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Uzawa and Newton algorithms to solve frictional contact problems
within the bi-potential framework
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1Laboratoire IBISC, Universit́e d’Évry, 40 rue du Pelvoux, Évry 91020, France
2Laboratoire de Mécanique d’ ́Evry, Université d’Évry, 40 rue du Pelvoux, Évry 91020, France

This paper is concerned with the numerical modeling of three-dimensional unilateral contact problems in 
elastostatics with Coulomb friction laws. We propose a Newton-like algorithm to solve the local contact 
non-linear equations within the bi-potential framework. The piecewise continuous contact tangent matrices 
are explicitly derived. A comparative study is made between the Newton algorithm and the previously 
developed Uzawa algorithm. A test example is included to demonstrate the developed algorithms and to 
highlight their performance. 
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1. INTRODUCTION

Problems involving contact and friction are among the most difficult ones in mechanics and at the 
same time are of crucial practical importance in many engineering branches. The main 
mathematical difficulty lies in the severe contact non-linearities because the natural first-order 
constitutive laws of contact and friction phenomena are expressed by non-smooth multivalued 
force–displacement or force–velocity relations. In the last decade, substantial progress has been 
made in the analysis of contact problems using finite element procedures. A large number of 
algorithms for the numerical solution of the related finite element equations and inequalities have 
been presented in the literature. Review papers may be consulted for an extensive list of 
References [1, 2]. See also the monographs by Kikuchi and Oden [3], Zhong [4], Wriggers [5] and 
Laursen [6]. The popular penalty approximation and ‘mixed’ or ‘trial-and-error’ methods [7, 8] 
appear, at
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first glance, suitable for many applications. But in these kinds of methods, the contact boundary

conditions and friction laws are not satisfied accurately and it is difficult for the users to choose

appropriate penalty factors. They may fail for stiff problems because of unpleasant numerical

oscillations between contact statuses. The augmented Lagrangian method first appeared to deal

with constrained minimization problems. Since friction problems are not minimization problems,

the formulation needs to be extended. Alart and Curnier [9], Simo and Laursen [10] and De

Saxcé and Feng [11] have obtained some extensions in mutually independent works. Heegaard and

Curnier [12] presented a generalized Newton method for large slip frictionless contact problems.

From a simple spring–wall contact problem, they have also provided some interesting discussion on

convergence properties of the generalized Newton method compared to a global Uzawa algorithm.

Recently, Dostál et al. have solved three-dimensional frictional contact problems by using a FETI-

based domain decomposition method [13]. The contact problem is formulated as a constrained

quadratic programming problem and the contact conditions are enforced by penalty and augmented

Lagrangian methods. The bi-potential method proposed by De Saxcé and Feng provides a powerful

tool to model dissipative constitutive laws such as Coulomb friction laws. The application of the

augmented Lagrangian method to the contact laws leads to implicit equations of projection onto

the Coulomb friction cone, strictly equivalent to the original contact inequality [14]. An iterative

Uzawa algorithm can be used to solve the non-linear implicit equations and this algorithm has

been successfully applied by Feng [15] and Feng et al. [16] to simulate large deformation contact

problems.

The aim of the present paper is to develop a Newton-like algorithm to solve the local contact

non-linear equations within the bi-potential framework. Characteristics of Uzawa and Newton

algorithms are discussed. A test numerical example is performed in this study to show the validity

of the developed algorithms.

2. PROBLEM SETTING

2.1. Governing equations

The finite element method is often used in computational mechanics. Without going into de-

tails, quasi-static non-linear problems involving contact are governed by the following discretized

equation:

Fint + Fext + R= 0 (1)

where Fint is the vector of internal forces, Fext denotes the vector of external loads and R the

vector of contact reaction forces.

This equation is strongly non-linear with respect to the nodal displacements U, because of finite

strains and large displacements of solid. Moreover, the constitutive laws of contact with friction

are usually represented by inequalities and the contact potential is even non-differentiable as we

will see in Sections 2.3 and 2.4. A typical solution procedure for this type of non-linear analysis

is obtained by using the Newton–Raphson iterative procedure [17]:

Ki
T�U= Fi

int + Fext + R

Ui+1 =Ui + �U
(2)
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where i and i +1 are the iteration numbers at which the equations are computed. KT is the tangent

stiffness matrix and �U the vector of nodal displacements correction. Taking the derivative of Fint

with respect to the nodal displacements U gives the tangent stiffness matrix as

Ki
T = −

�Fi
int

�Ui
(3)

It is noted that Equation (2) cannot be solved directly because �U and R are both unknown. The

key idea is to determine first the reaction vector R in a reduced system which only concerns the

contact nodes. Then, the displacement increments �U can be computed in the whole structure,

using contact reactions as external loading. In the following, we focus our attention on describing

how to determine the contact forces. Let us begin with the general description of contact kinematics.

2.2. Contact kinematics

First of all, basic definitions and notations used are described. For the sake of simplicity, we consider

two deformable bodies �
a (Figure 1), a = 1, 2, coming into contact. Each body is decomposed by

finite elements and the nodal positions in the global coordinate frame are represented by the vector

Xa . The boundary �
a of each body is assumed to be sufficiently smooth everywhere such that an

outward unit normal vector, denoted by Na , can be defined at any point Pa on �
a . Moreover, it

is possible to determine position vectors of each contact point P1 (resp. P2) from an interpolation

matrix B1 (resp. B2) as follows:

X(P1) =B1X1, X(P2) =B2X2 (4)

We consider only the case with Nc contact nodes P�
1 (� = 1, Nc) defined on �

1 and P�
2 are target

points defined by the normal projection of P�
1 onto �

2. We can build the relative position between

P�
1 and P�

2 by

X� =X(P�
2 ) − X(P�

1 ) (5)

We consider a local orthogonal reference frame by means of three vectors (in algebraic form)

T1,T2 and N which are defined with respect to the global reference frame. We set the following

notation:

X� = x�
t1
T1 + x�

t2
T2 + x�

nN ⇔ x� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x�
t1

=TT
1X

�

x�
t2

=TT
2X

�

x�
n =NTX�

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(6)

Figure 1. Contact kinematics.
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and combining Equations (4)–(6), we have

x� =H�X (7)

with

H� =[−H1
�|H

2
�], Hk

� =

⎡

⎢

⎢

⎣

TT
1Bk 0 0

0 TT
2Bk 0

0 0 NTBk

⎤

⎥

⎥

⎦

, X=

{

X1

X2

}

(8)

The incremental form of Equation (7) gives the gap vector between P�
1 and P�

2 :

x�
i+1 =H��Xi + g� (9)

where g� = (0 0 g) represents the initial gap vector which is determined by a contact collision

detector. We have opted to carry out this operation at the beginning of each load step.

In Equation (9), we neglect the variation of the normal at the contact point during one load

step. If this assumption is not satisfied, it is possible to reduce the load step or to perform the

collision detection at each iteration. In the case of discontinuous curvature of contact surfaces,

special smoothing techniques can be used as in [12, 18].

In the local reference frame the contact force r� and the gap vector x� can be defined by

r� = r�t + r�
nn= r�

t1
t1 + r�

t2
t2 + r�

nn (10)

x� = x�
t + x�

nn= x�
t1
t1 + x�

t2
t2 + x�

nn (11)

with

tT1 = (1 0 0), tT2 = (0 1 0), nT = (0 0 1) (12)

Application of the contact virtual work results in

r�T�x� =R�T�X� (13)

We obtain from Equation (7) then

R� =HT
�r

� (14)

From now on, we omit deliberately the underscript i (or i+1) because the principle of computation

of contact force presented later is the same at each iteration. In order to set problems with multiple

contact points, we introduce the following complementary notations:

H=

⎡

⎢

⎢

⎢

⎣

H1

...

H�

⎤

⎥

⎥

⎥

⎦

, x=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1

...

xNc

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, r=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r1

...

rNc

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, g=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

g1

...

gNc

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(15)

with these notations in hand, we have the following equations:

R=
Nc
∑

�=1

R� =HTr, x=H�X + g (16)
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2.3. Signorini conditions and Coulomb friction laws

To simplify the notations, the superscript � is omitted in the description of the contact laws.

The unilateral contact law is characterized by a geometric condition of non-penetration, a static

condition of no-adhesion and a mechanical complementary condition. These three conditions

known as Signorini conditions are expressed, for each contact point, in terms of the signed contact

distance xn and the normal contact force rn by

Signor(xn, rn) ⇔ xn�0, rn�0 and xnrn = 0 (17)

Classically, a rate-independent dry-friction law is characterized by a kinematic slip rule. In this

work, the classic Coulomb friction rule is used and defined by

Coul(ẋt , rt ) ⇔ �=‖rt‖ − �rn�0, ẋt = −�
rt

‖rt‖
, ��0 and �� = 0 (18)

or equivalently

Coul(ẋt , rt ) ⇔ if‖ẋt‖= 0 then ‖rt‖��rn else rt = −�rn
ẋt

‖ẋt‖
(19)

where � is the coefficient of friction and the superposed dot denotes time derivative. The set of

admissible forces, denoted by K�, is defined by

K� ={r∈ R
3 such that ‖rt‖ − �rn�0} (20)

K� is the so-called Coulomb cone and is convex.

In this work, we deal with the quasi-static contact problem with friction. For a given time

(or loading) history � ∈ [0, T ], where [0, T ] is a time interval which can be partitioned into N

sub-intervals of size ��, we adopt a backward-Euler time discretization of the time derivative ẋt
as follows:

ẋt ≈
xti − xt0

��
(21)

In quasi-static cases, N is the total number of load steps and we can set �� = 1. As we have

discussed above, at each load step, a contact detection is performed. In this way, we have xt0 = 0.

Then, Equation (21) reduces to ẋt ≈ xt by omitting the underscript iteration number i .

The complete contact law (Signorini conditions + Coulomb friction laws) is thus a complex

non-smooth dissipative law including three statuses:

No contact : xn > 0 and r= 0

Contact with sticking : ‖xt‖= 0 and r∈ int(K�)

Contact with sliding : ‖xt‖ �= 0 and r∈ bd(K�) with rt = −�rn
xt

‖xt‖

(22)

where ‘int(K�)’ and ‘bd(K�)’ denote the interior and the boundary of K�, respectively. The

multivalued character of the law lies in the first and the second part of the statement. If rn is null

then x is arbitrary but its normal component xn should be positive. In other words, one single

element of R
3 (r= 0) is associated with an infinite number of gap vectors x∈ R

3. The same

arguments can be developed for the second part of the statement. For this reason, the contact

forces cannot be derived from a potential function of gap vectors.
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2.4. The bi-potential method

De Saxcé and Feng [14] have proposed a contact bi-potential as follows:

bc(−x, r) =
⋃

R−

(−xn) +
⋃

K�

(r) + �rn‖xt‖ (23)

where R− = ]−∞, 0] is the set of the negative and null real numbers.
⋃

K�
r denotes the so-called

indicator function of the closed convex set K�:

⋃

K�

(r) =

{

0 if r∈ K�

+∞ otherwise
(24)

Then, the complete contact laws can be written in a compact form of implicit subnormality rules

−x∈ �rbc(−x, r), r∈ �−xbc(−x, r) (25)

In order to avoid non-differentiable potentials, it is convenient to use the Augmented Lagrangian

Method [9–11, 14, 19]. Thus, the above inclusion is equivalent to the following projection operation:

r= ProjK�
(r∗) (26)

where r∗ is the so-called augmented contact forces vector and is given by

r∗ = r − �x∗ with x∗ = x + �‖xt‖n (27)

where � is an arbitrary positive parameter.

The three possible contact statuses as mentioned in Equation (22) are illustrated in Figure 2.

Within the bi-potential framework, these statues can be stated as: r∗ ∈ K� (contact with sticking),

r∗ ∈ K ∗
� (separating) and r∗ ∈ R

3 − (K� ∪ K ∗
�) (contact with sliding). K ∗

� is the polar cone of K�.

Figure 2. The Coulomb cone and contact projection operators.
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Consequently, the projection operation can be explicitly defined by

ProjK�
(r∗) = r∗ if ‖r∗

t ‖ < �r∗
n

ProjK�
(r∗) = 0 if �‖r∗

t ‖ < −r∗
n

ProjK�
(r∗) = r∗ −

(

‖r∗
t ‖ − �r∗

n

1 + �2

) (

r∗
t

‖r∗
t ‖

− �n

)

otherwise

(28)

3. SOLUTION METHODS

3.1. Equilibrium equations of contact points

We have defined above the governing equations for the contact problems. In short, the system of

equations to be solved can be summarized as follows:

KT�U= Fint + Fext + HTr

x=H�U + g

r� = ProjK�
(r∗�) (�= 1, Nc)

(29)

Eliminating �U leads to the following reduced system of equations:

x=Wr + x̃ (30)

with

W=HK−1
T HT and x̃=HK−1

T (Fint + Fext) + g (31)

Solving the contact problem leads thus to the following problem:

Find v such that f(v) = 0 (32)

with

v=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v1

...

vNc

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and v� =

{

r�

x�

}

(33)

f(v) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f1(v)

...

fNc(v)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and f�(v) =

⎧

⎪

⎨

⎪

⎩

x� −
Nc
∑

�=1

W��r
� − x̃�

Z�

⎫

⎪

⎬

⎪

⎭

(34)

Z� = r� − ProjK�
(r∗�) (35)

(36)

� (37)

x̃� = H�KT
−1(Fint + Fext) + g�

W��= H�KT
−1HT
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3.2. Global solution: non-linear Gauss–Seidel-like algorithm

Jourdan et al. [20] have applied a non-linear Gauss–Seidel-like algorithm to simulate deep drawing

problems. Signorini conditions and Coulomb friction laws are derived from two distinct pseudo-

potentials. As we will see below, this algorithm can be readily extended to be applied to the case

of the bi-potential formulation.

The principle of this algorithm is to decompose the global solution of the (6× Nc) equations

(32) into Nc successive local solutions of the six following equations:

f�(v) =

{

x� − W��r
� − x��

Z�

}

= 0 (38)

with

x�� =
Nc
∑

�=1,��=�

W��r
� + x̃� (39)

where x�� represents the part of the relative position at the contact point � due to the initial gap,

the external forces and contact forces of Nc−1 other contact nodes �. This contribution is ‘frozen’

during each local solution. One series of Nc local solutions corresponds to one iteration k of the

algorithm. The iterative process is successively applied for each contact point (� = 1, Nc) until the

convergence of solution. The contact convergence criterion is stated as

‖r(k+1) − r(k)‖

‖r(k+1)‖
�	g (40)

where r={r1 r2 · · · rNc} is the vector of contact reactions of all contact nodes and 	g is a user-

defined tolerance. The initial condition is given by r(0) = 0.

In the bi-potential formulation, the usual approach to solve the local implicit equations (38) is

to use a predictor/corrector Uzawa algorithm. Many examples have been successfully treated by

Feng [15] and Feng et al. [16]. The advantage of this approach is the simplicity of programming

and the numerical robustness, but it needs more iterations when compared with the implicit Newton

algorithm. This point will be discussed later. In the following sections, we present both the Uzawa

algorithm and the Newton algorithm for the solution of implicit equations (38). It is noted that,

for the first time, the Newton algorithm is applied in the context of the bi-potential framework.

3.3. Local solution: Uzawa algorithm

Numerical solution of implicit equation (38) can be carried out by means of the Uzawa algorithm,

which leads thus to an iterative process involving one predictor–corrector step:

Predictor r�∗(k+1) = r�(k) − �(k)(x��(k) + �‖x
��(k)
t ‖n)

Corrector r�(k+1) = ProjK�
(r�∗(k+1))

(41)

where k and k + 1 are the iteration numbers at which the contact reactions are computed. The

corrector step is explicitly given by Equation (28). In view of Equation (38), the gap vector is

updated by

x�(k+1) =W��r
�(k+1) + x��(k) (42)
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It is noted that the solution is controlled by a global convergence criterion (iteration k) as stated

in Equation (40).

3.4. Local solution: Newton algorithm

The Newton algorithm applied to implicit equations (38) leads to the following iterative numerical

scheme:

Step 1: initialize

v
0
� =

{

r�(0) = 0

x�(0) = x��(k)

}

, i = 0

Step 2: augment contact forces

r∗�(i) = r�(i) − �x∗�(i) with x∗�(i) = x�(i) + �‖x
�(i)
t ‖n (43)

Step 3: solve

[

�f�(v
i )

�v�

]

�v� = −f�(v
i )

v
i+1
� = vi� + �v�

(44)

Step 4: check convergence

if ‖�v�‖/‖v
i
�‖ > 	l then set i = i + 1 and goto Step 2

else v
k+1
� = vi+1

�

(45)

where vk+1
� are the variables of the contact point � taken at the (k + 1)th iteration of the global

solution in the Gauss–Seidel algorithm. 	l is the convergence tolerance in the local solution of the

Newton algorithm.

[�f�(v
i )/�v�] represents the (6× 6) tangent matrix of the local equations at the contact point �

and has the general form

[

�f�(v
i )

�v�

]

=

[

−W�� Id3×3

A� B�

]

(46)

with

A� =

[

�Z�

�r�
t1

∣

∣

∣

∣

∣

�Z�

�r�
t2

∣

∣

∣

∣

�Z�

�r�
n

]

, B� =

[

�Z�

�x�
t1

∣

∣

∣

∣

∣

�Z�

�x�
t2

∣

∣

∣

∣

�Z�

�x�
n

]

(47)

There are two explicit forms of the matrices A and B corresponding to sticking and sliding

contact statuses defined by Equation (28). Consequently, the components of these two matrices

are explicitly given in two cases.

Case A: Contact with sliding

This case occurs if and only if

and ‖r∗�
t ‖��r∗�

n (48)�‖rt
∗�‖� − rn

∗�

9



In view of Equations (28) and (35), we have

Z� = �x∗� +

(

‖r∗�
t ‖ − �r∗�

n

1 + �2

)(

r∗�
t

‖r∗�
t ‖

− �n

)

(49)

The derivation of Z� with respect to the gap vector and contact forces gives

�Z�

�x�
n

= �n +
��

1 + �2

(

r∗�
t

‖r∗�
t ‖

− �n

)

(50)

�Z�

�x�
t1

= �

(

t1 +
�x�

t1

‖x∗�
t ‖

n

)

−
�

1 + �2

⎡

⎢

⎢

⎢

⎢

⎣

(

r∗�
t1

‖r∗�
t ‖

−
�2x�

t1

‖x∗�
t ‖

)

(

r∗�
t

‖r∗�
t ‖

− �n

)

+

(‖r∗�
t ‖ − �r∗�

n )

(

1

‖r∗�
t ‖

t1 −
r∗�
t1

‖r∗�
t ‖3

r∗�
t

)

⎤

⎥

⎥

⎥

⎥

⎦

(51)

�Z�

�x�
t2

= �

(

t2 +
�x�

t2

‖x∗�
t ‖

n

)

−
�

1 + �2

⎡

⎢

⎢

⎢

⎢

⎣

(

r∗�
t2

‖r∗�
t ‖

−
�2x�

t2

‖x∗�
t ‖

)

(

r∗�
t

‖r∗�
t ‖

− �n

)

+

(‖r∗�
t ‖ − �r∗�

n )

(

1

‖r∗�
t ‖

t2 −
r∗�
t2

‖r∗�
t ‖3

r∗�
t

)

⎤

⎥

⎥

⎥

⎥

⎦

(52)

�Z�

�r�
n

=
�

1 + �2

(

�n −
r∗�
t

‖r∗�
t ‖

)

(53)

�Z�

�r�
t1

=
r∗�
t1

(1 + �2)‖r∗�
t ‖

(

r∗�
t

‖r∗�
t ‖

− �n

)

+
‖r∗�

t ‖ − �r∗�
n

1 + �2

(

1

‖r∗�
t ‖

t1 −
r∗�
t1

‖r∗�
t ‖3

r∗�
t

)

(54)

�Z�

�r�
t2

=
r∗�
t2

(1 + �2)‖r∗�
t ‖

(

r∗�
t

‖r∗�
t ‖

− �n

)

+
‖r∗�

t ‖ − �r∗�
n

1 + �2

(

1

‖r∗�
t ‖

t2 −
r∗�
t2

‖r∗�
t ‖3

r∗�
t

)

(55)

Case B: Contact with sticking

This case is true if and only if

�‖r∗�
t ‖� − r∗�

n and ‖r∗�
t ‖ < �r∗�

n (56)

In view of Equations (28) and (35), we have

Z� = �x∗� (57)

and then

A� = 03×3 (58)

�Z�

�x�
n

= �n (59)

�Z�

�x�
t1

= �t1 + ��
x�
t1

‖x�
t ‖

n (60)
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�Z�

�x�
t2

= �t2 + ��
x�
t2

‖x�
t ‖

n (61)

In the particular case of no contact, it is not necessary to construct the tangent matrix and the

solution is directly given by

v
k+1
� =

{

0

x��(k)

}

(62)

Remark 1

In the Newton iterative process, the solution can be obtained by a classic condensation technique

as follows:

�v
i+1
� =

{

�r� = [A� + B�W��]
−1 (−Z�

(i) + B�x
�(i))

�x� = −x�(i) + W���r
�

}

(63)

Remark 2

Compared to the Uzawa algorithm, in the Newton algorithm, the solution is controlled by both

local (iteration i) and global convergence criteria (iteration k).

4. A TEST EXAMPLE

Many application examples, academic or industrial, have been carried out using the bi-potential

method. The constitutive law of deformable bodies can be linear or non-linear with large defor-

mations and large displacements. For the sake of simplicity and clarity and in order to focus our

attention on the comparative study between Uzawa and Newton algorithms, only a test example

with a linear elastic law and in the presence of large slip contact is considered in this study.

The example concerns the contact between a three-dimensional elastic block ABCDEFGH and a

rigid surface � (Figure 3). The upper surface ABCD is given a rigid motion described by (a,b, �)

where a and b are, respectively, perpendicular and parallel to the rigid surface. The loading program

is designed to apply first a vertical displacement following a and then a horizontal displacement

following b. The lower surface EFGH comes into contact with the rigid surface whose normal

vector is (0, 0, 1). Each side of the block has a length of 1 mm. The other characteristics of this

example are as follows:

• Young’s modulus: E = 210 000N/mm2;

• the Poisson ratio: 
 = 0.3;

• coefficient of friction : �= 0.3;

• global convergence tolerance: 	g = 10−8;

• local convergence tolerance (only used in the Newton algorithm): 	l = 10−5;

• boundary conditions: ‖a‖= 0.1 mm, ‖b‖= 0.4 mm, � = 60.

The block is subdivided into eight eight-node brick-like elements as shown in Figure 3. Each

element has 27 integration points. Fifty load steps are performed for this problem, so a horizontal

or vertical displacement of 0.01 mm is applied to ABCD each step. Figure 4 shows the variation

of normal contact forces of points F and H. The horizontal lines correspond to cases where the

11



Figure 3. Contact problem under displacement control.

Figure 4. Variation of normal contact forces of points F and H.

block slides in a stationary regime. Table I gives detailed numerical results of point F, concerning

displacements and contact forces for selected load steps. From these results, we can easily verify

the contact conditions such as Coulomb friction laws and Signorini conditions. The analysis was

performed by means of both Uzawa and Newton algorithms developed above. The results are

almost the same as shown in Figure 4 and Table I. However, the number of iterations in the global

contact solution is different, as expected. Figure 5 indicates the evolution of iterations with respect

to cumulative iterations in the Newton–Raphson procedure. It shows that, globally, the Uzawa

algorithm needs more iterations than the Newton algorithm.

12



Table I. Contact forces and displacements of point F.

Step rt1 (N) rt2 (N) rn (N) Ux (mm) Uy (mm) Uz (mm)

1 −32.5956 −32.5956 153.657 0.000739176 0.000739176 −7.15743e−011
3 −94.6401 −94.6401 446.138 0.00221233 0.00221233 −2.38517e−010
5 −152.573 −152.573 719.235 0.00368016 0.00368016 −4.05892e−010
7 −206.493 −206.493 973.417 0.00514484 0.00514484 −6.35787e−010

10 −280.066 −280.066 1320.24 0.00734143 0.00734143 −1.11922e−009
11 −296.295 −302.973 1412.58 0.00793292 0.00794625 3.1167e−010
12 −312.422 −325.207 1503.21 0.00847988 0.0085156 3.90327e−010
14 −344.324 −367.835 1679.49 0.00944491 0.00954032 5.39157e−010
16 −375.738 −408.179 1849.29 0.0102413 0.0104021 6.56127e−010
18 −406.839 −446.38 2013.21 0.0108732 0.011094 −1.32709e−009
20 −438.23 −483.163 2174.33 0.0113587 0.0116285 −1.74936e−009
22 −447.971 −524.895 2300.22 0.0140293 0.0147479 9.97336e−012
25 −417.835 −570.219 2356.4 0.0267099 0.0312728 1.30087e−010
30 −375.928 −601.664 2364.84 0.0524647 0.0705171 2.01243e−010
35 −362.628 −609.521 2364.12 0.0780964 0.112958 2.54078e−010
40 −358.261 −611.94 2363.66 0.103402 0.155961 2.83243e−010
50 −355.656 −613.308 2363.23 0.153658 0.24235 3.23905e−010

Figure 5. Evolution of contact iterations.

5. CONCLUSIONS

In this work, three-dimensional contact problems with friction have been theoretically investigated

and numerically implemented. Within the bi-potential framework, a new Newton algorithm has

been proposed and closed-form tangent matrices have been carefully derived for different contact

statuses. A comparative study has been made between the newly proposed Newton algorithm and

the previously developed Uzawa algorithm. The characteristics of each algorithm are discussed. The
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numerical test indicates that both algorithms give good results. Signorini conditions and Coulomb

friction laws are quite well satisfied. For example, the values of penetration of contact points are

in the order of 10−10 as shown in Table I. The numerical test also shows that the Uzawa algorithm

needs more iterations than the Newton algorithm. But the Newton algorithm needs an additional

local iterative procedure and, at each iteration, a small system of equations should be solved.

The algorithms presented in this paper can be readily extended to dynamic contact problems

including more complex frictional models such as orthotropic friction laws with non-associated

flow rules [21].
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