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Abstract. Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two di-

mensional organic metal (ET)8[Hg4Cl12(C6H5Br)]2 have been studied up to 1.1 GPa in pulsed magnetic

fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a

network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a net-

work, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains

large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant

contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids.

In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being

likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is

observed as the applied pressure increases. This latter point, which is at variance with data of most charge

transfer salts is discussed in connection with pressure-induced features of the temperature dependence of

the zero-field interlayer resistance.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.20.Rv Poly-

mers and organic compounds – 72.15.Gd Galvanomagnetic and other magnetotransport effects
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1 Introduction

Quantum oscillations spectra of quasi-two-dimensional (q-

2D) multiband metals are known to contain many Fourier

components. In addition to those that can be attributed to

closed orbits, eventually induced by magnetic breakdown

(MB), linear combinations of few basic frequencies that

are not predicted by the semiclassical model [1,2] can nev-

ertheless be observed. This frequency mixing phenomenon

can be linked to both the q-2D nature of the dispersion

relation which is liable to give rise to a field-dependent

oscillation of the chemical potential [3] and to the Fermi

surface (FS) topology that can be regarded as a network

of orbits coupled by MB [4]. Despite both theoretical and

experimental efforts, the latter being mainly focused on or-

ganic metals based on the ET molecule (where ET stands

for bisethylenedithia-tetrathiofulvalene) with the FS orig-

inating from the hybridization of one orbit with an area

equal to that of the first Brillouin zone (FBZ), quantita-

tive interpretation of the data is still an open problem.

Networks of orbits can also result from the hybridiza-

tion of two or more pairs of q-1D sheets as it is the case

of the room temperature FS of numerous oxide bronzes.

However hidden nesting properties [5] lead to the conden-

sation of a charge density wave which strongly modifies the

FS at low temperature in most cases. As a result, quan-

tum oscillations spectra observed e. g. in monophosphate

tungsten bronzes [6] can hardly be reconciled with band
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structure calculations [7]. Analogous problematic can be

observed in the q-2D organic metal β”-(ET)(TCNQ) [8].

On the contrary, although the FS of the q-2D charge

transfer salt (ET)8Hg4Cl12(C6H5Cl), noted hereafter as

(Cl, Cl), originates from the hybridization of two pairs

of q-1D sheets as well, it remains metallic down to the

lowest temperatures. According to band structure calcu-

lations [9], its FS is composed of two compensated orbits

labelled a in the following with an area of 13 % of the FBZ

area. Shubnikov-de Haas (SdH) oscillations spectra of this

compound [10], which otherwise exhibit many frequency

combinations, as discussed below, are in good agreement

with this picture since the main Fourier component has

a frequency Fa = 241.5 ± 2 T that corresponds to 11 %

of the FBZ area. This is also the case of the isostructural

compound (ET)8[Hg4Cl12(C6H5Br)]2, noted hereafter as

(Cl, Br), which has been even more extensively studied at

high magnetic field [11,12] although its FS has not been

reported up to now.

With respect to the interpretation of frequency com-

binations, applied pressure can be useful in order to tune

both the transverse interactions (which are involved in

the chemical potential oscillations) [13] and the MB gaps.

In a first step, band structure calculations of the (Cl, Br)

compound at ambient pressure are reported which confirm

that its FS can be regarded as a network of compensated

orbits. In a second step, the temperature dependence of

the interlayer resistance under pressure is considered. Fi-

nally, the pressure-induced change of the SdH oscillations
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spectrum, MB field, effective masses and scattering rate

is investigated up to 1.1 GPa.

2 Experimental

The studied crystals were prepared by the electrochemi-

cal method reported in [14]. Tight binding band structure

calculations, based on X-ray data collected at room tem-

perature and ambient pressure, were performed using the

same method as reported in [9]. The calculations use an

extended Hückel effective one-electron Hamiltonian [15].

The off-diagonal matrix elements of the Hamiltonian were

calculated according to the modified Wolfsberg-Helmholz

formula [16]. All valence electrons were explicitly taken

into account in the calculations and the basis set consisted

of double-ζ Slater-type orbitals for all atoms, except hy-

drogen.

Interlayer zero-field resistance and magnetoresistance

measurements were performed on crystals with approx-

imate dimensions 0.5×0.5×0.1 mm3. Electrical contacts

to the crystal were made using annealed platinum wires

of 20 µm in diameter glued with graphite paste. Alter-

nating current (1 µA, 77 Hz) and (5 to 10 µA, 20 kHz)

was injected parallel to the a* direction for measurements

of the interlayer zero-field resistance and magnetoresis-

tance, respectively. Hydrostatic pressure was applied up

to 1.1 GPa in an anvil cell designed for isothermal mea-

surements in pulsed magnetic fields [17]. In the following,

the pressure applied at room temperature is considered

although a slight crystal size-dependent pressure loss on

cooling cannot be excluded [18]. Magnetoresistance ex-

periments were performed up to 54 T in pulsed magnetic

field with pulse decay duration of 0.36 s, in the tempera-

ture range from 1.5 K to 4.2 K. Magnetic field was applied

normal to the conducting (bc) plane. A lock-in amplifier

with a time constant of 30 µs was used to detect the signal

across the potential contacts. Analysis of the oscillatory

magnetoresistance is based on discrete Fourier transforms

of the data, calculated with a Blackman window.

3 Results and discussion

The band structure calculations and FS of the (Cl, Br)

compound displayed in Fig. 1 are based on crystallographic

data recorded at ambient pressure and room tempera-

ture. The repeat unit of the donor layer contains 8 ET

molecules so that the band structure of Fig. 1a contains

8 bands mainly based on the highest occupied molecular

orbitals of ET. With the usual oxidation states of Cl− and

Hg2+, the average charge of the ET donors is +1/2. Con-

sequently, two bands in Fig. 1a should be formally empty.

Since the second and third bands from the top overlap,

the system must be metallic and its FS must contain both

electron and hole contributions with the same area. More

precisely, as it is the case for (Cl, Cl) [9], the FS (see Fig.

1b) originates from two pairs of crossing q-1D sheets and

constitutes a network of compensated electron (around

M) and hole (around Z) closed orbits elongated along the

(b∗ + c∗) and c∗ directions, respectively. These orbits are

both labelled a hereafter since they have the same area.

Both the band structure and FS of Fig. 1 are very similar

to those previously reported for the (Cl, Cl) compound [9].
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Fig. 1. (a) Dispersion relations at ambient pressure of

(ET)8[Hg4Cl12(C6H5Br)]2. The dashed lines marks the Fermi

level. (b) Fermi surface (FS) corresponding to (a). Γ , Y, Z, S

and M refer to (0, 0), (b∗/2, 0), (0, c∗/2), (-b∗/2, c∗/2) and

(b∗/2, c∗/2), respectively. Labels a, δ and ∆ correspond to the

FS pieces discussed in the text.

For instance whereas the area of the closed orbits of the

(Cl, Br) compound is 16.1 % of the FBZ area, according

to data in Fig. 1, calculations for (Cl, Cl) using the same

computational details as in the present case lead to an area

of 16.7 % of the FBZ area. Although this is not surprising

since the two compounds are isostructural, these results

justify a posteriori the previous data analysis based on a

FS topology analogous to that of the (Cl, Cl) compound

[11,12,19]. Let us note that similar calculations led to a

more substantial variation of the orbits area for the (Br,

Cl) compound (9.6 % of the FBZ area). This suggests that

replacement of Br by Cl in the anion layer has a consider-

ably stronger effect on the FS than the same replacement

in the solvent molecules. The small difference in orbits

area between the (Cl, Br) and (Cl, Cl) compounds is in

agreement with the experimental results. Nevertheless, a

slight discrepancy between calculations and quantum os-

cillations spectra can be observed since the closed orbits

area of (Cl, Br) amounts to 16.1 % and 11 % of the FBZ

area in the former and latter cases, respectively.

Zero-field interlayer resistance and magnetotransport

were studied on three crystals. Since they yield consistent

results, we concentrate on the most extensively studied

one in the following. It should be noted that all the fea-

tures reported hereafter are reversible as the pressure is

released.

Temperature dependence of the zero-field interlayer re-

sistance at various applied pressures is displayed in Fig.

2. The room temperature resistance decreases as the pres-

sure increases (dlnR/dP = -1 GPa−1) while the low tem-

perature value remains almost unaffected. As a result, the

residual resistivity ratio (RRR) decreases monotonously

by about a factor of 3 as the pressure increases up to

1.1 GPa. Whereas the resistance continuously decreases

as the temperature decreases at ambient pressure, a resis-

tance maximum is observed under pressure, the amplitude

of which is maximum around 0.5 GPa. Data under pres-
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0.3 GPa

0.1 MPa

0.5 GPa

0.7 GPa

1.1 GPa

Fig. 2. (color on line) Temperature dependence of the zero-

field interlayer resistance at various applied pressures. The low

temperature part of the data is plotted as a function of T2 in

the inset.

sure share similarities with the sample-dependent zero-

field interlayer resistance of the high-resistance variant of

κ-(ET)2Cu[N(CN)2]Br whose resistance increases as the

temperature decreases down to about 100 K and strongly

decreases at lower temperatures [20]. A similar tempera-

ture dependence is also observed for other charge transfer

salts such as κ-(ET)2Cu(NCS)2 [21] or κ-(ET)2Cu[N(CN)2]Cl

[22]. As reported in Ref. [23], the resistance maximum

observed in κ-(ET)2Cu[N(CN)2]Br is certainly related to

disorder and possibly to point defects. Indeed, due to a

decrease of the Dingle temperature, the SdH oscillations

amplitude increases as the amplitude of the resistance

maximum decreases. It should be noted that the effect

of pressure on the zero-field transport properties of this

compound is at variance with that of Fig. 2 since the am-

plitude of the resistance maximum decreases continuously

as the applied pressure increases in the former case. In

other words, data in zero-field could suggest that, even

though the scattering rate in κ-(ET)2Cu[N(CN)2]Br de-

creases under pressure, it increases in the case of the (Cl,

Br) compound, at least up to 0.5 GPa. Oppositely, X-

ray irradiation of κ-(ET)2Cu(NCS)2 lead to a decrease

of the resistance maximum amplitude [24]. However, as

far as κ-(ET)2Cu[N(CN)2]Cl is concerned, this behaviour

is due to a significant irradiation-induced increase of the

carrier concentration [25] that cannot hold in our case.

It should be also mentioned that a coherent-incoherent

crossover of small polarons, driven by the strength of the

electron-phonon coupling, can also lead to interlayer re-

sistance maximum [26,27]. Alternatively, electron corre-

lations have been invoked in order to account for such

resistance behaviour [22,28]. As a matter of fact, a T2

variation of the resistance (R = R0 + AT2) is observed

at low temperature (see the inset of Fig. 2). Owing to

the crystal dimensions, A ranges from ∼ 0.2 ΩcmK−2 at

ambient pressure to ∼ 0.05 ΩcmK−2 at 1.1 GPa. Such

a behaviour which is commonly observed both in charge

transfer salts [20,22] and inorganic low dimensional com-

pounds such as Sr2RuO4 [29] is currently regarded as the

signature of a strongly correlated Fermi liquid. This lat-

ter point and the above statement regarding the pressure

dependence of the scattering rate are further discussed at

the light of the magnetoresistance data reported hereafter.
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Fig. 3. (color on line) Field-dependent interlayer resistance

at various applied pressures. Curves have been shifted down

by an arbitrary amount for clarity. Black and blue solid lines

correspond to data measured at 4.2 K and 1.7 K, respectively.

Fourier analysis of interlayer magnetoresistance data

(few examples of which are given in Fig. 3) are displayed

in Fig. 4. As previously reported for ambient pressure data

[11], many frequencies are observed in all the explored

pressure range. Most of them are linear combinations of

that linked to the compensated electron- and hole-type

orbits (labelled a in Fig. 1) and of the FS pieces located

in-between (labelled δ and ∆ in Fig. 1). These two latter

FS pieces correspond to so called ”forbidden orbits”1 as

it is the case of most of the observed frequency combi-

nations. Oppositely, the Fourier component 2a + δ corre-

1 As reported in Ref. [11], these FS pieces could correspond

to MB-induced closed orbits or QI paths. However, the cor-

responding effective mass and MB damping factor would be

much too large and small, respectively, to account for the data

0.7 GPa
[30 T – 54 T]

1.1 GPa
[30 T – 54 T]

0.3 GPa
[10 T – 40 T]

0.3 GPa
[30 T – 54 T]

1.1 GPa
[10 T – 40 T]

a)

b)

c)

d)

e)

Fig. 4. (color on line) Fourier analysis of the oscillatory part

of the magnetoresistance at various applied pressures and field

ranges. Blue, red, green and black solid lines correspond to data

at 1.7, 2.5, 3.4 and 4.2 K, respectively. Black vertical lines are

marks calculated with the set of frequency values (Fa, Fδ and

F∆) that best fits to the Fourier spectra.
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: 2a+
�

: 2a+�calc
:
�

: a
: �
: b

Fig. 5. (color on line) Pressure dependence of the normalized

frequency of the Fourier components δ, a, ∆ and b deduced

from data in Fig. 4). The ambient pressure values are Fδ = 135

T, Fa = 235.5 T and F∆ = 1577 T [11]. The inset displays the

pressure dependence of F2a+δ. Open squares stand for values

calculated as F2a+δ = 2Fa + Fδ.

sponds to a MB orbit while the b frequency corresponds

to QI paths involving an area equal to that of the FBZ

(Fb = 2Fa + Fδ + F∆) [10,11]. At high field and (or)

high pressure, shift of few frequency combinations (such

as 4a + δ or ∆ - δ) that could as well correspond to ad-

ditional frequencies can be observed in Figs. 4(b) - (e).

Although more data is needed in order to discuss the ori-

gin of these latter features, it can be inferred that they

could arise from slight change of the FS. Nevertheless,

most of the observed Fourier components remain linear

combinations of the three basic frequencies reported above

which allows for the study of their pressure dependence.

a
2a + δ
b

a)

b)

c)

Fig. 6. Pressure dependence of the (a) effective mass, (b) Din-

gle temperature and (c) magnetic breakdown field, deduced

from the field or temperature dependence of the Fourier com-

ponents a, 2a + δ and b. Lines are guides to the eye. The inset

displays the A coefficient deduced from data in Fig. 2, plotted

against [m∗

a / m∗

0]
2 / [Fa / F∗

0]
5/2, where m∗

0 and F∗

0 are the

ambient pressure values. The straight line is the best fit of Eq.

4 to the data.
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As displayed in Fig. 5, Fb (i. e. the FBZ area) linearly in-

creases in the explored pressure range. The pressure sen-

sitivity (d[Fb/Fb(P = 0.1 MPa)]/dP = 0.04 GPa−1) is

in good agreement with data of the FBZ area of numer-

ous ET salts [30,31,32]. While the pressure dependence

of Fa is the same as that of the FBZ area, Fδ strongly

decreases as the pressure increases. This behaviour, which

lead to the non-monotonous pressure dependence of F2a+δ

reported in the inset of Fig. 5, could be understood assum-

ing that the long and small axis of the a orbits elongates

and shrinks, respectively, as the pressure increases. How-

ever, although this is actually the case of the β orbits of

κ-salts [30], such a behavior should lead to an increase

of the ∆ piece area steeper than observed in Fig. 5. The

actual scenario is therefore certainly more complex.

The MB field (B0), effective mass (m∗) and Dingle

temperature (TD = h̄/2πkBτD, where τD is the relaxation

time) can be extracted from the field and (or) temperature

dependence of the oscillations amplitude. In the frame-

work of the Lifshits-Kosevich model [2], the amplitude of

the Fourier component with the frequency Fi is given by

Ai ∝ RTiRDiRMBiRSi, where the spin damping factor

(RSi) depends only on the direction of the magnetic field

with respect to the conducting plane. The thermal (for a

2D FS), Dingle and MB damping factors are respectively

given by:

RTi =
αTm∗

i

Bsinh[αTm∗

i /B]
(1)

RDi = exp[−αTDim
∗

i /B] (2)

RMBi = exp(−
tiBMB

2B
)[1 − exp(−

BMB

B
)]bi/2 (3)

where α = 2π2mekB/eh̄ (≃ 14.69 T/K). Integers ti

and bi are respectively the number of tunnelling and Bragg

reflections encountered along the path of the quasiparticle.

As discussed in Refs. [11,12], only Fourier components

a, 2a + δ (SdH) and b (QI) can be analyzed on the basis

of closed orbits or QI paths, the other being due to, or

strongly affected by, the frequency mixing phenomenon.

Therefore, we will mainly focus on these oscillations in

the following.

In the field range below ∼ 30 T, the amplitude of

the Fourier component linked to Fb remains temperature-

independent up to 0.7 GPa (at 1.1 GPa, the signal-to-noise

ratio is too small to derive a reliable temperature depen-

dence). This feature is in agreement with the zero-effective

mass value predicted for a symmetric quantum interfer-

ometer [33], as reported for ambient pressure data [11].

Oppositely, m∗(a) and m∗(2a + δ) decreases by roughly

a factor of 2 between ambient pressure and 1.1 GPa (see

Fig. 6a). Remarkably, the ratio m∗(2a + δ) / m∗(a) re-

mains pressure-independent and equal to 1.8. This value

is close to 2 as expected from the semiclassical model of

Falicov-Stachowiak [1] for the considered coupled orbits

networks [11]. The decrease of the effective mass as the

applied pressure increases can be considered in the light

of the T2 dependence of the zero-field resistance observed

at low-temperature (see the inset of Fig. 2). Indeed, in the

case of a strongly correlated Fermi liquid, the Kadowaki-

Woods ratio (A / γ2, where A and γ are the T2 coefficient

of the resistivity and the electronic specific heat coeffi-
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cient, respectively) should be proportional to the lattice

parameter [34]. Assuming, as a rough approximation, that

γ ∝ 1/εF ∝ m∗(a) / Fa and, since the FBZ area varies as

Fa under pressure, the relevant lattice parameter is pro-

portional to 1 / (Fa)1/2, yield:

A ∝

(

m∗

a(P )

m∗

a(P = 0)

)2 (

Fa(P )

F ∗

a (P = 0)

)5/2

(4)

As can be observed in Fig. 6a, Eq. 4 accounts for the

data within the error bars. Such a behaviour could suggest

a reduction of electron correlations under pressure, in line

with a Brinkman-Rice scenario [28]. However, it should be

mentioned that the product A×T2
0 (where T0 is the co-

herence temperature, above which the T2 law is no more

valid) should be roughly pressure-independent within this

picture which is not the case. Indeed, according to the

data of Fig. 2, it decreases by about a factor of two from

ambient pressure to 1.1 GPa which suggests that electron

correlations may not be the only contribution to the ob-

served behaviour. A similar conclusion is derived from the

data of κ-(ET)2Cu[N(CN)2]Br [20].

Besides the effective mass, the two main ingredients

entering the field dependence of the oscillation amplitude

are the MB field and the Dingle temperature. Since the

a orbits only involve Bragg reflections, both TD and B0
2

can be derived from this component [11,12]. The MB field

value, consistently deduced from both the a and b com-

ponents within the error bars, strongly decreases as the

2 Two different MB gaps are observed in Fig. 1. As discussed

in Ref. [11], only a value very close to their arithmetic mean,

can be derived from the field-dependent data.

applied pressure increases as reported in Fig. 6c. This be-

haviour is consistent with the data relevant to the MB

orbit β reported for few charge transfer salts [30,31]. TD

has been derived from the a and 2a+δ components, adopt-

ing the B0 value derived from a in the latter case (see Fig.

6b). As already reported [11], a slightly negative value is

obtained at ambient pressure for 2a + δ. This can be due

to a contribution of the frequency mixing phenomenon to

this component. A lack of accuracy in the determination

of B0 (large error bars are observed in Fig. 6c) can also

contribute to this result since the 2a + δ orbits involves

four tunnellings (t2a+δ = 4 in Eq. 3) which makes the de-

duced TD value very sensitive to B0. A sizeable increase of

the scattering rate, deduced from the field dependence of

both the a and 2a+δ components, is observed under pres-

sure. Indeed, TD which is close to 0 at ambient pressure

increases up to about 4 K at 1.1 GPa which corresponds

to τD = 0.3 ps. Pressure-induced defects seems the most

plausible explanation for this behaviour. However, it must

be recalled that this high τD value decreases back as the

pressure is released which rules out any sample degrada-

tion due to the pressurization process. The increase of the

scattering rate is in line with the pressure-induced resis-

tance maximum observed in Fig. 2. However, as above dis-

cussed, the decrease of its amplitude above 0.5 GPa can-

not be interpreted on this basis. An interplay between the

pressure-induced decrease strength of the electron corre-

lations and the increase of scattering rate, the latter being

in this case assumed to be mainly controlled by electron-

phonon interaction, could therefore be considered. Within
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this picture, it should also be assumed that the variations

of the interlayer scattering rate, involved in the interlayer

resistance, reflect that of the in-plane scattering rate which

is probed by SdH oscillations. In any case, the observed

pressure dependence of the Dingle temperature is at vari-

ance with the data of most ET-based salts for which TD

remains unchanged under pressure [31,35,36].

Finally, let us examine the pressure dependence of the

frequency mixing that correspond to so called ”forbidden

orbits”. They could arise from both chemical potential

oscillation [3] and MB-induced Landau level broadening

[4]. As mentioned in Ref. [13], applied pressure leads to

an increase of the transverse interactions and therefore

to a damping of the chemical potential oscillation. Op-

positely, as can be observed in Fig. 4, the amplitude of

some components such as ∆ + a or b + a remains large,

or even increases, as the applied pressure increases. This

behaviour suggests that the field-dependent chemical po-

tential oscillation is not the dominant contribution to the

development of the observed frequency combinations. This

point is in line with recent calculations [37] which indicate

that, contrary to the case of numerous ET salts which

are uncompensated metals, chemical potential oscillation

in compensated orbits systems is strongly damped. As a

consequence, Landau level broadening is likely the main

source of the observed frequency combinations in compen-

sated orbits networks.

4 Summary and conclusion

The SdH spectra of the charge transfer salt (ET)8[Hg4Cl12(C6H5Br)]

exhibits many Fourier components corresponding to linear

combinations of three basic frequencies (Fa, Fδ and F∆),

in agreement with band structure calculations (see Fig. 1).

Most of these frequency combinations, which correspond

to ”forbidden orbits” in the framework of the semiclassical

model, keep a large amplitude in all the studied pressure

range. This feature likely rules out chemical potential os-

cillation as a dominant contribution to their origin.

The pressure sensitivity of the FBZ area is similar to

that of most of the ET salts. The area of the ∆ piece

and of the compensated orbits (a) follow the same pres-

sure dependence as that of the FBZ area while the area

of the δ piece decreases under pressure. The measured

electronic properties are significantly modified as the ap-

plied pressure increases. Either additional frequencies or

shifts in few of the frequency combinations are observed

in the high pressure range. Therefore, some change of the

FS topology as the pressure increases cannot be excluded.

Higher pressures are needed to check this hypothesis.

The zero-field interlayer resistance follows a T2 be-

haviour at low temperature with a pressure-dependent

prefactor A, in agreement with the predictions for a strongly

correlated Fermi liquid [34]. Since it strongly decreases un-

der pressure, it could be inferred that the effect of electron

correlations, which are important at ambient pressure de-

creases, under pressure. This latter point is in agreement

with data relevant to e.g. κ-(ET)2Cu[N(CN)2]Cl [22]. How-

ever, within this picture, the amplitude of the resistance
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maximum should also continuously decrease as the applied

pressure increases, which is not the case. Oppositely, it in-

creases in the pressure range below about 0.5 GPa. In line

with SdH data reported for κ-(ET)2Cu[N(CN)2]Br [23],

the increase of the amplitude of the resistance maximum

in the low pressure range could be attributed to the size-

able increase of the scattering rate, deduced from the SdH

data, as the applied pressure increases. Within this pic-

ture, the pressure dependence of the interlayer resistance

would mainly result from the interplay between the pres-

sure sensitivity of the scattering rate and of the strength

of electron-correlations.
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