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A kinetic scheme for pressurized flows in non uniform

pipes

C. Bourdarias1∗, M. Ersoy1†and S. Gerbi1‡

1Université de Savoie,Laboratoire de Mathématiques,

73376 Le Bourget-du-Lac, France.

Abstract

The aim of this paper is to present a kinetic numerical scheme for the compu-
tations of transient pressurised flows in closed water pipes with variable sections.
Firstly, we detail the derivation of the mathematical model in curvilinear coordi-
nates under some hypothesis and we performe a formal asymptotic analysis. Then
the obtained system is written as a conservative hyperbolic partial differential sys-
tem of equations, and we recall how to obtain the corresponding kinetic formulation
based on an upwinding of the source term due to the “pseudo topography” per-
formed in a close manner described by Perthame and al. [2, 8, 3]. The validation is
lastly performed in the case of a water hammer in a uniform pipe where we compare
the numerical results provided by an industrial code used at EDF-CIH (France),
which solves the Allievi equation (the commonly used equation for pressurised flows
in pipes) by the method of characteristics, with those of the kinetic scheme. To
validate the contracting or expanding case, we compare the presented technique to
the equivalent pipe in the case of an immediate flow shut down in a frictionless
cone-shaped.
Key words : Curvilinear transformation, asymptotic analysis, pressurized flows,
kinetic scheme.

1 Introduction

The presented work in this paper is the second step in a more general project
: the modelization of unsteady mixed flows in any kind of closed domain taking
into account the cavitation problem and air entrapment. We are interested in flows
occuring in closed pipes of variable sections, since some parts of the flow can be free
surface and other parts are pressurized. The transition phenomenon occurs in many
situation such as storm sewers, waste or supply pipes in hydroelectric installation.
It can be induced by sudden change in the boundary conditions as failure pumping
and to father more or less damage. During this process, the pressure can be reach
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severe values and cause the scrap of materials. Morever, the excess pressure can
be also induced by the geometry of the domain. Therefore, it is important to take
into account the change of section, even if the change is small.

The classical Saint-Venant equations are commonly used to describe physical
situations like free surface flows in open channel. They are also used in the study
of mixed flows using the Preissman slot artefact (see for example [7, 10]). However,
this technics does not take into account depressuration phenomenon which occurs
during a waterhammer. We can also cite the Allievi equations which are commonly
used to describe pressurized flows. Nonetheless, the non conservative form is not
well adapted to a natural coupling with the Saint-Venant equations (see PFFS-
model).

The model for the unsteady mixed water flows in closed water pipes and a finite
volume discretization has been previously studied by the authors [5] and a kinetic
formulation has been proposed in [6]. This paper tends to extend naturally the
work in [6] in the case of closed pipes with variable sections.

We establish in section 2 the model for pressurized flows in curvilinear coordi-
nates and recall some classical properties of this model. Rewritting the appearing
source term into a pseudo-altitude term, we get a system closed to the presented by
authors in [8]. Applying the generalized characteristic method we get the so-called
kinetic formulation with pseudo-reflection. Then we present the main results and
the properties of this kinetic formulation. The rest of this section is devoted to the
construction of the kinetic scheme. The upwinding of the source term due to the
pseudo topography is performed in a close manner described by Perthame and al.
[8] using an energetic balance at microscopic level for the Shallow Water equations.

Finally, we present in section 4 a numerical validation of this study in the uni-
form case by the comparison between the resolution of this model and the resolution
of the Allievi equation solved by the research code belier used at Center in Hy-
draulics Engineering of Electricité De France (EDF) [11] for the case of critical
waterhammer tests. The validation in the non uniform pipes is performed in the
case of an immediate flow shut down in a frictionless cone-shaped where the results
are compared to the equivalent pipes method.

2 Formal Derivation of the model

2.1 The Euler system in curvilinear coordinates

The presented model is derived from the 3D Euler system of compressible flow
written in curvilinear coordinates, then integrated over sections orthogonal to the
mean flow axis where we have neglected the second and third equation of the
conservation of the momentum. The 3D Euler system in the cartesian coordinates
is written as follows

∂tρ + div(ρ
−→
U ) = 0 (1)

∂t
−→
U + div(ρ

−→
U ⊗−→

U ) + ∇p = F (2)

where (
−→
U (t, x, y, z), ρ(t, x, y, z)) denotes the velocity and the density of the equa-

tions, p(t, x, y, z) is the scalar pressure and F the exterior strenght of gravity.
To see the local effect induced by the geometry due to the change of sections

and/or slope effect we write the 3D compressible Euler system in the curvilinear
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coordinates. To this end, let us introduce the curvilinear variable defined by X =∫ x

x0

√
1 + (b′(ξ))2dξ where b(x) denotes the mean flow axis and x0 an arbitrary

abscissa. Let us also suppose that there is no variation in the direction
−→
j , i.e. we

have y = Y and we denote by Z the altitude of any fluid particle M(X) (attached
to the mean flow axis) in the Serret-Frênet basis formed by (M(X), T,N,B) : T is
the tangent vector, N the normal vector and B the binormal vector (see Figure.

1). Then we perform the following transformation (x, y, z) → −−→
OM(x, y, z) by the

following lemma (using the same notation in [4])

Figure 1: Geometric characteristics of the pipe

Lemma 2.1 Let
−→
ξ 7→ −→

Y (
−→
ξ ) and A−1 = ∇−→

ξ

−→
Y the jacobian matrix of the trans-

formation where J denotes its determinant.

Then, for any vector field
−→
Φ one has,

J∇−→
Y

.
−→
Φ = ∇−→

ξ
.(JAΦ)

In particular, for any scalar function f , one has

∇−→
Y

f = At∇−→
ξ
f

For the proof, we refer to [4].
The velocity fluid is reoriented and denoted by (U, V,W )t in such a way that

the flow will be orthogonal to the cross-section along the binormal axis B. Let R
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be the matrix defined by R =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 then the velocity attached to

the new basis is given by




U
V
W


 = R

−→
U .

Applying the lemma 2.1 to the mass conservation, we get

J(∂tρ + div(ρ
−→
U )) = 0

⇐⇒

∂t(Jρ) + ∂X(ρU) + ∂X(ρJV ) + ∂Z(ρJW ) = 0 (3)

where

J = det




∂Xx − Z∂Xθ cos θ 0 sin θ
0 1 0

∂Xb − Z∂Xθ sin θ 0 cos θ


 (4)

= det




(1 − Z∂Xθ) cos θ 0 sin θ
0 1 0

(1 − Z∂Xθ) sin θ 0 cos θ


 . (5)

To get the unidirectionnal Saint-Venant like equations we neglect the second
and third equation for the conservation of the momentum. Therefore, we only
perform the curvilinear transformation for the first conservation equation. To this

end, multiplying the Euler system (2) by J




cos θ
0

sin θ


 and using the lemma (2.1),

this yields

J




cos θ
0

sin θ




(
∂t
−→
U + div(ρ

−→
U ⊗−→

U ) + ∇.P = −ρ∇(−→g .
−−→
OM )

)

⇐⇒

∂t(JρU)+∂X(ρU2)+∂Y (ρJUV 2)+∂Z(ρJUW )+∂Xp = −ρJg sin θ+ρUW∂Xθ (6)

Finally, in variables (X,Y,Z) the system reads





∂t(Jρ) + ∂X(ρU) + ∂X(ρJV ) + ∂Z(ρJW ) = 0
∂t(JρU) + ∂X(ρU2) + ∂Y (ρJUV 2) + ∂Z(ρJUW ) + ∂Xp = −ρJg sin θ

+ρUW∂Xθ
(7)

Remark 2.1 Notice that ρ(X) = ∂Xθ is the algebric curvature and the function
J(X,Y,Z) = 1 − Z∂Xθ(X) is a function only depend on variables X,Z. Morever,
J is always positive since the curvature radius is greater than Z.
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We recall that the main objectif is to obtain a formulation closed to the Saint-
Venant equation in order to couple the models in a natural way (in a closed manner
described in [5]). To this end, let us introduce a small parameter ǫ = H/L where

H and L are two characteristics dimensions along
−→
k and

−→
i axis respectively. We

suppose that the characteristic dimension along the
−→
j axis is the same as

−→
k in

order to obtain a unidirectionnal model. We introduce some characteristics dimen-
sions T, P, Ū , V̄ , W̄ for time, pressure and velocity repectively and the dimension-
less quantities Ũ = U/Ū , Ṽ = ǫV/Ū , W̃ = ǫW/Ū, X̃ = X/L, Ỹ = Y/H, Z̃ =
Z/H, p̃ = p/P, θ̃ = θ, ρ̃ = ρ. In the sequel, we write P = Ū2 and L = T Ū (i.e. we
consider only laminar flow).

Under these hypothesis J(X,Y,Z) = J̃(X̃, Ỹ , Z̃) = 1− ǫZ̃∂X̃θ. So, the rescaled
system (7) is given by





∂t̃(J̃ ρ̃) + ∂X̃(ρ̃Ũ) + ∂Ỹ (J̃ ρ̃Ṽ ) + ∂Z̃(J̃ ρ̃W̃ ) = 0

∂t̃(J̃ Ũ ρ̃) + ∂X̃(ρ̃Ũ
2
) + ∂Ỹ (J̃ ρ̃Ũ Ṽ ) + ∂Z̃(J̃ ρ̃ŨW̃ ) + ∂X̃ p̃ = ǫρ̃ŨW̃ ρ̃(X̃)

−ρ̃
sin θ̃

Fr,L
2

− Z̃∂X̃(cos θ̃)

Fr,H
2

(8)

with Fr,M =
Ū√
gM

the Froude number along the
−→
i axis and the

−→
k or

−→
j axis

where M is any generic variable.
Formally, when ǫ tends to 0 the system converges to





∂t̃(ρ̃ǫ) + ∂X̃(ρ̃ǫŨǫ) + ∂Ỹ (ρ̃ǫṼǫ) + ∂Z̃(ρ̃ǫW̃ǫ) = 0

∂t̃(Ũǫρ̃ǫ) + ∂X̃(ρ̃ǫŨǫ
2
) + ∂Ỹ (ρ̃ǫŨǫṼǫ) + ∂Z̃(ρ̃ǫŨǫW̃ǫ) + ∂X̃ p̃ǫ = −ρ̃

sin θ̃

Fr,L
2

− Z̃∂X̃(cos θ̃)

Fr,H
2

(9)
Finally, the system in variables (X,Y,Z) reads





∂t(ρ) + ∂X(ρU ) + ∂Y (ρV ) + ∂Z(ρW ) = 0

∂t(Ũρ) + ∂X(ρU2) + ∂Y (ρUV ) + ∂Z(ρUW ) + ∂Xp = −ρg sin θ
−Z∂X(g cos θ)

(10)

To take into account the friction, we add the source term −ρgSfT and we obtain
the physical model that describe the slope variation and the section variation in a
closed geometry :




∂t(ρ) + ∂X(ρU) + ∂Y (ρV ) + ∂Z(ρW ) = 0

∂t(Ũρ) + ∂X(ρU2) + ∂Y (ρUV ) + ∂Z(ρUW ) + ∂Xp = −ρg(sin θ + Sf )
−Z∂X(g cos θ)

(11)

2.2 Saint-Venant like equations on a closed pipes

In what follows, we use the linearized pressure law p = pa +
ρ − ρ0

βρ0
in which ρ0

represents the density of the fluid at atmospheric pressure pa and β the water
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compressibility coefficient equal to 5.0 10−10 m2.N−1 in practice. The sonic speed
is then given by c = 1/

√
βρ0 and thus c ≈ 1400m.s−1. The friction term is given

by the Manning-Strickler law (see [10]),

Sf = K(A)U |U | with K(A) =
1

K2
s Rh(A)4/3

where A = A(X) is the surface area of the section Ω(X) normal to the pipe mean
axis (see Figure. 1 for the notations). Ks is the coefficient of roughness and
Rh(A) = A/Pm is the hydraulic radius where Pm is the perimeter of Ω.

The system (11) is integrated over the cross-section Ω(X). In the following,

overlined letters represents the averaged quantities over Ω(X), −→m ∈ ∂Ω, −→n =
−→m
|−→m|

the outward unit vector at the point −→m in the Ω-plane (as displayed on Figure.
1).

Following the work in [5], using the approximation ρU ≈ ρU, ρU2 ≈ ρU
2

and
Lebesgues integral formulas, the mass conservation equations becomes

∂t(ρ̄A) + ∂X(ρ̄Q) =

∫

∂Ω(X,t)
ρ

(
∂t
−→
M + U∂X

−→
M −−→

V
)

.−→n ds, (12)

where Q = AŪ is the discharge of the flow and the velocity
−→
V = (V,W )t in the

(N,B)-plane.
The equation of the conservation of the momentum becomes

∂t(ρ̄Q) + ∂X(
ρ̄Q2

A
+ c2ρ̄A) = −gρ̄A(sin θ + Sf ) + c2ρ̄

dA

dX
− ρ̄AZ̄∂X(g cos θ)

+

∫

∂Ω(X,t)
ρU

(
∂t
−→
M + U∂X

−→
M −−→

V
)

.−→n ds

(13)

As the pipe is infinitely rigid (since Ω = Ω(X) ; see [5] for the dilatable case),
integral terms appearing in (12) and (13) vanishes where the system is closed by a
non penetration condition given by




U
V
W


 .

−→
N = 0,

Indeed, we have
∫

∂Ω(t,X)
ρU

(
∂t
−→m + U∂X

−→m −−→
V

)
.−→n ds = 0

since −→n = cos φ
−→
Bκ for some constant κ where

−→
B denotes the outward unit

vector at the point m.
Finally, we obtain the Saint-Venant like equations for pressurized flows





∂t(ρ̄A) + ∂X(ρ̄Q) = 0

∂t(ρ̄Q) + ∂X(
ρ̄Q2

A
+ c2ρ̄A) = −ρ̄Ag sin θ − ρ̄AZ̄∂X(g cos θ) + c2ρ̄

dA

dX

(14)

where the quantities Z̄ is the water column of water above the center of the mass.
This means that one has Z̄ = R(X) the radius of the section.
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Now let us introduce the conservative variables corresponding to the wet area
M := ρ̄A and the discharge D := ρ̄Q. Then the system (14) reads




∂t(M) + ∂X(D) = 0

∂t(D) + ∂X(
D2

M
+ c2M) = −Mg sin θ − MR∂X(g cos θ) + c2M

d

dX
log(A)

(15)
To close this section, let us gives classical properties of the frictionless system.

Theorem 2.1

1. The system (15) is stricly hyperbolic for A(X) > 0.

2. For smooth solutions, the mean velocity Ū = D/M satisfies

∂tŪ + ∂X

(
Ū2

2
+ c2 log(M/A) + gΦθ + gZ

)
= 0 (16)

The still steady states is given by

c2 log(M/A) + gΦθ + gZ = 0 (17)

where Φθ(t,X) =

∫ X

X0

R(ξ)∂X cos θ(t, ξ) dξ for any arbitrary x0 and Z the

altitude term (defined by ∂XZ = sinθ). The quantity
Ū2

2
+ c2 log(M/A) +

gΦθ + gZ is also called the total head.

3. It admits a mathematical entropy

E(M,D) =
D2

2M
+ Mc2 log M/A + gMΦθ + gMZ

which satisfies the entropy equality

∂tE + ∂X

(
(E + c2M)Ū

)
= 0

Remark 2.2

• If we consider the friction term, we have : for smooth solutions,

∂tŪ + ∂X

(
Ū2

2
+ c2 log(M/A) + gΦθ + gZ

)
= −gKU |U |

and the previous entropy equality becomes an inequality and reads

∂tE + ∂X

(
(E + c2M)Ū

)
≤ −gMK(A)Ū2|Ū |

• If we introduce Z̃ the so-called pseudo altitude source term given by

Z̃ = Z + Φθ − c2/g log(A)

(where Φθ is defined in Theorem 2.1) then we can rewrite the system (15) in
a closed manner of the classical Saint-Venant formulation,





∂t(M) + ∂X(D) = 0

∂t(D) + ∂X

(
D2

M
+ c2M

)
+ g∂X Z̃ = 0

(18)
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3 The kinetic scheme with pseudo-reflection

We present in this section the kinetic formulation for pressurised flows in water pipes
modelized by the system (15). To this end, we introduce a smooth real function χ
such that

χ(w) = χ(−w) ≥ 0,

∫

R

χ(w) dw = 1,

∫

R

w2χ(w) dw = 1

and defines the Gibbs equilibrium as follows

M(t, x, ξ) =
M

c
M

(
ξ − Ū

c

)

which represents the density of particles. Then these definitions allows us to get
the following kinetic formulation :

Theorem 3.1 The couple of functions (M,D) is a strong solution of the Saint-
Venant likesystem (18) if and only if M(M, ξ − U) satisfies the kinetic transport
equation

∂tM + ξ∂XM− g∂X Z̃∂ξM = K(t, x, ξ) (19)

for some collision kernel K(t, x, ξ) which admits a vanishing moments up to order
1 for a.e (t,x). Furthermore, the solution (M,D) is an entropic solution of (18) if
and only if ∫

R

ξ2K dξ ≤ 0, a.e.(t, x)

Proof of Theorem 3.1. We get easily the above results since the following
macro-microscopic relations holds

M =

∫

R

M(ξ) dξ (20)

D =

∫

R

ξM(ξ) dξ (21)

D2

M
+ c2M =

∫

R

ξ2M(ξ) dξ (22)

The proof of the entropy condition on K is direct computation.

�

The reformulation of the equation (15) and the above theorem has the advantage
to get only one equation for M which it is easier to find simple numerical scheme
(see for instance [8, 9]). In fact,

Theorem 3.2 Let us consider the minimization problem min ǫ(f) under the con-
straints

f > 0,

∫

R

f(ξ) dξ = M,

∫

R

ξf(ξ) dξ = D

where the kinetic functional energy is defined by

ǫ(f) =

∫

R

ξ2

2
f(ξ) + c2f(ξ)log(f(ξ)) + c2f(ξ)log(c

√
2π) + gZ̃f(ξ) dξ.
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Then the minimum is attained by the function M(t, x, ξ) =
M

c
χ

(
ξ − Ū

c

)
where

χ(w) =
1√
2π

exp

(−w2

2

)
a.e.

Morever, the minimal energy is

ǫ(M) = E(A,Q, Z̃) =
D2

2M
+ Mc2 log M + gMZ̃

and M satisfies the steady state for Ū = 0, that is,

ξ∂XM− g∂X Z̃∂ξM = 0.

Proof of Theorem 3.2 One may easily verify that f = M is a solution of the
minimization problem. Morever, under the hypothesis f > 0 the functionnal ǫ(f)
is strictly convex which ensures the unicity of the minimum. Morever, by a direct
computation, one has ǫ(M) = E.

The minimum M of the functionnal ǫ(f) satisfies the steady state for Ū = 0,

ξ∂XM− g∂X Z̃∂ξM = 0.

Since ∂XM =
∂XM

c
χ

(
ξ

c

)
, ∂ξM =

M

c2
χ′

(
ξ

c

)
, denoting w = ξ/c, we get

w∂XMχ(w) − g∂X Z̃
M

c
χ′(w) = 0.

On the other hand, the steady state is given by

c2 log(M) + gZ̃ = cst,

thus one has g∂X Z̃ = −c2∂X(log M). Remarking that ∂XM 6= 0a.e., we obtain the
following ordinary differential equation

wχ(w) + χ′(w) = 0.

which gives the result.

�

3.1 Kinetic scheme

This section is devoted to the construction of the numerical kinetic scheme and
properties using a flux splitting method on the previous kinetic formulation with a
the upwinding of the source term Z̃.

Let us consider the uniform discretization of closed pipes with variable section
by Xi = i∆X being the center of the cell mi = [Xi−1/2,Xi+1/2] where ∆X =
Xi+1/2−Xi−1/2 is the spacestep for i ∈ Z. Let tn = n∆t, n ∈ N be the discretization
in time where ∆t is the timestep.

Let us introduce Un
i = (Mn

i ,Dn
i ) the mean approximation of the wetted area

and discharge. Let Un
i , Fn

i be the approximations of the mean speed and the flux
of the system (18) respectively, where F (U) = (D,D2/M + c2M)t .

9



Let Mn
i (, ξ) =

Mn
i

c
χ

(
ξ − Un

i

c

)
be the approximation of the microscopic quan-

tities and Z̃i1mi(X) be the piecewise constant representation of the pseudo-altitude
Z̃. Then, integrating equations (18) over mi × [tn, tn+1], we get

Un+1
i = Un

i − ∆t

∆X

(
F−

i+1/2 − F+
i−1/2

)

where F±
i+1/2 =

1

∆t

∫ tn+1

tn

F
(
U(t,X±

i+1/2) dt
)
.

To obtain a finite volume scheme it remains to find an approximation F±
i±1/2

of the flux on the interface at the points Xi±1/2. To this end, we use the previous
kinetic formulation.
Supposing that we know the solution Mn

i at time tn for each node Xi+1/2, we
deduce Un

i by the integral relation

Un
i =

∫

R

(
1
ξ

)
Mn

i (ξ) dξ.

Then considering the following relaxed problem

∂tf + ξ∂XM− g∂X Z̃∂ξM = 0 (t,X, ξ) ∈ [tn, tn+1] × mi × R

f(tn,X, ξ) = M(tn,X, ξ) (X, ξ) ∈ mi × R
(23)

which is discretized as follows

∀i ∈ Z, ∀n ∈ N, fn+1
i (ξ) = Mn

i (ξ) − ξ
∆t

∆X

{
M−

i+1/2(ξ) −M+
i−1/2(ξ)

}
(24)

where M±
i±1/2 denotes the interface density equilibrium (computed in section 3.1.1).

Finally, we set

Un+1
i =

∫

R

(
1
ξ

)
fn+1

i (ξ) dξ

and

Mn+1
i =

Mn+1
i

c
χ

(
ξ − Un+1

i

c

)
.

To conclude this section, let us do the following

Remark 3.1 This method avoids to compute the collision kernel K. Indeed, sub-
stracting the kinetic equation (19) to equation (23), we get

∂t(M− f)(ξ) = K(t, x, ξ).

Integrating in time t and ξ we obtain

∫

R

(
1
ξ

)
f(ξ) dξ = U .

In other words, replacing Mn+1
i by fn+1

i at each time step is a manner to perform
all collisions at once.

Now to complete the numerical kinetic scheme, it remains to define the mi-
croscopic fluxes M±

i±1/2 appearing in equation (24) introduce by the choice of the

constant piecewise representation of the pseudo-altitude term Z̃.
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3.1.1 Interface equilibrium densities

To define the interface equilibrium densities, we use the generalized characteristics
method. Let s ∈ (tn, tn+1) be a time variable and M the solution of the kinetic
equation (19). Let ξi, i ∈ Z be the discretization of the kinetic velocity.

Let Ξ and X be the characteristics curves

dX

ds
= Ξ(s)

X(tn+1) = Xi+1/2

(25)

dΞ

ds
= −g∂xZ̃(X(s))

Ξ(tn+1) = ξ−i+1/2 := ξi

(26)

If X is monotone on (tn, tn+1) then we can rewrite Ξ as a function of X and we
get the following mechanic law

d

dX

(
Ξ2

2
+ gZ̃

)
= 0, (27)

then the equality holds,

∀i ∈ Z,
Ξ2

2
(Xi) + gZ̃(Xi) =

Ξ2

2
(Xi+1) + gZ̃(Xi+1)

Writing down, ∆Z̃i+1/2 = Z̃(Xi+1) − Z̃(Xi), we obtain

Ξ2

2
(Xi) −

Ξ2

2
(Xi+1) = g∆Z̃i+1/2 (28)

To justify such a transformation, let us consider Z̃ approximated by a piecewise
constant function as in section 3.1 and we get

Z̃i+1 − Z̃i = ∆Z̃i+1/2δXi+1/2

where δa is the Dirac mass at the point a. Solving the equations (25) and (26)
on the interval (tn, tn+1) on each side of the abscissa Xi+1/2 gives Ξ(s) = ξi and
dX

ds
= ξi and we deduce X is strictly monotonous.

On other hand, the equality (28) becomes

ξ2
i

2
− ξ2

i+1

2
= g∆Z̃i+1/2 (29)

In what follows, from a physical point of view, the quantities ∆Z̃i+1/2 will denote
a potential bareer. Now according to the characteristic method and in particular to
the equation (29), we can define the interface equilibrium densities M±

i±1/2.
In order to derive these formulas, we proceed case by case. We suppose that

there exists a CFL condition. Since the computation of M−
i+1/2

and M+
i+1/2

present

the same difficulty, we just consider for M−
i+1/2 (see Figure. 2).
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Figure 2: The potential bareer : transmission and reflection of particle

1. If ξi > 0 then the characteristic curve X strictly increase, so under a CFL
condition the interface density depends of the left state, i.e. Mn

i (ξ), ∀ξ >
0. Under these assumptions, any particle coming from the left to the right
overpass the potential bareer.

2. If ξi < 0 we distinguish two cases.

(a) The case ξ2
i − 2g∆Z̃i+1/2 < 0 means the particle comes from the left

without enough kinetical energy to overpass the bareer, so it is reflected
with a kinetic speed −ξi. Morever, under a CFL condition, X decrease
and the density depends of the left state, i.e. Mn

i (−ξ), ∀ξ ≤ 0

(b) Otherwise, the particle comes from the right with a kinetic speed

ξi+1 =
√

ξ2
i − 2g∆Z̃i+1/2 > 0, therefore, X increase and the density de-

pends of the right state Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

)
, ∀ξ2−2g∆Z̃i+1/2 >

0, ξ < 0. This simply means that any particle comes from the right always
pass the bareer.

Finally, the interface density on the left and right side of Xi+1/2 are given by :

M−
i+1/2(ξ) = 1ξ>0Mn

i (ξ) + 1ξ<0,ξ2−2g∆Z̃i+1/2<0Mn
i (−ξ)

+ 1ξ<0,ξ2−2g∆Z̃i+1/2>0Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

)

M+
i+1/2(ξ) = 1ξ<0Mn

i+1(ξ) + 1ξ>0,ξ2+2g∆Z̃i+1/2<0Mn
i+1(−ξ)

+ 1ξ>0,ξ2+2g∆Z̃i+1/2>0Mn
i

(√
ξ2 + 2g∆Z̃i+1/2

)

(30)

3.1.2 Numerical properties

In this part, we establish some numerical properties of the kinetic scheme (23)-(30).
Let us do the following
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Remark 3.2 From the CFL condition σ|ξ| ≤ 1, ∀ξ, since the support of the
maxwellian (3.2) is not compact, this function cannot be used in numerical experi-
ments. Therefore, in what follows, we will consider the particular Gibbs equilibrium

χ(w) =
1

2
√

3
1[−

√
3,
√

3](w) introduced by the authors in [2] and used in [6] in the

case of pressurized flows in uniform closed pipes.

Let us announce the numerical properties of the scheme (23),

Theorem 3.3

1. Assuming the CFL condition

σ max
i∈Z

(
|Ūn

i | +
√

3c
)
≤ 1,

the numerical scheme (23,30) keeps the wet area positive.

2. The steady state is preserved U
n
i = 0, c2

g ln(ρn
i ) + Z̃i = cst

Proof of Theorem 3.3. Let us suppose that at time tn and at each node,
Mn+1

i > 0. Let ξ± = max(0,±ξ) be the positive and negative part of any real and

σ =
∆t

∆X
, then the equation (23) reads

fn+1
i (ξ) = (1 − σ|ξ|)Mn

i (ξ)

+σξ+

(1ξ2+2g∆Z̃i+1/2<0Mn
i (−ξ)

+1ξ2+2g∆Z̃i−1/2>0Mn
i−1

(√
ξ2 + 2g∆Z̃i+1/2

))

+σξ−
(1ξ2−2g∆Z̃i+1/2<0Mn

i (−ξ)

+1ξ2−2g∆Z̃i−1/2>0Mn
i+1

(
−

√
ξ2 − 2g∆Z̃i+1/2

))

Since the support of the χ function is compact, we get

fn+1
i (ξ) > 0 if |ξ − Ūn

j | <
√

3c, ∀j ∈ Z

which implies |ξ| < |Ūn
j | +

√
3c. Using the CFL condition σ|ξ| ≤ 1, we get the

result. Morever, since fn+1
i is a convexe combination of positive term, we obtain

fn+1
i > 0, hence

Mn+1
i =

∫

R

fn+1
i (ξ) dξ > 0.

To proof the second point of the theorem, we consider the case ξ > 0 and ξ > 0
in order to get Mi+1/2 = Mi−1/2 and thus fin + 1 = Mn

i (see the mechanical law
(27)).

�

Now let us also remark that the kinetic scheme (23)-(30) is conservative wet
area. Indeed, let us denote the first component of the discrete fluxes (FM )±i+1/2:

(FM )±i+1/2 :=

∫

R

ξM±
i+1/2(ξ) dξ

13



An easy computation using the change of variables w2 = ξ2 − 2g∆Z̃i+1/2 in the

interface densities formulas defining the kinetic fluxes M±
i+1/2 allows us to show

that:
(FM )+

i+ 1

2

= (FM )−
i+ 1

2

In the case where the friction Sf is present, from the macroscopic equation (18)
defining the state Mn+1

i and Dn+1
i , it is easy to construct it.

4 Numerical Validation

4.1 The uniform case

We present now numerical results of a water hammer test. The pipe of circular
cross-section of 2 m2 and thickness 20 cm is 2000 m long. The altitude of the
upstream end of the pipe is 250 m and the slope is 5◦. The Young modulus is
23 109 Pa since the pipe is supposed to be built in concrete. The total upstream
head is 300 m. The initial downstream discharge is 10 m3/s and we cut the flow in
10 seconds for the first test case and in 5 seconds for the other.

We present a validation of the proposed scheme by comparing numerical re-
sults of the proposed model solved by the kinetic scheme with the ones obtained
by solving Allievi equations by the method of characteristics with the so-called
belier code: an industrial code used by the engineers of the Center in Hydraulics
Engineering of Electricité De France (EDF) [11].

A simulation of the water hammer test was done for a CFL coefficient equal to
0.8 and a spatial discretisation of 1000 mesh points. In the figures 3-4, we present
a comparison between the results obtained by our kinetic scheme and the ones ob-
tained by the “belier” code : the behavior of the discharge at the middle of the
pipe. One can observe that the results for the proposed model are in very good
agreement with the solution of Allievi equations. A little smoothing effect and ab-
sorption may be probably due to the first order discretisation type. A second order
scheme may be implemented naturally and will produce a better approximation.

4.2 The non uniform case

We present a validation of the proposed kinetic scheme in the case of an contracting-
expanding frictionless circular pipes of length L = 1000m. The upstream radius
is equal to R0 = 1m and the downstream radius varies from R1 = 0.25m to 2m
by step 0.25. The upstream condition is an immediate flow shut-down (3 seconds)
while the upstream condition is constant (e.g. the total head is constant in time).
We assume also that the pipe is rigid (like steel pipe). Then for each radius R1, we
compute the waterhammer pressure rise at the middle of the pipe and we compare
the one obtained by the equivalent pipe (see [1]). The results are presented in
Figure. 5 and shows a very good agreement with the equivalent pipe theory. The
others paramaters are N = 100 mesh point, CFL= 0.8, the downstream discharge
before the shut-down is fixed to 1m3.s−1.
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Figure 3: Comparison between the kinetic scheme and the industrial code belier

First case : discharge at the middle of the pipe

Figure 4: Comparison between the kinetic scheme and the industrial code belier

Second case : discharge at the middle of the pipe
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Figure 5: ∆H : computed with the present scheme, ∆Heq :computed with an equivalent

pipe method
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