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A Modular Modeling Approach to
Simulate Interactively Multibody
Systems With a Baumgarte/Uzawa

Formulation

In this paper, a modular modeling approach of multibody systems adapted to interactive
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simulation is presented. This work is based on the study of the stability of two differential
algebraic equation solvers. The first one is based on the acceleration-based augmented
Lagrangian formulation and the second one on the Baumgarte formulation. We show that these
two solvers give the same results and have to satisfy the same criteria to stabilize the algebraic
constraint acceleration error. For a modular modeling approach, we pro-pose to use the
Baumgarte formulation and an iterative Uzawa algorithm to solve exter-nal constraint forces. This
work is also the first step to validate the concept of two types of numerical components for object-

oriented programming.

Keywords: DAE systems, numerical stability, modular modeling, interactive simulation

1 Introduction

Traditionally, a mechanical engineer in charge of the design of
a mechanism with some expected behaviors starts with a draft
version and then performs a kinematic, static, and dynamic analy-
sis. According to the results, it refines the mechanism and restarts
another cycle of design.

Introducing computer simulation accelerates this process con-
siderably and for this reason a lot of software programs devoted to
mechanical system simulation exist such as ADAMS, CATIA, SOLID-
WORKS, etc. All these software programs have graphical user in-
terfaces (GUISs) to help the design of mechanisms at the geometric
level (to reinitialize the geometry and positions), sometimes at the
static level (to reinitialize the forces and boundary conditions), but
rarely at the dynamic level. It is not possible, for example, to
modify the model during the simulation by eliminating, introduc-
ing, or modifying a part of the mechanism. It is necessary to
follow the traditional cycle of modeling in these software pro-
grams, which involves a preprocessing phase (to define the geom-
etry and the loading), a solution phase (to solve the equations of
motion), and a postprocessing phase (to visualize and to analyze
the results). The major reason for this shortcoming is that the
dynamic model solved is not associated to an object-oriented de-
sign. Unlike conventional programming techniques, which require
the developer to represent data and procedures separately, an ob-
ject in C++ is a user-defined and self-contained entity composed
of data (private or public) and procedures acting on data. So a
developer can create an application as a collection of cooperating
objects in which the behavior is completely defined [1,2].

A primary condition to create such objects consists of defining
a dynamic model as a package of independent numerical sub-
system components with their own system of coordinates and own
numerical solver. A numerical subsystem component is associated
with one rigid body or to a set of rigid bodies with no changing of
topology. This is what we call the modular modeling, which is
different from the centralized modeling in which the whole multi-
body system is defined by only one numerical component.

Taking the above considerations into account, the Lagrangian
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formulation offers the most general and versatile way to model
multibody systems [3,4]. In this approach, the system is divided
into several subsystems and glued together by introducing alge-
braic constraints and Lagrange multipliers. Because the modeling
of each subsystem is independent of the topology of the system, it
is possible to parallelize numerical tasks, which is the basic idea
of numerous substructuring methods [5,6]. However, if the nu-
merical task to glue the subsystems is centralized, then it is still
necessary to build an admittance (or flexibility) matrix of all con-
straints to solve the constraint forces. In our modular approach,
the numerical subsystems are connected between them by numeri-
cal joint components. Each numerical joint component computes
external constraint forces only from output data of numerical sub-
systems. By taking advantage of object-oriented programming, an
operator could interact easily with the virtual multibody system
via a GUI or haptic devices. The concept of virtual reality in
mechanical design could be one of the “leading-edge” technolo-
gies of the next decade [7,8]. As state of the arts of technologies in
this field, we can cite the French PERF-RV platform in which a
Virtuose™ 6D (Haption) has been connected to CATIA V5 (Das-
sault Systémes) to manipulate digital mockups [9].

A numerical subsystem component has to be viewed as a “black
box” where the input variables are positions, velocities, and ac-
celerations at the beginning of the time step and the output vari-
ables are the same variables at the end of the time step. The
accelerations are computed by a solver of ordinary differential
equations (ODEs) or differential algebraic equations (DAEs) in
case of internal constraints. The velocities and positions are cal-
culated by a numerical integrator.

Many DAE solvers exist that we divide in two main classes:

e The first class of solvers calculates the Lagrange multipliers
by a complete implicit formulation based on a Newton—
Raphson procedure. These methods use an implicit numeri-
cal scheme and an incremental form (i.e., linearized form) of
the DAE. At each time step of simulation, the displacements
and the reaction forces are iteratively updated until the dy-
namic equilibrium equations, at the end of the time step, are
satisfied. The numerical task is very high because at each
iteration we have to invert a tangent matrix. In the case of
multibody systems, this is a complex numerical task espe-
cially because of the nonlinearity induced by large rotations.
Moreover, there are high frequencies of dynamic response



due to the algebraic constraints at the geometric level. An
augmented Lagrangian formulation combined with the
Hilbert-Hughes-Taylor algorithm (HHT) damps these un-
desired frequencies by numerical dissipation [10].

* The second class of solvers calculates the Lagrange multi-
pliers by a partial implicit formulation because the dynamic
equilibrium equations are solved from position and veloci-
ties estimated at each time step of simulation. The Lagrange
multipliers are only implicitly dependent on the generalized
accelerations. These methods are based on an explicit or
prediction-correction numerical scheme (central difference,
Newmark scheme, etc.), and on the transformation of the
DAE:s into ODEs by differentiating twice the geometric con-
straints [11]. The numerical task is very weak in comparison
with the previous solvers. We can solve directly, simulta-
neously, or separately (by projection on the constraint direc-
tions) the generalized accelerations and the Lagrange multi-
pliers. One well-known problem associated with this
transformation is the drifting of geometric constraints due to
accumulated errors from the time integration scheme.
A method is necessary to stabilize the geometrical con-
straints if a long simulation time is required (Baumgarte
stabilization [11]).

Of course other solvers exist, which avoid this nonexhaustive
classification such as methods based on GGL stabilized index-2
formulation [12] or on the penalty formulation. For reasons of
real-time simulation, we have focused our work on the study of
the stability of the Baumgarte formulation [11] and the
acceleration-based augmented Lagrangian formulation introduced
by Bayo [13] belonging to the second class of solvers.

In the Bayo solver, the numerical convergence is very fast but it
is not adapted to our design of modular modeling because the
external constraint forces cannot be solved explicitly from the
accelerations of the connected subsystems. We propose to use this
efficient formulation only as a solver of internal constraints. Other
formulations exist such as reducing the redundant coordinates and
the number of internal algebraic equations of each subsystem with
joint coordinates [14,15]. Another way is to eliminate Lagrange
multipliers by partitioning dependent and independent coordinates
[16]. The problem with these reductional methods is that singular
positions or redundant constraints may lead to the inversion of an
ill-conditioned matrix, which is not the case in the Bayo formula-
tion. Using the pseudoinverse matrix by singular value decompo-
sition may be an alternative solution [17].

In the Baumgarte solver, Lagrange multipliers and generalized
accelerations are calculated directly (and noniteratively as in the
Bayo formulation) by inversion of two matrices, the mass matrix
and the impedance matrix of constraints. This solver is faster than
the Bayo solver principally if the number of constraints is small
(e.g., the size of the admittance matrix of constraints is small).
However, it fails in the case of singular positions. Although the
computation of the constraint forces is done independently of the
accelerations, it is a partially modular approach because the con-
struction of the admittance matrix of constraints requires a super-
vision of all the constraints by a centralized numerical task.

A fully modular approach is proposed in this paper, which is
organized as follows. In Sec. 2, we introduce notations and we
recall the geometric approach of DAE system as described by
Blajer [18]. In Sec. 3, we show that the two solvers presented just
above give the right result of constraint acceleration augmented
by an error quantity. An adapted criteria of stability are defined to
control this error. In Sec. 3, we propose a Baumgarte formulation
associated with the iterative Uzawa algorithm to give a straight-
forward modular approach of modeling. This method is quite
similar to the acceleration-based augmented Lagrangian formula-
tion but the constraint forces are calculated explicitly from the
generalized accelerations. In Sec. 4, we define our modeling ap-
proach with the two concepts of numerical subsystem components

Submanifold H (® =0)

Constraint direction

Fig. 1 Geometric interpretation of a constrained system

and numerical joint component. Finally, we present two standard
numerical examples in mechanics. The first one is the double pen-
dulum in plane to test the feasibility of our algorithm and the
dynamic behavior of a mechanism by mouse interaction. The sec-
ond one is the slider-crank mechanism as a closed loop mecha-
nism to test the robustness of our algorithm. The algorithm is
implemented in the FER/MECH software, which is developed in
C++ by the authors [2,19]. In FER/MECH, friendly GUIs have been
developed, which enable users to create, modify, and manipulate a
multibody system intuitively and easily in 3D space but not yet
during the solution phase. One purpose of this work is to develop
such an interface during the solution phase.

2 General Dynamic Model of a Multibody System
With Holonomic Constraint

We will consider a multibody system characterized by n gener-
alized coordinates q=[q;"*q,]’", which are subject to m holo-
nomic constraints ®=[¢, - @,,]7. The governing equations of the
system at time 7 can be written in the following general matrix
form:

Mi =F(q.q.0) + )\
®(q,1)=0

where (,( are, respectively, the generalized velocities and accel-
erations. M is the n X n symmetric positive-definite mass matrix
of the system. A=[\;...\,,]” denote the Lagrange multipliers.
®,=0®/dq is the m X n constraint Jacobian matrix. (I);)\ are the
generalized reaction forces due to the constraints. F(q,q,?) repre-
sents other external and internal forces (Coriolis, gravity, motors,
etc.).

Equation (1) is called a mixed system of DAEs. It can be de-
duced by different applications of the fundamental principle of
mechanics (virtual work, Lagrange equations, Newton-Euler
equations, etc.). The equations of motion and the constraint equa-
tions are, respectively, represented by the differential part and the
algebraic part of this system. It is of interest to recall the geomet-
ric approach of such a system given by Blajer [18]: at each time ¢,
the constrained motion of a multibody system can be represented
as the motion of a generalized particle P(q) in a submanifold H of
an n-dimensional manifold E. The submanifold H is defined im-
plicitly at each time by the equations ®(q,r)=0 and if all the
holonomic constraints are independent, the dimension of H is n

(1)

—-m (Fig. 1).
Equation (1) can be rewritten in a new form:
q=a+M @\ @
®(q,1)=0

where 4=M~'F(q, q,) represents the tangential acceleration (Fig.

1).



Fig. 2 Position error of particle P

The numerical solution of the DAE system is very sensitive to
the integration truncation error and can lead to high numerical
instability [10]. It stems from the ill conditioning of the leading
matrix to solve simultaneously N and § (DAE of index 3) [20].
Specific numerical methods have to be used carefully such as
implicit Hilber—-Hughes—Taylor algorithm with an incremental for-
mulation of the system (2) [10].

For numerical instability purposes, instead of thinking about the
constraints in terms of hard surfaces, it has been proposed to
replace the stiff constraints by a strong force field @I\ in the
neighborhood of manifold ®(q,7)=0, directed toward the mani-
fold H and proportional to the geometric constraint errors ®(q, 1)
and its derivatives (Fig. 2).

For reasons of real-time simulation, we consider in the follow-
ing only predictor-corrector or explicit numerical schemes. This
means we solve Eq. (2) at each time step of simulation from
estimated values of q and q. So & and the Jacobian matrix @,
are also estimated. q, q, qu are constant during the time step of
integration.

3 Different Adapted Approaches to Calculate the Con-
straint Forces

From the geometric constraint errors ®(q,?), we can define the

acceleration constraint error ® by applying twice the total deriva-
tive operator with respect to time as follows:

=P q+P, with ®,= o (3)

= +D,q+D, (4)
In view of Egs. (2) and (4) we have
3 .. 1T £ . <
P=Pi+ DM BN+ DG+ D, (5)
or equivalently,
Koh=d -, (6)
with
Kp=®M'®] & =djii+dg+P, (7)
This system of equations represents the dynamic equilibrium

equations following the constraint directions and points out the
dependency between the constraint forces N and the acceleration

constraint errors ®.
It is obvious that if the constraint reactions vanish (A=0) then

the acceleration constraint errors satisfied (.I.J=<.I.>f and so (i)f rep-

resents the free acceleration. Consequently, KgA, which is the
other part of the constraint acceleration error, represents the con-
strained acceleration.

If ®=0 then Kq;hl,:—('l)f where A represents the exact con-
straint forces to enforce the acceleration constraint errors to zero
and Ky represents the constraint admittance matrix.

From the previous considerations, we propose two equivalent
formulations to solve the constraint forces A and to establish the
criteria of stability to control the solution.

3.1 Baumgarte Formulation. We consider in this subsection
the following relationship:

Kok =- &, k, D - k,® (8)

where k, and k, are, respectively, stiffness and viscous damping
parameters. They can be considered as feedback gains defined by
numerical considerations of precision and stability as we will see
just below.

By substitution between Egs. (6) and (8), we obtain the follow-
ing linear differential equation of an oscillator:

.. . — k
b +2e0® + 0 ®=0 with wy=\k, ande= 2— 9)
@o
wq is the natural frequency of the oscillator and & the viscuous
damping parameter. If £2<<1 and if we consider the initial veloc-

ity constraint error d’o then the analytical solution is

®
@ = —Leeo! sin(w?)
@

(10)

® is then bounded by d)o/ wo and tends to zero when ¢ — .

The bigger the stiffness parameter is, the bigger the natural
frequency is and the smaller the geometric constraint error is. The
generalized particle P has an oscillatory motion in the neighbor-
hood of the manifold H defined by ®(q,r)=0 (Fig. 2). If the
geometric constraint errors are stabilized then the consequent er-
ror on the position of the generalized particle P does not affect the
stability of the system. However, we need to define a criteria of
constraint stabilization to respect this condition. Following the
idea of the Shannon sampling theorem, We need at least four
correct values of ®(q,7) during each oscillator’s wave to describe
correctly the geometric constraint error. If we consider ten values,
we have the following criteria:

Ar T 0.2m
=— S wy=——
10 " Ar
where At is the time step of the simulation and 7 the period of

oscillator.

If the time step of simulation is fixed by the operator, the feed-
back gains have to satisfy the following criteria of constraint
stabilization:

(11)

0.125

0.394
k= AR YT

The initial DAE system (1) has been transformed into the follow-
ing ODE system:

Mi = F(q,q,/) + ®]A

with £ =0.1 (12)

R (13
K(I)}\z - (I)f with (I)fz cI)f+ kU(I) + kp(l)

It is easy to see that this formulation is similar to the Baumgarte
formulation [11]:

Mij =F(q.q.7) + DI\
b +k,D+k, D=0

The matrix K¢ is definite positive and is singular only when the
constraint equations are not independent (semipositive). In this

(14)



case, we could use a full pivoting strategy or pseudoinverse ma-
trix (Kj,) to solve A. Whatever the strategy of computation used
to solve A, it can be shown that it does not affect the uniqueness
of the solution (.

From the above considerations, the constrained acceleration
KgA is equal to Kq,)\c—kufb—kpd) where kvfi)+k[,<l) represents a
measure of the error. The relative error can be defined as follows:

o _ e + k]
KAl
The higher 3, is, the lower stability is of the constrained accelera-
tion around the referenced value K\, 3 can also be related to
the curvature of the manifold ®(q, ) =0, the higher it is, the stron-
ger the curvature is.

(15)

3.2 Acceleration-Based Augmented Lagrangian
Formulation. In this section, we introduce augmented Lagrange
multipliers A, which are implicitly computed from a method based
on an iterative computation of the acceleration constraint error

Ao=N-ad,, (a>0) (16)
At the first iteration, Ng=0. Equation (6) imply the two following

equations:

A= K:p(‘i’i - (i)f) (17)
N = K:i((i’in - (I)f) (18)

By substitution between Egs. (17), (18), and (16) we obtain the
following recursive formula:

&, = (Kj+ o) ' K®, = (Kj + ) 'K ™', (19)

It is noted from Eq. (17) that, if @;,;—0, we have then \;,—
Ky,

The complete numerical algorithm can be summarized as
follows:

(M +®a®, )i, =Mi + D)\, - (D, + D))

AO = 0

A=A - a‘i)i
Of course, the higher « is, the better the numerical convergence is.
In theory, there is no upper limit to choose a except having a good
numerical conditioning of the matrix (M+(I);a(l>q). In two or
three iterations, the numerical convergence of N to A is obtained.

This formulation gives the same solution as the following ODE
system:

(20)

M =F(q.q.1) + P\
®=0

which is similar to the previous Baumgarte formulation without
feedback gains to stabilize the geometric constraint errors. If we

1)

consider initial velocity constraint errors Cbo then the analytical

solution of the geometric constraint error is ql:‘i’ot.

This is the well-known phenomena of constraint drifting, where
the generalized particule is no longer stuck on the manifold H due
to small perturbations on velocity constraint errors. This undesired
displacement, after a long time of simulation, can lead to a large
error on the positioning of the generalized particle P and to nu-
merical instability. In order to prevent this problem, Bayo has
proposed to change the iterative calculation of N as follows [13]:

N =N - a’(‘i’m + kv(i) + kpq)) (22)

Following the same reasoning as in Eq. (19), it is easy to prove
that

@, — - alk,®+k,®) and N, — - KDy + k, D + k,P)
(23)
The solution converges to the same one as in the Baumgarte for-
mulation in Eq. (19), so we can use the same criteria of stability
[Eq. (12)]. Finally, in this last formulation, the system of equa-
tions becomes
(M + ®]a®, )i, = Mi + P](\, - a(®,q + D))
AO = 0

Ai = Ai—l - a((bl + kU(I) + kp(I))

(24)

3.3 Baumgarte/Uzawa Formulation. We have examined two
methods, which can be used easily with an explicit or prediction-
correction numerical scheme to solve a DAE. We have proved that
the acceleration-based augmented Lagrangian formulation con-
verges to the same solution obtained in the Baumgarte formula-
tion. For these two methods, we have defined the same criteria
[Eq. (12)] to control the stability of the acceleration constraint
error, which is only dependent on the time step of simulation. The
advantage of the acceleration-based augmented Lagrangian for-
mulation is that there is no problem of singularity; however, we
have to successively invert the mass matrix M and the augmented
mass matrix (M+<I>Za<l>q) several times (two or three times ac-
cording to Bayo). In the Baumgarte formulation, we have to suc-
cessively invert the mass matrix M and the impedance matrix Kg,
only once. If there is no problem of singularity due to dependent
constraints, the Baumgarte formulation seems to be more efficient.
We did not discuss here the sparsity of the matrix K¢ or (M
+<I>Zafl>q), which does seem no longer an argument because effi-
cient methods exist to factorize such matrices as the sparse LDL”
factorization [4].

For these two methods, we have to invert a matrix [(M
+(I>ga/<1>q) and Kg] due to the coupling between the subsystems.
This numerical task is not modular because the procedure in-
volved acts on private data belonging to different subsystems.

For a straightforward modular approach, we propose to solve

the equation Kq,)\z—(i)f established in the Baumgarte formulation
by the following Uzawa algorithm [21]:

N =N - p(Kgh;+®) withAg=0 andp>0 (25)
Because the diagonal terms K;; of K¢ are positive and dominant,
we have to satisfy the following convergence criteria:

p < inf(1/K};) (26)

Considering Eq. (6), Eq. (25) can be easily transformed as
follows:

N =N—p®; with @)=, and ®,= D, +k, D +k,P
(27)
In this formulation, the constraint reactions are only explicitly
dependent on the acceleration constraint errors <I>l As we know
the analytical relations of Ci)l-, they can be directly calculated from
acceleration computed at each iteration i and from the estimated
position and velocity vectors q,{. So it is no longer necessary to

build the admittance matrix of constraint K¢. A numerical toler-
ance of convergence can be defined as follows:

X% =Ny = M)Ay (28)

4 Modular Modeling Approach

In our design of modular modeling, the numerical joint compo-
nent is defined as a “white box” (with public data and algebraic
equations) connected to two numerical subsystem components
considered as “black boxes” (with private data and DAE solver).
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Fig. 3 Basic principle of the modular modeling

It gives the constraint active/reactive forces between these two
numerical subsystem components, which are calculated only from
the accelerations, velocities, and positions of connected points
(Fig. 3).

So a multibody system could be divided into independent nu-
merical subsystem components with its own:

* Mechanical parameters: mass matrix M, numerical gains k,,
kj, of stabilization of the internal constraints

* Numerical explicit or prediction-correction scheme

* Formulation (Baumgarte or Bayo formulation, etc.)

Considering a pair of subsystem components only constrained by
internal constraints, with the notations defined in Sec. 2, we have
the following equations:

Subsystem 1: P =& +p® (29)

Subsystem 2: ¥ =a? + b@ (30)

4 (respectively, 4%)) represents the part of the accelerations of
Subsystem 1 (respectively, Subsystem 2) calculated explicitly
from estimated positions and velocities of Subsystem 1 and exter-
nal forces (respectively, Subsystem 2).

b (respectively, b@) represents the part of the constrained
accelerations of Subsystem 1 (respectively, Subsystem 2) implic-
itly dependent on ! (respectively, §») and calculated by an
internal DAE solver.

If we consider now these two subsystems connected together by
the following external constraints ®(q'",q?,7)=0 then we have

. oD

<I>=<I>q<1>q“> +<I>q(2)q(2>+ E (31)
The associated reaction forces calculated from the Baumgarte/
Uzawa formulation is

T ‘I’:(l)()\i - P&’i)
(I)qhﬂ_] = R (32)
&7 (n- pd)

Then Egs. (29) and (30) with the constraint forces are solved
iteratively as follows:

Subsystem 1: ') =&} +b® (33)
Subsystem 2: {2 =4 +b? (34)

where
af) =al + @)\ - p®) with k=1,2 (35)

Since bV (respectively, b®) is computed by the internal DAE
solver of Subsystem 1 (respectively, Subsystem 2), the two sub-
systems are completely uncoupled at each iteration.

The feedback gains k, and k,, associated with the external con-
straints are calculated following the criteria of constraint stabili-
zation defined in Eq. (12) and depend only on the time step of
simulation.

The parameter p is formally evaluated by the criteria (26) but it
is necessary to build the admittance matrix of constraints, which is
not permitted in our modular modeling. In order to overcome this
difficulty, we propose to consider p as the minimum masse asso-
ciated with one external constraint among all the others:

p=<my +mg  with mg) =inf(®,uMOD]y) k=1,
(36)

In this way, p represents the mass or inertia of the two subsystems
“viewed” from the joint and can be easily tuned by the operator.

For a system composed of n subsystem components and m joint
components, the basic principle of the general algorithm during
one time step of simulation can be described as follows:

(1) Predict (or estimate) the 2 X n position and velocity vectors
q™.q".

(2) Compute independently the n new acceleration vectors g
inside each subsystem component (with internal algebraic
constraints if there are any).

(3) Compute independently the m reaction forces inside each
joint component from Eq. (32).

(4) Send the m reaction forces to the n subsystem components
as external forces.

(5) Test the numerical convergence from Eq. (28) and return to
Step (2) if the test is not satisfied.

(6) Correct ¢™,q"™ in the case of predictor-corrector numerical
scheme.

(7) Start a new time step of simulation.

5 Numerical Results

In order to validate the proposed modular approach and high-
light its performance, we present in this section the simulation of
a double pendulum in plane and we compare the obtained numeri-
cal results with ones given by a centralized approach. Then we
will simulate a slider-crank mechanism as an example of a kine-
matic closed loop system to prove the robustness and the flexibil-
ity of our modular approach.

In these examples, we use the Newmark implicit numerical
scheme with the trapezoidal rule (@=0.25 and B=0.5). Conse-
quently, the position and velocity vectors are calculated in two
predictor-corrector steps as follows:

=q,+q,A7 + §,Ar/4
Predictor step: {q B A

. . 37)
q=q,Ar+q,Ar2
Q1 = +GAL/4
Corrector step: | .1 =q + qA#/2 (38)
(.in+1 = q

At=t,,1—1, is the time step of simulation, and { is the accelera-
tion vector computed from the governing equations (ODE or
DAE).

5.1 Double Pendulum in Plane. The simplest way to model
a double pendulum consists of using the relative joint coordinate
vector q7={#,6,}, as shown in Figure 4.

This modeling leads to the following ODE system:

Mq=F(q.q) (39)

with
my B+ my(B + BB) + 2myl 1, cos 6, myl3 + myly1, cos 6,

mzl% + m21112 COoS 02 mzl%



F(q.q) =

(2 91 92 + é%)lllzmz sin 02 - g((ml + mz)ll CoS 01 + mzlz COS(@I + 02))

mzlg + m21112 Cos 02

The mass of the double pendulum is lumped on the connected
nodes and the parameter g represents the acceleration quantity of
the gravity force. This modeling is centralized because the mass
matrix is global and { is computed directly from the system (39)
by a unique solver. With such modeling, it is no longer possible to
know the reaction forces between the two links of the double
pendulum during the simulation.

Another way of modeling consists of using fully Cartesian co-

ordinates [22], as shown in Fig. 5. q(l)Tz{xll Y11 X12 Y11} (respec-
tively, q(z)T={x21 Y21 X2 Yoo} represents the fully Cartesian coor-
dinate vector of the first link (respectively, of the second link).

The links being assumed to be rigid, we must satisfy the following
internal holonomic constraints:

m_

¢ (x”—x|2)2+(y”—y|2)2—l%=0

<P(2) = (xy — y22)2 +(yar - y22)2 - l% =0

With this type of coordinates, it is possible to have a modular
modeling by considering each rigid link as a subsystem compo-
nent and by considering two additive joint components, each one
being defined by two external algebraic constraints as follows:

x
Revolute joint 1 = @ ={ " } =0
Y

X1 — X
Revolute joint 2 = @@ = { 2 } =0
Yi2— Y21

According to the notations defined in the Sec. 4, we have

. . 1 T ~ 2 T ~
i) =al + @l (A - p VD) + B A - D)
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g
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Fig. 4 Double pendulum modeled with relative joint
coordinates
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Fig. 5 Double pendulum modeled with fully Cartesian

coordinates

i) =i + P - pOB)
In this formulation, the reaction forces inside the revolute joints
and the acceleration vectors afi)l, aff)l are explicitly known at each
iteration. The acceleration vector b'") (respectively, b®) is calcu-
lated from an internal DAE solver as an implicit (Bayo formula-
tion) or explicit (Baumgarte formulation) function of afl)l (respec-

tively, afi)l) In our modular simulations, we have chosen the
acceleration-based augmented formulation as the internal solver in
each subsystem component.

The same scenario is applied in the two formulations (modular
and centralized), which consists of releasing the double pendulum
submitted only to the gravity force. The parameters /;,/, are set to
1 m and my,m, to 1 kg. The initial conditions are similar between
the two formulations:

qV'= {0010}

T={0 - 72}
4= I q?'= {101 -1}

and q=0, V=0, d?=0. The total simulation time is 10 s and we
use two different time steps, Ar=10"%s and Ar=107>s in the
modular simulation. The numerical precision of all the constraint
forces is set to 1% and the solution parameter « is taken to be
10,000 for the internal solver of the two subsystem components.
pM=1.5 for the first revolute joint and p®=0.4 for the second
one.

Figure 6 shows two trajectories of the mass m, in the case of
joint coordinates modeling, the first one with Ar=1072 s and the
second one with Ar=10"*s. The numerical scheme used is the
implicit Newmark with the trapezoidal rule. The two simulations
are very different, which suggests strong nonlinearities and nu-
merical difficulties to have a correct trajectory in such a system.
The numerical results do not change really for Ar<<10™* s, so we
consider that the trajectory of the mass m, obtained with At
=10"* s will be the referenced trajectory for comparison purposes.

Figure 7 shows the trajectory of the mass m, given by the
modular modeling (dashed line) with Az=1072. We can notice that
this trajectory is close to the referenced one and much better than
the one obtained by the joint coordinate modeling for the same
time step. Of course, the numerical results are even better when

-0.2

y position

_2 "
-1.5 -1

-0.5 0
X position

Fig. 6 Trajectory of the mass m, (centralized modeling)
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Fig. 7 Comparison between centralized and modular modeling

the time step is reduced to Ar=1073, as we can see in Fig. 8.

CPU times to achieve the different simulations are given in
Table 1. They have been obtained on a personal computer (PC)
(Pentium 1400 Mhz). Even with a numerical tolerance A% of only
10%, we obtain a good trajectory of the mass m, and the CPU
time decreases consequently, as shown in the table. For sake of
comparison, we give the CPU time obtained for the simulation of
the referenced trajectory (centralized modeling with Ar=107*s),
which is 1.54 s.

Figure 9 shows the graphical interface of FER/MECH software
[2,19] in which the double pendulum is simulated in an interactive
manner. It is worth noting that, in the deformation scenario, the
operator can instantaneously delete the joint between the two rigid
bodies by clicking on an interface button without stopping the
solution process. The operator is thus incorporated into the solu-
tion phase.

Fig.
modeling

8 Comparison between centralized and modular

Table 1 CPU time (s) for the double pendulum in plane

N% | At 1072 s 1073 s
1% S5s 477 s
10% 2.6 259 s

5.2 Slider-Crank Mechanism. In the modular approach, the
knowledge of the topology of the system is not relevant. The
system is decomposed into subsystems, which are directly posi-
tioned and oriented relative to the same global reference frame. It
is no more difficult to simulate a kinematic open loop system such
as a double pendulum, than to simulate a kinematic close loop
system such as a slider-crank mechanism.

The slider-crank mechanism is considered in our modular mod-
eling as the double pendulum studied previously in which the
mass m, is constrained to slide along the x axis. So we must add
a prismatic joint as follows:

Prismatic joint 3 = ®® =y,,=0
(2

Only the acceleration vector &, is modified as follows:

R . nT ~ T ~
i =a” + o % (A - o0 + @ (A - pV D)

The scenario consists of releasing the slider-crank mechanism
submitted only to the gravity force. The parameters /;,/, are still

I FER/Mech =13
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For Help, press F1 x: 2,703, yi -1.868
Fig. 9 Interactive simulation of the double pendulum with
FER/MECH



Fig. 10 Trajectory of the mass m,: At=102s

set to 1 m and my,m, to 1 kg. The initial conditions are defined
by:

q"" ={000.70710.7071}
q®"={0.70710.70711.71421.7142}

Figure 10 shows two curves representing the time dependency of
the variable x,,, the first one when Ar=10"2 and the second one
when Ar=107>. As we can see, the two curves are very close and
they represent a regular periodic motion in which the mechanical
energy of the system is conserved. The maximal constraint error
relative to the prismatic joint is

max(yy) =2.3 1077 with Ar=10"s

q ={m4- w4} &

max(y,) =5.1 107 with Ar=10"2 s

The CPU time to achieve the solution is given in the Table 2.

6 Conclusion

We have developed an efficient modular modeling approach of
multibody systems using two numerical methods. The first one is
based on the acceleration-based augmented Lagrangian formula-
tion with Baumgarte stabilization, which is used to solve a DAE
system inside each numerical subsystem component. However, it
is possible to use other DAE solvers mentioned in the Introduc-
tion. The second one is based on the Uzawa algorithm with Baum-
garte stabilization to solve the external constraint forces. We have
shown that these two methods converge to the same result and
have to satisfy the same criteria to stabilize the acceleration con-
straint error.

The robustness of the simulation depends on the relative error
defined in Eq. (15), which is calculated from the velocity and
geometric constraint violations estimated at each time step of
simulation. This error is never null and depends on the following
factors:

* The precision O(A#") of the numerical scheme used to inte-
grate the DAE systems

* The measure 3 of curvature of the manifold H defined in
Eq. (15)

* Sudden changes of holonomic constraints (impact, release
of contact)

Table 2 CPU time (s) for the slider-crank mechanism

N% /At 107%s 1073 s
1% 7.0s 704 s
10% 30s 30.1s

All these factors contribute to create jumps of velocity that a
formulation of DAE systems based on acceleration at discrete
time cannot control without leading to serious errors such as an
unstable increase of energy during the numerical simulation [23].

In future work, we will propose to adapt a first order formula-
tion of the DAE based on velocity at discrete time and apply it to
impact problems [24].

The results presented in this paper are obtained by using the
same numerical scheme for the two subsystem components of the
double pendulum. Moreover, we assume that the increment time
step is constant all along the simulation. In future works, more
complex systems will be investigated, in order to show the main
interest of this modular method, which is that each component of
the system can be considered as a “black box” with its own DAE
solver, its own numerical scheme, and its own time step. Flexible
multibody systems with changing topology could be studied.

References

[1] Dixit, D. S., Shanbhag, S. H., Mudur, S. P, Isaac, K., and Chinchalkar, S.,
1999, “Object-Oriented Design of an Interactive Mechanism Simulation
System-Clodion,” Comput. Graphics, 23, pp. 85-94.

[2] Feng, Z. Q., Joli, P,, and Séguy, N., 2004, “FER/Mech—A Software With
Interactive Graphics for Dynamic Analysis of Multibody System,” Adv. Eng.
Software, 35, pp. 1-8.

[3] Schiehlen, W., 2001, “Multibody System Dynamics: Roots and Perspectives,”
Multibody Syst. Dyn., 1, pp. 149-188.

[4] Baraff, D., 1996, “Linear-Time Dynamics Using Lagrange Multipliers,” Sig-
graph 96, New Orleans, LA, Aug. 4-9.

[5] Wang, J., Ma, Z. D., and Hulbert, G. M., 2003, “A Gluing Algorithm for
Distributed Simulation of Multibody Systems,” Nonlinear Dyn., 34(1-2), pp.
159-188.

[6] Tseng, F. C., Ma, Z. D., and Hulbert, G. M., 2003, “Efficient Numerical So-
lution of Constrained Multibody Dynamics Systems,” Comput. Methods Appl.
Mech. Eng., 192, pp. 439-472.

[7] Sauer, J., and Schmer, E., 1998, “A Constraint-Based Approach to Rigid Body
Dynamics for Virtual Reality Applications,” ACM Symposium on Virtual Re-
ality Software and Technology, Taipei, Taiwan, Nov. 2-5.

[8] Gao, S., Wan, H., and Peng, Q., 2000, “An Approach to Solid Modeling in a
Semi-Immersive Virtual Environment,” Comput. Graphics, 24, pp. 191-202.

[9] http://www.inria.fr/rapportsactivite/RA2004/siames2

[10] Fahrat, C., Crivelli, L., and Gradin, M., 1995, “Implicit Time Integration of a
Class of Constrained Hybrid Formulation. I. Spectral Stability Theory,” 34th
AIAA Adaptative Structure Forum, 125, pp. 71-104.

[11] Baumgarte, J. W., 1972, “Stabilization of Constraints and Integrals of Motion
in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1, pp. 1-16.

[12] Gear, C. W., Leimkuhler, B., and Gupta, G. K., 1985, “Automatic Integration
of Euler Lagrange Equations With Constraints,” J. Comput. Appl. Math., 12,
pp. 77-90.

[13] Bayo, E., and Avello, A., 1994, “Singularity-Free Augmented Lagrangian Al-
gorithms for Constrained Multibody Dynamics,” Nonlinear Dyn., 5, pp. 209—
231.

[14] Shabana, A., 1994, Computational Dynamics, Wiley, New York.

[15] Schiehlen, W., 1990, Multibody System Handbook, Springer, Berlin.

[16] Wehage, R., and Haug, E., 1982, “Generalized Coordinate Partitioning for
Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME
J. Mech. Des., 104, pp. 245-255.

[17] Minh Tran, D., 1991, “Equations of Motion Multibody Systems in the ESA-
MIDAS Software,” International Conference on Spacecraft Structures and
Mechanical Testing ESTEC, Noordwijk, Sweden, Apr. 24-26.

[18] Blajer, W., 2002, “Augmented Lagrangian Formulation: Geometrical Interpre-
tation and Application to Systems With Singularities and Redundancy,” Multi-
body Syst. Dyn., 8, pp. 141-159.

[19] Feng, Z.-Q., http://gmfe16.cemif.univ-evry.fr:8080/~feng/FerMech.html

[20] Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, The Numerical
Solution of Initial Value Problems in Differential-Algebraic Equations,
Elsevier Science, New York.

[21] Uzawa, H., Anow, K., and Hurwicz, L., 1958, Studies in Linear and Non
linear Programming, Stanford University Press, Stanford.

[22] Nikravesh, P. E., and Attia, H. A., 1994, “Construction of the Equations of
Motion for Multibody Dynamics Using Point and Joint Coordinates,”
Computer-Aided Analysis of Rigid and Flexible Mechanical System, NATO
ASI, Series E: Applied Sciences Vol. 268, Kluwer Academic, Dordrecht, pp.
31-60.

[23] Laursen, T. A., 2002, Computational Contact and Impact Mechanics: Funda-
mentals of Modeling Interfacial Phenomena in Nonlinear Finite Element
Analysis, Springer, New York.

[24] Feng, Z.-Q., Joli, P, Cros, J.-M., and Magnain, B., 2005, “The Bi-Potential
Method Applied to the Modeling of Dynamic Problems With Friction,” Com-
put. Mech., 36, pp. 375-383.





