N

N
N

HAL

open science

GJK for deformable object collision detection
Maher Hatab, Abderrahmane Kheddar

» To cite this version:

Maher Hatab, Abderrahmane Kheddar. GJK for deformable object collision detection. TEEE Inter-
national Workshop on Haptic Audio Visual Environments and their Applications (HAVE 2006), Nov

2006, Ottawa, Canada. pp.61-66, 10.1109/HAVE.2006.283805 . hal-00342935

HAL Id: hal-00342935
https://hal.science/hal-00342935

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-00342935
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

GJK for Deformable Object Collision Detection

Maher Hatab*
Universite d'Evry Val d’Essonne
Evry, France

Abstract - GJK is one of the main methods for distance calculations be-
tween convex objects. In this article, the adaptation of GJK for
deformable object collision detection is proposed. Although
the original method is only suited for distance calculations,
the proposed method is capable of nding the colliding trian-
gle pairs between two continuously deforming virtual objects
in real time. Furthermore, it handles all deformation types at
no extra time cost and it allows the client application to add,
or remove triangles from the considered object meshes at run
time with no extra overhead for the collision detection. The
proposed method is very exible in many aspects, making it
an ideal choice for virtual reality and haptic applications.

I. INTRODUCTION

Computer simulated scenes gained in complexity and realism
over the years. It is crucial for real time applications to de-
velop fast and reliable algorithms, capable of providing high
fidelity multimodal rendering at interactive rates. This is even
more crucial in interactive simulations such as the ones using
haptic feedback. Physically based simulations are gaining in
acceptability because they use rigorous mathematical basis to
drive graphical animation. In all these applications, collision
detection (CD) is an important unavoidable step, but it is still
the bottleneck process of any implementation. There are sev-
eral important methods that have been proposed for CD with
rigid or deformable models and in robotic planning. We refer
the reader to the following surveys [12, 19].

One of the main advantages in targeting a standard CD module
is its potential to be ported to a dedicated hardware card which
will free developers in various domains from this recurrent
problem. Recent methods are trying to use nowadays GPU
computation capabilities [8, 14]. The problem is that as far as
we focus on particular category of objects, any method would
not open hardware implementation perspectives. The hard-
ware implementation of the hidden surface removal algorithm
(the well known Z-buffering) was made possible because the
algorithm revealed to be generic, simple and applicable to any
kind of objects. It is in this spirit that we are developing re-
search on CD.

The rest of the paper is organized as follows. In the next sec-
tion, we start by a brief reminder of the main collision detec-
tion methods. Next we explain in greater details the GJK algo-
rithm and some of its modifications that are directly related to

*e-mail: hatab@iup.univ-evry.fr
femail: kheddar @ieee.org

Abderrahmane Khedddr
JRL - CNRS
Tsukuba, Japan

our method. Then we introduce the cut procedure. This sim-
ple procedure is at the heart of the improved version of GJK,
which is presented in section 4. In section 5 we show how
to include the combined GJK of section 4 in a recursive pro-
cedure, capable of finding the colliding triangle pairs of the
objects in a similar manner to bounding volume hierarchies.
We finish the article by the implementation results and perfor-
mance comparison against the AABB method and a discussion
of the obtained figures. We conclude by interesting future en-
hancements of the proposed algorithm.

II. RELATED WORK

Traditionally CD occurs in two main phases (or passes): (i) an
acceleration phase in which objects shapes are approximated
with a succession of rough to relatively more tiny bounding
volumes, called bounding volume hierarchy (BVH) and (ii) an
exact, precise collision checking computation that takes place
at the lower level of the BVH and made on the actual object’s
shape. None of existing papers demonstrates a clear and plau-
sible relation between the nature of objects, the number of ver-
tices and the recommended level of the BVH trees. There is
indeed an optimum, but very dependent on various parameters.

Bounding volumes hierarchies (BVH) have been used for solid
objects CD long ago. Spheres [9], OBBs [7], k—DOPS [13]
are among the proposed basic shapes to enclose the objects.
Strategies for tree construction such as bottom-up, top-down,
or insertion [6] produce variably fit hierarchies, traversed us-
ing depth first, level first, bigger volume first, or interrupt-
ible strategies. The latter is used for time critical applications
[10, 17].

The adaptation of BVH to deformable objects mainly focused
on refitting previously constructed hierarchies instead of com-
pletely rebuilding them. Thus Van Den Bergen [20] proposed
a way to refit the AABB hierarchy which is made possible
by the preparation of an AABB for each object with respect
to its own reference. The tree starts by refitting the leaves,
containing one polygon each, and then refits the higher levels
of the tree by adjusting the size of each AABB to contain its
child boxes. He also proved that refitting the tree can produce
less optimized hierarchies than rebuilding them, but the over-
all CD process is up to 15 times faster. More recently, [15]
considered several factors in building and traversing BVH for
deformable object collision detection, and James and Pai [11]
proposed to adjust the sphere hierarchies using the reduced
deformable models. We refer the reader to this recent survey
[19] on deformable objects CD techniques.

The first collision detection techniques only operated on con-
vex objects since they present many exploitable advantages.
The two main convex-based methods are the GJK [5] and the
LC [16]. GJK finds the separation distance between the con-
vex hulls of two point clouds at linear time. LC on the other
hand only operates on convex hulls, and that at constant time.

It walks on the surface of the hulls jumping between vertices,
edges and faces in order to converge to the minimum separa-
tion distance. Convex hulls are rarely used as bounding vol-
umes in real time application involving deformable objects,
due to the extensive building time they require. Furthermore,
the object decomposition into its convex subparts is not unique
and usually requires a large number of objects to completely
cover the original ones. One solution is to implement acceler-
ation levels, capable of selecting pairs of convex subparts for
the exact CD process [2, 4] but are not suited for deformable
objects. The next section contains a more detailed explana-
tion of GJK’s general algorithm and its main modifications
that have been proposed over the years.

[18] developed a fast triangle-triangle test that we chose to use
in our implementations.

Our Contribution

We introduce an adaptation of the known GJK in conjunction
with a recursive procedure for deformable object collision de-
tection. Its main characteristics are the following:

e It runs in real time for a pair of meshes of moderate
sizes while deterministically finding the colliding trian-
gle pairs.

e No restrictions are imposed on the deformation types or
amounts, furthermore, such changes do not require addi-
tional computation time for CD.

e [ts performance is not affected by triangle creation or
removal. In fact, the client application can have a gi-
ant triangle pool, and can choose at each time step the
triangles for which the CD should be performed.

III. GJK BASICS

The original GJK [5] is capable of finding the separation dis-
tance between the convex hulls of a couple of point clouds in
case the objects are disjoint. Even though the convex hulls are
not actually built, the algorithm can find the separation dis-
tance in &'(n+ m) where n and m are the clouds’ point counts.
Internally, it uses simplices, and a distance sub-algorithm for
finding the minimum distance between them. It starts by
choosing a support direction, and then finds the support ver-
tices in that direction on both objects. The newly found ver-
tices are added to the simplices, and the simplices results form
the new support direction to be used in the next iteration. The
algorithm iterates in that manner until the minimum separation
distance is found. The termination condition is a comparison
between the current iteration’s simplices result and the min-
imum theoretical distance at that iteration, while accounting
for computational errors. When the objects are colliding, the
method can find an upper bound for the minimum penetration
distance. We refer the reader to the original paper for more
details.

A first modification was proposed in [1] where the simplices
and the distance sub-algorithm were replaced by a formula for
guessing iteration; | support direction based on the iteration;
support direction and support vertices. The main gain is the
ability to find the new direction without having to solve the
simplices. The termination condition was also changed to ac-
commodate for the simplices removal.

Another modification was brought by [3] where many opti-
mizations were introduced. We are particularly interested by
the separating axes terminating condition. In fact, Van Den
Bergen proposed to terminate the GJK iterations when the sup-
port direction is a separating direction, i.e. the projections of
both objects on this direction are disjoint. This terminating
condition can be used when the exact value of the separation
distance is not needed, allowing early termination of the itera-
tive procedure.

In summary, the overall structure of GJK based methods is
presented in algorithm 3.1. The SupportVertex(VL, SupDir)
function finds VL’s vertex in SupDir’s direction. It runs
in O(n), where n is VL vertex count. It can be brought
down to a constant time if the convex hull is used. The
SupportDirection(SupDir, vi, v2) finds the support direction
based on the previous support direction, and on the current
support points. As explained above, several criteria were used
over the years for obtaining the next support direction and for
termination condition.

Algorithm 3.1: General GJK algorithm

input : VL, and VL, are two point lists
output: minimum separation/penetration distance or a
predicate of collision

1 begin

2 V| < any point of VL;

3 vy «— any point of VL;;

4 SupDir «— vy —vy;

5 Terminate < 0;

6 while Terminate # 1 do

7 vy «— SupportVertex(VL;, SupDir);

8 vy «— SupportVertex(VLy, —SupDir);

9 SupDir < SupportDirection(SupDir, vy,
vz);

10 Terminate < CheckTermination (Result);

11 end

Now that we reviewed the related existing methods, we will
introduce our algorithm. The main idea is to safely eliminate
at every step, the triangles that lie far from the collision region.
The triangle elimination algorithm is described in the next sec-
tion. In fact, you will notice that it has a common part with the
general GJK of algorithm 3.1. We will show how to exploit
this feature for finding all colliding triangle pairs between the
objects.

IV. THE CUT PROCEDURE

The main idea of the proposed method is to eliminate the trian-
gles that are completely outside the potential collision region.
A potential collision region exists for each direction. The ideal
direction which yields the smallest collision region is usually
referred to as minimum penetration direction. Finding such a
direction is time consuming, and its good cutting performance
does not compensate for the big amount of time needed for
the search. It is also effective to use any direction, if it can
be easily found and if it allows the removal of non colliding
triangles.

A fast way for identifying a potential collision region is by
isolating the space delimited by the maximum extents of both

objects on the considered direction. The main function of our
method (algorithm 4.1) operates as follows: given TL; and
TL, two triangle lists, and given CutDir, the cut direction go-
ing from TL to T Ly, it starts by finding the support vertex v;
of TL in the direction CutDir, and the support vertex v, of
T L, in the direction —CutDir. It removes from T'L; the trian-
gles having all vertices located before v, in CutDir’s direction,
and it removes from 7L, the triangles having all vertices lo-
cated after v in CutDir’s direction.

Algorithm 4.1: CutAlongDirection

input : CutDir is the cut’s direction

input : 7L and TL, are two triangle lists

output: 7L and 7L, only contain the potential collision
region’s triangles

begin
v) < SupportVertex (CutDir, TL;);
vy «— SupportVertex(—CutDir, TL;);
for every polygon t; of TL| do
if All t|’s vertices are before vy on CutDir then
L L RemovePolygonFromList (), TL1);

AU AW -

7 for every polygon t) of TL, do
8 if All t,’s vertices are after vi on CutDir then
9 | RemovePolygonFromList(fy, TLy);

10 end

The above algorithm runs in &'(n+ m) where n and m are
TL; and TL; vertex counts. If the provided meshes present
a high vertex sharing level among neighboring polygons, then
the vertex number is smaller and the performance is optimal.
We are currently investigating the use of adapted data struc-
tures for accelerating this process. At the first glance, this
expensive operation seems only profitable if it removes a rel-
atively large number of triangles, and thus, one might think
that it might slow down the overall process if the objects are
deeply inter penetrating (since in such situations, many cuts
will not be able to remove a big percentage of the existing tri-
angles). We found out in our experiments, that it is always
advantageous to perform the cut, even for deeply inter pene-
trating objects. The related graph and discussion are presented
in section 6 of this paper. This is furthermore practical, since
the client application doesn’t have to implement a cut decision
making scheme any more, thus avoiding further complexity
and sources of error.

A sample cut is shown in figure 1. In the first part, the initial
positions of the objects are shown, along with the maximum
extents of both objects with respect to a chosen cut direction.
In the second, we can see the remaining triangles of both ob-
jects after the cut is performed.

Both presented algorithms need to perform support vertex cal-
culations. The combined GJK with the cut code of algo-
rithm 4.2 operates as follows: once the support vertices corre-
sponding to the support direction are found, we can use them
to perform the cut operation by using the support direction as
the cut direction. This reduces the triangles count and acceler-
ates the support vertex operation for the following iterations.

The CutList(7T'L, v) function performs the elimination of the
triangles having all vertices before v. The function does not
need to have the cut direction as an input since the dot prod-
uct for all the vertices was already calculated by the support

Figure 1: L; and Ly cut with respect to CutDir

vertex function. It only needs to compare the saved dot prod-
uct result with the one stored with v. Although it is not shown
in the above algorithm, the code terminates anytime a cut re-
moves all the triangles from a list. For faster performance,
our implementation uses a vertex list that contains the triangle
lists vertices. The support vertex operation is performed on the
vertex list rather than on the triangle list since less dot product
operations have to be operated. The formula shown in line 15
of algorithm 4.2 is the one introduced by [1]. The choice of
the terminating condition will be explained in the next section.

Algorithm 4.2: Combined GJK with cut

input : 7L, and TL, are two triangle lists

input : VL, and VL, are the point lists of TL; and T L,

output: L; and L, only contain their common region’s
triangles

1 begin

2 V1 < any point of VL;

3 vy «— any point of VL;;

4 SupDir «— vy —vy;

5 cut| < true;

6 cuty < true;

7 while cut| = true and cut, = true do
8

9

v] < SupportVertex(VLy, SupDir);
vy «— SupportVertex(VLy, —SupDir);
10 SupDir < SupportDirection(SupDir, vy,
v2);
11 cuty < CutList(TLy, v2);
12 cuty «+ CutList (TLy, vi);
13 temp = vy —Vvy;
14 normalize (temp);
15 SupDir = SupDir —temp X (temp - SupDir) x 2
16 end

V. THE RECURSIVE ALGORITHM

The combined GJK algorithm presented above gives a predi-
cate if the convex hulls of the triangles collide. It also keeps
in the final triangle lists, only those situated in the collision
region. At this point, it is possible to perform a split of both
triangle lists in the same manner used for building top-down
bounding volume hierarchies. Once the two pairs of lists are
produced, we can perform pair wise checks between the pro-
duced lists using the combined GJK method in a recursive

manner. In fact, the corresponding operation is an on line par-
tial built of the hierarchy. Every iteration, many non-colliding
triangles are removed, and the remaining ones are split into
two, and so on, until the lists contain one triangle each. In this
case, a triangle-triangle test decides whether the triangle pair
should be added to the results list.

Algorithm 5.1 presents the corresponding procedure.

This algorithm has the same overall structure as the recursive
collision detection procedure for BVH but presents some key
modifications. First we check TL and TL, for collision. If
they do not collide, we stop the process at this level. If they
do collide and they can be split, we check the produced splits
against each others using recursive function calls. On the other
hand, if the current nodes are leaves, all the contained trian-
gles are checked for collision, and the found colliding pairs
are added to the results list. Typically each leaf only contains
one triangle.

Algorithm 5.1: RecursiveCheck

input : 7L, and TL, are triangle lists.
output: Obtain RL, the list of TL,’s and T'L;’s colliding
triangle pairs

1 begin
2 if CombinedGJKcollide(TL;, TL,) then
3 if Split(TLy, TLyy, TLy) = false And
Split(TLy, TLyy, TLyy) = false then
4 Check all triangles of T'L; against all
triangles of T'L,
5 else
6 RecursiveCheck(TL;, TLy1);
7 RecursiveCheck (T Ly, TLy1);
8 RecursiveCheck(TL;, TLy));
9 RecursiveCheck (T Ly, TLy);
10 end

In algorithm 5.1, when a split operation is not successful, all
the triangles of the original list 7L; will be placed in TLy;.
TLy, will be empty. When RecursiveCheck(7L;, TL,) is
called on an empty list, it will exit directly with a negative
result. This handles the case where only one list could be split.

It is not crucial for the CombinedGJKcollide() to remove all
non colliding triangles. Those will most probably be removed
at later iteration, or in the worst case, during the triangle-
triangle test. For this reason, it is not critical to use a non-
optimal terminating condition in algorithm 4.2. In fact, the
iterations for that algorithm terminate when it fails to perform
a list cut. Although it might be possible to remove more trian-
gles if the procedure is not stopped, we chose to stop it because
from the moment where a cut is unsuccessful, the next ones
have a high probability of failing again. The time consumed
by the cut operation is not balanced out by a reduction of the
number of triangles, and the cut is actually slowing the overall
process instead of accelerating it. Stopping the iterative pro-
cess will avoid such situations.

If all cuts are unsuccessful, then the algorithm is actually per-
forming the complete construction of the hierarchy plus the
CD. Fortunately, such cases never occur. Even if the root
nodes present a high inter penetration level, it regresses while
descending the tree due to the split operation. The regression

speed has the same relation to the configuration of the objects
as the depth of tree traversal in standard BVHs.

The split is the operation of separating the original list into
two sub-lists. Several splitting heuristics were proposed over
the years. In general, they compute a threshold on the splitting
direction, and then put all the triangles having their barycenter
before this value in the first sub-list, and the others in the sec-
ond one. A common choice of threshold is the median of all
the polygon points. This produces balanced lists. The choice
of the splitting direction is also an important one and comes
just after the cut in the dir direction. Due to the nature of the
cut, the remaining triangles usually form oblong shapes. Any
orthogonal direction to SupDir would make a good splitting
direction.

As one can see, the algorithm operates in a single shot: it takes
the two triangles lists, and operates on the current positions
of their vertices. If the objects deform, the algorithm does
not need to perform additional operations. Even if polygons
are added or removed from the original objects, the algorithm
finds the colliding triangle pairs at that iteration, since it con-
siders the polygons currently in the list, and not those of pre-
vious iterations.

VI. RESULTS AND DISCUSSIONS

The tests were conducted on an Intel Centrino 1.7 GHz with
1Gbytes of RAM and an ATI X700 graphics card.

The aim of our first experiments was to determine the appli-
cability of the cut with respect to the percentage overlap re-
gion. In other words, we wanted to verify if we should always
perform a cut, even when it has a low probability of actually
eliminating triangles. As a fast indicator of such a probability,
we considered the ratio of the projections on the cut direction
(dir) of:

e The common region of the two objects delimited by the
max) and max,, the maximum values of O and O, in
dir and —dir respectively.

e The object that need to be cut, delimited by max and min,
the maximum and the minimum of O in dir.

Please note that all the above max values are the same that need
to be found to perform the cut and thus do not present an extra
cost. The min search on the other hand, is an additional oper-
ation, and will be the major factor for the high computational
cost of the decision making process.

We implemented the above ratio in a test version, and allowed
the cut to be performed if the overlap is less than the T4y -
While moving the object pair, we varied 7, between 40%,
55%, 70%, 85% and 100% for each position of the objects
(where 100% means that the cut is always performed), and
we plotted the time needed in each case to find the colliding
triangle pairs. The corresponding graph is graph 2.

It is very clear from the graph that it is always beneficial to
perform the cut. Except for very few exceptions, the 100%
curve is always the fastest. This result can be explained by
the fact that the cut operation consists of two main parts: The
dot products, and the list split which only consists of pointer
assignments. The dot products are by far, the most time con-
suming. The modified version with the implemented threshold

300

250

The threshold effect

200 |

——40%

70%

——100%

——55%

—85%

150 {

A

time in msec

Number of Colliding Triangle Pairs

Figure 2: The effect of the threshold on the CUT operation

contains more dot products. In fact, a decision can be made
once the maximum and minimum were calculated, while the
cut only required calculating the max. To be able to make the
decision, the procedure has already consumed the most of the
time that the cut would have needed, that performing the cut at
this stage will only be a waste if fails to remove any triangles.

The above result is only valid of course, if our decision mak-
ing criteria is used. However, we did not find a faster choice
for the modified GJK method that is capable of justifying the
implementation of decision module.

The next test investigates the effect of the on line triangle re-
moval from the objects while performing the collision detec-
tion. To be able to compare and scale up the results, we de-
cided to disable the physical engine, and to fix the positions of
a pair of bulls in a high collision setup. Such a configuration
is non realistic because the physical engine will not allow the
inter penetration to happen. Please note that the objects will
not be moving with respect to each other, but their triangles
will be randomly removed until there are no more left. The
plotted timings are the needed ones to find all the colliding
triangle pairs. Since the algorithm does not require any ad-
ditional time to update the hierarchy, those timing show the
needed time to perform the complete collision detection pro-
cess. Initially, there are 258 colliding triangle pairs, but the
number decreases when a colliding triangle is removed. The
X axis indicates the number of remaining triangle in both ob-
jects. Since we are removing the same quantities of triangles
at each step, and the objects had initially the same number of
triangles, then the number of triangles of each object at each
given X value is half of that value. Figure 3 shows 4 instances
with decreasing triangles and their collisions, while graph 4
shows the timings plot.

The first observation from graph 4 is the big fluctuations occur-
ring at many instances. Although it might seem contradictory
that removing triangles from a pair of fixed position objects
is slowing the collision detection process, it has a simple ex-
planation: removing triangles has the same effect as changing
configuration. A new configuration implies a new set of cut-
ting directions and iterations, which might be slower than the
first one if it follows a more problematic path. This is actually
the same effect that involves the standard bounding volume hi-
erarchies, and that makes their behavior highly dependent on
their configuration at each iteration. The sudden drop at 8000
triangles happened when most of the colliding triangles were

Figure 3: 4 instances of random triangle removal

The effect of removing triangles
180 -
160 N
il
140 s W)
r“\ \L/(U\ \‘ L
g 120) A i
£ 100 vas/\J W UUT
£ 80 \/\)
]
£ o0 ﬂ\f /
40 /
2
0 U
0
0 5000 10000 15000 20000
The number of remaining triangles in both objets
Figure 4: The effect of randomly removing triangles
removed.

Due to the properties of the algorithm and the implementation,
the effect of adding triangles is almost exactly the inverse of
graph 4 and will not be plotted again.

The next two tests involve two pairs of continuously deform-
ing objects. At every iteration, we applied a wave function to
deform all the triangles of both objects. In addition, we were
moving the objects with a haptic device to obtain different de-
grees of collision. These tests were meant to compare the per-
formance of our method to the AABB hierarchies. Since we
were unable to find an implementation of the AABB where it
is possible to deform the meshes and to update the hierarchies
accordingly, we implemented the AABB as presented in [20].
It was brought to our attention that our implementation might
be slower than other existing AABB implementations, but the
faster implementations we found did not take the deformations
into account, and had to rebuild the hierarchies. Graph 5 shows
the performance of AABB and the modified GJK on objets of
about 1500 triangles each. Graph 6 shows the performance on
the pair of bulls of about 13000 triangles each.

As can be seen, the modified GJK is faster than our implemen-
tation of the AABB method. The green curve represents the
AABB performance including the time it took to refit the hier-
archies and is basically a shift of the blue curve that represents
the AABB performance while excluding the refit operation.

Performance comparaison teapot-bunny
80 -
—__AABB
70
___AABB including refitting ///
60 {4 __ modified GJK N
B \/,

, 50
3
c 40]
o N 1
E / /
£ 30 —

20 +—= / —

e .
10 = =
0 / \\/ o~ / A
T T T T T T 1
0 20 40 60 80 100 120 140
number of colliding triangle pairs

Figure 5: Speed comparaison between AABB and the modified
GJK while operating on 1500 triangles objects

Performance comparaison bull-bull
450 -
___AABB
400 H . . .
—_ AABB including refitting
350 +__ modified GJK
300
]
2 250 ﬁ A j
s 200 i -
£ | \J
- 150 \‘ : /’\ A: [
100 Jalis /\Q |
N\ S N/
50 N\ A\/\//\/\\l \‘ |/ b\// ‘\,
\ AN L
0= ; ; ; ; ‘
0 50 100 150 200 250 300
number of colliding triangle pairs

Figure 6: Speed comparaison between AABB and the modified
GJK while operating on 13000 triangles objects

VII. CONCLUSION

We presented a modification to the known GJK method, en-
abling it to be used for exact collision detection by finding all
colliding triangle pairs. The new method is suitable for con-
tinuously deforming objects, and for adding or removing tri-
angles at run time. It is capable of satisfying high demanding
virtual reality application such as haptic simulations dealing
with moderate sized objects and requiring the exact list of col-
liding triangles. Next we will be investigating the use of this
method for multi-resolution collision detection: an increase in
the resolution can be regarded as the removal of few rough tri-
angles, and the addition of many fine ones. Since the method
can easily handle both cases, it is a very good candidate.

ACKNOWLEDGEMENTS The work presented in this
paper is sponsored by a ph.D grant to Mr. Hatab offered by the
Lebanese National Council for Scientific Research.

REFERENCES

[1] K. Chung and W. Wang. Quick elimination of non-interference
polytopes in virtual environments. In Proceedings of the Euro-
graphics workshop on Virtual environments and scientific visu-
alization "96, pages 64—73, London, UK, 1996. Springer-Verlag.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi. I-collide:
an interactive and exact collision detection system for large-scale
environments. In SI3D ’95: Proceedings of the 1995 symposium
on Interactive 3D graphics, pages 189—ff., New York, NY, USA,
1995. ACM Press.

G. V. den Bergen. A fast and robust gjk implementation for
collision detection of convex objects. J. Graph. Tools, 4(2):7—
25, 1999.

S. A. Ehmann and M. C. Lin. Accurate and fast proximity
queries between polyhedra using convex surface decomposition.
In A. Chalmers and T.-M. Rhyne, editors, EG 2001 Proceedings,
volume 20(3), pages 500-510. Blackwell Publishing, 2001.

E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure
for computing the distance between complex objects in three-
dimensional space. IEEE Journal of robotics and Automation,
4(2):193-203, apr 1988.

J. Goldsmith and J. Salmon. Automatic creation of object hier-
archies for ray tracing. IEEE Comput. Graph. Appl., 7(5):14-20,
1987.

S. Gottschalk, M. Lin, and D. Manocha. Obbtree: a hierarchi-
cal structure for rapid interference detection. In SIGGRAPH’96
Conference Proceedings, Computer Graphics annual confer-
ence series, pages 171-180, New Orleans, aug 1996.

N. Govindaraju, S. Redon, M. Lin, and D. Manocha. Cullide:
Interactive collision detection between complex models in large
environments using graphics hardware. In Proceedings of the
Eurographics/SIGGRAPH Graphics Hardware Workshop, 2003.
P. Hubbard. Approximating polyhedra with spheres for time
critical collision detection. ACM Transactions on Graphics,
15(3):179-209, jul 1996.

P. M. Hubbard. Collision detection for interactive graphics ap-
plications. IEEE Transactions on Visualization and Computer
Graphics, 1(3):218-230, 1995.

D. L. James and D. K. Pai. Bd-tree: output-sensitive collision
detection for reduced deformable models. ACM Trans. Graph.,
23(3):393-398, 2004.

P. Jimnez, F. Thomas, and C. Torras. 3D Collision Detection: A
Survey. Computers and Graphics, 25(2):269-285, apr 2001.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding volume
hierarchies of k-dops. IEEE Transactions on Visualization and
Computer Graphics, 4(1):21-36, 1998.

D. Knott and D. Pai. Cinder: Collision and interference detec-
tion in real-time using graphics hardware, 2003.

T. Larsson and T. Akenine-Moller. Collision detection for con-
tinuously deforming bodies. In Eurographics 2001, pages 325—
333, 2001.

M. C. Lin and J. F. Canny. Efficient algorithms for incremen-
tal distance computation. In /IEEE International Conference on
Robotics and Automation, volume volume 2, pages 1008-1014,
1991.

C. Mendoza and C. O’Sullivan. An interruptible algorithm for
collision detection between deformable objects. In Workshop On
Virtual Reality Interaction and Physical Simulation, Pisa, nov
2005.

T. Moller and B. Trumbore. Fast, minimum storage ray-triangle
intersection. Journal of Graphic Tools, 2(1):21-28, 1997.

M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-
Thalmann, and W. Strasser. Collision detection for deformable
objects. In Eurographics State-of-the-Art Report (EG-STAR),
pages 119-139. Eurographics Association, Eurographics Asso-
ciation, 2004.

G. van den Bergen. Efficient collision detection of complex de-
formable models using aabb trees. J. Graph. Tools, 2(4):1-13,
1997.

