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Abstract

The algebraic structure of iterated integrals has been encoded by Chen. Formally, it identifies
with the shuffle and Lie calculus of Lyndon, Ree and Schützenberger. It is mostly incorporated in
the modern theory of free Lie algebras.

Here, we tackle the problem of unraveling the algebraic structure of computations of effective
Hamiltonians. This is an important subject in view of applications to chemistry, solid state physics,
quantum field theory or engineering. We show, among others, that the correct framework for these
computations is provided by the hyperoctahedral group algebras. We define several structures on these
algebras and give various applications. For example, we show that the adiabatic evolution operator (in
the time-dependent interaction representation of an effective Hamiltonian) can be written naturally
as a Picard-type series and has a natural exponential expansion.

Introduction

We start with a short overview of the classical theory of Chen calculus, that is, iterated integral compu-
tations. The subject is classical but is rarely presented from the suitable theoretical prospective -that is,
emphasizing the role of the shuffle product on the direct sum of the symmetric groups group algebras. We
give therefore a brief account of the theory that takes into account this point of view -this will be useful
later in the article. Then, we recall the construction of effective Hamiltonians in the time-dependent
interaction representation, but postpone their detailed study.

The third section is devoted to the investigation of the structure of the hyperoctahedral group alge-
bras. Although we are really interested into the applications of these objects to the study of effective
Hamiltonians, and although the definitions we introduce are motivated by the behavior of the iterated
integrals showing up in this setting, we postpone once again the description of the way the two theories
interact to a later stage of the article. Roughly stated, we show that the descent algebra approach to Lie
calculus, as emphasized in Reutenauer’s [22] can be lifted to the hyperoctahedral setting. This extends
previous work by Mantaci-Reutenauer [12], Aguiar-Mahajan and Bonnafé-Hohlweg [3] on Solomon’s al-
gebras of hyperoctahedral groups. However, the statistics we introduce here seems to be new –and is
different from the statistics naturally associated to the noncommutative representation theoretic approach
to hyperoctahedral groups, as it appears in these works.

The fourth section studies the effective adiabatic evolution operator and shows that it can be expanded
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as a generalized Picard series by means of the statistics introduced on hyperoctahedral groups1. As a
corollary, we derive in the last section an exponential expansion for the evolution operator. Such expan-
sions are particularly useful in view of numerical computations, since they usually lead to approximating
series converging much faster than the ones obtained from the Picard series.

1 The algebra of iterated integrals

Let us recall the basis of Chen’s iterated integrals calculus, starting with a first order linear differential
equation (with, say, operator or matrix coefficients):

A′(t) = H(t)A(t), A(0) = 1

The solution can be expanded as the Picard series:

A(t) = 1 +

t
∫

0

H(x)dx +

t
∫

0

t1
∫

0

H(t1)H(t2)dt1dt2 + ... +

∫

∆t
n

H(t1)...H(tn) + ...

where ∆t
n := {0 ≤ tn ≤ ... ≤ t1 ≤ t}. Solving for A(t) = exp(Ω(t)) (see [2, 14]), and more generally any

computation with A(t), requires the computation of products of iterated integrals of the form:

Hσ :=

∫

∆t
n

H(tσ(1))...H(tσ(n)), σ = (σ(1), ..., σ(n)) ∈ Sn,

where Sn stands for the symmetric group of order n. Notice that we represent an element σ in Sn by the
sequence (σ(1), ..., σ(n)).

In general, for any µ =
∑

n

∑

σ∈Sn

µσ · σ ∈ S :=
⊕

n

Q[Sn], the direct sum of the group algebras of the

symmetric groups Sn over the rationals, we will write Hµ for
∑

n

∑

σ∈Sn

µσ · Hσ. This allows, for example,

to write A(t) as HI , where I :=
∑

n

(1, ..., n) is the formal sum of the identity elements in the symmetric

group algebras. When allowing for a general initial condition A(x) = 1, with possibly x = −∞, and/or
when we want to emphasize the t-dependency, we will indicate explicitly this dependency. For example,

Hσ(−∞, t) means that the integrations take place between −∞ and t, so that H1(−∞, t) =
t
∫

−∞

H(x)dx,

and so on. Similarly, we write ∆
[a,b]
n := {a ≤ tn ≤ ... ≤ t1 ≤ b}.

The formula for the product of Hσ with Hβ is a variant of Chen’s formula for the product of two
iterated integrals of functions or of differential forms (a proof of the formula will be given in Section 3 in
a more general framework):

Hσ · Hβ = Hσ∗β ,

where σ∗β is the shuffle product2 of the two permutations, that is, for σ ∈ Sn, β ∈ Sm: σ∗β is the sum of
the

(

n+m
n

)

permutations γ ∈ Sn+m with st(γ(1), ..., γ(n)) = (σ(1), ..., σ(n)) and st(γ(n+1), ..., γ(n+m)) =
(β(1), ..., β(m)). Here, st stands for the standardization map, the action of which on sequences is obtained
by replacing (i1, ..., in), ij ∈ N∗ by the (necessarily unique) permutation σ ∈ Sn, such that σ(p) < σ(q)
for p < q if and only if ip ≤ iq. In words, each number ij is replaced by the position of ij in the increasing
ordering of i1, . . . , in. If we take the example of (5, 8, 2), the position of 5, 8 and 2 in the ordering
2 < 5 < 8 is 2, 3 and 1. Thus, st(5, 8, 2) = (2, 3, 1). For instance,

(2, 3, 1) ∗ (1) = (2, 3, 1, 4) + (2, 4, 1, 3) + (3, 4, 1, 2) + (3, 4, 2, 1),

(1, 2) ∗ (2, 1) = (1, 2, 4, 3) + (1, 3, 4, 2) + (1, 4, 3, 2) + (2, 3, 4, 1) + (2, 4, 3, 1) + (3, 4, 2, 1).
1Picard series are often referred to as Dyson or Dyson-Chen series in the literature, especially in contemporary physics,

but we prefer to stick to the most classical terminology
2This is one possible definition of the shuffle product, there are several equivalent ones that can be obtained using the

various natural set automorphisms of the symmetric groups (such as inversion or conjugacy by the element of maximal
length). They result into various (but essentially equivalent) associative algebra structures on the direct sum of the
symmetric groups group algebras, see e.g. [11]
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Associativity of ∗ follows immediately from the definition, the unit is 1 ∈ S0 = Q, and the graduation
on S =

⊕

n

Q[Sn] is compatible with ∗, so that:

Lemma 1.1. The shuffle product provides S with the structure of a graded connected associative (but
noncommutative) unital algebra.

For completeness, recall that connected means simply that S0 = Q. From the point of view of the
theory of noncommutative symmetric functions, the elements of S can be understood as free quasisym-
metric functions [6]. This definition of the shuffle product on S allows, for example, to express simply
the coefficients of the continuous Baker-Campbell-Hausdorff formula (compare with the original solution
[14]):

Ω(t) = Hlog(I).

Here log(I) identifies, in S, with the formal sum of Solomon’s Eulerian idempotents [23]. We refer to
[17, 22, 18, 19, 7] for an explanation and a Hopf algebraic approach to these idempotents and, more
generally, for a Hopf algebraic approach to Lie computations. We will return later with more details
to Solomon’s idempotent but mention only, for the time being, that one of the main purposes of the
present article is to extend these ideas to the more general framework required by the study of effective
Hamiltonians.

2 Iterated integrals in time-dependent perturbation theory

The problem we are ultimately interested in is the eigenvalue problem for a time-independent Hamiltonian
H = H0 + H1, with H1 a perturbation term, and where the eigenstates of H0 are known but not those
of H .

Recall first the basic idea of the time-dependent approach for the computation of the ground state
of a physical system (the eigenstate of the Hamiltonian with the lowest eigenvalue). We first define a
time-dependent Hamiltonian H(t) = H0 + e−ǫ|t|H1. When ǫ is small, this means physically that the
interaction is very slowly switched on from t = −∞ where H(−∞) = H0 to t = 0 where H(0) = H . It is
hoped that, if ǫ is small enough, then an eigenstate of H0 is transformed into an eigenstate of H .

To implement this picture, the time-dependent Schrödinger equation i∂|ΨS(t)〉/∂t = H(t)|ΨS(t)〉
should be solved. However, looking for a solution |ΨS(t)〉 is not convenient because, due to H0, it tends
to oscillate according to eiH0t when t → −∞. Therefore, one looks instead at |Ψ(t)〉 = eiH0t|ΨS(t)〉 that
satisfies i∂|Ψ(t)〉/∂t = Hint(t)|Ψ(t)〉, with Hint = eiH0tH1e−iH0te−ǫ|t|. Now Hint(−∞) = 0, and |Ψ(−∞)〉
makes sense. Using Hint, we can start from the ground state |Φ0〉 of H0 and solve the time-dependent
Schrödinger equation with the boundary condition |Ψ(−∞)〉 = |Φ0〉. When no eigenvalue crossing takes
place, |Φ0〉 should be transformed into the ground state |Ψ(0)〉 of H .

Now, instead of calculating directly |Ψ(t)〉 it is convenient to define the unitary operator U(t) as the
solution of i∂U(t)/∂t = Hint(t)U(t), with the boundary condition U(−∞) = 1. Thus, |Ψ(t)〉 = U(t)|Φ0〉.
Note that U(t) depends on ǫ, as Hint(t). But is limǫ→0 U(0)|Φ0〉 an eigenstate of H? It would if the limit
existed, but it does not. However, Gell-Mann and Low [8] discovered in 1951 that

|ΨGL〉 = lim
ǫ→0

U(0)|Φ0〉

〈Φ0|U(0)|Φ0〉

exists and is an eigenstate of H . A mathematical proof of this fact for reasonable Hamiltonians came
much later [16].

The above scheme works when the ground state of H0 is non degenerate. When it is degenerate, that
is when the eigenspace E0 associated to the lowest eigenvalue of H0 has dimension > 1, the problem is
more subtle, see [15, 4, 13]. Let us write P for the projection on this eigenspace. The natural extension
of the Gell-Mann and Low formula then reads as a definition of a “Gell-Mann and Low” operator acting
on the degenerate eigenspace E0:

UGL := lim
ǫ→0

Uǫ, Uǫ := U(0)P (PU(0)P )−1
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This operator shows up e.g. in the time-dependent interaction representation of the effective Hamiltonian
Heff := lim

ǫ→0
PH1U(0)P [PU(0)P ]−1 = lim

ǫ→0
PH1Uǫ classically used to solve the eigenvalue problem. This

is the operator we will be interested in, postponing to further work the analysis of concrete applications
to the study of degenerate systems.

The Picard expansion allows to write U(0) and Uǫ formally in terms of iterated integrals:

U(0) = (iHint)I , Uǫ = (iHint)IP [P (iHint)IP ]−1,

with initial condition U(−∞) = 1. We will be interested in unraveling the fine algebraic structure of this
expression for Uǫ similarly to the analysis of U(0) in terms of symmetric group actions performed in the
first section of the present article.

3 Wreath product shuffle algebras

Let us explain further our motivation. In the previous section, we observed that the study of effective
Hamiltonians leads to the study of Picard-type expansions involving the operators Hint(t) and PHint(t)
or, equivalently, A(t) := i(1−P )Hint(t) and B(t) := −iPHint(t). Expanding these expressions will lead to
the study of iterated integrals involving the two operators A(t) and B(t) such as, say:

∫

∆t
3

A(t2)B(t3)A(t1).

The idea underlying the forthcoming algebraic constructions is to encode such an expression by a signed
permutation and to lift computations with iterated integrals to an abstract algebraic setting: in the
previous example, the signed permutation would be (2, 3̄, 1) (see below for precise definitions).

In more abstract (but equivalent) terms, iterated integrals on two operators are conveniently encoded
by elements of the hyperoctahedral groups. Recall the definition of the hyperoctahedral group Bn of
order n. The hyperoctahedral group is the group defined either as the wreath product of the symmetric
group of order n with the cyclic group of order 2, or, in a more concrete way, as the group of “signed
permutations” the elements of which are written as sequences of integers i ∈ N∗ and of integers with an
upper bar ī, i ∈ N∗, so that, when the bars are erased, one recovers the expression of a permutation. The
composition rule is the usual one for permutations, together with the sign rule for bars: for example, if
σ̄ ∈ B3 = (2, 3̄, 1) and β̄ = (3̄, 1, 2̄), then:

β̄ ◦ σ̄(2) = β̄(3̄) = ¯̄2 = 2,

β̄ ◦ σ̄(3) = β̄(1) = 3̄.

By analogy with S, we equip B :=
⊕

n

Bn with the structure of a graded connected (associative but

noncommutative) algebra with a unit. The standardization st of a signed sequence w̄ (i.e. a sequence of
integers and of integers marked with an upper bar) is defined analogously to the classical standardization,
except for the fact that upper bars are left unchanged (or, equivalently, have to be reintroduced at their
initial positions after the standardization of the sequence w has been performed, where we write w
for w̄ where the upper bars have been erased). For example, st(2̄, 7, 1̄, 2) = (2̄, 4, 1̄, 3). Similarly, the
map σ̄ 7−→ σ̄|I for σ̄ ∈ Bn and I ⊂ [n] := {1, ..., n} is defined by extracting from the sequence σ̄ the
subsequences of elements in I with their upper indices: (2̄, 4, 1̄, 3)|{1,4} = (4, 1̄).

Definition 3.1. Let σ̄, β̄ belong to Bn, resp. Bm. Their shuffle product is defined by:

σ̄ ∗ β̄ :=
∑

τ̄

τ̄

where τ̄ runs over the
(

n+m
n

)

elements of Bn+m with st(τ̄ (1), ..., τ̄ (n)) = σ̄, st(τ̄ (n+1), ..., τ̄ (n+m)) = β̄.

For instance,

(2̄, 3, 1) ∗ (1̄) = (2̄, 3, 1, 4̄) + (2̄, 4, 1, 3̄) + (3̄, 4, 1, 2̄) + (3̄, 4, 2, 1̄),

(1, 2̄) ∗ (2, 1̄) = (1, 2̄, 4, 3̄) + (1, 3̄, 4, 2̄) + (1, 4̄, 3, 2̄) + (2, 3̄, 4, 1̄) + (2, 4̄, 3, 1̄) + (3, 4̄, 2, 1̄).
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Notice that this definition is dictated by iterated integrals computations, similarly to the classical one-
Hamiltonian case dealt with in the first section. Indeed, let A(t), B(t) be two time-dependent operators.
For σ̄ ∈ Bn, let us write Hσ̄ for the iterated integrals obtained by the usual process, with the extra
prescription that upper indices (empty set or bar) in σ̄ indicate that the operator used at the corresponding
level of the integral is A or B, (so that e.g., σ̄ = (3̄, 1, 2̄) is associated to:

∫

∆t
3

B(t3)A(t1)B(t2)). For an

arbitrary γ̄ =
∑

n

∑

σ̄∈Bn

aσ̄ · σ̄ ∈ B, we write Hγ̄ for
∑

n

∑

σ̄∈Bn

aσ̄ · Hσ̄.

Proposition 3.2. The product of two iterated integrals Hσ̄ × Hβ̄ is given by:

Hσ̄ × Hβ̄ = Hσ̄∗β̄

Proof. As already alluded to, this kind of formula is essentially a (natural, noncommutative) variant of
the classical Chen formulas for the product of iterated integrals of differential forms [5]. It includes as a
particular case the formula for the product of two iterated integrals depending on a single time-dependent
Hamiltonian given in the first section of the article. We detail the proof for the sake of completeness, and
since the formula is crucial for our purposes.

For a permutation σ̄ we denote by σ the same permutation without bars (e.g. if σ̄ = (2̄, 3, 1̄), then
σ = (2, 3, 1)) and we define X(tσ(i)) = A(tσ(i)) if σ̄(i) has no bar and X(tσ(i)) = B(tσ(i)) if σ̄(i) has a
bar. Therefore,

Hσ̄ × Hβ̄ =

∫ t

0

dt1 . . .

∫ tn−1

0

dtnX(tσ(1)) . . . X(tσ(n))

∫ t

0

dtn+1 . . .

∫ tn+m−1

0

dtn+mX(tn+β(1)) . . . X(tn+β(m)).

By Fubini’s theorem, this can be rewritten as the integral of X(tσ(1)) . . .X(tn+β(m)) over the domain

∆t
n × ∆t

m. The idea is now to rewrite this domain as a sum of
(

n+m
n

)

domains isomorphic to ∆t
n+m. For

instance, the product of the domain 0 ≤ tn ≤ · · · ≤ t1 ≤ t with the domain 0 ≤ tn+1 ≤ t is the sum of the
n+1 domains obtained by inserting tn+1 between 0 and t1, then between t1 and t2, up to between tn and
t. More generally the product of ∆t

n by ∆t
m is the sum of all the domains obtained by “mixing” the two

conditions 0 ≤ tn ≤ · · · ≤ t1 ≤ t and 0 ≤ tn+m ≤ · · · ≤ tn+1 ≤ t, i.e. by ordering the n + m variables ti
so that these conditions are satisfied. If ρ(i) is the position of variable ti in one of these orderings (where
the variables are ordered from the largest to the smallest), the conditions imply that ρ(1) < · · · < ρ(n)
and ρ(n + 1) < · · · < ρ(n + m). For example, if 0 ≤ t2 ≤ t1 ≤ 1 and 0 ≤ t4 ≤ t3 ≤ 1, for the domain
0 ≤ t4 ≤ t2 ≤ t1 ≤ t3 ≤ 1, t3 is in the first place (i.e. largest), t1 in the second, t2 in the third and t4 in
the fourth (smallest), and the permutation is ρ = (2, 3, 1, 4). In general, we get:

∆t
n × ∆t

m =
∐

τ

{(tτ(1), ..., tτ(n+m))|0 ≤ tn+m ≤ ... ≤ t1 ≤ t},

where τ runs over the permutations in Sn+m such that τ(1) < · · · < τ(n) and τ(n + 1) < · · · <
τ(n + m). Equivalently, τ runs over the permutations such that: st(τ(1), . . . , τ(n)) = (1, . . . , n) and
st(τ(n + 1), . . . , τ(n + m)) = (1, . . . , m). The union is clearly disjoint up to domains of codimension at
least 1 (which, of course, do not have to be taken into account when the integrations are performed).
Now,

∫

{(x1=tτ(1),...,xn+m=tτ(n+m))|0≤tn+m≤...≤t1≤t}

X(xσ(1))...X(xσ(n))X(xn+β(1)) . . . X(xn+β(m))

=

∫

{0≤tn+m≤...≤t1≤t}

X(tτ(σ(1)))...X(tτ(σ(n)))X(tτ(n+β(1)))...X(tτ(n+β(m)))

so that finally, taking into account the bars of the permutations (that is the fact that X is A or B,
depending only on its position in the sequence X(tτ(σ(1)))...X(tτ(σ(n)))X(tτ(n+β(1)))...X(tτ(n+β(m)))), we
obtain Hσ̄ × Hβ̄ =

∑

γ̄ Hγ̄ , with st(γ̄(1) . . . γ̄(n)) = (σ̄(1), . . . , σ̄(n)) and st(γ̄(n + 1) . . . γ̄(n + m)) =

(β̄(1), . . . , β̄(n)). This concludes the proof.
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Proposition 3.3. The shuffle product provides B with the structure of an associative (but noncommu-
tative) algebra with a unit.

This is a consequence of the associativity of the product of iterated integrals. The Proposition can
also be checked directly from the combinatorial definition of the shuffle product.

We refer to the work of Mantaci-Reutenauer [12] and Bonnafé-Hohlweg [3] for further insights into
the algebraic structure of the group algebras of hyperoctahedral groups, together with their applications
to noncommutative representation theory. From this later point of view that originates in the work of
Solomon [24], it is natural to partition hyperoctahedral groups into “descent classes”, similarly to the
partition of symmetric groups into descent classes (such a partition is also referred to as a statistics on
Sn).

Recall that a permutation σ ∈ Sn has a descent in position i < n if and only if σ(i) > σ(i + 1). The
descent set Desc(σ) of σ is the set of all i < n such that σ has a descent in position i. The partition
into descent classes read: Sn =

⋃

I⊂[n−1]

{σ, Desc(σ) = I}. The descent algebra D is the linear span of

Solomon’s elements Dn
S :=

∑

σ∈Sn,Desc(σ)⊆S

σ, where S ⊆ [n−1] and n ∈ N∗ (with the convention D0
∅ = 1).

It is provided with a free associative algebra structure by the shuffle product ∗ on S ⊃ D, see [22, Chap.9].
This algebra has various natural generating families as a free associative algebra -among others, the family
of the Dn

∅ . It is therefore also isomorphic to the algebra of noncommutative symmetric functions Sym,
from which it follows that the structure theorems for these functions can be carried back to the descent
algebra -a point of view introduced and developed in [7] and a subsequent series of articles starting with
[10].

The corresponding descent statistics on Bn is obtained by considering the total order n̄ < n − 1 <
... < 1̄ < 1 < ... < n. A signed permutation σ̄ ∈ Bn has a descent in position i < n if and only
if σ̄(i) > σ̄(i + 1) [12, Def. 3.2]. Descent classes are defined accordingly. The problem with this
noncommutative representation theoretical statistics and with the corresponding algebraic structures is
that they do not fit the needs of iterated integral computations for effective Hamiltonians, as we shall see
in the forthcoming sections. Notice that this is not the case when symmetric groups are considered: the
statistics of descent classes fits the needs of noncommutative representation theory as well as the needs
of Lie theoretical computations, as emphasized in [22, 7].

For this reason, we introduce another statistics on Bn. It seems to be new, and has surprisingly nice
properties, in that it allows to generalize very naturally many algebraic properties of symmetric groups
descent classes.

We say that an element ᾱ = (α(1), ..., α(n)) ∈ Bn has a progression in position i if either:

1. |α(i)| < |α(i + 1)| and α(i + 1) ∈ N∗

2. |α(i)| > |α(i + 1)| and α(i + 1) ∈ N̄∗

Else, we say that α has a regression in position i. Here, the operation | | is the operation of forgetting
the bars, so that e.g. |6̄| = 6. The terminology is motivated by the quantum physical idea that particles
(associated to unmarked integers) propagate forward in time, whereas holes (associated to marked integers
in our framework) propagate backward. We refer the reader to Goldstone diagrams expansions [9] of the
Gell-Mann Low eigenstate |ΨGL > for further insights into the physical motivations. Further details on
these topics are contained in the following sections of this article, but we do not develop here fully the
physical implications of our approach, the focus being on their mathematical background.

We write Reg(α) for the set of regressions of α. For example: Reg(4, 3̄, 5̄, 6, 2̄, 1) = {2, 5} since the
sequence (4, 3̄, 5̄, 6, 2̄, 1) has only two regressions, in positions 2 and 5. For an arbitrary subset S of [n−1],
we mimic now the descent statistics and write Rn

S :=
∑

σ∈Bn,Reg(σ)=S

σ. It is also convenient to introduce

the elements T n
S :=

∑

σ∈Bn,Reg(σ)⊆S

σ =
∑

U⊆S

Rn
U .

Lemma 3.4. The elements Rn
S (resp. T n

S ), S ⊆ [n − 1], form a family of linearly independent elements
in the group algebra Q[Sn].
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The first assertion follows from the very definition of the Rn
S , since it is easily checked that {σ̄ ∈

Bn, Reg(σ̄) = S} 6= ∅ for any S ⊆ [n − 1]. The second case follows from the Möbius inversion formula:

Rn
S =

∑

U⊆S

(−1)|S|−|U|T n
S ,

where |S| stands for the number of elements in S.

Lemma 3.5. We have, for S ⊆ [n − 1], U ⊆ [m − 1]:

T n
S ∗ T m

U = TS∪{n}∪(U+n),

where U + n = {u + n, u ∈ U}.

Indeed, by definition, for σ̄ ∈ Bn, β̄ ∈ Bm, with Reg(σ̄) = X ⊆ S, Reg(β̄) = Y ⊆ U , σ̄ ∗ β̄ =
∑

τ̄

τ̄ ,

where τ̄ runs over the elements of Bn+m with st(τ̄(1), ..., τ̄ (n)) = σ̄ and st(τ̄ (n + 1), ..., τ̄ (n + m)) = β̄.
In particular, for any such τ̄ and by definition of the standardization process:

Reg(τ̄) ⊆ X ∪ {n} ∪ (Y + n).

Conversely, any τ̄ ∈ Bn+m appears in the expansion of st(τ̄ (1), ..., τ̄(n)) ∗ st(τ̄ (n + 1), ..., τ̄ (n + m))
by the very definition of ∗ and does not appear in the expansion of any other product σ̄ ∗ β̄ with
Reg(σ̄) = Reg(st(τ̄(1), ..., τ̄ (n))), Reg(β̄) = Reg(st(τ̄ (n+1), ..., τ̄(n+m)), from which the lemma follows.

Corollary 3.6. For S, U as above:

HT n
S
× HT m

U
= HT

n+m

S∪{n}∪(U+n)

so that:

HT
n1
∅

× ... × HT
nk
∅

= H
T

n1+...+nk
{n1,...,n1+...+nk−1}

.

Theorem 3.1. The linear span R of the elements T n
S (equivalently, of the Rn

S), n ∈ N, S ⊆ [n − 1], is
closed under the shuffle product in B. This algebra, referred to from now on as the (hyperoctahedral) Re-
gression algebra, is isomorphic to the descent algebra D and to the algebra of noncommutative symmetric
functions Sym.

The second part of the Theorem follows from the product rule in D, that reads:

Dn
S ∗ Dm

U = Dn+m
S∪{n}∪(U+n).

The proof for this last identity can be obtained similarly to the one in Lemma 3.5 -see also [22].

Now we study in more detail the elements Rn
∅ that will play an important role in the following. The

lowest order Rn
∅ are

R1
∅ = (1) + (1̄),

R2
∅ = (1, 2) + (1̄, 2) + (2, 1̄) + (2̄, 1̄),

R3
∅ = (1, 2, 3) + (1̄, 2, 3) + (1, 3, 2̄) + (1̄, 3, 2̄) + (2, 1̄, 3) + (2̄, 1̄, 3) + (2, 3, 1̄) + (2̄, 3, 1̄)

+(3, 1̄, 2) + (3̄, 1̄, 2) + (3, 2̄, 1̄) + (3̄, 2̄, 1̄).

We first observe that, if σ̄ ∈ Bn is a term of Rn
∅ , then the barred integers of σ̄ are entirely determined by

permutation σ = (|σ̄(1)|, . . . , |σ̄(n)|), except for σ̄(1). Indeed, by definition of a progression, σ̄(i+1) ∈ N∗

if σ(i) < σ(i + 1) and σ̄(i + 1) ∈ N̄∗ if σ(i) > σ(i + 1). In other words, σ̄(i + 1) ∈ N̄∗ iff σ has a descent
at i. The integer σ̄(1) is not determined by σ and can be barred or not. Therefore, the number of terms
of Rn

∅ is 2n!.
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4 A Picard-type hyperoctahedral expansion

When it comes to expand ΨGL or UGL, as introduced in Section 2, the classical strategy introduced by
Goldstone (at least for nondegenerate states, that is for ΨGL [9]) consists in appealing to the hole/particle
duality of quantum physics. Goldstone’s theory was generalized to degenerate states by Michels and
Suttorp [13], but this part of the theory has remained largely in infancy and relies on shaky mathematical
grounds. The purpose of this section is to show that hyperoctahedral groups provide a convenient way
to derive and study such expansions, so as to build the foundations of a group-theoretic approach to the
perturbative computation of the ground states of physical systems, with a particular view toward the
degenerate case.

To sum up, we want to compute Uǫ = U(0)P (PU(0)P )−1. Let us write H ′
I for (−i)HI and A(t) :=

(1 − P )H ′
I(t), B(t) := −PH ′

I(t) (notice the −1 sign in the definition of B). From the Picard expansion,
we have:

U(0) = 1 +

t
∫

−∞

H ′
I(x)dx +

t
∫

−∞

t1
∫

−∞

H ′
I(t1)H ′

I(t2)dt1dt2 + ... +

∫

∆
[−∞,0]
n

H ′
I(t1)...H ′

I(tn) + ...

We encode iterated integrals in A and B as previously. For example,

t
∫

−∞

t1
∫

−∞

t2
∫

−∞

A(t2)B(t1)A(t3)dt1dt2dt3 =: H(2,1̄,3).

For an arbitrary element X =
∑

σ̄∈Bn

µσ̄ · σ̄ in the group algebra Q[Bn], we write HX for
∑

σ̄∈Bn

µσ̄ · Hσ̄.

Theorem 4.1. The effective adiabatic evolution operator UGL has the hyperoctahedral Picard-type ex-
pansion:

UGL = lim
ǫ→0

P + (1 − P )(
∑

n∈N

HRn
∅
)P

Indeed, let us expand Vn :=
∫

∆
[−∞,0]
n

H ′
I(t1)...H ′

I(tn) with the A and B operators. In order to do so,

we introduce the further notation: for σ̄ ∈ Bk, k < n, we set:

Vσ̄;n−k =

∫

∆
[−∞,0]
k

×∆
[−∞,tσ(k)]

n−k

X(tσ(1))...X(tσ(k))H
′
I(tk+1)...H ′

I(tn)

where ∆
[−∞,0]
k × ∆

[−∞,tσ(k)]

n−k is a shortcut for:

{(t1, ..., tn)| −∞ ≤ tk ≤ ... ≤ t1 ≤ 0, −∞ ≤ tn ≤ ... ≤ tk+1 ≤ tσ(k)};

where σ stands, as usual, for the image of σ̄ in Sk (obtained by forgetting the decorations), and where
X(tσ(i)) = A(tσ(i)) if σ(i) = σ̄(i) and B(tσ(i)) else. For example,

V(21̄3);2 =

∫

∆
[−∞,0]
3 ×∆

[−∞,t3]
2

A(t2)B(t1)A(t3)H ′
I(t4)H ′

I(t5);

V(23̄1);2 =

∫

−∞≤t3≤t2≤t1≤0, −∞≤t5≤t4≤t1

A(t2)B(t3)A(t1)H ′
I(t4)H ′

I(t5).

The integrals VX,n−k are defined, as usual, by extending these conventions to arbitrary elements X ∈
Q[Bk], k < n.
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We then have:

Vn =

∫

∆
[−∞,0]
n

(P + (1 − P ))H ′
I(t1)...H ′

I(tn) = PVn +

∫

∆
[−∞,0]
n

A(t1)H ′
I(t2)...H ′

I(tn)

= PVn + V(1);n−1 = PVn +

∫

∆
[−∞,0]
n

A(t1)(A − B)(t2)H ′
I(t3)...H ′

I(tn)

= PVn + V(12);n−2 − V(12̄);n−2

= PVn + V(12);n−2 − V(12̄);n−2 + (−V(21̄);n−2 + V(21̄);n−2).

By interchanging the integration variables t1 and t2, V(21̄);n−2 can be rewritten

0
∫

−∞

0
∫

t1

∫

∆
[−∞,t2]
n−2

A(t1)B(t2)H ′
I(t3)...H ′

I(tn)

so that:

V(12̄);n−2 + V(21̄);n−2 = [

0
∫

−∞

A(t)dt]

∫

∆
[−∞,0]
n−1

B(t1)H ′
I(t2)...H ′

I(tn−1)

= −(1 − P )HR1
∅
PVn−1,

where we have used that (1 − P )B(t) = 0 to rewrite

[

0
∫

−∞

A(t)dt] = (1 − P )[

0
∫

−∞

(A(t) + B(t))dt] = (1 − P )HR1
∅
.

We get:

Vn = PVn + (1 − P )HR1
∅
PVn−1 + V(12);n−2 + V(21̄);n−2 = PVn + (1 − P )HR1

∅
PVn−1 + (1 − P )VR2

∅
;n−2,

where the last identity follows, once again, from (1 − P )B(t) = 0 (we won’t comment any more on this
rewriting trick from now on).

The proof of the Theorem can be obtained along these principles by recursion. Let us indeed assume
for a while that:

(1 − P )VRk
∅
;n−k = (1 − P )HRk

∅
PVn−k + (1 − P )V

Rk+1
∅

;n−k−1.

Then we get, by induction:

Vn = PVn + (1 − P )HR1
∅
PVn−1 + (1 − P )HR2

∅
PVn−2 + ... + (1 − P )HRn

∅
PV0.

Since U0 =
∑

n Vn, this implies

U0 = PU0 + (1 − P )
∞
∑

n=1

HRn
∅
PU0,

or

U0P =
(

P + (1 − P )

∞
∑

n=1

HRn
∅
P

)

PU0P,

and the Theorem follows.
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So, let us check that the formula for (1 − P )VRk
∅
;n−k holds. This property is crucial and we give a

detailed proof of it. Let us consider an arbitrary element σ̄ ∈ Bk with Reg(σ̄) = ∅. Then,

Vσ̄;n−k =

∫

∆
[−∞,0]
k

×∆
[−∞,tσ(k)]

n−k

X(tσ(1))...X(tσ(k))H
′
I(tk+1)...H ′

I(tn)

=

∫

∆
[−∞,0]
k

×∆
[−∞,tσ(k)]

n−k

X(tσ(1))...X(tσ(k))(A − B)(tk+1)...H ′
I(tn)

=

∫

∆
[−∞,0]
k

×∆
[−∞,tσ(k)]

n−k

X(tσ(1))...X(tσ(k))A(tk+1)...H ′
I(tn)

−

∫

∆
[−∞,0]
k

×∆
[−∞,tσ(k)]

n−k

X(tσ(1))...X(tσ(k))B(tk+1)...H ′
I(tn).

Let us denote the first term by T1 and the second by T2, so that Vσ̄;n−k = T1 + T2. To calculate T1, we
define Vn(t) :=

∫

∆
[−∞,t]
n

H ′
I(t1)...H ′

I(tn). This gives us

T1 =

∫

∆
[−∞,0]
k

X(tσ(1))...X(tσ(k))

∫ tσ(k)

−∞

A(tk+1)Vn−k−1(tk+1).

The domain ∆
[−∞,0]
k of the first integral is defined by the inequalities −∞ ≤ tk ≤ · · · ≤ t1 ≤ 0. The

domain of the second integral is −∞ ≤ tk+1 ≤ tσ(k), where we recall that σ(i) = |σ̄(i)|. To decompose

this product of domains into a sum of domains isomorphic to ∆
[−∞,0]
k+1 , we proceed as in the proof of

proposition 3.2. We see that tk+1 can be between −∞ and tk, between tk and tk−1, up to between
tσ(k)+1 and tσ(k). Thus, if we denote by ρ(i) the position of ti in the ordering of the time variables
t1, ..., tk and tk+1 (starting from the largest), we have σ(k)+1 ≤ ρ(k+1) ≤ k+1, ρ(i) = i for i < ρ(k+1)
and ρ(i) = i + 1 for k ≥ i ≥ ρ(k + 1). If we take the example of σ̄ = (2, 1̄), we have k = 2, σ(k) = 1,
and two possibilities for ρ(k + 1): (i) ρ(k + 1) = 2, with −∞ ≤ t2 ≤ t3 ≤ t1 ≤ 0 and ρ = (1, 3, 2) and (i)
ρ(k + 1) = 3, with −∞ ≤ t3 ≤ t2 ≤ t1 ≤ 0 and ρ = (1, 2, 3). To put the variables in increasing order,
we change variables to si = ti for i < ρ(k + 1), sρ(k+1) = tk+1 and si = ti−1 for i > ρ(k + 1). Therefore,
the product X(tσ(1)) . . . X(tσ(k))A(tk+1) becomes X(sτ(1)) . . . X(sτ(k))A(sτ(k+1)) (where we assume that
the X take the same value A or B as in previous expressions), with τ(i) = σ(i) for σ(i) < ρ(k + 1),
τ(i) = σ(i) + 1 for σ(i) ≥ ρ(k + 1) and τ(k + 1) = ρ(k + 1). Therefore, the descents of (τ(1), . . . , τ(k))
and σ are at the same positions. Moreover, σ(k) < ρ(k + 1) implies τ(k) = σ(k) < ρ(k + 1) = τ(k + 1)
and τ has no descent at k. If we define now τ̄ by |τ̄ (i)| = τ(i) and the sign of τ̄ (i) is the same as the sign
of σ̄(i) for 1 ≤ i ≤ k and σ̄(k +1) = ρ(k +1), then τ̄ has no regression and X(tσ(1)) . . . X(tσ(k))A(tk+1) =
X(sτ(1)) . . .X(sτ(k))X(sτ(k+1)). We note that all terms of T1 contribute to V

R
k+1
∅

;n−k−1. Finally, we

enumerate the signed permutations τ̄ that are obtained in T1. There are 2(k − 1)! elements σ̄ of Rk
∅ with

a given value j of σ(k), where j runs from 1 to k. For a given σ̄ with σ(k) = j, T1 provides k − j + 1
elements of Rk+1

∅ . Thus, T1 provides (k + 1)! different elements of Rk+1
∅ when σ̄ runs over Rk

∅ .
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The term T2 is slightly more difficult to take into account. We have

T2 = −

∫

∆
[−∞,0]
k

X(tσ(1))...X(tσ(k))

∫ tσ(k)

−∞

B(tk+1)Vn−k−1(tk+1)dtk+1

= −

∫

∆
[−∞,0]
k

X(tσ(1))...X(tσ(k))

∫ 0

−∞

B(tk+1)Vn−k−1(tk+1)dtk+1

+

∫

∆
[−∞,0]
k

X(tσ(1))...X(tσ(k))

∫ 0

tσ(k)

B(tk+1)Vn−k−1(tk+1)dtk+1.

In the first term of this last expansion, when summing up over σ̄ ∈ Bk with Reg(σ̄) = ∅, we recognize
HRk

∅
PVn−k.

For the second term, we proceed as for the calculation of T1. We expand the product of the domain

−∞ ≤ tk ≤ · · · ≤ t1 ≤ 0 with the domain tσ(k) ≤ tk+1 ≤ 0 into domains isomorphic to ∆
[−∞,0]
k+1 .

The position ρ(k + 1) of tk+1 in such a domain satisfies now 1 ≤ ρ(k + 1) ≤ σ(k). As for T1, we
find that each σ̄ generates σ(k) signed permutations τ̄ ∈ Bk+1 and the relation between σ̄ and τ̄ is
the same as for T1 except for τ̄(k + 1). We still have τ(k + 1) = ρ(k + 1) but now σ(k) ≥ ρ(k + 1)
implies τ(k) = σ(k) + 1 > ρ(k + 1) = τ(k + 1) and τ has a descent at k. However, we have now
X(sτ(k+1)) = B(sτ(k+1)) so that τ̄ (k + 1) ∈ N̄∗, and the permutation τ̄ has no regression. Again, this

process generates (k + 1)! elements of Rk+1
∅ , that are all different from the elements generated by the

calculation of T1 (because τ̄ (k + 1) is now in N̄∗). The sum of these terms and of those coming from T1

gives us V
R

k+1
∅

;n−k−1. Therefore

VRk
∅
;n−k = HRk

∅
PVn−k + V

R
k+1
∅

;n−k−1.

The theorem is obtained by multiplying this equation by (1 − P ).

5 A Magnus expansion for the evolution operator

In the classical case, that is when the solution X(t) of a first order linear differential equation is obtained
from its Picard series expansion, the resulting approximating series converges relatively slowly to the
solution. This problem –let us call it the Magnus problem– is solved by reorganizing the series expansion,
often by looking for an exponential expansion X(t) = exp Ω(t) of the solution, known as its Magnus
expansion. Many numerical techniques have been developed along this idea that go much beyond the
formal-algebraic problem of deriving a formal expression for Ω(t). However, deriving such an expression
is a decisive step towards the understanding of the behavior of Ω(t). This problem was solved, in the
classical case, by Bialynicki-Birula, Mielnik and Plebański [2, 14] who obtained a formula for Ω(t) in
terms of Solomon’s elements Dn

S .
The purpose of the present section is to solve the Magnus problem for the analysis of solutions in

time-dependent perturbation theory. This would provide a time-dependent version of the coupled-cluster
theory of open-shell systems [1]. Our previous results pave the way toward the solution of the problem.
Namely, as it appears from Thm 4.1, the natural object to look at is not so much the effective Hamiltonian

H = lim
ǫ→0

P0HIUǫ

or the effective adiabatic evolution operator UGL, than the Picard-type series

Pic :=
∑

n∈N

HRn
∅
.

Notice that we define Pic as the sum of the HRn
∅

over all the integers (and not over N∗) in order to have
the identity operator I = HR0

∅
as the first term of the series. Of course, we have:

Uǫ = P + (1 − P )(
∑

n∈N∗

HRn
∅
)P = P + (1 − P )(

∑

n∈N

HRn
∅
)P = P + (1 − P ) Pic P
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In other terms, we are interested in the expansion:

Uǫ = P + (1 − P ) exp(Ωǫ)P,

where

Ωǫ = log(
∑

n∈N

HRn
∅
) = Hlog(

∑

n∈N

Rn
∅
).

Since Rn1

∅ ∗ ... ∗ Rnk

∅ = Rn1+...+nk

{n1,...,n1+...+nk−1}
, a first expression of ΩR = log

∑

n∈N

Rn
∅ follows:

ΩR =
∑

n∈N∗

∑

S⊆[n−1]

(−1)|S|

|S| + 1
Rn

S ,

where one can recognize the hyperoctahedral analogue of Solomon’s Eulerian idempotent [22, Chap.3,
Lem.3.14]:

soln =
∑

S⊆[n−1]

(−1)|S|

|S| + 1
Dn

S .

The analogy is not merely formal and follows from the isomorphism of Thm 3.1 together with the existence
of a logarithmic expansion of soln, which is actually best understood from an Hopf algebraic point of
view, see [17, 22, 18, 19]:

∑

n∈N∗

soln = log(
∑

n∈N

Dn
∅ ).

As a corollary of Thm 3.1, we also get the expansion of ΩR in the canonical basis of
⊕

n∈N∗

Q[Bn]:

Proposition 5.1. We have:

ΩR =
∑

n∈N∗

∑

S⊆[n−1]

(−1)|S|

n

(

n − 1

|S|

)−1

T n
S

=
∑

n∈N∗

∑

S⊆[n−1]

∑

σ̄∈Bn,Reg(σ)=S

(−1)|S|

n

(

n − 1

|S|

)−1

σ̄

The Proposition follows from the analogous expansion for soln [22], together with the algebra isomor-
phism Thm 3.1:

soln =
∑

n∈N∗

∑

S⊆[n−1]

∑

σ∈Sn,Desc(σ)=S

(−1)|S|

n

(

n − 1

|S|

)−1

σ.

Corollary 5.2. The hyperoctahedral Magnus expansion of the effective Hamiltonian H reads, when trun-
cated at the third order:

H = lim
ǫ→0

PHI(P +(1−P ) exp(H(1)+H(1̄)+
1

2
[H(12)+H(1̄2)+H(21̄)+H(2̄1̄)−H(12̄)−H(1̄2̄)−H(21)−H(2̄1)]+

1

3
[H(123) + H(1̄23) + H(132̄) + H(1̄32̄) + H(21̄3) + H(2̄1̄3) + H(231̄) + H(2̄31̄) + H(32̄1̄) + H(3̄2̄1̄) + H(31̄2) + H(3̄1̄2)

+H(321) + H(3̄21) + H(23̄1) + H(2̄3̄1) + H(12̄3̄) + H(1̄2̄3̄) + H(13̄2) + H(1̄3̄2) + H(213̄) + H(2̄13̄) + H(312̄) + H(3̄12̄)]

−
1

6
[H(132)+H(1̄32)+H(231)+H(2̄31)+H(213)+H(2̄13)+H(312)+H(3̄12)+H(13̄2̄)+H(1̄3̄2̄)+H(12̄3)+H(1̄2̄3)+H(21̄3̄)

+H(2̄1̄3̄) + H(31̄2̄) + H(3̄1̄2̄) + H(23̄1̄) + H(2̄3̄1̄) + H(32̄1) + H(3̄2̄1) + H(123̄) + H(1̄23̄) + H(321̄) + H(3̄21̄)])P ).
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[14] B. Mielnik and J. Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann.
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