❛❧ ❆❈▼ ❙■●P▲❆◆✲❙■●❆❈❚ ❙②♠♣♦s✐✉♠ ♦♥ Pr✐♥❝✐♣❧❡s ❖❢
Pr♦❣r❛♠♠✐♥❣ ▲❛♥❣✉❛❣❡s✱ ❈❤❛r❧❡st♦♥✱ ❙❈✱ ❯❙❆✱ ❆❈▼ Pr❡ss ✭✶✾✾✸✮ ✹✾✸✕✺✵✶

✺✳ ❏♦♥❡s✱ ◆✳✱ ●♦♠❛r❞✱ ❈✳✱ ❙❡st♦❢t✱ P✳✿ P❛rt✐❛❧ ❊✈❛❧✉❛t✐♦♥ ❛♥❞ ❆✉t♦♠❛t✐❝ Pr♦❣r❛♠
●❡♥❡r❛t✐♦♥✳ ■♥t❡r♥❛t✐♦♥❛❧ ❙❡r✐❡s ✐♥ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✳ Pr❡♥t✐❝❡✲❍❛❧❧ ✭✶✾✾✸✮

✻✳ ❚❤✐❜❛✉❧t✱ ❙✳✱ ❈♦♥s❡❧✱ ❈✳✱ ▼✉❧❧❡r✱ ●✳✿ ❙❛❢❡ ❛♥❞ ❡✣❝✐❡♥t ❛❝t✐✈❡ ♥❡t✇♦r❦ ♣r♦❣r❛♠✲
♠✐♥❣✳ ■♥✿ ✶✼t❤ ■❊❊❊ ❙②♠♣♦s✐✉♠ ♦♥ ❘❡❧✐❛❜❧❡ ❉✐str✐❜✉t❡❞ ❙②st❡♠s✱ ❲❡st ▲❛❢❛②❡tt❡✱
■♥❞✐❛♥❛ ✭✶✾✾✽✮ ✶✸✺✕✶✹✸

✼✳ ❚❛❤❛✱ ❲✳✿ ❆ ●❡♥t❧❡ ■♥tr♦❞✉❝t✐♦♥ t♦ ▼✉❧t✐✲st❛❣❡ Pr♦❣r❛♠♠✐♥❣✳ ◆✉♠❜❡r ✸✵✶✻
✐♥ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✱ ❙t❛t❡✲♦❢✲t❤❡✲❆rt ❙✉r✈❡②✳ ■♥✿ ❉♦♠❛✐♥✲
❙♣❡❝✐✜❝ Pr♦❣r❛♠ ●❡♥❡r❛t✐♦♥❀ ■♥t❡r♥❛t✐♦♥❛❧ ❙❡♠✐♥❛r✱ ❉❛❣st✉❤❧ ❈❛st❧❡✳ ❙♣r✐♥❣❡r✲
❱❡r❧❛❣ ✭✷✵✵✹✮ ✸✵ ✕ ✺✵

✽✳ ❈③❛r♥❡❝❦✐✱ ❑✳✱ ❖✬❉♦♥♥❡❧❧✱ ❏✳❚✳✱ ❙tr✐❡❣♥✐t③✱ ❏✳✱ ❚❛❤❛✱ ❲✳✿ ❉❙▲ ■♠♣❧❡♠❡♥t❛t✐♦♥ ✐♥
▼❡t❛❖❈❛♠❧✱ ❚❡♠♣❧❛t❡ ❍❛s❦❡❧❧✱ ❛♥❞ ❈✰✰✳ ◆✉♠❜❡r ✸✵✶✻ ✐♥ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❈♦♠✲
♣✉t❡r ❙❝✐❡♥❝❡✱ ❙t❛t❡✲♦❢✲t❤❡✲❆rt ❙✉r✈❡②✳ ■♥✿ ❉♦♠❛✐♥✲❙♣❡❝✐✜❝ Pr♦❣r❛♠ ●❡♥❡r❛t✐♦♥❀
■♥t❡r♥❛t✐♦♥❛❧ ❙❡♠✐♥❛r✱ ❉❛❣st✉❤❧ ❈❛st❧❡✳ ❙♣r✐♥❣❡r✲❱❡r❧❛❣ ✭✷✵✵✹✮ ✺✶ ✕ ✼✷

✾✳ ❈♦♥s❡❧✱ ❈✳✱ ▼❛r❧❡t✱ ❘✳✿ ❆r❝❤✐t❡❝t✉r✐♥❣ s♦❢t✇❛r❡ ✉s✐♥❣ ❛ ♠❡t❤♦❞♦❧♦❣② ❢♦r ❧❛♥❣✉❛❣❡
❞❡✈❡❧♦♣♠❡♥t✳ ■♥ P❛❧❛♠✐❞❡ss✐✱ ❈✳✱ ●❧❛s❡r✱ ❍✳✱ ▼❡✐♥❦❡✱ ❑✳✱ ❡❞s✳✿ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡
10

th ■♥t❡r♥❛t✐♦♥❛❧ ❙②♠♣♦s✐✉♠ ♦♥ Pr♦❣r❛♠♠✐♥❣ ▲❛♥❣✉❛❣❡ ■♠♣❧❡♠❡♥t❛t✐♦♥ ❛♥❞

179



✺

▲♦❣✐❝ Pr♦❣r❛♠♠✐♥❣✳ ◆✉♠❜❡r ✶✹✾✵ ✐♥ ▲❡❝t✉r❡ ◆♦t❡s ✐♥ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✱ P✐s❛✱
■t❛❧② ✭✶✾✾✽✮ ✶✼✵✕✶✾✹

✶✵✳ ❈♦♥s❡❧✱ ❈✳✱ ▲❛✇❛❧❧✱ ❏✳✱ ▲❡ ▼❡✉r✱ ❆✳❋✳✿ ❆ t♦✉r ♦❢ ❚❡♠♣♦✿ ❆ ♣r♦❣r❛♠ s♣❡❝✐❛❧✐③❡r ❢♦r
t❤❡ ❈ ❧❛♥❣✉❛❣❡✳ ❙❝✐❡♥❝❡ ♦❢ ❈♦♠♣✉t❡r Pr♦❣r❛♠♠✐♥❣ ✭✷✵✵✹✮

✶✶✳ ▲❡ ▼❡✉r✱ ❆✳❋✳✱ ▲❛✇❛❧❧✱ ❏✳✱ ❈♦♥s❡❧✱ ❈✳✿ ❙♣❡❝✐❛❧✐③❛t✐♦♥ s❝❡♥❛r✐♦s✿ ❆ ♣r❛❣♠❛t✐❝ ❛♣✲
♣r♦❛❝❤ t♦ ❞❡❝❧❛r✐♥❣ ♣r♦❣r❛♠ s♣❡❝✐❛❧✐③❛t✐♦♥✳ ❍✐❣❤❡r✲❖r❞❡r ❛♥❞ ❙②♠❜♦❧✐❝ ❈♦♠♣✉✲
t❛t✐♦♥ ✶✼ ✭✷✵✵✹✮ ✹✼✕✾✷

180



Generative Programming from an AOP/CBSE

Perspective

Mira Mezini and Klaus Ostermann

Darmstadt University of Technology, Germany
{mezini,ostermann}@informatik.tu-darmstadt.de

1 Introduction

Every software system can be conceived from multiple different perspectives,
resulting in different decompositions of the software into different ”domain-
specific” types and notations. However, traditional programming languages do
not explicitly support the construction of software as a ”superimposition” of
co-existing independent partial models. They rather assume that real-world sys-
tems have “intuitive”, mind-independent, preexisting concept hierarchies, thus,
putting emphasis on hierarchical modeling, which basically forces all aspects
of a software system to be expressed in terms of the same set of concepts, or
refinements thereof.

In this paper, we briefly illustrate the problems that follow from this as-
sumption and discuss issues involved in solving them. Our position is that
general-purpose languages (GPLs) – rather than domain-specific languages –
with built-in support for expressing the interaction (superimposition) of inde-
pendent partial models in an abstract way in accordance with the familiar prin-
ciples of abstraction and information hiding are needed. We consider the variant
of aspect-oriented programming in AspectJ as an excellent starting point in this
direction but observe that more powerful abstraction mechanisms are needed.
We distinguish between mechanisms for structural (concept) mappings between
partial models and mechanisms for behavioral (control/data flow) mapping.
Roughly speaking, AspectJ provides intertype declarations and pointcut/advice
meachnisms for structural, respectively behavioral mapping. We discuss how the
aspect-oriented language Caesar [3], advances AspectJ with respect to structural
mapping and outline the problems with current mechanisms for behavioral map-
ping as well as ideas about how to solve these problems.

The reminder of this position paper is organized as follows. In Sec. 2, we define
some terminology. Especially, we intuitively define the notion of crosscutting
models versus hierarchical models. In Sec. 3, we outline issues to be solved for
expressing the superposition between crosscutting models in an abstract way,
discuss the mechanisms available for this purpose in Caesar, and outline some
areas of ongoing work on increasing the abstraction of the behavioral mappings.
In Sec. 4, we compare the usage of GPLs for crosscutting models with domain-
specific languages and program generation techniques, as fostered by popular
approaches like model-driven architecture (MDA). Sec. 5 concludes.

181



2 Crosscutting versus Hierarchical Models

The criteria which we choose to decompose software systems into modules has
significant impact on the software engineering properties of the software. In [6]
Parnas observed that a data-centric decomposition eases changes in the repre-
sentation of data structures and algorithms operating on them. Following on
Parnas work, Garlan et al. [2] argue that function-centric decomposition on the
other side better supports adding new features to the system, a change which
they show to be difficult with the data-centric decomposition.

Software decomposition techniques so far, including object-oriented decom-
position, are weak at supporting multi-view decomposition, i.e., the ability to si-
multaneously breakdown the system into inter-related units, whereby each break-
down is guided by independent criteria. What current decomposition technology
does well is to allow us to view the system at different abstraction levels, result-
ing in several hierarchical odels of it, with each model be a refined version of its
predecessor in the abstraction levels.

Fig. 1. Crosscutting models

By multi-view decomposition, we mean support for simultaneous crosscut-

ting rather than hierarchical models. The key point is that our perception of
the world depends heavily on the perspective from which we look at it: Every
software system can be conceived from multiple different perspectives, resulting
in different decompositions of the software into different ”domain-specific” types
and notations. In general, these view-specific decompositions are equally reason-
able, none of them being a sub-ordinate of the others, and the overall definition
of the system results from a superimposition of them.

182



The problem is that models resulting from simultaneous decomposition of
the system according to different criteria are in general ”crosscutting” with re-
spect to the execution of the system resulting from their composition. With the
conceptual framework used so far, crosscutting can be defined as a relation be-
tween two models with respect to the execution of the software described by the
models. This relation if defined via projections of models (hierarchies).

A projection of a model M is a partition of the concern space into subsets
o1, . . . , on such that each subset oi corresponds to a leaf in the model. Now, two
models, M and M ′, are said to be crosscutting, if there exist at least two sets o

and o′ from their respective projections, such that, o ∩ o′, and neither o ⊆ o′,
nor o′ ⊆ o1.

On the contrary, a model M is a hierarchical refinement of a model M ′

if their projections o1, . . . , on and o′1, . . . , o
′

m are in a subset relation to each
other as follows: there is a mapping p : {1, . . . , n} → {1, . . . ,m} such that ∀i ∈
{1, . . . , n} : oi ⊆ o′

p(i). Crosscutting models are themselves not the problem, since
they are inherent in the domains we model. The problem is that our languages
and decomposition techniques do not (properly) support crosscutting modularity
(see the discussion on decomposition arbitrariness above).

In [4], we argue that even approaches with powerful hierarchical modularity,
such as feature-oriented approaches [7, 1, 5] exhibit severe problems which we
trace down to the lack of support for crosscutting modularity. Such approaches
are superior to framework technology, due to their notion of a first-class layer
module, which allows to define the delta pertaining to one feature into a single
module that can be refined and used polymorphically just as classes can. How-
ever, they are incapable to express the interaction between a feature and the
rest of the system in a modularized way. First, mapping the feature concepts
onto existing concepts is a challenge when there is no one to one correspondence
between the two. Second, it is not possible to express the interaction between a
feature and the dynamic control flow of the rest of the system in a modular way
abstracting away details of the control flow that are irrelevant for the interaction.
The reason for this is that the “join points” that can be expressed are limited
to individual method calls in the form of method overriding; there are no means
to specify general sets of related join points that may crosscut the given module
structure. We show that these problems seriously damage the scalability of the
divide-and-conquer technique underlying FOAs.

One of the key observations of the aspect-oriented software development is
that a programming technique that does not support simultaneous decomposi-
tion of systems along different criteria suffers from what we call arbitrariness

of the decomposition hierarchy problem, which manifests itself as tangling and
scattering of code in the resulting software, with known impacts on maintain-
ability and extendibility. With a ‘single-minded’ decomposition technique that
supports only hierarchical models, we have to choose one fixed classification se-
quence. However, the problem is that with a fixed classification sequence, only
one concern is expressed concisely in terms of its inherent concepts whereas all
other concerns are tangled in the resulting hierarchical structure.

183



3 Crosscutting Abstraction Mechanisms

Fig. 2. Information hiding and crosscutting models

Now, once we adopt a paradigm to software construction as a superimposition
of different crosscutting models, the question is how to express this superimposi-
tion in a modular way and what abstractions are needed for the interface between
crosscutting models. Fig. 2 is an attempt to illustrate the issue schematically.

The figure illustrates that we have two overlapping models of the same sys-
tem. The tricky part is to describe how these two models interact with each
other without referring too much to the implementation details of the models.
This is illustrated by the black box with lollipops on top of it: We need a kind
of interface to a crosscutting model that hides its implementation details.

There are two facets of expressing the overlap: (a) static (structural), and (b)
dynamic, (behavioral) mapping. This is illustrated in Fig. 3, by means of two
OO crosscutting models. In order to express how these two independent models
interact in creating a whole, we need both to express how their concepts map to
each other, illustrated by the arrows in the upper part of the figure, as well as
how there control flows interact, illustrated by the lower part of Fig. ??.

In [3, 4] we outline the deficiencies of AspectJ with respect to the first facet
of expressing model superimposition. In [4], we argue that AspectJ is lacking
a layer module concept as powerful as the one supported in feature-oriented
approaches and discuss how the aspect-oriented language Caesar [3], we have
been working on solves these problems.

In Caesar, a model is described by a bidirectional interface (see the Pricing

interface in Fig. 4 for an illustration) that defines the abstractions in a particu-

184



Fig. 3. Superimposing crosscutting models

lar domain. Different components can be implemented in terms of this domain
model. Later on, such a model can be superimposed on an existing system by
means of a so-called binding, which defines both a structural and a behavioral
mapping in order to coordinate both worlds.

In [4], we argue that AspectJ is superior to FOAs for its sophisticated and
powerful pointcut model that allows to express the behavioral mapping in a
more precise and abstract way as it is possible with FOA. In contrast to the
FOA solution, no shadowing is necessary in order to trigger the functionality of a
feature in the base application. Pointcuts enable us to abstract over control flows.
With more advanced mechanisms such as wildcards, field get/sets, cflow, etc., a
pointcut definition also becomes more stable with respect to changes in the base
structure than the corresponding set of overridden methods in FOA. The use of
pointcuts instead of shadowing parts of an inherited base structure avoids the
scalability problem mentioned in the FOA discussion. The key point is that with
pointcuts we can abstract over details in the control flow that are irrelevant to
the feature integration. Equivalent abstraction mechanisms are missing in FOAs.

In its current instantiation, Caesar has adopted the pointcut language of
AspectJ. However, this language has problems. AspectJ-like languages come with
a set of predefined pointcut designators, e.g., call or get, and pointcuts are not
first-class values. To convey an intuition of what we mean by first-class pointcuts,
let us consider identifying all setter join points were the value of a variable is
changed that is read in the control flow of a certain method, m, the goal being that
we would like to recall m, at any such point. Assuming a hypothetical AspectJ
compiler that employs some static analysis techniques to predict control flows,
one can write a pointcut p1 that selects all getters in the predicted control flow
of m. However, it is not possible to combine p1 with another pointcut p2 which
takes the result of p1 as a parameter, retrieves the names of the variables read

185



Fig. 4. Overview of Caesar concepts

in the join points selected by p1, and than selects the set of setter join points
where one of these variables is changed. It is in fact, impossible to express the
above semantics declaratively with language technology, in which pointcuts are
processed in a single pass. What we need is the ability to reason about p1 and
p2. This requires a reification of the result crosscut specified by p1, so that the
names of the variables read by join points contained in it can be retrieved and
than used in p2.

Fig. 5. Crosscutting models of program semantics

186



Our vision is that pointcuts should have a first-class status in an AOP plat-
form; it should be possible to reason about a pointcut, and especially to define
new pointcuts by reasoning about other pointcuts. We envision an AOP model
in which pointcuts are sets of nodes in some representation of the program’s se-
mantics. Such sets are selected by queries on node attributes written in a query
language and can be passed around to other query functions as parameters.
These semantic models can be as diverse as abstract syntax treees, control flow
graphs, data flow graphs, object graphs or profiling models (see Fig. 5).

4 General-Purpose or Program Generation?

In the context of model-driven architecture and other technologies, domain-
specific languages (DSLs) and program generation techniques have gained con-
siderable popularity. This techniques serve a similar goal as aspect-oriented pro-
gramming, namely the combination of crosscutting models. Using DSLs and
program generation, a model is encoded as a DSL (thereby fulfilling a similar
purpose as bidirectional interfaces in Caesar). A program in the DSL (corre-
sponding to components implementing a bidirectional interface) is combined
with other models in a program generator, which produces the combined pro-
gram in the form of generated sourcecode in a general-purpose language.

In a way, using this approach is easy and straightforward, because any se-
mantics whatsoever can easily be encoded by manipulating and computing code.
However, this approach also has some severe disadvantages:

– Supporting a new domain-specific model means writing a new program gen-
erator. Program generation is hard to understand, however. Instead of en-
coding the intention of the programmer directly, one has to think about the
semantics of a program in terms of the program it generates. This addi-
tional “indirection” is a tremendous burden on the programmer. Besides,
there are also many practical issues that make program generation painful,
e.g., debugging, maintenance of generated code.

– Many features that have been available in conventional languages, e.g., control-
and data structures or type-checking, have to be re-invented and re-implemented
or are simply missing in DSLs.

– Basically all features that are added by the program generator (i.e., all cross-
cutting models) have to be known in advance, before writing the program
generator. Writing a highly-configurable program generator makes the re-
quired effort even bigger. It is also a known fact that it is very hard to
combine different program generators. Hence, extensionability with respect
to adding additional crosscutting models in this approach is very limited.

Every general-purpose language allows the definition of domain-specific vocab-
ulary by giving meaning to new names, e.g., functions, data structures etc.
However, these “conventional” mechanisms to domain-specific models is obvi-
ously not sufficient, because otherwise program generation techniques would
have never been so popular despite the disadvantages mentioned above. It is

187



our position, however, that we should instead strive for new general-purpose
abstraction mechanisms for crosscutting models that render the need for DSLs
and program generators superfluous.

5 Summary

Traditional programming languages assume that real-world systems have “intu-
itive”, mind-independent, preexisting concept hierarchies. This is in contrast to
our perception of the world, which depends heavily on the context from which it
is viewed. Since programmers want to describe “what” and not “how”, we argued
that programming languages should be augmented with abstraction mechanisms
to encode and combine different crosscutting models instead of using program
generation techniques to encode domain-specific knowledge.

References

1. D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin. The genvoca
model of software-system generators. IEEE Software, 11(5), 1994.

2. D. Garlan, G. E. Kaiser, and D. Notkin. Using tool abstraction to compose systems.
Computer, 25(6):30–38, 1992.

3. M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proc. Interna-
tional Conference on Aspect-Oriented Software Development (AOSD ’03), Boston,
USA, 2003.

4. M. Mezini and K. Ostermann. Variability management with feature-oriented pro-
gramming and aspects. In Proceedings of FSE ’04 (to appear), 2004.

5. K. Ostermann. Dynamically composable collaborations with delegation layers. In
Proceedings of ECOOP ’02, LNCS 2374, Springer, 2002.

6. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

7. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin-layers. In
Proceedings of ECOOP ’98, pages 550–570, 1998.

188



Overview of Generative Software Development

Krzysztof Czarnecki

University of Waterloo, Canada
czarnecki@acm.org

1 Introduction

Object-orientation is recognized as an important advance in software technology,
particularly in modeling complex phenomena more easily than its predecessors.
But the progress in reusability, maintainability, reliability, and even expressive-
ness has fallen short of expectations. As units of reuse, objects have proven too
small. Frameworks are hard to compose, and their development remains an art.
Components offer reuse, but the more functional the component, the larger and
less reusable it becomes. And patterns, while intrinsically reusable, are not an
implementation medium.

Current research and practical experience suggest that achieving significant
progress with respect to software reuse requires a paradigm shift towards mod-
eling and developing software system families rather than individual systems.
System-family engineering (also known as product-line engineering) seeks to ex-
ploit the commonalities among systems from a given problem domain while
managing the variabilities among them in a systematic way [1–3]. In system-
family engineering, new system variants can be rapidly created based on a set
of reusable assets (such as a common architecture, components, models, etc.).1

Frameworks and components are still useful as implementation technologies, but
the scope and shape of reusable abstractions is determined and managed through
a system-family approach.

Generative software development is a system-family approach, which focuses
on automating the creation of system-family members: a given system can be
automatically generated from a specification written in one or more textual or
graphical domain-specific languages (DSLs) [1, 4–9]. A DSL can offer several
important advantages over a general-purpose language:

– Domain-specific abstractions: a DSL provides pre-defined abstractions to
directly represent concepts from the application domain.

– Domain-specific concrete syntax : a DSL offers a natural notation for a given
domain and avoids syntactic clutter that often results when using a general-
purpose language.

1 System-family engineering is mainly concerned with building systems from common
assets, whereas product-line engineering additionally considers scoping and manag-
ing common product characteristics from the market perspective. In order to be
more general, this paper adheres to system-family terminology.

189



Domain engineering

Domain implementation

Reusable assets

New requirements

Application engineering

Domain analysis

Domain design

System requirements

System derivation

Management

System tailoring

Fig. 1. Main processes in system-family engineering

– Domain-specific error checking: a DSL enables building static analyzers that
can find more errors than similar analyzers for a general-purpose language
and that can report the errors in a language familiar to the domain expert.

– Domain-specific optimizations : a DSL creates opportunities for generating
optimized code based on domain-specific knowledge, which is usually not
available to a compiler for a general-purpose language.

– Domain-specific tool support : a DSL creates opportunities to improve any
tooling aspect of a development environment, including, editors, debuggers,
version control, etc.; the domain-specific knowledge that is explicitly cap-
tured by a DSL can be used to provide more intelligent tool support for
developers.

This paper gives an overview of the basic concepts and ideas of generative
software development including domain and application engineering, generative
domain models, networks of domains, and technology projections. The paper
closes by discussing the relationship of generative software development to other
emerging areas such as Model Driven Development and Aspect-Oriented Soft-
ware Development.

2 Domain Engineering and Application Engineering

System family engineering distinguishes between at least two kinds of develop-
ment processes: domain engineering and application engineering (see Figure 1).
Typically, there is also a third process, management, but this paper focuses on
the two development processes (for more information on process issues see [1,2]).
Generative software development, as a system-family approach, subscribes to the
process model in Figure 1, too.

Domain engineering (also known as core asset development) is “development
for reuse”. It is concerned with the development of reusable assets such as com-
ponents, generators, DSLs, documentation, etc. Similar to single-system engi-
neering, domain engineering also includes analysis, design, and implementation

190



activities. However, these are focused on a class of systems rather than just a
single system.2 Domain analysis involves determining the scope of the family to
be built, identifying the common and variable features among the family mem-
bers, and creating structural and behavioral specifications of the family. Domain

design covers the development of a common architecture for all the members of
the system family and a plan of how individual systems will be created based
on the reusable assets. Finally, domain implementation involves implementing
reusable assets such as components, generators, and DSLs.

Application engineering (also referred to as product development) is “devel-
opment with reuse”, where concrete applications are built using the reusable
assets. Just as traditional system engineering, it starts with requirements elic-
itation, analysis, and specification; however, the requirements are specified as
a delta from or configuration of some generic system requirements produced in
domain engineering. The requirements specification is the main input for system

derivation, which is the manual or autmated construction of the system from
the reusable assets.

Both processes feed on each other: domain-engineering supplies application
engineering with the reusable assets, whereas application engineering feeds back
new requirements to domain engineering. This is so because application engineers
identify the requirements for each given system to be built and may be faced
with requirements that are not covered by the existing reusable assets. Therefore,
some amount of application-specific development or tailoring is often required in
order to quickly respond to the customer’s needs. However, the new requirements
should be fed back into domain engineering in order to keep the reusable assets
in sync with the product needs. Different models for setting up these processes
in an organization, e.g., separate or joint product-development and domain-
engineering teams, are discussed in [10].

Domain engineering can be applied at different levels of maturity. At mini-
mum, domain analysis activities can be used to establish a common terminology
among different product-development teams. The next level is to introduce a
common architecture for a set of systems. Further advancement is to provide a
set of components covering parts or all of the systems in the system family. Fi-
nally, the assembly of these components can be partially or fully automated using
generators and/or configurators. The last level represents the focus of generative
software development. In general, the generated products may also contain non-
software artifacts, such as test plans, manuals, tutorials, maintenance guidelines,
etc.

2 Both terms “system family” and “domain” imply a class of systems; however,
whereas the former denotes the actual set of systems, the latter refers more to the
related area of knowledge. The use of the one or the other in compounds such as
“domain engineering” is mostly historical.

191



implementation−
Mapping

Problem space

domain−specific

abstractions

Solution space

abstractions

oriented

Fig. 2. Mapping between problem space and solution space

3 Mapping Between Problem Space and Solution Space

A key concept in generative software development is that of a mapping between
problem space and solution space (see Figure 2), which is also referred to as a
generative domain model. Problem space is a set of domain-specific abstractions
that can be used to specify the desired system-family member. By “domain-
specific” we mean that these abstractions are specialized to allow application
engineers to express their needs in a way that is natural for their domain. For
example, we might want to be able to specify payment methods for an electronic
commerce system or matrix shapes in matrix calculations. The solution space,
on the other hand, consists of implementation-oriented abstractions, which can
be instantiated to create implementations of the specifications expressed using
the domain-specific abstractions from the problem space. For example, payment
methods can be implemented as calls to appropriate web services, and differ-
ent matrix shapes may be realized using different data structures. The mapping
between the spaces takes a specification and returns the corresponding imple-
mentation.

There are at least two different views at the mapping between problem space
and solution space in generative software development: configuration view and
transformational view.

In the configuration view, the problem space consists of domain-specific con-
cepts and their features (see Figure 3). The specification of a given system re-
quires the selection of features that the desired system should have. The problem
space also defines illegal feature combinations, default settings, and default de-
pendencies (some defaults may be computed based on some other features).
The solution space consists of a set of implementation components, which can
be composed to create system implementations. A system-family architecture
sets out the rules how the components can be composed. In the configuration
view, an application programmer creates a configuration of features by select-
ing the desired ones, which then is mapped to a configuration of components.
The mapping between both spaces is defined by construction rules (certain con-
figurations of features translate into certain configurations of implementation
components) and optimizations (some component configurations may have bet-
ter non-functional properties then others). The mapping plus the illegal feature

192



domain−specific

Problem space Solution space

and

(minimum  redundancy

maximum combinability)

elementary components

Mappingconcepts and features

Configuration knowledge

construction rulesillegal feature combinations

default settings

default dependencies

optimizations

Fig. 3. Configuration view on the mapping between problem space and solution space

language

Problem space

domain−specific

language

Transformation implementation

Solution space

Fig. 4. Transformational view on the mapping between problem space and solution
space

combinations, default settings, and default dependencies collectively constitute
configuration knowledge. Observe that the separation between problem and solu-
tion space affords us the freedom to structure abstractions in both spaces differ-
ently. In particular, we can focus on optimally supporting application program-
mers in the problem space, while achieving reuse and flexibility in the solution
space.

In the transformational view, a problem space is represented by a domain-
specific language, whereas the solution space is represented by an implementation
language (see Figure 4). The mapping between the spaces is a transformation
that takes a program in a domain-specific language and yields its implementa-
tion in the implementation language. A domain-specific language is a language
specialized for a given class of problems. Of course, the implementation language
may be a domain-specific language exposed by another domain. The transfor-
mational view directly corresponds to the Draco model of domains and software
generation [4].

Despite the superficial differences, there is a close correspondence between
both views. The problem space with its common and variable features and con-
straints in the configuration view defines a domain-specific language, and the
components in the solution space can also be viewed as an implementation lan-
guage. For example, in the case of generic components, we can specify this
target language as a GenVoca grammar with additional well-formedness con-

193



straints [6,11]. Thus, the configuration view can also be interpreted as a mapping
between languages.

The two views relate and integrate several powerful concepts from software
engineering, such as domain-specific languages, system families, feature model-
ing, generators, components, and software architecture. Furthermore, the trans-
lation view provides a theoretical foundation for generative software development
by connecting it to a large body of existing knowledge on language theory and
language translation.

4 Network of Domains

Observe that Figure 2 can be viewed recursively, i.e., someone’s problem space
may be someone else’s solution space. Thus, we can have chaining of mappings
(see Figure 5 a). Furthermore, a mapping could take two or more specifications
and map them to one (or more) solution space (see Figure 5 b). This is common
when different aspects of a system are represented using different DSLs. A map-
ping can also implement a problem space in terms of two or more solution spaces
(see Figure 5 c). Finally, different alternative DSLs (e.g., one for beginners and
one for expert users) can be mapped to the same solution space (see Figure 5
d), and the same DSL can have alternative implementations by mappings to dif-
ferent solution spaces (e.g., alternative implementation platforms; see Figure 5
e).

In general, spaces and mappings may form a hypergraph, which can even
contain cycles. This graph corresponds to the idea of a network of domains

by Jim Neighbors [4], where each implementation of a domain exposes a DSL,
which may be implemented by transformations to DSLs exposed by other domain
implementations.

5 Feature Modeling and Feature-Oriented Approach to

Generative Software Development

Feature modeling is a method and notation to elicit and represent common
and variable features of the systems in a system family. Feature modeling was
first proposed by Kang et al in [12] and since then has been extended with
several concepts, e.g., feature and group cardinalities, attributes, and diagram
references [13].

An example of a feature model is shown in Figure 6. The model expresses that
an electronic commerce system supports one or more different payment methods;
it provides tax calculation taking into account either the street-level address, or
postal code, or just the country; and it may or may not support shipment of
physical goods. A feature diagram such as in Figure 6 may be supplemented
with additional information including constraints (selecting a certain feature
may require or exclude the selection of another feature), binding times (features
may be intended to be selected at certain points in time), default attribute values

194



a. Chaining of mappings

b. Multiple problem spaces c. Multiple solution spaces

d. Alternative problem spaces e. Alternative solution spaces

Fig. 5. Different arrangements of mappings between problem and solution spaces

and default features, stakeholders interested in a given feature, priorities, and
more. Features may or may not correspond to concrete software modules. In
general, we distinguish the following four cases:

– Concrete features such as data storage or sorting may be realized as indi-
vidual components.

– Aspectual features such as synchronization or logging may affect a number
of components and can be modularized using aspect technologies.

– Abstract features such as performance requirements usually map to some
configuration of components and/or aspects.

– Grouping features may represent a variation point and map to a common
interface of plug-compatible components, or they may have a purely organi-
zational purpose with no requirements implied.

Feature modeling gives rise to a feature-oriented approach to generative soft-
ware developement. [6] In the early stages of software family development, fea-
ture models provide the basis for scoping a system family by recording and
assessing information such as which features are important to enter a new mar-
ket or remain in an existing market, which features incur a technological risk,
what is the projected development cost of each feature, and so forth [14]. Subse-
quently, feature models created in domain analysis are the starting point in the
development of both system-family architecture and DSLs (see Figure 7). Archi-
tecture development takes a solution-space perspective at the feature models: it
concentrates on the concrete and aspectual features that need to be implemented
as components and aspects. Familiar architectural patterns [15, 16] can be ap-
plied, but with the special consideration that the variation points expressed in

195



taxCalculation shipping

addressResolution

streetAddresscountry

e−shop

electronicCheque

debitCard

postalCode

creditCard

payment

Fig. 6. Example of a feature diagram

Domain analysis

Feature models

perspectiveperspective

Architecture and components DSLs

Solution−space Problem−space

Stakeholders & other information sources

Fig. 7. Feature-oriented approach

the feature models need to be realized in the architecture. During subsequent
DSL development, a problem-space perspective concentrating on features that
should be exposed to application developers determines the required DSL scope,
possibly requiring additional abstract features.

6 Technology Projections and Structure of DSLs

Each of the elements of a generative domain model can be implemented using
different technologies, which gives rise to different technology projections:

– DSLs can be implemented as new textual languages (using traditional com-
piler building tools), embedded in a programming language (e.g., template
metaprogramming in C++ or Template Haskell [17], OpenJava [18], OpenC++
[19], Metaborg [20]), graphical languages (e.g., UML profiles [21]), wizards
and interactive GUIs (e.g., feature-based configurators such as Pure::Consul
[22] or CaptainFeature [23]), or some combination of the previous. The ap-
propriate structure of a DSL and the implementation technology depend on
the range of variation that needs to be supported (see Figure 8). The spec-
trum ranges from routine configuration using wizards to programming using
graphical or textual graph-like languages.

– Mappings can be realized using product configurators (e.g., Pure::Consul) or
generators. The latter can be implemented using template and frame proces-
sors (e.g., TL [7], XVCL [24], or ANGIE [25]), transformation systems (e.g.,

196



DMS [26], StrategoXT [27], or TXL [28]), multi-staged programming [29],
program specialization [30–32], or built-in metaprogramming capabilities of
a language (e.g., template metaprogramming in C++ or Template Haskell).

– Components can be implemented using simply functions or classes, generic
components (such as in the C++ STL), component models (e.g., JavaBeans,
ActiveX, or CORBA), or aspect-oriented programming approaches (e.g., As-
pectJ [33], HyperJ [34], or Caesar [35]).

While some technologies cover all elements of a generative domain model
in one piece (e.g., OpenJava or template metaprogramming in C++), a more
flexible approach is to use an intermediate program representation to allow using
different DSL renderings (e.g., textual or graphical) with different generator
back-ends (e.g., TL or StrategoXT).

The choice of a specific technology depends on its technical suitability for
a given problem domain and target users. For example, in the case of DSLs,
concise textual languages may be best appropriate for expert users, but wizards
may be better suited for novices and infrequent users. In the case of generator
technologies, the need for complex, algebraic transformations may require using a
transformation system instead of a template processor. Furthermore, there may
be non-technical selection criteria such as mandated programming languages,
existing infrastructure, familiarity of the developers with the technology, political
and other considerations.

7 Model Driven Development and Generative Software

Development

Perhaps the closest related area to generative software development is model-
driven development (MDD), which aims at capturing every important aspect
of a software system through appropriate models. A model is an abstract rep-
resentation of a system (and possibly the portion of the world that interacts
with it). A model allows answering questions about the system and its world
portion that are of interest to the stakeholders of the system. They are better
than the implementing code for answering these questions because they capture
the intentions of the stakeholders more directly, are freer from accidental imple-
mentation details, and are more amenable to analysis. In MDD, models are not
just auxiliary documentation artifacts; rather, models can be compiled directly
into executable code that can be deployed at the customer’s site.

There has been a trend in MDD towards representing models using appro-
priate DSLs, which makes MDD and generative software development closely
related. Perhaps the main difference between MDD and generative software de-
velopment is the focus of the latter on system families. While system families
can be of interest to MDD, they are not regarded as a necessity.

Model-Driven Architecture (MDA) is a framework MDD proposed by the Ob-
ject Management Group (OMG) [36]. While still being defined, the main goal
of MDA is to allow developers to express applications independently of specific

197



Routine configuration Creative construction

Wizard Feature-based configuration Graph-like language

src1

scr4

scr9 scr11 scr12

scr3

scr7scr6

scr10

scr5

scr2

src8

shipping

addressResolution

streetAddresscountry

e−shop

electronicCheque

debitCard

postalCode

creditCard

payment taxCalculation

Path through decision tree Subtree of feature model Subgraph of (infinite) graph

Fig. 8. Spectrum of DSL structures

implementation platforms (such as a given programming language or middle-
ware). In MDA, an application is represented as a Platform Independent Model
(PIM) that later gets successively transformed into series of Platform Specific
Models (PSMs), finally arriving at the executable code for a given platform. The
models are expressed using UML and the framework uses other related OMG
standards such as MOF, CWM, XMI, etc. A standard for model transforma-
tions is work in progress in response to the Request for Proposals “MOF 2.0
Query/Views/Transformations” issued by OMG.

MDA concepts can be mapped directly onto concepts from generative soft-
ware development: a mapping from PIM to PSM corresponds to a mapping from
problem space to solution space. Beyond the similarities, there are interesting
synergies. On the one hand, benefits of MDA include a set of standards for defin-
ing and manipulating modeling languages and the popularization of generative
concepts in practice. Thanks to MDA, current UML modeling tools are likely to
evolve towards low-cost DSL construction tools. On the other hand, the MDA
efforts until now have been focusing on achieving platform independence, i.e.,
system families with respect to technology variation. However, generative soft-
ware development addresses both technical and application-domain variability,
and it may provide valuable contributions to MDA in this respect (see Figure 9).
Often asked questions in the MDA context are (1) what UML profiles or DSLs

198



(distribution, data−base connection, GUI, etc.)

Generative Software Development

Model Driven Architecture

Main focus of

A
p
p
li

ca
ti

o
n
 d

o
m

ai
n
 v

ar
ia

b
il

it
y

Technical variability

Fig. 9. Relationship between generative software development and MDA

should be used to represent PIMs and (2) what is a platform in a given context.
Domain analysis and domain scoping can help us to address these questions.

8 Other Related Fields

Figure 10 classifies a number of related fields by casting them against the el-
ements of a generative domain model. Components, architectures, and generic
programming are primarily related to the solution space. Aspect-oriented pro-
gramming provides more powerful localization and encapsulation mechanisms
than traditional component technologies. In particular, it allows us to replace
many “little, scattered components” (such as those needed for logging or synchro-
nization) and the configuration knowledge related to these components by well
encapsulated aspectual modules. However, we still need to configure aspects and
other components to implement abstract features such as performance proper-
ties. Therefore, aspect-oriented programming technologies such as AspectJ cover
the solution space and only a part of the configuration knowledge. But aspects
can also be found in the problem space, esp. in the context of DSLs used to
described different aspects of a single system. Areas such as DSLs, feature mod-
eling, and feature interactions address the problem space and the front part of
the configuration knowledge. Finally, system-family and product-line engineer-
ing span across the entire generative domain model because they provide the
overall structure of the development process (including domain and application
engineering).

References

1. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley (1999)

199



Aspect−oriented programming

Generators

Components

Software architectures

Generic programming

Domain−specific languages

Feature modeling and interactions

Aspect−oriented DSLs

System−Family / Product−Line Engineering

Fig. 10. Relationship between generative software development and other fields (from
[37])

2. Clements, P., Northrop, L., eds.: Software Product Lines: Practices and Patterns.
International Series in Computer Science. Addison-Wesley (2001)

3. Parnas, D.: On the design and development of program families. IEEE Transactions
on Software Engineering SE-2 (1976) 1–9

4. Neighbors, J.M.: Software Construction using Components. PhD thesis,
Department of Information and Computer Science, University of California,
Irvine (1980) Technical Report UCI-ICS-TR160. Available from http://www.

bayfronttechnologies.com/thesis.pdf.
5. Cleaveland, J.C.: Building application generators. IEEE Software 9 (1988) 25–33
6. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications. Addison-Wesley (2000)
7. Cleaveland, C.: Program Generators with XML and Java. Prentice-Hall (2001)
8. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility

through product-lines and domain-specific languages: A case study. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 11 (2002) 191–214

9. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley (2004) To be published.

10. Bosch, J.: Software product lines: Organizational alternatives. In: Proceedings of
the 23rd International Conference on Software Engineering (ICSE). (2001)

11. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering
and Methodology 1 (1992) 355–398

12. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90TR -21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In Nord, R., ed.: Third Software Product-Line Conference, Springer-Verlag
(2004)

14. DeBaud, J.M., Schmid, K.: A systematic approach to derive the scope of software
product lines. In: Proceedings of the 21st International Conference on Software
Engineering (ICSE), IEEE Computer Society Press (1999) 34–43

15. Buschmann, F., Jkel, C., Meunier, R., Rohnert, H., Stahl, M., eds.: Pattern-
Oriented Software Architecture – A System of Patterns. International Series in
Computer Science. John Wiley & Sons (1996)

16. Bosch, J.: Design and Use of Software Architecture: Adopting and evolving a
product-line approach. Addison-Wesley (2000)

200



17. Czarnecki, K., O’Donnel, J., Striegnitz, J., Taha, W.: Dsl implementation in metao-
caml, template haskell, and c++. [38] 50–71

18. M. Tatsubori: OpenJava: An extensible Java (2004) Available at http://

sourceforge.net/projects/openjava/.
19. Sigeru Chiba: OpenC++ (2004) Available at http://opencxx.sourceforge.net/

index.shtml.
20. Bravenboer, M., Visser, E.: Concrete syntax for objects. domain-specific language

embedding and assimilation without restrictions. In C.Schmidt, D., ed.: Proceed-
ings of the 19th ACM SIGPLAN conference on Object-Oriented Programing, Sys-
tems, Languages, and Applications (OOPSLA’04). Vancouver, Canada. October
2004, ACM SIGPLAN (2004)

21. Jeff Grey et al.: OOPSLA’02 Workshop on Domain-Specific Visual Languages
(2002) Online proceedings at http://www.cis.uab.edu/info/OOPSLA-DSVL2/.

22. pure-systems GmbH: Variant management with pure::consul. Technical White
Paper. Available from http://web.pure-systems.com (2003)

23. Bednasch, T., Endler, C., Lang, M.: CaptainFeature (2002-2004) Tool available on
SourceForge at https://sourceforge.net/projects/captainfeature/.

24. Wong, T., Jarzabek, S., Swe, S.M., Shen, R., Zhang, H.: Xml implementa-
tion of frame processor. In: Proceedings of the ACM Symposium on Soft-
ware Reusability (SSR’01), Toronto, Canada, May 2001. (2001) 164–172 http:

//fxvcl.sourceforge.net/.
25. Delta Software Technology GmbH: ANGIE - A New Generator Engine (2004)

Available at http://www.delta-software-technology.com/GP/gptop.htm.
26. Baxter, I., Pidgeon, P., Mehlich, M.: Dms: Program transformations for practical

scalable software evolution. In: Proceedings of the International Conference on
Software Engineering (ICSE’04), IEEE Press (2004)

27. Visser, E.: Program transformation with stratego/xt: Rules, strategies, tools, and
systems. [38]

28. Cordy, J., Dean, T., Malton, A., Schneider, K.: Source transformation in soft-
ware engineering using the txl transformation system. Information and Software
Technology 44 (2002)

29. Taha, W.: A gentle introduction to multi-stage programming. [38]
30. Jones, N., Gomard, C., , Sestoft, P., eds.: Partial Evaluation and Automatic Pro-

gram Generation. International Series in Computer Science. Prentice-Hall (1993)
31. Consel, C., Danvy, O.: Tutorial notes on partial evaluation. In: Conference Record

of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages, Charleston, SC, USA, ACM Press (1993) 493–501

32. Consel, C.: From a program family to a domain-specific language. [38] 19–29
33. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of aspectj. In: Proceedings of ECOOP’01. Lecture Notes in Computer
Science, Springer-Verlag (2001)

34. Tarr, P., Ossher, H., Harrison, W., , Sutton, S.M.: N degrees of separation: Multi-
dimensional separation of concerns. In: Proceedings International Conference on
Software Engineering (ICSE) ’99, ACM Press (1999) 107–119

35. Mezini, M., Ostermann, K.: Variability management with feature-oriented pro-
gramming and aspects. In: Foundations of Software Engineering (FSE-12), ACM
SIGSOFT (2004)

36. Object Management Group: Model-Driven Architecture (2004) www.omg.com/mda.
37. Barth, B., Butler, G., Czarnecki, K., Eisenecker, U.: Report on the ecoop’2001

workshop on generative programming. In: ECOOP 2001 Workshops, Panels and

201



Posters (Budapest, Hungary, June 18-22, 2001). Volume 2323 of Lecture Notes in
Computer Science., Springer-Verlag (2001)

38. Christian Lengauer, D.B., Consel, C., Odersky, M., eds.: Domain-Specific Program
Generation, International Seminar, Dagstuhl Castle, Germany, March 23-28, 2003,
Revised Papers. Volume 3016 of Lecture Notes in Computer Science. Springer-
Verlag (2004)

202



Generative Programming from a Post

Object-Oriented Programming Viewpoint

Shigeru Chiba

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

Email: chiba@is.titech.ac.jp

Abstract. This paper presents an application of generative program-
ming to reduce the complications of the protocol for using an applica-
tion framework written in an object-oriented language. It proposes that a
programmable program translator could allow framework users to write
a simple program, which is automatically translated by the translator
into a program that fits the framework protocol. Then it mentions the
author’s experience with Javassist, which is a translator toolkit for Java,
and discusses a research issue for applying this idea to real-world software
development.

1 Introduction

Object-oriented programming languages have enabled us to develop component
libraries that are often called application frameworks. A well-known simple exam-
ple of such libraries is a graphical user interface (GUI) library. Since application
frameworks provide a large portion of the functionality that application soft-
ware has to implement, they can significantly reduce the development costs of
application software.

However, application frameworks involve hidden costs. The developers who
want to build their own application software with an application framework must
first learn how to use the framework. Then they must write their programs to
follow the protocol provided by the framework. These costs are considerably
large if the framework provides relatively complex functionality. For example,
to implement GUI with a typical GUI library (i.e. framework), the developers
must learn the basic GUI architecture and a few concepts such as a callback
and a listener. Then they must carefully write their programs to implement
such a callback method and listener. To implement a web application on top
of the J2EE framework, the developers must first take a tutorial course about
J2EE programming and then write a program to follow the complicated J2EE
protocol. For example, they must define two interfaces whenever they define one
component class.

In this paper, we present an idea for reducing the hidden costs involved in
application frameworks written in object-oriented languages. Our idea is to use a
programmable program translator/generator, which automatically generates glue

203



code for making the program written by a developer match the protocol supplied
by an application framework. Thus the developer do not have to learn or follow
the protocol given by the framework. Note that the program translator is not a
fully-automated system. It is driven by a control program that is written by the
framework developer. This is why the program translator used in our proposal
is called programmable. In our idea, the framework must be supplied with the
control program for customizing a program translator for that framework.

A research issue on this idea is how to design a language used to write a
control program of the program translators/generator. We have developed a
Java bytecode translator toolkit, named Javassist [1], and built several systems
on top of that toolkit. Our experience in this study revealed that a programmable
translator such as Javassist can be used to implement our idea. However, control
programs for Javassist are still somewhat complicated and thus writing such
a control program is not a simple task for framework developers. Studying a
language for writing control programs is one of the future work.

2 Object-oriented Application Framework

Object-oriented programming languages enable a number of programming tech-
niques, some of which are known as the design patterns [2]. These techniques play
a crucial role in constructing a modern application framework. In some sense,
they are always required to construct an application framework that provides
complex functionality, in particular, non-functional concerns such as persistence,
distribution, and user interface. The application framework that provides such
functionality would be difficult to have simple API (Application Programming
Interface) if object-oriented programming techniques are not used.

On the other hand, the users of such an application framework written in an
object-oriented language must learn the protocol for using that framework. They
must understand how design patterns have been applied to the framework, or
they must know at least which methods should be overridden to obtain desirable
effects and so on. These efforts are often major obstacles to use the application
framework. A larger application framework tends to require a longer training
period to the users of that framework.

The complications of such a framework protocol mainly come from the use of
object-oriented programming techniques. For example, we below show a (pseudo)
Java program written with the standard GUI framework. It is a program for
showing a clock. If this program does not have GUI, then it would be something
like the following simple and straightforward one (for clarifying the argument,
the programs shown below are pseudo code):

class Clock {
static void main(String[] args) {
while (true) {

System.out.println(currentTime());
sleep(ONE_MINUTE);

}
}

204



}

This program only prints the current time on the console every one minute.
We can use the standard GUI library to extend this program to have better

look. To do that, we must read some tutorial book of the GUI library and edit
the program above to fit the protocol that the book tells us. First, we would
find that the Clock class must extend Panel. Also, the Clock class must prepare
a paint method for drawing a picture of clock on the screen. Thus you would
define the paint method and modify the main method. The main method must
call not the paint method but the repaint method, which the tutorial book tells
us to call when the picture is updated. The following is the resulting program
(again, it is pseudo code):

class Clock extends Panel {
void paint(Graphics g) {
// draw a clock on the screen.

}
static void main(String[] args) {
Clock c = new Clock();
while (true) {

c.repaint();
sleep(ONE_MINUTE);

}
}

}

Note that the structure of the program is far different from that of the orig-
inal program. It is never simple or straightforward. For example, why do we
have to define the paint method, which dedicates only to drawing a picture?
Why does the main method have to call not the paint method but the repaint

method, which indirectly calls the paint method? To answer these questions, we
have to understand the underlying architecture of the framework provided by
the GUI library. Since this architecture is built with a number of object-oriented
programming techniques and most of tutorial books do not describe such de-
tails, understanding the underlying architecture is often difficult for “average”
developers who do not have the background of GUI programming.

3 Protocol-less framework

To overcome the problem mentioned in the previous section, we propose an
idea of using a programmable program translator. The users of an application
framework should not be concerned about “the protocol” of a framework when
writing their application programs. They should be able to write simple and
intuitively understandable programs, which should be automatically translated
into programs that fit the protocol for using the framework. I think that reducing
the awareness about a framework protocol due to object-orientation is a key
feature of post object-oriented programming.

Ideally, the transformation from the original Clock class into the GUI-based
Clock class shown in the previous section should be performed automatically by a

205



program translator instead of a human being. At least, the following modification
for making the original program fit the protocol of the framework should be
performed by a program translator:

– The Clock class must extend the Panel class. User classes of an application
framework must often extend a class provided by the framework or imple-
ment an interface provided by the framework. Such class hierarchy should
be automatically maintained by a program translator.

– The Clock class must declare the paint method. User classes of an application
framework must often override some specific methods. Such overriding should
be implicit. If necessary, the method drawing a picture should be able to
have some other name than paint. If paint is not declared in user classes,
the default method declaration of paint should be automatically added by a
program translator.

Executing the automatic program transformation presented above is not re-
alistic if any hints are not given. In our idea, this transformation is executed by
a program translator controlled by a control program written by the developer
of the application framework (Figure 1). Thus the program translators must be
programmable. Since the framework developer knows the underlying architecture
of that framework, writing such a control program should be fairly easy for her.
Application frameworks should be distributed together with program translators
and control programs of them.

User program

Application framework

Product

Control program

Translator

Fig. 1. Programmable program translator

4 Javassist

A challenge is to develop a good language for describing a control program given
to the program translator in Figure 1. Toward this goal, we have been developing
a Java bytecode translator toolkit named Javassist [1]. It is a Java class library
for transforming a compiled Java program at the bytecode level (the bytecode
is assembly code in Java).

A unique feature of Javassist is that it provides source-level abstraction for
the developers who want to write a program for transforming Java bytecode.

206



There are several similar Java libraries that allow editing a class file (a compiled
Java binary file). These libraries help the users read a class file, parse it, and
produce objects that directly represent the internal data structures included in
the class file. The users can modify the contents of the class file through these
objects. However, since these objects directly correspond to the data structures
in a class file, the users must learn the specifications of such internal data struc-
tures so that they can use these objects for modifying the contents of a class
file. For example, they have to learn what the constant pool is and what the
code attribute is. The former is a symbol table and the latter is a code block
representing a method body.

Since Javassist provides source-level abstraction, the users of Javassist do
not have to learn the specifications of the Java class file. Javassist translates the
internal data structures in a class file into objects that represent the concepts
familiar to Java developers (Figure 2). The users of Javassist can parse a class file
and obtain objects representing a class, fields, methods, and constructors derived
from the original class file. If the users change attributes of those objects, then
the changes are reflected on the class file. For example, if the setName method is
called on an object representing a class, Javassist changes the name of the class
that the original class file represents.

translation
by Javassist

Constant pool, class_info,

code_attribute, etc.

Original
class file

Edited
class file

Class, field, method,

constructor, etc.

Translator program

manipulate

Fig. 2. Javassist translates bytecode-level concepts into source-level concepts

5 Translator programming language

Our experiences with Javassist for several years told us that developing a pro-
grammable program translator mentioned in Section 3 is a realistic idea. How-
ever, to actually use this idea for real-world software development, we need
further study.

One of the open issues is a programming language for describing program
transformation, that is, describing a control program in Figure 1. The source-
level abstraction by Javassist has made it easier to write such a control program
but making such a program sufficiently generic still needs further study. At
least, one control program must be able to translate a number of user programs

207



to fit the protocol of the application framework that the control program was
written for. To do that, however, a control program must be able to recognize
differences among user programs and find which parts of the code must be edited.
For example, in the case of the Clock example shown above, the control program
must find which class must extend the Panel class and which method is for
drawing a picture on the screen. Maybe the users might have to give some hints
to the control program but, if they must a large amount of hints, the resulting
application framework would be as difficult to use as today’s frameworks coming
with a complicated protocol. To overcome this issue, other techniques studied
in this research area — generative programming — should be introduced. For
example, aspect-oriented programming and domain-specific language approaches
might give some hints to solutions.

References

1. Chiba, S.: Load-time structural reflection in java. In: ECOOP 2000. LNCS 1850,
Springer-Verlag (2000) 313–336

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

208



➩ ✄❦➆❏✄✝✁☎✞❣➉❂➇✵⑩❝✄⑦�✂✁☎➊✻➅❝✁☎✞❇❞❽❞ ➇✖➆❏➅ ✆✒✁☎➊④❞ ✞❖➆
➄Þ➄ �➭ô✄➄ ➄ � õ ➇✑✄P➑✖t➻➊✼➇✑➆✼➉

Ý➥❧➬♦❱➘➴➘❀♦❤×❯❣✿❧r✐✧❦❀♦
➱✓➘➴❦❀❧r➹❁✃r♦P✐✍❣✓❦❍➘❀♦❖➹❁♦❁❧rq◆♦☛❐✼❧r✐❻❦❀❧➬❒✬♦

209



Understanding Generative Programming

From �meta�objects to aspects

Pierre Cointe

OBASCO group� EMN�INRIA�
�Ecole des Mines de Nantes�

� rue Alfred Kastler� La Chantrerie�
����� Nantes Cedex �� France

cointe�emn	fr

Abstract� Generative Programming 
GP� is an attempt to manufacture
sofware components in an automated way by developing programs that
synthesize other programs	 The purpose of this track is to introduce the
what and the how of the GP approach from a programming language
perspective	 For the what we will learn lessons from object�oriented�
component�based� aspect�oriented and domain speci�c languages	 For the
how we will discuss a variety of approaches and technics such as high�
level compilation� meta�programming and metaobject protocols� pro�
grammable program translators � weavers� 	 	 	 	

� Introduction

�The transition to automated manufacturing in software requires two steps� First�
we need to move our focus from engineering single systems to engineering fam�
ilies of systems � this will allow us to come up with the �right� implementation
components� Second� we need to automate the assembly of the implementation
components using generators� ����

Generative Programming �GP� is an attempt to provide a variety of ap�
proaches and techniques to manufacture sofware components in an automated
way by developing programs that synthesize other programs ���� According to
the Czarnecki � Eisenecker book �	�
 the two main steps to industrialize software
manufacturing are the modeling and the engineering of program family and the
use of generators to automate the assembly of components� The purpose of this
track is to have a better understanding of the what and the how of the GP ap�
proach from a programming language perspective� To achieve this goal we have
invited the following speakers �

	� Krzysztof Czarnecki will give an Overview of Generative Software Develop�
ment focusing on software reuse and development processes�

�� Pierre Cointe will present the evolution of objects to metaobjects and aspects
from a re�ective software engineering view point�



� Shigeru Chiba will introduce Generative Programming from a Post Object�
Oriented Programming View point by sketching an application for automat�
ing the use of an Object�Oriented framework�

�� Mira Mezini �and Klaus Ostermann� will discuss Generative Programming
from an AOP	CBSE Perspective by introducing the AspectJ and Caeser
languages� They will argue that general purpose programming languages
should be augmented with abstraction mechanisms to encode and combine
di�erent crosscutting models instead of using program generation techniques
to encode domain�speci�c knowledge�

�� Charles Consel will present Generative Programming from a DSL Viewpoint
and will discuss how generative tools can be used to compile DSL programs
into GPL programs�

� Some lessons learnt from object�oriented languages

The object�oriented and re�ective communities
 together
 have clearly illustrated
the potential of separation of concerns in the �elds of software engineering and
open middleware ��
 ��
 leading to the development of aspect oriented program�
ming ��
 ���

��� Re�ection

The re�ective approach makes the assumption that it is possible to separate in
a given application
 its why expressed at the base level
 from its how expressed
at the metalevel�

� In the case of a re�ective object�oriented language 
a la Smalltalk
 the prin�
ciple is to reify at the metalevel its structural representation e�g�� its classes

their methods and the error�messages but also its computational behavior

e�g�� the message sending
 the object allocation and the class inheritance�
Depending on which part of the representation is accessed
 re�ection is said
to be structural or behavioral� Meta�objects protocols �MOPs� are speci�c
protocols describing at the meta�level the behavior of the rei�ed entities�
Specializing a given MOP by inheritance
 is the standard way to extend the
base language with new mechanisms such as multiple�inheritance
 concur�
rency or metaclasses composition�

� In the case of an open middleware
 the main usage of behavioral re�ection is
to control message sending by interposing a metaobject in charge of adding
extra behaviors�services �such as transaction
 caching
 distribution� to its
base object� Nevertheless
 the introduction of such interceptors	wrappers
metaobjects requires to instrument the base level with some hooks in charge
of causally connecting the base object with its metaobject� Those metaob�
jects pre�gured the introduction of AspectJ crosscuts
 e�g�� the speci�cation
of execution points where extra actions should be woven in the base program
��
 ���



��� Separation Of Concerns

The Model�View�Controller MVC developed for Smalltalk is the �rst design�
pattern making the notion of aspects explicit� The main idea was to separate
 at
the design level
 the model itself describing the application as a class hierarchy
and two separate concerns� the display and the control
 themselves described as
two other class hierarchies� At the implementation level
 standard encapsulation
and inheritance were not able to express these croscutting concerns and not able
to provide the coupling between the model
 its view
 and its controller� This
coupling necessitated�

� the introduction of a dependence mechanism in charge of notifying the ob�
servers when a source�object changes� This mechanism is required to auto�
matically update the display when the state of the model changes�

� the instrumentation of some methods of the model to raise an event each
time a given instance variable changes its value�

��� Aspects

On the one hand
 object�oriented languages have demonstrated that re�ection
is a general conceptual framework to clearly modularize implementation con�
cerns when the users fully understand the metalevel description� In that sense

re�ection is solution oriented since it relies on the protocols of the language to
build a solution� On the other hand
 the MVC design�pattern has provided the
developer with a problem�oriented methodology based on the expression and the
combination of three separate concerns�aspects� The MVC was the precursor of
event programming � in the Java sense � and contributed to the emergence of
aspect�oriented programming ��
 ��� by making explicit the notion of join�point

e�g�� some well de�ned points in the execution of a model used to dynamically
weave the aspects associated to the view and the controller�

� Some open issues �to be developed later�

A �rst issue is to have a better understanding of how to use re�ective tools to
model aspects and their associated crosscutting languages and advice languages
��� A second issue is to study the integration of aspects and objects to pro�
pose an alternative to inheritance as a mechanism for reuse� A third issue is to
emphasize the use of re�ection in the �eld of component adaptation as soon as
self�reasoning is important� A fourth issue is to apply domain�speci�c languages
to the expression of aspects�

References

	 Czarnecki� K	� Eisenecker� U	W	� Generative Programming	 Methods� Tools� and
Applications	 Addison�Wesley 
�����	



�	 Batory� D	� Czarnecki� K	� Eisenecker� U	� Smaragdakis	� Y	� Sztipanivits J	�
Generative Programming and Component Engineering	 See
http���www	cs	rice	edu� taha�gpce�	

�	 Tanter� E	� Noy�e� J	� Caromel� D	� Cointe� P�� Partial Behavioral Re�ection� Spatial
and Temporal Selection of Rei�cation	 Proceedings of the �th ACM SIGPLAN
conference on Object�Oriented Programing� Systems� Languages� and Applications	
OOPSLA ����	 ACM SIGPLAN Notices� volume ��� number � pages �����	

�	 Thomas� D	� Re�ective Software Engineering � From MOPS to AOSD	 Journal Of
Object Technology� volume � number �� pages ����	 October ����	

�	 Wand� M	� Understanding Aspects	 Invited talk at ICFP ����	 Available at
www	ccs	neu	edu�home�wand�ICFP ����

�	 Kiczales� G	� Lamping� J	� Mendhekar� A	� Maeda� C	� Lopes� C� Loingtier� J	�M	�
Irwin� J	� Aspect�Oriented Programming	 ECOOP��� � Object�Oriented Program�
ming � th European Conference� volume ��� pages �������	

�	 Cointe� P	� Les langages �a objets	 Technique et Science Informatique 
TSI�� volume
�� number ����� 
�����	

�	 Aksit� M	� Black� A	� Cardelli� L	� Cointe	 P	� Guerraoui� R	 
editor�� and al�� Strate�
gic Research Directions in Object Oriented Programming� ACM Computing Sur�
veys� volume �� number �� page ������� 
����	

�	 	 Douence� R	� Motelet� O	� S�udholt� M	� A formal de�nition of crosscuts	 Proceed�
ings of the �rd International Conference on Re�ection ���� LNCS volume ����
pages ������ 
����	

This article was processed using the LATEX macro package with LLNCS style



Author Index

Adamatzky, Andrew, 106

Bäck, Thomas, 8

Babaoglu, Ozalp, 156

Banâtre, Jean-Pierre, 138

Banzhaf, Wolfgang, 131

Beal, Jacob, 87

Breukelaar, Ron, 8

Buck-Sorlin, Gerhard, 122

Cardelli, Luca, 1

Chen, Huoping, 164

Chiba, Shigeru, 203

Ciobanu, Grabriel, 51

Cohen, Julien, 95

Cointe, Pierre, 209

Consel, Charles, 176

Coore, Daniel, 70

Czarnecki, Krzysztof, 189

Fradet, Pascal, 138

George, Marian, 21

Giavitto, Jean-Louis, 95

Hariri, Salim, 164

Holness, Dean D., 79

Ibarra, Oscar H., 43

Jelasity, Márk, 156

Jiang, Nanyan, 148

Jorrand, Philippe, 60

Kim, Byoung uk, 164

Kniemeyer, Ole, 122

Kurth, Winfried, 122

LaBean, Thomas H., 14

Lasarczyk, Christian, 131

Li, Zhen, 148

Liu, Hua, 148

Matossian, Vincent, 148

Mezini, Mira, 181

Michel, Olivier, 95

Montresor, Alberto, 156

Ostermann, Klaus, 181

Păun, George, 4, 35

Parashar, Manish, 148, 164

Radenac, Yann, 138

Reif, John H., 14

Sahu, Sudheer, 14

Schmidt, Cristina, 148

Spicher, Antoine, 95

Teuscher, Christof, 26

Willmes, Lars, 8

Yan, Hao, 14

Yang, Jingmei, 164

Yin, Peng, 14

Zauner, Klaus-Peter, 116



 



�✂✁☎✄✝✆✞✄✝✆✠✟☛✡✌☞✠☞✠✁✍✄✎✁☎✏✒✑✓✡✌✔✖✕✝✗✠✘✠✘✙✏✒✚✛✄✜✏✣✢



This workshop is part of a series of

strategic workshops to identify key

research challenges and opportunities

in Information Technology. These

workshops are organised by ERCIM,

the European Research Consortium

for Informatics and Mathematics, and

DIMACS the Center for Discrete

Mathematics & Theoretical Computer

Science. This initiative is supported

jointly by the European Commission’s

Information Society Technologies

Programme, Future and Emerging

Technologies Activity, and the US

National Science Foundation,

Directorate for Computer and

Information Science and Engineering.  

More information about this initiative,

other workshops, as well as an elec-

tronic version of this report are avail-

able on the ERCIM website at

http://www.ercim.org/EU-NSF/

FET - Future and

Emerging Technologies

DIMACS — Center for

Discrete Mathematics

& Theoretical

Computer Science


	5 - UPP'04 Papers-1.pdf
	Kurth.pdf
	1   Introduction
	2   Relational growth grammars
	3   Key features of RGGs
	4   Example 1: Spreading of a signal in a network
	5   Example 2: "Game of Life"
	6   Example 3: A distance-sensitive plant
	7   Example 4:  A polymerization model with mass-spring kinetics
	8   Conclusions
	References


	6 - UPP'04 Papers-2.pdf
	Kurth.pdf
	1   Introduction
	2   Relational growth grammars
	3   Key features of RGGs
	4   Example 1: Spreading of a signal in a network
	5   Example 2: "Game of Life"
	6   Example 3: A distance-sensitive plant
	7   Example 4:  A polymerization model with mass-spring kinetics
	8   Conclusions
	References

	Kurth.pdf
	1   Introduction
	2   Relational growth grammars
	3   Key features of RGGs
	4   Example 1: Spreading of a signal in a network
	5   Example 2: "Game of Life"
	6   Example 3: A distance-sensitive plant
	7   Example 4:  A polymerization model with mass-spring kinetics
	8   Conclusions
	References


	7 - UPP'04 Papers-3.pdf
	Kurth.pdf
	1   Introduction
	2   Relational growth grammars
	3   Key features of RGGs
	4   Example 1: Spreading of a signal in a network
	5   Example 2: "Game of Life"
	6   Example 3: A distance-sensitive plant
	7   Example 4:  A polymerization model with mass-spring kinetics
	8   Conclusions
	References

	Kurth.pdf
	1   Introduction
	2   Relational growth grammars
	3   Key features of RGGs
	4   Example 1: Spreading of a signal in a network
	5   Example 2: "Game of Life"
	6   Example 3: A distance-sensitive plant
	7   Example 4:  A polymerization model with mass-spring kinetics
	8   Conclusions
	References



