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Mechanical and Nanomechanical Properties

C. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng, M. Zei,
and P. Joli

8.1 Macroscopic Mechanical Properties

8.1.1 Introduction

The growing interest in nanomaterials over the past decade or so can be
put down to their unique structure, characterised by grains with nanometric
dimensions and by a rather high density of crystal defects, which will un-
doubtedly lead to quite exceptional properties. In particular, extrapolating
the constitutive laws of large-grained materials down to the nanoscale leads
one to expect interesting mechanical behaviour for nanomaterials. Materials
can be produced with high levels of hardness, ductility, and sometimes super-
plasticity (see Chap. 9) at relatively low temperatures. These characteristics
lead to remarkable mechanical performance and machining possibilities, by
virtue of which such nanomaterials have immediate scope for technological
innovation.

Section 8.1 describes the main mechanical properties associated with
nanostructured materials and also the mechanisms so far put forward to relate
grain size to observed properties. The discussion here will be restricted to the
measurement of structural properties such as elasticity, hardness, and ductility
in ‘cold’ conditions, leaving the description of superplasticity in nanomaterials
and properties of moulding in higher temperature regimes to Chap. 9. We shall
discuss nanostructured bulk materials, i.e., three-dimensional bodies in which
the crystallites have nanometric dimensions, and thin films, which are macro-
scopic in two dimensions but have submicron thickness and can be made up
of grains with sizes much smaller than their thickness, or of successive layers
of nanometric thickness (multilayer structures).

8.1.2 Elastic Properties

The elastic limit of a material (the stress beyond which a remanent plastic
strain is observed) is intimately related to its elastic constants (see below).
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Fig. 8.1. Grain size dependence of the Young’s modulus relative to that of large-
grained polycrystals for Fe nanocrystals. From [1]

Indeed, a plastic strain only occurs in order to reduce the energy associated
with the elastic strain of the material. The elastic constants reflect the nature
and density of atomic bonds. In nanomaterials, the high density of struc-
tural defects and grain boundaries have an effect on the elastic constants.
The first measurements of Young’s modulus revealed a significant difference
between nanostructured materials and the corresponding large-grained mate-
rials. In some cases the modulus was much higher, as for superlattices, and
in others much lower, as for materials produced by sintering. However, it was
subsequently demonstrated that these early results were due to experimen-
tal artifacts and often to the presence of defects, such as fractures and high
porosity, introduced during fabrication and not properly taken into account
when interpreting the observations. More recent results obtained on dense
materials have finally shown that the Young’s modulus gradually falls off only
for grain sizes below 10 nm, i.e., when the fraction of atoms associated with
grain boundary and triple junctions becomes very high (see Fig. 8.1).

However, the change in the modulus measured in this way never exceeds
10–20% of the value for the material with conventional grain size.

Mechanical Behaviour Under Tension

The elastic–plastic behaviour of a material is most commonly investigated by car-
rying out a uniaxial tensile test on a test bar. The tensile stress σ is defined as the
ratio of the tensional force and the cross-sectional area of the test bar, i.e., σ = F/S.
σ is expressed in megapascal (1 MPa = 1 N/mm2). The strain or deformation of the
useful zone of the test bar is defined as ε = ln(l/l0), where l and l0 are the instan-
taneous length and the initial length of the bar, respectively. The curve is divided
into two parts: an ‘elastic’ part in which any strain remains completely reversible,
and a plastic part in which the test bar retains a permanent residual lengthening
even when the load is removed.

Several quantities can be directly measured in a tensile test:
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Fig. 8.2. Mechanical behaviour under tension

• The elastic limit σy, also called the yield point, beyond which plastic strain oc-
curs. In practice, this transition point is difficult to determine and one measures
instead the conventional elastic limit at σ0.2 for which the plastic strain rate is
0.2%.

• Young’s modulus E, the slope of the elastic strain region approximated by a
straight line.

• The constriction coefficient Z, defined as the ratio Z = (S0 − Su)/S0, where S0

is the initial cross-sectional area of the useful zone of the test bar and Su is its
final cross-sectional area after rupture. A brittle material will have a value of
Z close to zero, while a ductile material, with high strain capacity, will have a
value of Z close to unity.

• The maximal strain εr sustainable by the test bar before rupture.

8.1.3 Hardness

The (Brinell) hardness H of a material is defined as the ratio between the
load F applied to a hard ball and the residual indent A left in the material
after withdrawing the load, i.e., H = F/A. The hardness is one of the most
commonly measured mechanical characteristics of a nanomaterial. It is deter-
mined by a nanoindentation test, which is relatively easy to carry out (see
below). This characteristic is often very useful for predicting the technological
capabilities of the material, e.g., for thin protective films. This quantity is
intrinsically related to the ability of the material to deform plastically. To a
first approximation it can be related to the yield point σy of a material by the
empirical relation H = 3σy.

Nanoindentation

The nanoindentation technique is a mechanical test derived from the standard hard-
ness test. The idea is to sink a hard tip of known geometry into the material under
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Fig. 8.3. Measuring hardness

investigation and monitor the depth of penetration as a function of the applied
load. By carrying out a loading–unloading cycle, a characteristic force–penetration
curve is obtained. By analysing the unloading curve and modelling the material as
an elastic and isotropic continuous medium, one can deduce the relevant parameter
here, which is the true contact area between the indenter and the material under
maximal load. One can then deduce not only the hardness, but also the Young’s
modulus of the material. The applied forces range from a few tenths to several hun-
dred millinewtons, and the depths of penetration from a few nanometers to several
microns.

In the case of large-grained materials, plastic strain corresponds to nucleation
and/or motion of dislocation lines (see below) in the material. These lines
then multiply via the Frank–Read mechanism. The stress needed to activate
such a source depends on the distance separating the two points at which the
dislocation is anchored. It is thus easy to see that reducing the grain size will
also reduce the distances between such points and hence raise the elastic limit.
The empirical Hall–Petch relation expresses this effect:

σy = σ0 +
k
√
d
,

where σ0 is a lattice friction stress, k a constant, and d the grain size. The
proportionality between hardness and elastic limit can be used to define a
relation of the same type between hardness and grain size. For large-grained
materials, the Hall–Petch relation is explained by dislocations piling up along
grain boundaries: plastic strain is triggered when the stress at the front of the
dislocation pile-up is enough to activate a Frank–Read source in the neigh-
bouring grain.

Extrapolating this law to grains of around ten nanometers, very high values
of the hardness are predicted, the only limit being the theoretical limiting
stress of a perfect crystal, generally taken as G/10, where G is the transverse
shear modulus. However, although the hardness does indeed increase at small
grain sizes, the observed effects are generally much smaller than would be
predicted in this way, and at very small grain sizes, or for very small periods
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Fig. 8.4. Production of a dislocation

in the case of multilayer films, the opposite trend to the Hall–Petch relation is
sometimes observed, i.e., a reduction in hardness with reduced grain size (or
period). This ‘negative’ Hall–Petch effect has nevertheless been explained for
nanocrystalline materials that have undergone thermal treatment, by invoking
densification or phase transformation phenomena.

Whatever the case may be, for materials with grain sizes below 10 nm, the
absence of mobile dislocations means that any models based on the behaviour
of dislocations applying to large-grained materials are no longer relevant. The
limits of the Hall–Petch effect in 3D nanomaterials have been demonstrated
by several computer simulations. For grain sizes below a few nanometers,
plasticity is no longer due to the motion of dislocations, but to a very large
number of small amplitude slipping motions at grain boundaries.

Dislocations

When a material is subjected to stress, it begins by deforming in a reversible manner
(elastic strain), then irreversibly, with permanent consequences (plastic strain). In
the case of plastic strain in a crystalline material, the macroscopic change in shape
as seen from the outside must occur without altering the periodic arrangement of
the crystal lattice on the atomic scale. This is only possible via a series of shears
with amplitude proportional to the size of the unit cell in the atomic lattice, in such
a way that the crystal structure is reinstated after each shear. However, calculation
shows that such shear transformations cannot occur simultaneously throughout the
material, because this would require stresses more than a thousand times stronger
than those observed. If we imagine a shear with amplitude of the order of the lattice
parameter which has propagated over only a part of the crystal, the line defining
the boundary of the sheared region is a linear crystal defect called a dislocation.
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Fig. 8.5. Motion of an edge dislocation. The dislocation line runs perpendicular to
the plane of the figure and marks the boundary between the region already sheared
(light grey) and the unsheared region (dark grey)

Figure 8.5 then shows how the displacement of a dislocation will propagate the shear
through the crystal, whilst leaving the crystallographic structure intact behind it.
This is called an edge or screw dislocation depending on whether the direction b of
the propagated shear is perpendicular or parallel to the dislocation line.

The shear plane in which the dislocation moves is called the slip plane of the
dislocation. It corresponds to a close-packed plane of the crystal lattice, i.e., one
containing the greatest number of atoms. The amplitude and direction of the shear
propagated by the dislocation are characterised by the so-called Burgers vector b

of the dislocation. Dislocations play a major role in the mechanical behaviour of
conventional materials through their density, mobility and interactions.

The same kind of behaviour is found in 2D nanomaterials. Hence, in structures
composed of layers of different materials, large increases in hardness can be
observed, well above those predicted by the law of mixing. These systems
have several points in common, such as an increase in hardness when the
period of the bilayer is reduced, at least down to 4 nm. This phenomenon can
be explained by a behavioural model similar to the Hall–Petch law. These
increases in hardness reflect the resistance to motion of dislocations in each
of the layers making up the multilayer structure. However, discrepancies are
sometimes observed with respect to the Hall–Petch law for layer thicknesses
below 20 nm, as illustrated in Fig. 8.6.

Such discrepancies from the Hall–Petch law have not yet been fully ex-
plained, but changes in the chemical nature of the interface may be relevant
for quasi-monatomic layers. In any case, observations using atomic force mi-
croscopy clearly show a change in the plastic strain mode: slip bands visible
for thicknesses above 20 nm are no longer observed at smaller thicknesses (see
Fig. 8.7).

8.1.4 Ductility

Ductility is the ability of a material to change shape without fracture. This
property is extremely important as regards technological applications of ma-
terials, whether it be for their performance in use or the ease with which they
can be worked. The effect of grain size on ductility is well understood for
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Fig. 8.6. Example of deviation from the Hall–Petch law in the case of alternating
Cu/Ni multilayers obtained by plasma deposition and Cu/Nb multilayers deposited
on an Ni substrate. Taken from [2]

(a) (b)

Fig. 8.7. AFM observations of the residual indent from a 150-nm indentation of a
Cu/Ni multilayer. (a) Alternating layers of thickness 50 nm. (b) Layers of thickness
2.5 nm

materials with micrometric grains. For example, the brittle–ductile transition
temperature in a steel can be lowered by 40◦C by reducing the grain size by
a factor of five. Extrapolation to the nanoscale promised extremely good duc-
tility properties for nanomaterials, but it is a delicate matter to characterise a
nanocrystalline material in this respect. This explains the many contradictory
results encountered in the literature. Indeed, ductility reflects the possibility
of plastic strain without fracture. However, fracture behaviour depends sen-
sitively on the way the sample was prepared and on its final surface state, as
well as the type of mechanical test used. In fact, fracture mechanisms depend
sensitively on the tensile stresses in the material, and compression tests often
prove inadequate for establishing the ductility.
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For metals, which generally exhibit ductile behaviour when their mi-
crostructure comprises large grains, results obtained by tensile tests usually
reveal brittle behaviour for grain sizes below 30 nm. This phenomenon can be
explained by the major difficulty for dislocations to nucleate and slip inside
such small grains.

Ceramic and intermetallic materials are conventionally brittle. The first
studies of ceramics with nanocrystalline structure (CaF2 and TiO2) suggested
that with nanometric grain sizes these materials might exhibit ductile behav-
iour at low temperatures. The hypothesis then made involved a creep mecha-
nism by diffusion at the grain boundaries that would increase in importance
at small grain sizes. Indeed, conventional models of creep predict a relation
of the type

ε̇ = α
σn

dp

between the plastic strain rate ε̇, the creep stress σ, and the grain size d. For
low temperature creep at grain boundaries, called Coble creep, it is generally
found that n = 1 and 2 < p < 3. According to this law, dividing the grain
size by a factor of two would increase the creep rate by a factor of eight.
However, the first results obtained on nanocrystalline CaF2 and TiO2 could
not be reproduced. It seems likely that the ductile behaviour observed in these
early studies were illusory and probably influenced by the high porosity of the
samples used.

In the end, nanocrystalline materials did not live up to expectations with
regard to improved ductility. However, interesting properties were reported
for polyphase materials with nanometric structuring. An increase in the elas-
tic limit is observed in these materials in conjunction with a good level of
ductility. These effects were observed for alloys with partially crystallised mi-
crostructures, i.e., for nanocrystallites confined within an amorphous matrix,
or more recently for micrometric copper grains embedded in a nanocrystalline
copper matrix.

8.1.5 Numerical Modelling

It is often a difficult matter to determine mechanical properties of nanoma-
terials experimentally, and various techniques for producing the samples can
lead to a problem of reproducibility in the results. This explains the contra-
dictory results often encountered in the literature. Modern numerical tools
provide new possibilities for exploring the mechanical properties of nanoma-
terials. However, in order to model the mechanical behaviour of nanomaterials
correctly, experimentally observed size effects must be reproduced.

A great many numerical models are poorly suited to this task because
devoid of any reference length. For example, the finite element methods so
widely used in solid mechanics can only be used if the behavioural relations
they employ involve a characteristic length able to account for size effects.
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(a)

(c)

(b)

Fig. 8.8. Simulations of a nanoindentation test with a spherical tip. (a) Molecular
dynamics. (b) Dislocation dynamics. (c) Finite elements. See also the colour plate

To achieve this, one can for example include strain gradients, and hence the
second gradient of the displacement field, when expressing the constitutive
laws. This naturally brings an internal length scale into the equations. These
are called second gradient methods [3]. Another solution is to take into ac-
count the kinematics in a more detailed way, involving the strain modes of
the material, e.g., motion of dislocations, lattice rotation, interaction with a
magnetic moment, and so on, and also including an intrinsic length scale.
This is exemplified by Cosserat media [4,5] and micropolar media [6], among
others. In each simulation based on such a method, the internal length scale
must be related to a characteristic length scale of the material, such as grain
size, dimensions of microstructural elements, and so on.

On smaller length scales, of the order of the micron, recent models have
been developed to simulate the collective behaviour of interacting popula-
tions of dislocations. These dislocation dynamics models are particularly well
suited to handle plastic strain in nanomaterials when it is due to motion of
dislocations. They lead naturally to scaling laws of Hall–Petch type.
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At still smaller length scales, the methods of molecular dynamics can be
used to calculate the positions of atoms in a crystal as a function of time. The
appearance and multiplication of dislocations can then be simulated, together
with any other mechanism leading to plastic strain. These methods can then
be used to study alternative mechanisms of plastic strain that may come into
play when grains have nanometric dimensions.

Figure 8.8 shows simulations of a nanoindentation test carried out using
the three main families of simulation methods.

8.2 Nanomechanical Properties

8.2.1 Experimentation

Nanomechanical Characterisation by Nanoindentation: Hardness

Metallurgists have long been concerned with the problem of measuring hard-
ness. Over time, many methods have been developed to measure this prop-
erty. They can be classified into two main categories of tests [7]: dynamical
hardness tests and static indentation tests. In a dynamical hardness test, a
fixed load is dropped from a fixed height onto the surface. The hardness is
expressed in terms of impact energy and size of indent. The quasi-static in-
dentation method, which remains the most widely used, consists in pressing a
very hard object with well defined geometry against the surface of the mate-
rial under test. Depending on the load used, there are three techniques here:
macroindentation (loads greater than 10 N), microindentation (loads in the
range 0.1–10 N), and nanoindentation where loads are of the order of the mN.

The first two techniques cannot be used to measure the mechanical prop-
erties of very thin films and materials with surface treatments. Indeed, they
simply crush and pierce the film and end up testing only the substrate. Today,
technical progress in instruments capable of measuring nanometric displace-
ments and others capable of applying and controlling loads of mN order have
made nanoindentation into a genuine mechanical microprobe, widely used in
the mechanical characterisation of thin films (see Fig. 8.9).

Basic Idea

In conventional indentation techniques, the residual indent is measured when
the indenter has been withdrawn. The results of such tests are not easy to
interpret. Indeed, there is no way of taking into account any relaxation in the
material. Consequently, it is impossible to distinguish the elastic part, and this
increases the uncertainty in the hardness measurement of ceramic materials
characterised by a high degree of elasticity. In nanoindentation, continuous
measurement of the load and displacement has replaced this simplistic mea-
surement of the residual indent.
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Fig. 8.9. Indentation in a deposit of alumina and titanium oxide obtained by plasma
projection. See also the colour plate
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Fig. 8.10. Loading/unloading curve showing the relevant physical quantities

A typical loading/unloading curve is shown in Fig. 8.10. The indenter,
initially in contact with the surface, is driven into the material until a pre-
determined maximal load or depth is reached, using a constant loading rate
(loading cycle). The load is then reduced to zero at the same rate (unloading
cycle).

The loading curve is characterised by an elastic–plastic regime and can be
used to deduce the value of the hardness defined as the ratio of the maximal
load to the area of contact between the indenter and the material at this load.
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The unloading curve generally corresponds to a purely elastic regime. It can
be used to deduce the Young’s modulus.

Figure 8.10 shows the depth hd defined by the intersection of the tangent
to the unloading curve taken at the top of the curve with the horizontal
axis. This tangent corresponds to the unloading curve that would have been
obtained if the indenter had had plane geometry and the same area as the
contact area at the maximum of the curve between a real indenter and the
material.

Choice of Indenter

The indenter must have a high elastic modulus and no plastic strain at the
contact pressures occurring during indentation, as well as a smooth surface
and well defined geometry so that the indent itself will be well defined. Dia-
mond is generally chosen for its satisfactory properties with regard to these
requirements. In practice, it is very difficult to work indenters into a perfect
geometry. The indenter thus exhibits irregularities that must be taken into
account when calculating the contact pressure.

A Berkovich geometry is usually used for nanoindenters. This has pyra-
midal shape with triangular base. The Vickers indenter (pyramidal but with
square base) is sometimes used when applied loads approach values used for
microindentation. The advantage of the Berkovich indenter comes from the
fact that it is more finely tapered than the Vickers indenter. Indeed, the ra-
dius of curvature is less than 50 nm for most commercially available Berkovich
indenters at the present time. The two types of indenter do share one geomet-
rical similarity, namely they have the same area function A = f(h). For an
ideal geometry, the area function is A = 24.5h2.

Analysing the Loading/Unloading Curve

Figure 8.11 shows the response of an elastic–plastic material during indenta-
tion by a pyramidal indenter. In this figure, the depth of contact hc is defined
as the depth of penetration when the indenter is in contact with the sample.
h is the depth measured during indentation. During indentation, h satisfies
the relation

h = hs + hc , (8.1)

where hs is the displacement of the surface on the perimeter of the contact
due to elastic depression. The maximal load and depth are denoted by Pmax

and hmax, respectively. After unloading and elastic recovery, the final depth
of the residual indent is denoted by hf .

The whole difficulty in interpreting the curve lies in determining the con-
tact area between indenter and material for a given depth of penetration.
Now the indenter geometry (area function) can be well established (using a
calibration procedure to be described below) and it then suffices to determine
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the depth of contact in order to know the contact area. The problem thus
reduces to determining the contact depth hc.

The analysis described here and used by most commercial nanoindenters
is the one developed by Oliver et Pharr [8] for elastoplastic materials.

Measuring Contact Rigidity Smax

The unloading curve is analysed using the theory of elastic contact. This
problem was treated by Hertz [16] and Boussinesq [17], but the theory most
widely used today is the one developed by Sneddon, who established a relation
between the load and the displacement:

P = Chm , (8.2)

where C and m are constants (m = 1 for a cylindrical geometry, m = 2 for
conical geometry, and m = 1.5 for spherical geometry).

Oliver and Pharr [8] noted that the unloading curve is better described by
a power law similar to (8.13) in the term h− hf , viz.,

P = α(h− hf)
m , (8.3)

where the constants α, m and hf are determined by a simple least-squares
fitting method. The initial slope of the unloading curve can then be simply
found by calculating the derivative of the curve analytically at maximal depth.

Calculating Young’s Modulus

Tabor [9] was the first to use continuous monitoring of the load as a function of
the displacement as a way of measuring hardness. One of the most important
results was that the effect of the non-rigidity of the indenter can be taken into
account by defining a reduced Young’s modulus Er by
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1

Er

=
1 − υ2

E
+

1 − υ2
i

Ei

, (8.4)

where E and υ are the Young’s modulus and the Poisson constant of the
sample, respectively, and Ei and υi are the same parameters for the indenter.

According to Bulychev [10] and Shorshorov [11], motivated by Sneddon’s
method [12], this reduced Young’s modulus can be related to the rigidity S
measured at the maximum of the unloading curve by the relation

S =
dP

dh
= β

2
√
Π
Er

√

A(hc) , (8.5)

where β is a constant depending on the indenter geometry:

• β = 1.034 for a Berkovich indenter,
• β = 1.012 for a Vickers indenter,
• β = 1.000 for a spherical indenter.

A is the contact area (for a Vickers indenter) or the projected area of contact
(for a Berkovich indenter) of the the elastic contact. The Young’s modulus
can be directly obtained by calculating the rigidity S :

Er =

√
Π

2β

S
√

A(hc)
, (8.6)

where S is the contact rigidity calculated in the first part of the unloading
curve (S = dP/dh). Equation (8.6) is valid for any indenter with axial sym-
metry.

In nanoindentation several methods have been developed to determine the
contact area. Pethica et al. [13] proposed a simple method based on the area

14



function of the indenter. Examining (8.6), the reduced Young’s modulus can
be calculated if the contact rigidity S and the contact area at the maximum
of the curve can be determined independently. This means that the contact
depth hc must be known.

Determining the Contact Depth

The first approximation for hc was proposed by Doerner and Nix [14], simply
setting the contact depth equal to the plastic depth hp. This approxima-
tion assumes that the unloading curve can be identified with its tangent at
maximal load. However, it proved inadequate for acquiring a good hardness
measurement. It is preferable to calculate the contact depth at the maximal
depth and load for which the material fits perfectly against the shape of the
indenter. In this case the contact depth hc is expressed as a function of hmax

and hs:
hc = hmax − hs . (8.7)

Since hmax is easily measured, the problem here amounts to determining the
elastic displacement hs of the surface. For a conical indenter, Sneddon [12]
showed that hs can be written as a function of the final depth hf :

hs =
π − 2

π
(hmax − hf) . (8.8)

This relation is valid only in the elastic part of the displacement. Sneddon [12]
also showed that the quantity h− hf can be written in the form

hmax − hf = 2
Pmax

S
. (8.9)

Oliver and Pharr [8] then showed from (8.8) and (8.9) that hs could be ex-
pressed as

hs = ε
Pmax

S
, (8.10)

where ε = 0.72 for a conical indenter.
This result can be generalised to other types of indenter in which only

the value of ε changes. Empirically, ε = 0.75 for an indenter in the form of a
paraboloid of revolution, and ε = 1 for an indenter with plane geometry.

For greater accuracy, a recent calculation presented by Pharr, Bolshakov
et al. [15] has been used to refine the calculation of ε. This new expression
can be used to find ε from experimental data via knowledge of the coefficient
m. For this calculation, two hypotheses are required: it is assumed that the
material is elastic and that the indenter is rigid.

From Sneddon’s method [12], one can calculate the pressure P exerted on
the sample:
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where m = 1 + 1/n, r is the radius of contact, B is a constant, Er is Young’s
modulus, and Γ is the gamma function. The radius of curvature r is then
given by

r =

⎡

⎢

⎢

⎣

Γ

(

n

2
+

1

2

)

B
√
πΓ

(n

2
+ 1

)

⎤

⎥

⎥

⎦

1/n

(h− hf)
1/n . (8.12)

P can now be expressed in terms of the elastic response h′ = h− hf :

P =
2Eeff

(
√
πB)

1/n

(

n

n + 1

)[

Γ (n/2 + 1/2)

Γ (n/2 + 1)

]1/n

h′1+1/n . (8.13)

This expression corresponds to the result obtained by Oliver and Pharr [8]:

α =
2Eeff

(
√
πB)

1/n

(

n

n + 1

)[

Γ (n/2 + 1/2)

Γ (n/2 + 1)

]1/n

. (8.14)

To introduce the plasticity into their model, Oliver, Pharr and Bolshakov
considered the deviation of the indenter from the ideal shape, as illustrated
in Fig. 8.13. They approximated the shape of the indenter using a paraboloid
correction described as illustrated in the figure:

Z = Brn .

In this precise case, one may consider that hs = hmax − hc = hmax −Brn.
Making the approximation that hs tends to hf and substituting what cor-

responds to the purely elastic part in the expression (8.13) for P , the following
expression for ε is obtained from (8.10):
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. (8.15)

As a last remark, note that hs does not correspond exactly to the elastic part
(which is equal to Pmax/S), but to a fraction ε of the latter.

Calculating the Hardness

The hardness H is defined by the average pressure sustained by the material
under the indenter. It is expressed as the ratio of the applied load P to the
contact area. In practice,

H = PmaxA(hc) , (8.16)

where Pmax is the maximal load and A(hc) is the contact area at maximal
load and depth.

Calibrating the Nanoindenter

Determining the Compliance of the Indenter. The compliance is defined as
the reciprocal of the rigidity:

C =
1

S
=

dh

dP
. (8.17)

The instrument influences the total compliance and interpretation of load-
ing/unloading curves. Indeed, the measured displacement is the sum of the
true displacement and a component due to the compliance of the instrument.

Modelling the instrument and sample by two springs in series shows that
the total or measured compliance can be written

C = Cinstr + Csample , (8.18)

where Csample is the compliance of the sample calculated from (8.6):

Csample =

√
π

2βEr

1
√

A(hc)
. (8.19)

The total compliance is then given by

C = Cinstr +

√
π

2βEr

1
√

A(hc)
= Cinstr +

√
π

2βEr

√
H

√
Pmax

, (8.20)

where Sinstr = 1/Cinstr is the rigidity of the instrument, S = 1/Csample is the
contact rigidity, Sspring is the rigidity of the column spring, and Cdamp is the
damping coefficient.

If the Young’s modulus is constant, Cinstr can be obtained from a plot
of C = f(1/

√
Pmax). The procedure then is to carry out several tests on a

calibrating material (see Fig. 8.14).
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Fig. 8.15. Area function for a Berkovich indenter

Determining the Area Function A = f(h). For an ideal indenter, the area A
can be related to the plastic depth hp by A(hc) = 24.5h2

c . The contact area is
generally written in the form of a polynomial expansion:

A(hc) = 24.5h2
c + C1h

1
c + C2h

1/2
c + C3h

1/4
c + · · · + C8h

1/128
c , (8.21)

where the coefficients C1, C2, . . ., C8 are constants to be determined by a
procedure described below. The procedure consists in making a large num-
ber of indents at different penetration depths on a calibration material (see
Fig. 8.15). The contact area is calculated from (8.18) in each case.

Causes of Error and Precautions: The Pile-up Phenomenon

The so-called pile-up phenomenon [18] occurs in soft materials such as alu-
minium and leads to matter rising up around the indent, as shown in Fig. 8.16.
This produces an error in the depth measurement, and in particular in the
measurement of hc. This kind of effect can lead to an underestimate of the
contact area by a factor of as much as 40% and hence to an overestimate of
the hardness and the Young’s modulus.
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Fig. 8.16. Pile-up phenomenon as viewed by atomic force microscopy

A simple way of checking whether pile-up has occurred is to calculate the
ratio hf/hmax, easily deduced from the loading/unloading curve. This ratio
lies between 0 and 1. The minimal value corresponds to the perfectly elastic
case and the maximal value to the case where no elastic recovery is observed.
Using finite element analysis, Bolshakov et al. [19] showed that pile-up can be
significant.

When there is a high level of pile-up, hc can be calculated from a formula
due to Loubet et al. [20, 21] which takes into account the ridges pushed up
around the edge of the indent. These authors consider (by definition) that the
plastic part satisfies

hr = h− P/S . (8.22)

Experimentally, they find that the plastic part hr is proportional to the rigidity
S. Applying the same approach as Sneddon [12], one then obtains

hc ∝ S (because hc ∝
√
A) . (8.23)

The main assumption in this calculation is that Young’s modulus E should
be constant throughout the thickness affected by the indentation.

Assuming that the indenter tip is not perfect, the rigidity can be rewritten
as a function of hi (see Fig. 8.17), which gives

S = B(hr + hi) . (8.24)

Finally, these authors define

hc = α(hr + hi) , (8.25)
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where hi corresponds to the tip imperfection and α is a constant with value
α = 1.2 for a Berkovich tip.

From this value of hc, one can deduce the contact area

A = β
[

α2(hr + hi)
2
]

, (8.26)

where β is called a shape factor. The Sneddon formula then gives the rigidity
S and Young’s modulus Er as [12]

S2 =
4E2

rA

π
, (8.27)

Er =
B
√
π

2
√
βα

. (8.28)

It should be noted that β comes from Sneddon’s calculation and α and B from
Loubet’s. Bucaille et al. [21] used simulation to obtain the value α = 1.2. In
this case, using (8.25), hc can be recalculated to give

hc = α(hr + hi) = α(h− P/S) , where α = 1.2 ,

for a Berkovich tip, which corresponds to the situation described in Fig. 8.18.
It is important to note that, in this model, hc is proportional to the plastic

part and that, in contrast to Oliver and Pharr’s model [8], the whole elastic
part is taken into account to obtain the plastic part. Moreover, the ridge effect
is such that hc is greater than hmax.
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Fig. 8.19. Macroscopic forces relevant to contact between two solids

To conclude, in the presence of an elastoplastic material, one must use the
model (8.14) due to Oliver and Pharr. In the presence of a soft material with
a sizeable ridge around the edge of the indent, the expression for hc given by
the model due to Loubet and Bucaille [21] comes closer to the mark.

Mechanical Characterisation in Tribology.

Nanoscratch Tests and Friction

Definition of Friction

The friction between two solid surfaces is defined by a coefficient. There cor-
responds a value to each regime, static or dynamic. We thus define:

• for the static regime, µs = FLS/FN,
• for the dynamic regime, µd = FLD/FN,

where FLS and FLD are the lateral forces required to initiate slipping and
maintain the motion, respectively, and FN is the applied normal force (see
Fig. 8.19). For dry contact, µs < µd. In the present discussion, we shall be
mainly concerned with the dynamic regime.

To characterise friction, the tools used to measure quantities such as forces
or displacements depend mainly on the structure of the systems under consid-
eration. Hnece, for a homogeneous solid medium, a conventional triboscope
is used, such as the pin-on-disk tribometer. For a nanostructured sample, one
seeks information on the scale of the structure, i.e., the nanoscale. One can
therefore define three length ranges appealing to very different apparatus (see
Fig. 8.20).

Standard Model Due to Bowden and Tabor

Physical modelling of the phenomena underlying friction was first undertaken
around 1950 by Bowden and Tabor [22]. This model takes into account the
roughness of the surfaces in contact, which gives rise to shearing of adhesive
microjunctions and ploughing by surface asperities. This is expressed by two
contributions to the lateral force:
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FL = FLS + FLP = τATC + µLFN ,

where FLS and FLP are the lateral forces related to shear and ploughing,
respectively, τ is the shear stress, and ATC is the true area of contact. ATC

decreases as the roughness increases. The apparent contact area AAC is always
greater than ATC.

When asperities have rather flattened profiles, the ploughing phenomenon
can be neglected in comparison to shear. In this case, we have

µ =
FL

FN

≈
τATC

HATC

=
τ

H
,

where H and τ are then the plastic hardness and the shear stress of the least
hard material.

Scratch Test

The plastic strain mode is conditioned by the shape of the indenter (see
Fig. 8.21). Hence, depending on its apex angle, the predominant mechanism
will be either shear or ploughing. Indeed, the friction coefficient can be ex-
pressed in terms of the shear and compression stresses, τ and p, respectively:

µ =
FL

FN

=
p sinα + p cosα

p cosα− p sinα
.

So we have a context of pure shear when the angle α tends to zero, and
ploughing when τ tends to zero.
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Fig. 8.22. Lateral force map obtained in LFM mode on a graphite surface. The
scanned area is 2 nm × 2 nm. From [24], c©American Physical Society 1987

Lateral Force Microscope (LFM)

This mode of operation of the atomic force microscope (AFM) is used to
probe outer surface tribological properties. It was developed at the end of
the 1980s [23, 24]. In topographic imaging mode, a system of photodiodes
is used to measure the change, in the vertical direction, of the path of the
laser beam reflected by the cantilever arm holding the AFM tip. In LFM, in
contact mode, a normal force is applied and the tip scans the surface, whilst
measuring the change in path of the same laser beam but this time in the
horizontal direction. This change of path is cause by torsion in the cantilever
arm. Given the mechanical characteristics of the cantilever (stiffness constant,
etc.), information can be deduced concerning the lateral force. Finally, as the
tip scans the surface, a map of the lateral force can be produced on the atomic
scale. This is illustrated for a graphite surface in Fig. 8.22.

Figure 8.23 shows the change in the lateral force as a function of the lat-
eral position x on the same sample. The oscillation phenomenon known as
stick–slip motion is clearly visible. As the name suggests, it corresponds to
motion in a series of stops and starts, caused directly by the crystal structure
of the material. The tip–surface interaction remains elastic and no wear is
observed. The phenomenon of hysteresis observed between the outward and
return journey of the tip is due to energy dissipation [21]. Indeed, the mea-
sured response signal contains a reversible elastic part and a dissipative part.
The image obtained depends closely on the crystal structure of the surface
under investigation. The measured lateral force can be described by a surface
potential of the form

VS = V0 cos(kxx)e−kzz .

This gives FL = kxV0 sin(kxx)e−kzz.
Although this experiment provides local information, it remains semi-

quantitative. Indeed, it is a delicate matter to describe the mechanical be-

23



1500

1000

500

0

–500

–1000

F
or

ce
 la

té
ra

le
 (

n
N

)

Sens de déplacement de la pointe

Position latérale x (nm)

0 0,5 1,0 1,5 2,0 2,5
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haviour of the cantilever with any accuracy, and all the more so when it is
under torsion. This is why other methods have been developed. These are
systems in which the tip is no longer carried by a cantilever, such as the nano-
scratch experiment, even though the spatial resolution is no longer as good as
with LFM.

Nanoscratch Test

This type of measurement uses the same type of tip as nanoindentation. This
may be an axially symmetric (e.g., conical, spherical) or pyramidal (Berkovich)
tip. A first fundamental difference with respect to the LFM method is the
characteristic size of the ‘active’ part of the tip. Whereas the tips used in LFM,
made from silicon nitride, have a radius of curvature at the apex of nanometric
order, which corresponds to a few atomic sites, the tips used in nanoscratch
tests, generally made from diamond, have characteristic size around a hundred
nanometers. A direct consequence is the loss of atomic lateral resolution. On
the other hand, normal forces applied in the nanoscratch test can reach 1 mN.
With such forces, these tests are able to investigate both plastic strain and
wear. For a metallic film, the penetration depth can be as much as 100 nm.

The system developed by Hysitron is based on a double capacitive sensor,
as shown in Fig. 8.24. Each sensor comprises three plates, one of which is mo-
bile and connected to the tip. The first sensor is used to exert a normal load by
applying a tension between the moving plate on which the tip is mounted and
a fixed plate. The second capacitive sensor imposes the lateral displacement
of the tip and measures the lateral resistance force. This provides quantitative
information concerning normal and lateral forces and displacements.
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In the case of nanomaterials and in particular multilayers with nanomet-
ric periods, this system can provide local tribological information. Figure 8.25
shows the time variation of the ratio FL/FN and the normal displacement of
the tip when the latter is subject to a lateral displacement at constant speed of
the order of 0.5 µm/s and a normal load varying from 0 to 1 500 µN. The case
illustrated is a multilayer made by PVD and comprising ten Ti/TiN layers.
Each layer of Ti/TiN has thickness 5 nm + 5 nm = 10 nm. The observed oscil-
lations can thus be directly related to the nanometric strata of the multilayer.
It would have been impossible to observe this phenomenon using conventional
tribology.

Using this method, one can also study plastic deformation mechanisms
during the test. The importance of the way the normal load is applied can
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thus be demonstrated. Figure 8.26 shows the normal displacement curves as a
function of the applied normal load during nanoscratch tests over a time span
that is held constant but with different maximal normal loads of 1 000, 3 000,
4 000 and 5 000 µN. The sample here is a titanium nitride film of thickness
300 nm deposited by PVD on a silicon (100) substrate. The logarithmic scale
of the normal force (horizontal axis) suggests the possibility of superposing all
the curves by simple translation. On a linear scale, this amounts to applying
a multiplicative factor. The calculation shows that this multiplicative factor
amounts in turn to imposing a variation of the normal force that is constant
in time, from one test to the next. This demonstrates the importance of the
strain and wear regime during measurements.

8.2.2 Computer Modelling

Introduction

The development of nanomaterials used in nanotechnology as assembly struc-
turesdemandsanunderstandingof theirmechanicalproperties on thenanoscale.
Evaluating physical properties like the elastic modulus, the elastic limit under
tension or compression, or the buckling stress constitutes a real challenge for
nanomechanics research owing to their experimental inaccessibility. Moreover
the experimental validity of such results can only be upheld if the measure-
ments are fully repeatable, and this involves large numbers of samples and a
consequent high cost in many cases. To help experimenters and theoreticians
alike to improve understanding of these nanomaterials by means of computer
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simulations, it is essential to develop well-suited models, i.e., models with
reasonable numerical cost.

When analysing mechanical behaviour, there are two main approaches to
modelling: either using direct methods based on molecular dynamics, or using
‘continuum’ methods developed to study the mechanics of solids or structures.
These two approaches make different use of results obtained in molecular me-
chanics, which is an empirical method resulting from fitting simple mathe-
matical functions to experimental results. Molecules are treated as assemblies
of atoms subject to repulsive and attractive force fields resulting from inter-
action potentials between these atoms. This theoretical framework deviates in
several ways from the one provided by quantum mechanics, but it is much less
costly in calculation time and molecules comprising several thousand atoms
can be modelled in this way.

Molecular dynamics provides a nanoscale description of the motions and
spatial evolution of molecules. Each atom is treated as a point mass vibrating
about its equilibrium position under the effects of thermal agitation and force
fields defined by molecular mechanics. In practice, the idea is to solve New-
ton’s equations numerically using the Verlet algorithm [26]. Displacements
are calculated explicitly, requiring very short time steps, of picosecond order,
given the high frequencies contained in the model. Simulation periods are
thus very short and the numerical cost soon becomes prohibitively high when
large assemblies of molecules containing millions or even billions of atoms are
considered to reproduce behaviour on microscopic or macroscopic scales. Re-
cently, with the development of parallel computing, it has been possible to
simulate behaviour on larger scales [27–29].

To characterise the mechanical behaviour, e.g., by identifying the elas-
tic modulus or mechanical resistance, a quasistatic approach is preferable,
in which vibrational dynamics is ignored. To reduce computation time still
further, the interaction forces between atoms and their nearest neighbours
can be modelled by beam-type assembly forces, so that the system becomes
equivalent to a truss structure as conventionally studied in mechanics [30].
However, when studying large samples, the numerical cost is still rather large
and a continuum approach is then required.

The continuum methods provide a macroscopic description of matter.
Above a certain characteristic volume, the material has homogeneous behav-
iour defined by the laws relating strains to internal stresses on the macroscopic
scale. These constitutive laws governing mechanical behaviour derive from a
nonlinear hyperelastic potential which can be estimated from the interaction
potentials between atoms. The solution is then obtained by the finite element
method which discretises the continuum model into a set of elements of finite
volume with dimensions greater than the characteristic volume. A finite ele-
ment may correspond to several hundred or even thousand atoms depending
on its dimensions, and this considerably cuts down the number of degrees
of freedom of the system under investigation in comparison with a molecu-
lar dynamics model. In the case of crystals with sheet-like structure such as
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graphene, it is possible to use finite surface elements. With these methods,
one can no longer monitor the motions of individual atoms; it is rather the
global behaviour of the whole structure that is under investigation. These
studies may be either quasistatic or dynamic, and in the latter case only low
frequency phenomena are accessible. Simulation times can be greater than in
molecular dynamics, thereby reducing the numerical cost.

In the next section, we review the basic ideas of the finite element method,
illustrating with examples of applications to the micro- and nanoscale. In
these examples, one begins with a priori knowledge of the behaviour of the
material on the macroscopic scale, without taking molecular mechanics into
account. What is revealed here is the feasibility of the finite element method
for investigating small scale multiphysical phenomena. In the second section,
we discuss carbon nanotubes as a particularly well-developed field of industrial
application in nanomechanics and in which the finite element method has been
put to use by integrating the laws of molecular mechanics. In the third section,
we give a brief discussion of work combining both molecular mechanics and
finite elements in the context of multiscale approaches.

Application of the Finite Element Method

Engineering sciences such as solid and fluid mechanics or heat transfer pro-
vide ways of describing how physical systems behave by means of partial
differential equations. The finite element method is one of the most widely
used methods today for effective solution of such equations. It is a very gen-
eral method that can be applied to most problems encountered in practice:
stationary or non-stationary, linear or nonlinear, defined for arbitrary geome-
tries. Furthermore, it can be easily adapted to heterogeneous media and mul-
tiphysical phenomena. Since Clough [31] first introduced the finite element
method in 1960, many problems of mechanics and civil engineering have been
solved using this approach. A great deal of work has been devoted to devel-
oping the theory. One should mention in particular the work of Marçal and
King [32], who introduce the formulation of elastoplastic finite elements for
small strains, Hibbitt et al. [33], McMeeking and Rice [34], who introduced
the Lagrangian formulation for elastoplastic finite elements in the presence of
large strains, and Zienkiewiez and Owen [35] who introduced the formulation
of elasto-viscoplastic finite elements.

The constitutive equations most often used to model large strains in solids
are the differential equations relating stress to strain rates. These laws must
satisfy the principle of incrementally objective integration. Nagtegaal [36] and
Hughes and Winget [37] proposed integration schemes for the constitutive
equations in the presence of large deformations which respect incremental
objectivity during finite time steps.

Among the various techniques used to integrate the constitutive equations,
one in particular has steadily grown to become almost unanimously accepted:
this is the radial return algorithm, developed by Wilkins in 1964 [38] for the
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theory of small strains and then resurrected and generalised by Krieg and
Krieg in 1977 [39]. Moreover, in this field, the idea of consistent linearisation
introduced by Nagtegaal [36] and extended by Simo and Taylor [40] has been
used to generate genuinely efficient tangential stiffness matrices for both small
and large strain problems.

The finite element method is based on one simple idea: to discretise a
complex geometrical shape by subdividing it into a large number of elementary
subregions with simple geometrical shape (finite elements), interconnected at
points called nodes. We consider the mechanical behaviour of each element
separately, then piece these elements together in such a way that forces balance
and displacements are compatible at each node.

In each element, simple approximations are used for the unknown variables
to transform the partial differential equations into algebraic equations. The
nodes and elements do not necessarily have any specific physical meaning but
are based on considerations of accuracy in the approximation.

In a general context, the equation of motion of a deformable body can be
expressed in the following matrix form:

M ü + Cu̇ + F int − F (t) = 0 ,

where F int is the internal force vector and F the external load vector, possibly
a function of time t. M is the mass matrix, C the damping matrix, u̇ the
velocity vector, and ü the acceleration vector. In the particular case of linear
static analysis in solid and structural mechanics, we have

Ku = F ,

where K is the rigidity matrix of the system, u the vector of unknown vari-
ables, i.e., displacements of the nodes, and F the vector of known loads applied
at the nodes.

The logical stages of the calculation by finite elements can be summarised
as follows:

• Define nodes and elements (determine the mesh).
• For each element, establish the elementary matrices relating the nodal

degrees of freedom to the forces applied at the nodes.
• Assemble elementary vectors and matrices into a global system in such a

way as to satisfy equilibrium conditions at nodes.
• Modify the global system to account for boundary conditions.
• Solve the modified global system to obtain the displacements of the nodes.
• Calculate the gradients (strains and stresses) within the elements and the

reactions at the nodes upon which boundary conditions are imposed.

From a practical point of view, calculation codes generally comprise three
functional processors:
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Preprocessor

• Choose the type of elements.
• Enter the geometrical properties.
• Enter the physical parameters.
• Create the geometric model.
• Create the mesh by defining nodes and elements.
• Apply loads.
• Impose boundary conditions.

Solver

• Choose the type of analysis (static, dynamic, etc.).
• Construct elementary vectors and matrices.
• Assemble elementary vectors and matrices to obtain a global system.
• Take into account boundary conditions.
• Solve the global system of equations.
• Calculate additional variations (stresses, reaction forces, etc.).

Post Processor

• Present the results in an intelligible and synthesised way in numerical or
graphical form.

• Carry out complementary functions such as combination, animation, in-
terpolation, or interpretation.

The finite element method has recently been applied to problems at small
scales. We shall now present a few examples of these applications.

Plasma Projection

Plasma projection techniques have been successfully used in industry for many
years to produce coatings that resist corrosion, oxidation, wear, and so on. The
formation of a coating is a multiphysical problem, involving impacts of molten
particles on the substrate, heat transfer between particles and substrate, and
flattening out and solidification of the particles. The first example is a simula-
tion of this multiphysical problem by the finite element method [41]. In order
to provide an adequate treatment of the large strains occurring during impact,
we have developed a remeshing technique. Figure 8.27 shows the temperature
field of the liquid particle and the substrate at different times. The two curves
show the time variation of the temperature at the centre of and outside the
particle. Note that the rates of flattening and heat transfer are very high and
that the particle is very small, having a diameter of only 50 µm.
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Fig. 8.28. Multiple contacts between particles. Mesh and constant value contours
of the von Mises stresses

Representative Volume Element

The representative volume element (RVE) plays a key role in determining
the effective properties of heterogeneous materials. Numerical computation
is an essential tool for establishing the characteristic behaviour within this
volume under external loading. The second example thus deals, for the first
time, with this problem of multiple contacts between deformable particles,
where the behaviour of each particle can be either elastic or hyperelastic. The
finite element method is used to discretise the particles and obtain the stress
field within each one, as shown in Fig. 8.28. In order to treat the problem of
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Fig. 8.29. Nanoindentation. Mesh

(a) (b)

Fig. 8.30. Nanoindentation. (a) Numerical simulation. (b) Experimental result. See
also the colour plate

frictional contact between the particles in an adequate way, a new approach
was developed by Feng [42].

Nanoindentation

The third example is a model for nanoindentation. A tetrahedral (Berkovich)
indenter comes into contact with the surface of a thin film (thickness 300 nm)
on a substrate (different types of film being tested on different types of sub-
strate). The thin film is assumed to have elastoplastic behaviour. The indenter
is assumed to be rigid and to have a blunted tip with radius of curvature about
50 nm. Figure 8.29 shows the 3D meshed model and a more detailed 2D model.
Note that the symmetry of the model is used to reduce computation time.
Figure 8.30a shows the indent left on the surface and the stress distribution
around the indentation region. The triangular shape of the indent faithfully
reproduces what is observed experimentally on these scales (Fig. 8.30b).
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(a) (b)

Fig. 8.31. Carbon nanotubes. (a) Armchair configuration. (b) Zigzag configuration

Simulation of Carbon Nanotubes

Carbon nanotubes are one of the main industrial products in the field of nan-
otechnology. They appear spontaneously when graphite is evaporated under
the effect of an electrical discharge between two electrodes placed in a rare gas
such as helium. These objects have molecular dimensions and are formed from
one or more tiny carbon sheets arranged in concentric cylinders of diameter
1–10 nm (depending on the number of sheets) and length several microns,
closed at the ends by spherical caps. The crystal structure of these carbon
sheets, called graphenes, is hexagonal, while the crystal structure of the caps
is pentagonal. Sumio Iijima, a Japanese scientist, was the first to observe them
under the electron microscope in 1991 [43]. The way the graphene rolls up de-
fines a parameter called the helicity which characterises the different types
of nanotube. The helicity is specified by the chiral angle θ between the axis
of the cylinder and the direction of one side of the hexagon. The configura-
tions known as zigzag and armchair nanotubes are characterised by the values
θ = 0 and 30◦, respectively (see Fig. 8.31). Given the hexagonal symmetry of
the crystal lattice, θ lies between 0 and 30◦.

Carbon nanotubes have remarkable physical properties with a wide range
of potential applications in industry. For example, their elastic modulus is of
the order of 1–5 TPa, well above the values for conventional carbon fibres,
whilst remaining more flexible too [44]. The electrical properties of carbon
nanotubes vary enormously with the diameter and helicity parameter, ranging
from a semiconducting state to a metallic state. The helicity parameter also
influences the mechanical properties [45].

Several theoretical models have been developed in the literature using
the molecular dynamics approach [46, 47]. However, computation times can
be prohibitive with these models, e.g., when simulating the behaviour of a
bundle of multiwalled tubes involving a very large number of atoms. Another
discrete approach has been put forward, treating the carbon nanotube as an
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Fig. 8.32. Undulations of a 34-walled carbon nanotube. (a) Experimental observa-
tion in the plane of the tube axis [49]. (b) 3D simulation of the same [48]

assembled beam structure known as a truss in mechanics [30], in which the
beam elements represent covalent binding forces between atoms. This type
of model provides a static study and reduces calculations compared with the
strictly molecular approach by restricting the atomic interaction of each atom
to its nearest neighbours.

A continuum approach to modelling carbon nanotubes by the finite ele-
ment method has been achieved by Arroyo and Belytschko [48]. It is based on
a membrane model of strains in the carbon nanotube. Strains are calculated
using the exponential Cauchy–Born rule to account for the effects of curvature
of the tube. On the macroscopic level, stresses derive from a potential energy
resulting from the sum over each finite element of the interaction energies
between atoms bound according to the Tersoff–Brenner model of molecular
mechanics. The interaction energy between atoms that are not bound to-
gether is also taken into account to model van der Waals forces according to
the classical Lennard-Jones potential model, also from the field of molecular
mechanics. These van der Waals forces operate between the carbon sheets in
the case of multiwalled carbon nanotubes and between nanotubes when they
form bundles.

Arroyo and Belytschko [48] present the results of a simulation of a carbon
nanotube of length 124 nm, comprising 34 concentric carbon sheets, which
corresponds to around 6 million atoms. The finite element model contains
just 100 000 nodes, considerably reducing the size of the problem to be solved
in comparison with a molecular dynamics simulation (by a factor of 60). The
simulation reproduces the undulations observed experimentally in images ob-
tained by transmission electron microscope (TEM) and published in [49] when
the carbon nanotube is subject to flexion (see Fig. 8.32).

Figure 8.33 shows simulation results for a carbon nanotube under torsion,
using molecular dynamics and finite elements. Good agreement is obtained
between the two approaches.
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Fig. 8.33. Simulation of a carbon nanotube under torsion: molecular dynamics
(black dots) and finite element (grey surface). Taken from [48] with kind permission
of John Wiley & Sons

10- 9 à 10- 11 m (MQ)10- 6  à 10- 10 m (DM)102  à  10- 7  m (EF)

Fig. 8.34. Multiscale simulation. From [51], with the kind permission of Elsevier.
See also the colour plate

Multiscale Simulations

The so-called multiscale simulation techniques were developed to obtain local
quantum and molecular descriptions while retaining the continuum descrip-
tion on the global level, as illustrated in Fig. 8.34.

Several studies [50,51] have proposed ways of combining quantum mechan-
ics (QM), molecular dynamics (MD), and finite elements (FE). In regions
where the atoms obey the laws of continuum mechanics, the finite element
method is used due to the advantages in terms of calculation time. However,
in critical areas such as the extremity of a fracture, molecular dynamics and
even quantum mechanics [e.g., ab initio, or density functional theory (DFT)]
are required to obtain a more detailed study of the fracture process. The
transition from the global to local levels involves a change of scale. More
recently, Xiao and Belytschko [52] have proposed a way of improving the nu-
merical compatibility between regions modelled by molecular dynamics and
those modelled using the finite element method. At the interface between these
two types of region, significant reflection effects are observed in the stress and
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Fig. 8.35. Combined finite element and molecular dynamics (FE/MD). From [52],
with the kind permission of Elsevier

strain fields, leading to unphysical distortion of the solution. The method sug-
gested consists in introducing a rather broad transition region by superposing
the finite element mesh of the continuum region on the atomistic structure of
the molecular dynamics region, as can be seen in Fig. 8.35. In this region, the
high frequencies generated by molecular dynamics are absorbed by the low
frequencies of the continuum region.

Conclusion

Simulation is an important, even essential tool for aiding scientists to obtain a
better understanding of the physical phenomena operating within nanomate-
rials. The examples discussed above, i.e., plasma projection, nanoindentation,
and carbon nanotubes, show how one can get access to multiphysical phe-
nomena at very short length scales (micron or nanometer) that are so difficult
to observe experimentally. We have seen that, at these scales, a continuum
approach by the finite element method can give excellent results, provided
that certain precautions are taken. A good level of a priori knowledge con-
cerning the constitutive laws and also a carefully chosen mesh are essential
here. Understanding of the constitutive laws can be acquired a posteriori us-
ing molecular mechanics and/or quantum mechanics. The advantage with the
finite element method as compared with molecular dynamics is that one can
considerably reduce the number of degrees of freedom of the system under
investigation, thereby reducing the numerical cost. The disadvantage is that
one obtains a global description of the behaviour, thus losing any phenom-
enological description on the interatomic level, e.g., in problems of fracturing
where propagation mechanisms must be determined). This is why the multi-
scale approach seems to be a promising solution for simulating the behaviour
of nanomaterials, combining as it does the finite element and molecular dy-
namics methods.
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