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Introduction

Parallel kinematic machines (PKM) are well known for their high structural rigidity, better payload-to-weight ratio, high dynamic performances and high accuracy [START_REF] Merlet | Parallel Robots[END_REF][START_REF] Tlusty | Fundamental comparison of the use of serial and parallel kinematics for machine tools[END_REF][START_REF] Ph | A comparative study of serial and parallel mechanism topologies for machine tools[END_REF]. Thus, they are prudently considered as attractive alternatives designs for demanding tasks such as high-speed machining [START_REF] Weck | Parallel Kinematic Machine Tools -Current State and Future Potentials[END_REF]. Most of the existing PKM can be classified into two main families. The PKM of the first family have fixed foot points and variable-length struts, while the PKM of the second family have fixed length struts with moveable foot points gliding on fixed linear joints [START_REF] Chablat | Architecture Optimization of a 3-DOF Parallel Mechanism for Machining Applications, the Orthoglide[END_REF][START_REF] Pashkevich | Design Strategies for the Geometric Synthesis of Orthoglide-type Mechanisms[END_REF].

In the first family, we distinguish between PKM with six degrees of freedom generally called Hexapods and PKM with three degrees of freedom called Tripods [START_REF] Hervé | Structural synthesis of parallel robots generating spatial translation[END_REF][START_REF] Kong | Type synthesis of linear translational parallel manipulators[END_REF]. Hexapods have a Stewart-Gough parallel kinematic architecture. Many prototypes and commercial hexapod PKM already exist, including the VARIAX (Gidding and Lewis), the TORNADO 2000 (Hexel). We can also find hybrid architectures such as the TRICEPT machine (SMT Tricept) [START_REF] Neumann | [END_REF], which is composed of a two-axis wrist mounted in series to a 3-DOF "tripod" positioning structure.

In the second family, we find the HEXAGLIDE (ETH Zürich) that features six parallel and coplanar linear joints. The HexaM (Toyoda) is another example with three pairs of adjacent linear joints lying on a vertical cone [START_REF] Toyama | Machine tool having parallel structure[END_REF]. A hybrid parallel/kinematic PKM with three inclined linear joints and a two-axis wrist is the GEORGE V (IFW Uni Hanover).

Many three-axis translational PKMs belong to this second family and use architecture close to the linear Delta robot originally designed by Clavel for pick-and-place operations [START_REF] Clavel | DELTA, a fast robot with parallel geometry[END_REF]. The Urane SX (Renault Automation) and the QUICKSTEP (Krause and Mauser) have three non-coplanar horizontal linear joints [START_REF] Company | Modeling and preliminary design issues of a 3-axis parallel machine tool[END_REF].

Because many industrial tasks require less than six degrees of freedom, several lower-DOF PKMs have been developed [START_REF] Kim | Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator[END_REF][START_REF] Ibrahim | Kinematic and dynamic modelling of the 3-RPS parallel manipulator[END_REF][START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF]. For some of these PKMs, the reduction of the number of DOFs can result in coupled motions of the mobile platform. This is the case, for example, in the RPS manipulator [START_REF] Kim | Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator[END_REF] and in the parallel module of the Verne machine.

The kinematic modeling of these PKMs must be done case by case according to their structure.

Many researchers have contributed to the study of the kinematics of lower-DOF PKMs. Many of them have focused on the discussion of both analytical and numerical methods [START_REF] Liu | On the analysis of a new spatial three-degree-of freedom parallel manipulator[END_REF][START_REF] Nair | On the forward kinematics of parallel manipulators[END_REF]. This paper investigates the inverse and direct kinematics of the VERNE machine and derives closed form solutions. The VERNE machine is a 5-axis machine-tool that was designed by Fatronik for IRCCyN [START_REF] Martin | A new 5-axes hybrid architecture machining center[END_REF][START_REF] Terrier | VERNE -A five axis Parallel Kinematics Milling Machine[END_REF]. This machine-tool consists of a parallel module and a tilting table as shown in Fig. 1. The parallel module moves the spindle mostly in translation while the tilting table is used to rotate the workpiece about two orthogonal axes.

The purpose of this paper is to formulate analytic expressions in order to find all possible solutions for the inverse and forward kinematics problem of the VERNE machine. Then we identify and sort these solutions in order to find the one that satisfies the end-user.

Figure 1: Overall view of the VERNE machine

The following section describes the VERNE machine. In section 3, we study the kinematics of the parallel module of the VERNE machine. In section 4 the methods presented in section 3 are extended to study the kinematic of the full VERNE machine. Finally Section 5 concludes this paper.

Description of the VERNE machine

The VERNE machine consists of a parallel module and a tilting table as shown in Fig. 2. The vertices of the moving platform of the parallel module are connected to a fixed-base plate through three legs Ι, ΙΙ and ΙΙΙ. Each leg uses a pair of rods linking a prismatic joint to the moving platform through two pairs of spherical joints. Legs ΙΙ and ΙΙΙ are two identical parallelograms. Leg Ι differs from the other two legs in that it is a trapezium instead of a parallelogram, namely, 11 12 [START_REF] Clavel | DELTA, a fast robot with parallel geometry[END_REF] 
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A A B B ≠

, where ij A (respectively ij B ) is the center of spherical joint number j on the prismatic joint number i (respectively on the moving platform side), i = 1..3, j = 1..2. The movement of the moving platform is generated by three sliding actuators along three vertical guideways. Due to the arrangement of the links and joints, legs ΙΙ and ΙΙΙ prevent the platform from rotating about y and z axes. Leg Ι prevents the platform from rotating about z-axis (Fig. 2). Because this leg is a trapezium ( 11 12

P

11 12 A A B B ≠
), however, a slight coupled rotation α about the x-axis exists as shown in Fig. 2a. As shown further on, this coupled rotation makes the kinematic analysis more complex. Its impact on the workspace has not been fully investigated yet. The reasons why Fatronik has equipped leg I with a trapezium rather than with a parallelogram like in conventional linear Delta machines are beyond the authors' knowledge.

The tilting table is used to rotate the workpiece about two orthogonal axes. The first one, the tilting axis, is horizontal and the second one, the rotary axis, is always perpendicular to the tilting table.

This machine takes full advantage of these two additional axes to adjust the tool orientation with respect to the workpiece.

Kinematic analysis of the parallel module of the VERNE machine

Kinematic equations

In order to analyze the kinematics of our parallel module, two relative coordinates are assigned as shown in Fig. 2a. A static Cartesian frame ( , , ,

) b R O x y z =
is fixed at the base of the machine tool, with the z-axis pointing downward along the vertical direction. The mobile Cartesian frame, ( , , , )

pl P P P R P x y z =
, is attached to the moving platform at point P.

In any constrained mechanical system, joints connecting bodies restrict their relative motion and impose constraints on the generalized coordinates, geometric constraints are then formulated as algebraic expressions involving generalized coordinates.

Let us b pl T define the transformation matrix that brings the fixed Cartesian frame b R on the frame pl R linked to the moving platform. 

We use this transformation matrix to express ij B as function of , , and Using the parameters defined in Figs. 2 and3, the constraint equations of the parallel manipulator are expressed as:

( ) ( ) ( ) ( ) 2 2 2 2 2 2 0 1..3, 1..2 ij ij i Bij Aij Bij Aij Bij Aij i A B L x x y y z z L i j -= - + - + - -= = = (2) 
Leg Ι is represented by two different Eqs. (3a-3b). This is due to the fact that 11 12

11 12 A A B B ≠ (figure 3). ( ) ( ) ( ) 2 2 2 2 1 1 1 1 1 1 1
cos( ) sin( ) 0

P P P x D d y R r z R L α α ρ + - + + - + + - -= (3a) ( ) ( ) ( ) 2 2 2 2 1 1 1 1 1 1 1
cos( ) sin( ) 0

P P P x D d y R r z R L α α ρ + - + - + + - - -= (3b) 
Leg ΙΙ is represented by a single Eq. ( 4).

( ) ( ) ( )

2 2 2 2 2 2 2 4 2 2 2
cos( ) sin( ) -0

P P P x D d y R r z R L α α ρ + - + - + + - - = (4) 
Leg ІІІ, which is similar to leg ІІ (figure 3), is also represented by a single Eq. ( 5).

( ) ( ) ( )

2 2 2 2 2 2 2 4 2 3 3
cos( ) sin( ) 0

P P P x D d y R r z R L α α ρ + - + + - + + - -= (5) 

Coupling between the position and the orientation of the platform

The parallel module of the VERNE machine possesses three actuators and three degrees of freedom. However, there is a coupling between the position and the orientation angle of the platform. The object of this section is to study the coupling constraint imposed by leg I.

By eliminating 1 ρ from Eqs. (3a) and (3b), we obtain a relation (6) between , and

P P x y α independently of P z . ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 sin ( ) 2 cos( ) sin ( ) 2 cos( ) 0 P P R x D d r Rr R y R L R r Rr α α α α + - + - + - - + - = (6) 
We notice that for a given α , Eq. ( 6) represents an ellipse [START_REF] Hervé | Structural synthesis of parallel robots generating spatial translation[END_REF]. The size of this ellipse is determined by a and b , where a is the length of the semi major axis and b is the length of the semi minor axis.

( )

2 2 1 1 2 2 1 P P x D d y a b + - + = (7) where ( ) ( ) ( ) ( ) ( ) 
2 2 2 1 1 1 11 2 2 2 2 2 1 1 1 1 1 1 2 2 1 11 1 2 cos( ) sin ( ) 2 cos( ) 2 cos( ) a L R r Rr R L R r Rr b r Rr R α α α α ⎧ = - + - ⎪ ⎪ ⎨ - + - ⎪ = ⎪ - + ⎩
These ellipses define the locus of points reachable with the same orientation . α

The Inverse kinematics

The inverse kinematics deals with the determination of the joint coordinates as function of the moving platform position.

For the inverse kinematic problem of our spatial parallel manipulator, the position coordinates ( , , x y z ). These orientations are determined by solving Eq. ( 8), a third-degree-characteristic polynomial in cos( ) α derived from Eq. ( 6). 

where

( ) ( ) ( ) ( ) ( ) 3 1 11 2 2 2 2 2 2 2 1 1 1 1 1 1 1 3 2 3 11 1 1 2 2 2 22 2 2 2 2 4 1 1 1 1 1 1 1 1 1 2 2 2 P P P P p R r p R L R r R x D d p R r Rry p R x D d R r y R L R r ⎧ = ⎪ = -- - + - ⎪ ⎪ ⎨ = - - ⎪ ⎪ = + - + + - -- ⎪ ⎩
As shown in subsection 3.2, this equation also represents ellipses of iso-values of α . So if we plot all ellipses together by varying α from -to π π + (figure 4), we notice that every point (defined by , P x P y and P z ) is obtained by the intersection of two ellipses. Thus, each ellipse represents two opposite orientations so each point can have a maximum of four different orientations. This conclusion is verified by the fact that we can only find four real solutions to the polynomial (Table I). , , 0

P P P P x y z y ⎧ ⎨ ≠ ⎩ { } 1 2
and

α α α = ± ±
, , 0

P P P P x y z y ⎧ ⎨ = ⎩ { } 1 0, , α α π = ±

TABLE I: the possible orientations for a fixed position of the platform

After finding all the possible orientations, we use the equations derived in subsection 3.1 to calculate the joint coordinates i ρ for each orientation angle α . To make this task easier, we introduce two new points 1

A and 1 B as the middle of 11 12 A A and 11 12 B B , respectively. The constraint equation of these two points is:

( ) ( ) ( ) ( ) 2 2 2 2 2 2 1 1 1 1 1 1 11
2 cos( ) 0

P P P x D d y z L R r Rr ρ α + - + + - - - + - = (9) 
Then, for prescribed values of the position and orientation of the platform, the required actuator inputs can be directly computed from equations ( 9), ( 4) and ( 5):

( ) ( ) ( ) ( ) 2 2 2 2 2 1 1 1 1 1 1 1 1 1
2 cos( )

P P P z s L R r Rr x D d y ρ α = + - + - - + - - (10) ( ) ( ) ( ) 
2 2 2 2 2 2 2 2 2 2 4
sin( ) cos( )

P P P z R s L x D d y R r ρ α α = - + - + - - - + (11) ( ) ( ) 
( )

2 2 2 3 2 3 3 2 2 2 4
sin( ) cos( )

P P P z R s L x D d y R r ρ α α = + + - + - - + - (12) 
where { } Subtracting equation (3a) from equation (3b), yields:

( ) ( ) P 1 1 1 1 P y R cos( ) r =R sin( ) z α α ρ - - (13) 
Eq. ( 13) implies that: 

( ) ( ) ( ) 1 1 
α π = { } 0, α π = 1 1 s = ± 1 1 p cos( ) y 0 with 0 R r α α = ⎧ ⎪ ⎨ = ≠ ⎪ ⎩ 1 p z ρ = others 1 1 or -1 s = +

TABLE II. Solutions of the joint coordinate 1 ρ according to the values of α

Observing equations [START_REF] Toyama | Machine tool having parallel structure[END_REF], [START_REF] Clavel | DELTA, a fast robot with parallel geometry[END_REF], [START_REF] Company | Modeling and preliminary design issues of a 3-axis parallel machine tool[END_REF], Table I and Table II, we conclude that there are four solutions for leg Ι and two solutions for leg ΙΙ and ΙΙΙ. Thus there are sixteen inverse kinematic solutions for the parallel module (figure 5).

From the sixteen theoretical inverse kinematics solutions shown in figure 5, only one is used by the VERNE machine: the one referred to as (m) in figure 5, which is characterized by the fact that each leg must have its slider attachment points above the moving platform attachment points, i.e. 1 i s = -(remember that the z-axis is directed downward). For the remaining 15 solutions one of the sliders leaves its joint limits or the two rods of leg I cross. Most of these solutions are characterized by the fact that at least one of the legs has its slider attachment points below the moving platform attachment points. So only 1 2 3 , , 1 s s s =in Eqs. (10-12) must be selected (remember that the z-axis is directed downward). To prevent rod crossing, we also add a condition on the orientation of the moving platform. This condition is 1 1 cos( ) . R r α > Finally, we check the joint limits of the sliders as well as the serial singularities [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF], [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF].

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)
For the VERNE parallel module, applying the above conditions will always yield a unique solution for practical applications (solution (m) shown in Fig. 5).

The forward kinematics

The forward kinematics deals with the determination of the moving platform position as function of the joint coordinates. For the forward kinematics of our spatial parallel manipulator, the values of the joint coordinates

( 1..3) i i ρ =
are known and the goal is to find the coordinates P x , P y and P z of the centre of the moving platform P.

To solve the forward kinematics, we eliminate successively P x , P y and P z from the system ( 1) S of four equations ((3a), (3b), ( 4) and ( 5)) to have an equation function of the joint coordinates

( 1..3) i i ρ =
and function of the orientation angle α of the platform. To do so, we first compute P y as function of P z in Eq. ( 14) by subtracting Eq. (3a) from Eq.

(3b)

( )( ) ( ) ( ) 1 1 1 1 sin cos p p R z y R r α ρ α - = - (14) 
The expression of p y in Eq. ( 14) is substituted into system ( 1) S to obtain a new system ( 2) S of three Eqs. ( 15), ( 16) and ( 17) derived from Eqs. (3a), ( 4) and ( 5) respectively.

( ) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 
2 2 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 cos 5 cos 2 2 c o s 0 p p p p p R r R x D d R r L R r z Rr x D d z R r L r x D d R r L α α ρ ρ α + + - + + - + + - - + - + - + + - + + - + + - = (15) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 4 1 2 1 1 2 1 2 1 2 1 4 1 2 2 2 2 2 2 2 1 1 2 1 1 2 2 4 2 2 4 1 2 2 2 2 2 2 2 2 2 1 4 1 1 2 2 2 2 4 2 1 2 2 1 2 2 2
p R R r z R r z r R r z R r z R R x D d z z R r L R r r R r r R r x D d z R r L R R R z r x ρ ρ ρ α α ρ ρ α ρ ρ α ρ α ρ ρ α α ρ - + - + + - - - + + - - - + - + + - + - + + - + - + + - + - + - + ( ) ( ) ( ) ( ) 2 2 2 2 2 2 3 2 2 2 2 4 2 1 2 4 2 c o s 0 p D d z R r L R R r ρ α + - + - + + - - = (16) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) 

1
R R r z R r z r R r z R r z R R x D d z z R r L R r r R r r R r x D d z R r L R R R z r ρ ρ ρ α α ρ ρ α ρ ρ α ρ α ρ ρ α α ρ - - - - + + - - + - + + - - - + - + + - + - + + - + - + + - - - + - + ( ) ( ) ( ) ( ) 2 2 2 2 2 2 3 2 2 3 2 4 3 1 2 4 2 c o s 0 p p x D d z R r L R R r ρ α + - + - + + - - = (17) 
We then compute P z as function of ( 1..3

) i i ρ =
and α in Eq. ( 18) by subtracting equation ( 16) from equation (

)

1 1 2 3 3 2 2 3 2 1 11 1 1 1 3 2 cos 2 2 sin 4 sin 2 2 sin cos p R r R C z C R r α ρ ρ ρ ρ ρ ρ ρ α ρ α α α ρ ρ - + - - + - + = + - - (18) 
where ( )

1 1 2 4 1 C rR r R = -
The expression of p z in Eq. ( 18) is substituted into system ( 2) S to obtain a new system ( 3) S of two equations ( 19) and ( 20) derived from equations ( 15) and ( 16) respectively. Finally, we compute P x as function of ( 1..3

) i i ρ =
and α by subtracting equation ( 19) from equation [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF].

(

2 2 1 3 2 2 2 1 2 3 1 2 1 4 2 1 1 2 3 1 2 1 1 1 2 3 2 2 3 1 2 1 1 1 1 4 2 1 1 1 1 2 2 1 3 2 1 1 2 s i n 2 4 cos 4 cos sin 2 2 cos cos 2( ) 2 sin cos p R C C C r R rC R R r C r r R r R R r x D d D d C R r ρ ρ α ρ ρ ρ ρ α ρ ρ ρ ρ α α ρ ρ ρ ρ ρ ρ α α α ρ ρ α - - + + - + - - + + - - - + - - - - - + - - = --+ + - - ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
where

( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 1 1 1 4 1 2 1 3 C D d D d r r R R L L = - - - + + - + + -
Then the above expression of p x is substituted into system ( 3) S .

The resulting equations of system ( 3) S are given in Appendix A.

For each step, we determine solution existence conditions by studying the denominators that appear in the expressions of P x , P y and P z . These conditions are:

( )

1 1 cos 0 R r α -≠ (22) ( ) ( ) ( ) 
( )

1 3 2 1 1 2 sin cos 0 C R r α ρ ρ α + - -≠ (23) 
Equation ( 22) obtained from (13) implies that 1 1 A B is perpendicular to the slider plane of leg І. In this case equation [START_REF] Hervé | Structural synthesis of parallel robots generating spatial translation[END_REF] represents a circle because a b = . 4) -( 5)).

To finish the resolution of the system, we perform the tangent-half-angle substitution tan( / 2) t α =

. As a consequence, the forward kinematics of our parallel manipulator results in a eight-degree-characteristic polynomial in t , whose coefficients are relatively large expressions in 1 ρ , 2 ρ and 3 ρ . Expressions of these coefficients are not reported here because of space limitation. They are available in [START_REF] Kanaan | Kinematic analysis of the VERNE machine[END_REF]. Knowing the value of α , we calculate , and

p p p
x y z using Eqs (21), ( 14) and ( 18), respectively. For the VERNE machine, only 4 assembly-modes have been found (figure 6). It was possible to find up to 6 assembly-modes but only for input joint values out of the reachable joint space of the machine. Only one assembly-mode is actually reachable by the machine (solution (a) shown in Fig. 6) because the other ones lead to either rod crossing, collisions, or joint limit violation. The right assembly mode can be recognized, like for the right working mode, by the fact that each leg must have its slider attachment points above the moving platform attachment points, i.e. 1 i s = -(keep in mind that the z-axis is directed downwards).

The proposed method for calculating the various solutions of the forward kinematic problem has been implemented in Maple. Table III give the solutions for 1 674 mm, ρ = 

Then, we find all possible orientation angles 1 θ for prescribed values of the position and the orientation of the tool.

These orientations are determined by solving a six-degree-characteristic polynomial in 1 tan( / 2) θ derived from Eq. (31).

This polynomial can have up to four real solutions. This conclusion is verified by the fact that 1 1 θ φ α =from Eq. 30

where α can have only four real solutions as proved in subsection 3.3. After finding all the possible orientations, we use the system of equations ( 4) S in order to calculate the joint coordinates i ρ for each orientation angle 1 θ .

For 1 , ρ we must verify that the values of 1 ρ obtained from Eqs. (27a) and (27b) are the same, as a result, we eliminate one of the two solutions.

Observing the above remark and equations (27a-27b), (28), (29) defined as two-degree-polynomials in , 1..3 i i ρ = respectively, we conclude that there are four solutions for leg Ι and two solutions for leg ΙΙ and ΙΙΙ. Thus there are sixteen inverse kinematic solutions for the VERNE machine.

As above, from the sixteen theoretical inverse kinematics solutions, only one is used by the VERNE machine. This solution is characterized by the fact that each leg must have its slider attachment points above the moving platform attachment points.

For the remaining 15 solutions one of the sliders leaves its joint limits or the two rods of leg I cross. Most of these solutions are characterized by the fact that at least one of the legs has its slider attachment points lower than the moving platform attachment points. To prevent rod crossing, we also add a condition on the orientation of the moving platform. This condition is 1 1 1 1 cos( ) . R r θ φ + > Finally, we check the joint limits of the sliders and the serial singularities [START_REF] Kanaan | Workspace Analysis of the Parallel Module of the VERNE Machine[END_REF].

As already mentioned, applying the above conditions will always yield to a unique solution for practical applications. 

Conclusion

This paper was devoted to the kinematic analysis of a 5-DOF hybrid machine tool, the VERNE machine. This machine 
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 2 Figure 2: Schematic representation of the VERNE machine; (a) simplified representation and (b) the real representation supplied by Fatronik

2 Figure 3 :

 23 Figure 3: Dimensions of the parallel kinematic structure in the frame supplied by Fatronik

  the actuated prismatic joints and the orientation angle α of the moving platform are unknown.

Figure 4 :

 4 Figure 4: (a) Curves of iso-values of the orientation α from -to π π + following a constant step of 2 /45 π (b) zoom of the framed zone To solve the inverse kinematic problem, we first find all the possible orientation angles α for prescribed values of the position of the platform ( , , P P P

-=

  This means that for prescribed values of the position and orientation of the platform, the joint coordinate 1 ρ possesses one solution, except when {0, }. α π In this case 1 s can take on both values +1 and -1. As a result 1 ρ can take on two values when {0, }.

Figure 5 :

 5 Figure 5: The sixteen solutions to the inverse kinematics problem when -240 mm, -86 mm and 1000 mm P P P x y z = = =

  obtained from Equations. (

Figure 6 :

 6 Figure 6: The four assembly-modes of the VERNE parallel module for 1 674 mm, ρ =

TABLE V: the numerical results of the forward kinematic problem of the example where 1

 1 

  possesses a complex motion caused by the unsymmetrical architecture of the parallel module where one of the legs is different from the other two legs. The inverse kinematics and the different assembly modes were derived. The forward kinematics was solved with the substitution method. It was shown that the inverse kinematics has sixteen solutions and the forward kinematics may have six real solutions. Examples were provided to illustrate the results. The special geometry of one of the legs highly complicates the kinematic models. Because two of the opposite sides of this leg have different lengths, the leg does not remain planar (rod directions define skew lines) as the machine moves, unlike what

  

TABLE III : the numerical results of the forward kinematic problem of the example where 1 674 mm,

 III 

			ρ =
	2 ρ =	685 mm	and 3 250 mm ρ =
	4.		

Kinematic analysis of the full VERNE machine (parallel module + tilting table) 4.1 Kinematic equations

  

	Tool	θ 2	
	θ 1	φ 1	Tilting axis
	φ 2	
	Figure 7:		

Draw of the tilting table: the tool orientation is defined by two angles ( 1 φ , 2 φ ) relative to frame t R linked to the tilting table . The orientation angles ( 1 θ , 2 θ ) of the tilting table are defined relative to frame b R fixed to the base of the VERNE machine

  In order to analyze the kinematics of the VERNE machine, we define the following coordinate frame as shown below in

Table IV :

 IV 

	Transformation		Axis	Angles/Distance	Input Frame	Output Frame
	Translation			z	d		a	( , , , ) R O x y z b	1 R O x y z 1 1 1 1 ( , , , )
	Rotation			x 1	1 θ	1 R O x y z 1 1 1 1 ( , , , )	2 R O x y z 2 2 2 ( , , , ) 2
	Translation			z 2	d	t	2 R O x y z 2 2 2 ( , , , ) 2	3 R O x y z 3 3 3 ( , , , ) 3
	Rotation			x 3	π	3 R O x y z 3 3 3 ( , , , ) 3	4 R O x y z 4 4 4 ( , , , ) 4
	Rotation			z 4	θ	2	4 R O x y z 4 4 4 ( , , , ) 4	( , , , ) t t t R t x y z t
	Translation	t x	,	t y , t z	u x , u y , u z	( , , , ) t t t R t x y z t	5 R O x y z 5 5 5 ( , , , ) 5
	Rotation			z 5	φ	2	5 R O x y z 5 5 5 ( , , ,	5	6 R O x y z 6 6 6 ( , , , ) 6
	Rotation			x 6	1 π φ +	6 R O x y z 6 6 6 ( , , , ) 6	7 R O x y z 7 7 7 ( , , , ) 7
	Translation			z 7	-Δ	7 R O x y z 7 7 7 ( , , , ) 7	( , , , ) p p p R P x y z pl

Table IV : Transformation matrices that bring the input frame on the output frame; where u x , u y and u z are the coordinates of the tool centre point (TCP), U, in t R

 IV 

	Let b	t T define the transformation matrix that brings the fixed Cartesian frame b R on the frame t R linked to the tilting
	table.		
		b	1 ( , ) ( , ) 1 a T trans z d rot x t θ =	2 ( , ) ( , ) ( , ) 3 4 2 t trans z d rot x rot z π θ	(24)

Let t pl T define the transformation matrix that brings the frame t R linked to the tilting table on the frame pl R linked to the moving platform. 

We use transformation matrices from Eqs. ( 24) and (25) in order to express ij B as function of Using Eq. ( 2) from section 3.1 and the parameters defined in Figs. 2 and3, we can express all constraint equations of the VERNE machine. However knowing that [START_REF] Merlet | Parallel Robots[END_REF] 

Identification of Eqs. (27a), (27b), ( 28) and (29) with Eqs. (3a), (3b), ( 4) and ( 5) respectively, yields :

Condition (30) will help us understand the behavior of the VERNE machine from the one already studied in section 3 for its parallel module.

The inverse kinematics

For the inverse kinematic problem of the VERNE machine, the position of the TCP ( , , 26), the problem consists in solving the system ( 4) S of 4 equations ((27a), (27b), ( 28) and ( 29)) for only 4 unknowns ( ( 1..3) i i ρ = and 1 θ ).

To solve the inverse kinematics, we follow the same reasoning as in subsection 3.3. First, we eliminate 1 ρ from Eqs.

(27a) and (27b) in order to obtain a relation (31) between the TCP position and orientation (

, , , and

x y z φ φ ) and the tilting angle 1 θ .

(

The forward kinematics

For the forward kinematics of the VERNE machine, the values of the joint coordinates, defined by the position φ α θ =from (30), we solve this problem by first solving the forward kinematics of the parallel module of the VERNE machine in order to find the coordinates P x , P y and P z of the centre of the moving platform P and the orientation α of the moving platform in term of the joint coordinates

We then use transformation matrices from Eqs. ( 1) and (24) in order to express the tool position and orientation

, , , and

x y z φ φ ) as function of ( )

, , , ,

x y z θ θ .

where

[ ]

represent the TCP, , U expressed in frames pl R (linked to the moving platform) and the base frame b R respectively. Finally we obtain: 

The VERNE machine behaves like its parallel module, so only 4 assembly-modes is found (figure 6) and only one assembly-mode is actually reachable by the machine (solution (a) shown in Fig. 6).

The proposed method for calculating the various solutions of the forward kinematic problem has been implemented in Maple. Table V give the solution for 1 674 mm, ρ = arises in the other two legs that are articulated parallelograms. As a result, a coupling angle of the moving platform about the x-axis exists. The derivation of the inverse and forward kinematic equations was not a trivial task and required much effort. This work is of interest as it may improve the control of the machine. It is worth noting that the VERNE machine is currently used every day for machining complex parts, especially for the molding industry. It is thus important to try to improve the efficiency of the machine. The controller of the actual VERNE machine resorts to an iterative Newton-Raphson resolution of the kinematic models. A fully comparative study between the symbolic and the iterative approach is still in progress and will be presented in forthcoming publications. It is expected that the symbolic method could decrease the Cpu-time and improve the quality of the control. The symbolic equations derived in this work are currently implemented in a simulation package of PKMs. 

Appendix