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1. Introduction

In the current virtual reality field, each of current display (audition, visual and touch) are 

often indepently studied. But a more interresting approach consist to blend them to create a 

multi-modal  virtual  reality.  The fact  is  putting more than one modality together does not 

result in the sum of the modalities. The experience can be enriched by such cooperation, but 

user can also feel destructive interaction between the modalities. This creates new challenges 

for the virtual reality creator. For the most cases, the modalities are not to be handled in the 

same  way,  thus  creating  diffuclties  for  integration.  In  the  following,  we  focus  on  such 

challenges.

In order to be able prototype multimodal integration schemes and models, the LSC developed 

a  generic framework called I-Touch [POC04a][POC04b] that  serves also the rigid bodies 

prototyping  demonstrator  of  the  deliverable  D7.5  and  D7.6.  This  part  will  describe  the 

components of  the I-Touch framework. The fact the framework is multimodal is  of great 

importance, in order to be able to evaluate the importance of each feedback.  We tried to give 

each of the modalities the same ‘importance’, from an integration point a view, precisely in 

order to be able, after that, to modulate the user experience.

The I-Touch framework

1.1 Design of the I-Touch framework

The I-Touch framework is designed to be modular from its core to its interfaces. Although it 

is still in the development process, it already allows plug-ins (static linking in program) of 

different  behaviors  models  and  different  collision  detection  algorithms.  The  framework 

architecture is given in the Figure 1.

Figure 1: I-Touch framework architecture.
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As it can be noticed, haptic interfacing, among other rendering capabilities, takes an important 

place. This particular focus meets the Touch-HapSys objectives in better understand haptics 

and its relation with the other modalities. However, this modality has the same ‘rights’ and 

‘duties’ as other modalities. Precisely, the haptic modality can be as easily put in / removed 

from the simulation as any other.

From a pure technical point-of-view, the framework is divided in three main modules; each of 

them is further subdivided in as many sub-modules as needed. The I-Touch framework is 

completely  object-oriented.  This  allows  easy  part  replacement  and  improvements.  It  is 

implemented  in  a  pure  standard  C++,  and  apart  from the  driver  libraries,  does  not  use 

platform dependent code. It can be easily ported to Linux or MacOsX, however it is designed 

to be best suited to MS Windows OS. Of course, this object-orientation makes also easy the 

sub classing of some part of the framework, in order to create completely new applications. 

The fact we can devise new application “on demand” is of considerable importance. Namely, 

we are also envisaging its use for dedicated psychophysical investigations.

1.2 The core system

The core system is responsible for handling the operating system (the platform specific code 

is  inserted  here),  the  configuration,  and  the  basic  functionalities  of  a  physically-based 

simulation. It provides a basic scene graph for managing the various objects that composes 

the  virtual  scene.  This  core  system  can  accept  many  simulation  algorithms  along  with 

different  input  methods.  Classical  mathematical  methods  [1]  [2]  and  structures  are  also 

provided, for the easy prototyping/evaluation of new/existing algorithms. The core system 

also provides a very flexible configuration in XML, which parametrizes any aspect of the 

simulation, thus allowing the creation of test-beds rather easily. 

In addition to configuration tools,  a  file format for  holding together “geometrical”  object 

properties has been devised. This format is open and flexible; moreover, additional data can 

be included and be ignored if not necessary to the simulation, even if it is an unknown data. 

An importer and exporter have been written for 3DSMax, along with C++ and C# libraries for 

loading efficiently  theses  files.  This  exporter  can,  for  now,  export  geometry,  normal,  bi-

normal and texture information, however, it does not save the relationship between texture 

information and texture map (this link has to be recreated in configuration files, however, the 

result is of course exactly the same). This data format, exporter, importer and C++ libraries 

have been  conjointly  developed by  A.  Pocheville  and M.  Brunel.  Details  concerning  the 

implementation can be found in [3].

1.3 The input and output system

While the input system needs to be flexible and needs to manage many different inputs, the 

output  system  should  ensure  high  fidelity  rendering  along  with  adequate  refresh  rates 

according to the addressed modality/output. Of course, the output system is tightly related to 

multi-modal integration. One of the most important facts here is that the output system should 

be very flexible and allow almost any information as its input, in order to be able to prototype 
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new integration schemes. However, there are limits to flexibility, in the end, each modality 

still requires special handling.

1.4 The simulation system

The simulation is composed of the simulation manager, and a set of simulation virtual objects. 

The simulation system uses the core system for standard interaction with the computer and 

the user, and input/output system for multi-modal interaction. Collision detection algorithms 

are  part  of  the  simulation  system.  The  simulation  system,  like  any  other  part  of  the 

framework,  can  be  replaced  or  modified  rather  easily.  The  simulation  system  can  be 

decomposed in two subsystems: the collision detection subsystem and the behavior model 

(the physic step). The fact is that collision detection step can be also benchmarked to certain 

extend: for example, a penalty or a constraint based physic resolution has known inputs, we 

can then select detection collision algorithms that provides such information. The following 

schema illustrates this interaction:

Figure 2: I-Touch interaction between collision detection and response
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2 Multimodal integration

One of the most challenging issues of I-Touch is multimodal integration. Visual, audition and 

haptic senses have different refresh rates: from as low as 30Hz for visual interaction, up to as 

high as 10kHz for the 3D sound one. Integrating each of these modalities is not a trivial task. 

Others  tentatives  tried  through parallelization  of  the  computation  on  different  computers. 

Here, we decided to push the limits on focusing in using one computer, but this unveils some 

problems as exposed later.

1.5 Simulation engine flexibility

The fact that the simulation engine is completely flexible and modular allows the integration 

of  different  behaviors  models  with the  same multimodal  rendering.  This  is  done through 

abstraction of the output methods. For example, haptic rendering can be easily derived to 

create  new rendering.  These  rendering  can  then  be  easily  switched.  Moreover,  since  the 

simulation engine use the simulation objects as placeholders, alsmost any information can be 

provided to the output. For example, simulation objects are holding the whole normal map 

used  in  visual  bump  mapping  and  haptic  bump mapping.  This  information  can  then  be 

accessed at will.

However,  the  simulation  engine  has  to  provide  some  specific  information  to  the  output 

routines.  For  example,  for  the  real-time  3D  sound  rendering,  contact  information  (and 

changes in contact through time) are required. The immediate benefit of the ability to switch 

between renderings is that we can benchmark how well does a simulation engine behaves 

with multimodal rendering. For example, bounce models have difficulties in rendering contact 

information with sound, while they provide excellent rendering of bounce sounds. It can be 

observed that 

1.6 Collision detection integration

The I-Touch framework has a certain amount of requirement from the collision detection 

module. It should be noted that due to the architecture of the framework, inter penetration 

never  occurs.  For  I-Touch,  objects  can  only  be  touching.  Objects  are  considered  to  be 

touching when they are less than a certain predefined distance away from each other. We will 

refer to this  distance as the tolerance of the collision system. When a contact occurs,  the 

contact area should be represented by a group of point pairs, each of which is on the surface 

of one object. The points on each object should represent the contact region of this object. No 

point pairs should be duplicated in the list since each pair is later used to calculate the reaction 

force. 

The collision detection module should be robust to handle polygon soups where duplicated 

vertices  can  be  found  and  thus  neighborhood  information  between  triangles  might  be 

erroneous. The collision results should be calculated fast enough to leave the required time for 

the dynamical model to calculate the reaction forces at interactive rates.

Our proposed system provides the required information. It is composed of three layers:

The first is an acceleration layer that determines the triangle pairs having a high probability of 

colliding,  thus  needing  further  processing.  The  second  layer  performs  our  topology 

determination test on each of the pairs obtained from the first layer. This test obtains for each 
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pair, the list of point pairs that defines the contact between these triangles. The last layer is 

where  all  the  contact  point  pairs  from  the  second  layer  are  gathered,  while  eliminating 

duplicates. In the following, we will explain each of the three layers of our system.

1.6.1 Layer1

The first layer is an acceleration phase, based on object oriented bounding box hierarchies. 

Each hierarchy is  constructed top down, starting by the first  box at  the object  level,  and 

proceeding by dividing the triangles into two groups, and constructing a bounding box for 

each  group.  The  leaves  of  the  trees  of  the  hierarchies  contain  each,  one  triangle.  This 

construction produces 2n boxes for each object, where n is the number of triangles for that 

object. In order to account for the tolerance, we have to enlarge each box of the tree by half 

the value of the tolerance in the direction of the three axes of the box. This action is crucial 

since we consider a pair of triangles to be in contact when they are within the tolerance from 

each other. An example is shown is the following figure.

When traversing the tree, if the current nodes are leaves we add the pair of triangles that they 

contain to the list of triangle pairs that we will process in layer 2. If the nodes are not both 

leaves,  then we process their  child  boxes  together.  The output  of  this  layer is  the list  of 

triangle pair that need further processing.

1.6.2 Layer2

The input of the second layer is the output of the first layer. We need to determine the contact 

type for each triangle pair in the list, which can be a point, edge or surface contact and for 

each  case,  find  the  points  that  delimit  the  contact  zone  for  each  triangle.  We define  the 

“margin” as the variation in the distance within which we consider the two vertices as parallel 

to a plan. For example, having v11, v12 and v13 as vertices of the first triangle and p2 as a plan 

of the second triangle with the tolerance fixed to 10 and the margin fixed to 2, then if 

d(v11, p2) = 11

d(v12, p2) = 5 

d(v13, p2) = 6

We consider that we are potentially in a case of edge-plan contact because we consider that 

v12 and v13 are both lying in p2 within the tolerance and the margin.

Our algorithm starts by calculating the distances from each vertex to the plan of the second. 

The distance is not a signed number, and do not depend on the direction of the normal. This is 

done to account for the case where the vertices of the triangles are given in the reverse order. 

This first part of the algorithm has the following pseudo code

t1 and t2 are the first and second triangle respectively
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v11, v12, v13,, v21, v22, v23 are the vertices of t1 and t2 respectively

p1 and p2 are the plans of t1 and t2 respectively 

For each vertex of t1

Calculate the distance for this vertex to p2

End for

For each vertex of t2

Calculate the distance for this vertex to p1

End for

If at lease one vertex of t1 is in t2 or at least one vertex of t2 is in t1

Determine the type of potential contact of t1 using the calculated distances

Determine the type of potential contact of t2 using the calculated distances

Call PlanContact(HighestContactOrder(t1,t2))

Else

Call EdgeEdge()

End if

In order to determine the type of potential plan contact, we start by identifying the vertex with 

the smallest distance, and then verify if the other two vertices of his triangles are within the 

margin. If both are, then we are in a potential plan-plan contact. If only one is, it is a potential 

edge-plan contact for this triangle. If none is, then it is a potential vertex-plan contact. All 

vertices within the margin and the closest one are called active.

1.6.3 PlanContact()

A plan contact can be a vertex-plan, edge-plan, or a plan-plan. In order to determine all the 

point pairs that define the contact, this function starts by checking if the active vertices of the 

two triangles  are  inside all  the plans defined by the edges and the normal of  the second 

triangle. If a vertex is, then we are sure it is a contact vertex since we already verified that it is 

within the tolerance, and we can add it and his projection on the second triangle are added to 

the result vertex pair list.

Then we check the edges of the two triangles, having both end points active, against each 

other. If their closest points are less then the tolerance away from each other then we add the 

closest points of the two triangles to the result pair list. Some conditions have to be verified in 

order to assure that no duplicate pair are added to the list, but will be omitted for simplicity. 

For each active vertex v of t1

If v inside the triangular prism of t2

Add v and his projection to t2 to the result list

End if

End for

For each active vertex v of t2

If v inside the triangular prism of t1

Add v and his projection to t1 to the result list

End if
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End for

For every edge e1 of t1 having active end points

For every edge e2 of t2 having active end points

If d(e1, e2)<tolerance

Add the closest points on e1 and e2 to the result list

End if

End for

End for

1.6.4 EdgeEdge()

If no vertex of the two triangles is in the plan of the other, then we must verify that we don’t 

have edge-edge contacts before concluding with a no contact situation.

This test checks all pairs of edges again each other, and adds the closest point on two edges to 

the result list if the distance between their corresponding edges is less than the tolerance. We 

also have to check certain conditions to assure that no duplicates are added to the list.

The following is an edge-edge case

For every edge e1 of t

For every edge e2 of t2

If d(e1, e2)<tolerance

Add the closest points on e1 and e2 to the result list

End if

End for

End for
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An important remark is that the case of an edge penetrating the face of the second triangle, but 

having a distance to all three edges of the second triangle highest then the tolerance, is not 

detected. 

This should not be a problem for I-Touch since this should not be allowed to happen. 

When the end point  of  this  edge reaches the plan of the triangle,  the engine of  I-Touch, 

prevents penetration, and thus the above mentioned situation never occurs.

  

1.6.5 Layer3

The last layer of the system deletes redundant pairs from the result list. This can be done by 

the brute force algorithm of order O(n2), where n is the number of result pairs. Knowing that 

the number of results pair is usually not very high, such complexity can be acceptable in most 

cases. However, we designed an optimized duplicate pair remover, which checks only the 

results  of  the  neighboring  triangles  for  duplicate  pair.  Such  a  strategy  is  possible,  since 

duplicates can only exist among adjacent triangles.

Such an optimized version should only be used when the models are well constructed, and 

neighborhood information for the triangles is correct. If it is not the case, it is better to use the 

brute force method.

The result of this layer is a list of point pairs, defining the contact between the two objects, 

and having no duplicates. 

1.7 Sound integration

3D positional audio enhances the immersion of the operator in the simulation. We have two 

methods for rendering 3D sound: real-time rendering, and semi-real-time rendering. The real-

time rendering uses information directly provided by the simulation, such as changes in the 

friction map to produce sound. It also uses object properties such as resonance frequencies to 

computes contact sounds [26] . While this is the correct method for producing friction and 

bounce sound, it suffers from several drawbacks. First of all, it is very computational-time 

consuming, and, in a system composed by only one processor, it can become the bottleneck of 

the simulation (and take the place of the collision detection!). Maybe relocating the sound 

computations could solve this problem. The other fact is that the sounds generated are, for 

now, less “realistic” than the ones produced by the second approach. 

The following is an example of analysis of modal parameters of a material.
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The  semi-real-time  sound  rendering  approach  uses  off-line  recorded  sounds  of  different 

materials  in  contact.  These  different  sounds  are  stored  in  a  database  according  to  some 

material properties. They are used by the simulation as they are and the only amplitude and/or 

frequency modulation (pitch, volume...) are processed. This method can be seen as same as 

vertex transform followed by a texture pass in visual rendering.

The following figure stress out the difference between the two methods:
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1.8 Visual integration

Relatively to the sound and the haptic rendering, the visual one is the easiest. We can use the 

same geometry as the one used for physics calculations, or a higher level, smoother one for 

better rendering. Objects are linked to rendering information, such as geometry, material and 

alpha information,  and pixel and vertex shaders.  This allows almost  any rendering of the 

objects,  from  standard  Gouraud-shaded  plastic  look,  to  advanced  Phong-shaded  semi-

reflecting  materials  with  bump mapping.  Dynamic  lighting  is  also  supported.  The  visual 

rendering is completely configuration controlled, so there is a great flexibility in the rendering 

process. The fact that the visual rendering is well understood and has numerous techniques is 

very  interesting  here,  because  we  can  take  inspiration  from  these  techniques  in  others 

renderings.

1.9 Haptic integration

Our approach differs from the previous ones. Indeed we are conceptually considering that the 

haptic devices (interfaces) interact with the simulation and not the reverse way i.e. the haptic 

device does not drive the simulation. The point here is that haptic device can be removed at 

will. Even more, more than one haptic device should not pose any problem to this type of 

simulation,  since haptic  rendering is  totally  decorelated from simulation loop.  Obviously, 

haptic  devices  can  induce  a  change  in  the  course  of  the  simulation  but  they  cannot 

compromise  its  integrity.  To  be  clearer,  the  simulation  does  not  take  as  granted  what  is 

needed from the input device and, in extreme cases, these particular inputs are ignored. In 

fact,  this  enhances  considerably  the  stability  of  the  interaction.  For  example,  when  the 

operator  actions  are  toward  violating  a  given  non-penetration  constraints,  they  are  not 

considered integrally (as is the case for classical computer haptics API’s).  This is better for 

engine stbility, and allows for many new algorithms to be used. However, haptic feedback has 

to be consired from another point of view. The basic principle behind this is exmplained in 

the following figure:

Figure : Principle of force handling.

The fact that haptic integration is not considered as a special rendering allows new synergies 

between rendering to be investigated. One example of this is the recently implemented haptic 

Simulation 
Loop

Haptic Device 1

Haptic Device 2

ASK

ASK

ANSWER

ANSWER

12



bump. As for visual bump mapping, we can simulate rough haptic surfaces through haptic 

bumps. We tried two different approaches: height based forces, and normal based forces. The 

basic principle is the same: the force computed by the simulation engine is slightly modulated 

by a term, which depends either on the height or the normal. In our actual implementation, 

haptic bump does only work with one contact point,  but we are working on extension to 

multiple points.

The following figure explain the principle behind the haptic bump:

As far as “bump sensation” is concerned, the normal based force give superior results. The 

bump map used for haptic bump is exactly the same as the one used in the visual bump, thus 

the two modalities match perfectly and the rendering is coherent. 
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 Figure : Example of haptic bump (combined with visual bump). The surface is in fact a plane.

1.10Thermal integration

While there have been advances in thermal integration, there remains difficulty in some areas:

 First of all, we have to be able to reproduce any material from its thermal properties. 

For now, we can only approximate the law of the thermal interaction between a 

human finger and a material through a Peltier pump, but many progress are still to be 

made, in order to be able to deliver almost exact replication of thermal sensations in 

the real worl. 

 Secondly, while the integration of the thermal sense is not very difficult in the 

simulation (mainly from its poor refresh rate, the human has not a high refresh rate 

thermal sense), it poses great difficulty from a practical point of view, where we 

should combine thermal with kinaesthetic feedback. An efficient device is yet to be 

devised.
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1.11Putting them together

Many synchronizing algorithms do exist, but for now, we did not experimented them, because 

they are time consuming when added to the simulation engine. Computation

of  different  contacts,  and  then  contact  forces,  takes  most  of  the  CPU  time.  As  theses 

computation  are  the  main  bottleneck  of  the  simulation,  the  rendering  is  sufficently  fast. 

Moreover, the fact of multithreading does not harm this process, since the refresh rates are too 

high for an human to notice little differences.

The data is given to render in this order (immediately one after the other): haptics, sound and 

vision. In the future it would interesting to have scalable algorithms that would be totally 

disconnected from the physical  simulation, we will  then need synchronization algorithms. 

This would prevent that the new bottleneck (let’s say, sound rendering) to harm the other 

displays.  However,  it  will  also  mean  that  one  of  the  modalities  will  have  degraded 

performance,  we  will  need  to  investigate  how  far  we  go  in  degradation  in  one  of  the 

modalities without ruining interaction.

1.12 Evaluation tools

The testing of research projects is made easy with I-Touch, however such a testing requires to 

analyze data from the simulation. In I-Touch, every simulation variable can be “tagged” from 

recording; this allows after-run simulation analysis through tools. For example, FPS data, or 

time taken to compute a frame (much more speaking than FPS in regard to performance) 

evolution  can  be  viewed  easily.   The  ‘tagging’  is  done  by  providing  the  pointer  to  the 

variable. Then, each frame (or at a given time), the variable is recorded. At the end of the 

simulation,  a file that can be viewed in a special viewer is  written. The actual  viewer is 

written in .Net and is provided with the I-Touch framework.

Also,  the  debugging  facilities  and  text  functions  in  I-Touch make it  easy  to  dump data. 

However, we want to go further, and new real-time tools are in development. Such tools will 

render in real time evolution of variables, in numerous manners (time graphs, bars, standard 

text, etc.). Specific analysis tools to simulation should also be included, such as automatic 

reporting of number of contacts, physics calculation time, time spent in rendering or in other 

tasks – this step is almost done, but we have to link it with the visual rendering. This will 

create a complete and easy evaluation tool, in order to accelerate further the development of 

test  cases.  This  step is  very important  in  the  relationship that  this  project  can have with 

psycho-physical and others experiments.
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Conclusion and future work

We have  shown that  we  have  made  a  prototype  of  software  framework  that  allows  the 

creation  of  many test  cases.  They all  have in  common experiments  with  operation,  in  a 

multimodal  way.  The  haptic  rendering  is  not  considered  with  special  concerns,  thus 

facilitating the evaluation of haptic impact in a multimodal context. Integration of all these 

modailities in one framework in not an easy task. We have chosen the modularity path, which 

allows testing of and imaging new scenarios. However, there is an attempt to provide each of 

the modularity a coherent information, in order to allow a real symbiose between the different 

senses. 

We have succeeded in creating sample applications that use the flexibility of the  I-Touch 

framework. However, integration with real psycho-physical tests is yet to be done. Further 

work is oriented toward refining I-Touch through its multimodal component to serve also as a 

psychophysics evaluation tool. Progressively our aim is to evolve it to a complete piece of 

software that  can  serve haptic  research.  Future  improvements  will  include  more  intimate 

collaboration of the different modalities, and new ways of defining what a modility is from a 

software point of view.
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