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b Université d’Évry-Val d’Essonne, Laboratoire d’Études des Milieux Nanomériques, Bâtiment de Science, rue Père Gerlan, 91020 Évry, France
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This paper is devoted to the finite element modeling of the nanoindentation problem. The frictional contact between the Berkovitch 

indenter and the very thin elasto-plastic film is treated by the bi-potential method. The elasto-plastic constitutive equation is integrated by 

means of the radial return mapping algorithm and the consistent tangent operator is explicitly derived. Numerical results show the validity 

of the model.
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1. Introduction

The development of nano-materials used in nanotech-
nology, for example, assembly of structures, manufacture
of nanotubes, etc. requires the knowledge of mechanical
properties such as the Young modulus, the yield stress or
the buckling loadings. The evaluation by nanoindentation
of these properties represents a real challenge for the
researchers because it is difficult to carry out experiments
at such length scales. Moreover, to validate a experimental
result, it is necessary to be ensured of its reproducibility
which requires many samples and involves thus a high cost.
Different analytical models were proposed in the case of
thin metal layers (with elasto-plastic behavior) [1] or poly-
mers (with hyperelastic behavior and pile-up) [2]. The nan-
oindentation can be very complex because of two principal
strongly nonlinear phenomena: elasto-plasticity and con-
tact with friction. In the case where analytical derivation
of the mechanical properties is not feasible, numerical
modeling may therefore help to clarify and put in evidence
the different contributions of thin films and substrates.

Knapp et al. [3] used the FE approach to determine hard-
ness properties of thin films in two dimensions. They sug-
gested a fit procedure to evaluate mechanical properties
of thin layers and substrates. This kind of procedure
reveals some success but with several limitations: two
dimensional geometry, hundred of nanometers length
scales, geometrically perfect indenter and the neglecting
of interface interactions (film/substrate). For smaller length
scale it seems to be necessary to develop more complex
interaction film-substrate models, as in the work of Bull
et al. [4,5].

The aim of this paper is to develop an three-dimensional
elasto-plastic contact model. The purpose is also to investi-
gate and characterize structural and mechanical properties
of different coatings with increasing hardness at a length
scale of tens of nanometers. Usually, behavior laws of
solids are differential equations which connect the rate of
stress to the rate of strain. Nagtegaal et al. [6], Hughes
and Winget [7] have proposed several integration schemes.
The concept of consistent linearization introduced by
Nagtegaal [6] and extended by Simo and Taylor [8] made
it possible to write, in the case of small or large deforma-
tions, effective tangent stiffness matrices. The analysis of
contact problems with friction is of great importance in
many engineering applications. The numerical treatment
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of the unilateral contact with dry friction is certainly one of
the nonsmooth mechanics topics for which many efforts
have been made in the past. In the literature, many
attempts have been developed to deal with such problems
using the finite element method. A large literature base is
available for a variety of numerical algorithms [9,10]. The
bi-potential method proposed by de Saxcé and Feng [11]
has been successfully applied to solve contact problems
between elastic or hyperelastic bodies [12,13]. In the present
work, this method will be applied to solve the nanoinden-
tation problem involving the contact between the rigid
indenter and the elasto-plastic film.

2. Modelling of elasto-plastic materials

At low temperature, or when the loading speeds are
relatively low, the metallic materials present inelastic
time-independent deformations. The total strain e is split
into two components: an elastic part ee, connected linearly
to the stress tensor r, and a plastic part ep:

e ¼ e
e þ e

p ð1Þ

r ¼ D : ee ð2Þ

where D denotes the fourth-order elasticity tensor.
It is supposed that there is a convex field in the space of

stresses inside of which there is no plastic flow. The condi-
tions of the plastic flow can be summarized by the follow-
ing equations:

Elasticity if f < 0 or f ¼ 0 and
of

or
: r < 0 ð3Þ

Plasticity if f ¼ 0 and
of

or
: r > 0 ð4Þ

where f stands for the yield function and f = 0 represents
the loading surface delimiting the elastic domain. In a gen-
eral case, the surface of load is represented by an ellipsoid
in the stress space. In the case of isotropic plasticity consid-
ered here, we use the von Mises criterion as follows:

f ðr; x;RÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
ðs� xÞ : ðs� xÞ

r

� R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

3

2
g : g

r

� R 6 0

ð5Þ

where R and x represent respectively the radius and the
center of the elastic domain. s ¼ r� 1

3
trðrÞI is the deviator

stress tensor and g = s � x.
In the case of associated plasticity, the principle of nor-

mality is written by

_ep ¼ _k
of

or
¼ _kn ð6Þ

The von Mises stress is given by

JðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

3

2
g : g

r

ð7Þ

From Eq. (5), we have

n ¼
of

or
¼

3

2

g

JðgÞ
¼ �

of

ox
ð8Þ

The normality law is expressed then in the form:

_ep ¼ _kg ð9Þ

where _k ¼ 3
2JðgÞ

_k is the plastic multiplier.

Because the strain and stress tensors are symmetric,
vector forms can be used. Let us introduce a diagonal
matrix P = diag(1 1 1 2 2 2), the yield function can be writ-
ten in another form as

g ¼
1

2
g
TPg�

1

3
R2
6 0 ð10Þ

The isotropic law of strain hardening is defined by the evo-
lution of the radius R with respect to the cumulated plastic
deformation p by

RðpÞ ¼ Rs � ðRs � R0Þe
�cp ð11Þ

where Rs, R0 and c are material constants. Rs represents the
saturated radius and R0 the initial one.

The linear Prager kinematic hardening is defined by the
evolution of center x of the elastic domain with respect to
the plastic strain rate:

_x ¼
2

3
H _ep ¼

2

3
H _kg ð12Þ

where H is the slope of the kinematic work hardening.
The integration of behavior laws plays a very important

role in a finite element code. Indeed, it determines the pre-
cision of the solution. Errors on the estimates of the vari-
ables, once made, are not retrievable any more, moreover
when the estimates depend on the history of the loading
these errors can be propagated from an increment to
another. The results deviate more and more from the solu-
tion. In this study, the implicit integration algorithm has
been chosen.

Let us consider a plastically admissible state (corre-
sponding to the load step n) and the known characteristics
of this state are: rn, xn, pn verifying gn = g(rn,xn,pn) = 0.

From an incremental displacement Du, we can calculate
the increment of strain:

De ¼ BDu ð13Þ

where B is an operator derived from shape functions. Inte-
grating constitutive laws consists in calculating: rn+1, pn+1,
xn+1, gn+1 checking:

e
p
nþ1 ¼ e

p
n þ Dkgnþ1 ð14Þ

xnþ1 ¼ xn þ
2

3
HDkgnþ1 ð15Þ

pnþ1 ¼ pn þ

ffiffiffi

2

3

r

Unþ1Dk; Unþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gTnþ1Pgnþ1

q

ð16Þ

snþ1 ¼ Gðenþ1 � e
p
nþ1Þ ð17Þ

rnþ1 ¼ Dðenþ1 � e
p
nþ1Þ ð18Þ

gnþ1 ¼ snþ1 � xnþ1 ð19Þ
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The most used method to integrate the laws of plastic
behavior is undoubtedly the ‘‘Radial Return Mapping’’
(RRM), initially introduced by Wilkins [14], Krieg and
Krieg [15] for models of perfectly plastic behavior. The
extension of this method to the case of the models with
nonlinear kinematic work hardening was carried out by
Simo and Taylor [16]. The principle of this method is to
calculate the final stress rn+1 as the projection of a test
stress rE onto the yield surface according to the normal
passing by rE (Fig. 1).

The test stress is calculated by supposing that the incre-
ment of strain is entirely elastic:

rE ¼ rn þ DrE ¼ rn þDDe ð20Þ

The relations (14)–(19) are easily carried out as soon as one
obtained the plastic multiplier Dk defined by the condition
of consistency at the end of the step:

gðrnþ1; xnþ1; pnþ1Þ ¼ 0 ð21Þ

Replacing the relations (14)–(19), the Eq. (21) becomes a
nonlinear relation in Dk:

gðDkÞ ¼ 0 ð22Þ

2.1. Calculations of Dk

In view of (16) and (21), we have:

g ¼
1

2
g
T
nþ1Pgnþ1 �

1

3
R2ðpnþ1Þ ¼ 0 ð23Þ

It leads then to find gn+1 as a function of Dk and of known
variables.

By using the relations (14), (17), (19), we obtain:

gnþ1 ¼ snþ1 � xnþ1

¼ Gðenþ1 � e
p
nþ1Þ � xn �

2

3
HDkgnþ1

¼ Gðenþ1 � e
p
n � Dkgnþ1Þ � xn �

2

3
HDkgnþ1

¼ Gðenþ1 � e
p
nÞ � xn � Gþ

2

3
H

� �

Dkgnþ1 ð24Þ

Posing gE ¼ Gðenþ1 � e
p
nÞ � xn (which is known), we have

gnþ1 ¼
gE

1þ Gþ 2
3
H

� �

Dk
ð25Þ

Introducing (25) into (23) gives

gðDkÞ ¼
g
T
EPgE

2 1þ Gþ 2
3
H

� �

Dk
� �2

�
1

3
R2ðpnþ1Þ ¼ 0 ð26Þ

where pnþ1 ¼ pn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gT
E
PgE

3ð1þðGþ2
3
HÞDkÞ2

r

Dk.

Posing WðDkÞ ¼
g
T
E
PgE

ð1þðGþ2
3
HÞDkÞ2

, the relation (26) becomes:

gðDkÞ ¼
1

2
WðDkÞ �

1

3
R2 pn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
WðDkÞ

r

Dk

!

¼ 0 ð27Þ

This nonlinear equation in Dk can be solved by the
Newton–Raphson method.

2.2. Calculation of the consistent tangent matrix

The consistence condition states that the variation of the
criterion is null at the end of the loading step:

dg ¼ d
1

2
U2

nþ1 �
1

3
R2

� �

¼ Unþ1dUnþ1 �
2

3
RR0dpnþ1 ¼ 0

ð28Þ

According to (16) we have:

dpnþ1 ¼

ffiffiffi

2

3

r

DkdUnþ1 þ

ffiffiffi

2

3

r

Unþ1dðDkÞ ð29Þ

and then:

Unþ1dUnþ1 �
2

3
RR0

ffiffiffi

2

3

r

DkdUnþ1 þ

ffiffiffi

2

3

r

Unþ1dðDkÞ

 !

¼ 0

ð30Þ

Starting from this condition, we can obtain the consistent
tangent matrix as follows:

Dep ¼
ornþ1

oenþ1

¼ Aþ
K � G

3
J ð31Þ

where K and G are the bulk modulus and shear modulus,
(Jij = 1 for i, j = 1,2,3; Jij = 0 for i, j = 4,5,6) and

A ¼ G I�
Pgnþ1g

T
nþ1

wU2
nþ1

!

with w ¼ 1þ
2ðH þ R0Þ

3G 1� 2
3
R0
Dk

� �

 !

ð32Þ

The method of the radial return mapping is equivalent to
the pure implicit method which checks the criterion of plas-
ticity at the end of the step and maintain its properties of
unconditional stability.Fig. 1. Radial return mapping.

3



3. Modelling of contact problems

3.1. Contact kinematics

In the section, we describe basic definitions and nota-
tions used in contact theory. Two deformable bodies B

a

(Fig. 2), a = 1,2, are considered. Each of them occupies
the open, simply connected, bounded domain X

a � R
3,

whose generic point is denoted Xa. Furthermore, the solids
are elastic and undergo large displacements. The boundary
Ca of each body is assumed to be sufficiently smooth every-
where such that an outward unit normal vector, denoted by
na, can be defined at any point M on Ca. At each time t 2 I,
where I = [0,T] denotes the time interval corresponding to
the loading process, the boundary Ca of the bodyBa can, in
general, be split into three parts: Ca

u with prescribed dis-
placements �ua, Ca

t with prescribed boundary loads �ta, and
the potential contact surfaces Ca

c where the two bodies B1

and B
2 may possibly come into contact at some time t:

Ca ¼ Ca
u [ Ca

t [ Ca
c ð33Þ

The successive deformed configurations ofBa are described
at each time t by the displacement fields ua defined on X

a

(i.e. the closure of Xa). On the contact surface, a unique
normal n directed towards B

1ðn � n2Þ is defined and the
tangential plane, orthogonal to n in R

3, is denoted by T.
To construct an orthonormal local basis, two unit vectors
tx and ty are defined within the plane T. For describing
the frictional contact interactions that may occur on Cc,
we introduce the relative velocity with respect to B

2

_u ¼ _u1 � _u2 ð34Þ

where _u1 and _u2 are the instantaneous velocities of B1 and
B

2, respectively. Let r be the contact force distribution
exerted on B

1 atM from B
2. According to the action–reac-

tion principle, B2 is subjected to the stress vector-r. In the
local coordinate system defined by the tangential plane T

and the normal n, any element _u and r may be uniquely
decomposed as

_u ¼ _ut þ _unn; _ut 2 T; _un 2 R ð35Þ

r ¼ rt þ rnn; rt 2 T; rn 2 R ð36Þ

3.2. Contact law and friction rule

The unilateral contact law is characterized by a geomet-
ric condition of non-penetration, a static condition of

no-adhesion and a mechanical complementary condition.
These three conditions are known as the Signorini condi-
tions. The non-penetration condition constraints the
displacement fields ua and is given by

gðXÞ ¼ ðX1 � X2Þ � nP 0 ð37Þ

where

XaðtÞ ¼ Xaðt ¼ 0Þ þ ua ð38Þ

The position vector X2 is found as the closest-point pro-
jection of the point X1 2 C1

c on the surface C2
c . Denoting by

h the initial gap obtained at the beginning of each time
step.

h ¼ ðX1 � X2Þ � nP 0 ð39Þ

the impenetrability Signorini conditions are given by

un þ hP 0; rn P 0; ðun þ hÞrn ¼ 0 ð40Þ

These conditions have to be satisfied at each time-instant
t 2 I. Assume now that the bodies are initially in contact
on a certain portion of Cc. On this part of Cc, the Signorini
conditions turn into

un P 0; rn P 0; unrn ¼ 0 ð41Þ

In general, at any time t 2 I, the potential contact surfaces
Ca

c can be split into two disjoint parts: þCc where the bodies
are already in contact and �Ca

c where the bodies are not in
contact:

Ca
c ¼

þCc [
�Ca

c ð42Þ

In contrast to Ca
c ,

þCc and
�Ca

c change in time t and can
be empty at some t 2 I. We must stress that with the formu-
lation (41) only a loss of contact is allowed and the exten-
sion of the contact area cannot be modelled with these
relations. In the case of dynamic analysis such as impact
problems, the Signorini conditions can be formulated, on
+Cc, in terms of relative velocity

_un P 0; rn P 0; _unrn ¼ 0 on þCc ð43Þ

When _un P 0, the bodies are separating while they remain
in contact for _un ¼ 0. The previous formulation of the
Signorini conditions (43) can be combined with the sliding
rule to derive the complete frictional contact law applicable
on the contacting part of Cc. This complete law specifies
possible velocities of bodies that satisfy impenetrability,
non-adhesion and the sliding rule. Obviously, for a strictly
positive gap (unP 0), the normal relative velocity is arbi-
trary ( _un 2 R) and the normal reaction force is equal to
zero (rn = 0). Motions of bodies that are not in contact
are arbitrary until contact is made. This choice is motivated
by the fact that the emphasis is put on the definition of
admissible evolutions for contacting bodies where the
time-integration has to be performed. In the rest of the
paper, a ‘‘minus’’ sign will always precede the relative tan-
gential velocity � _ut to emphasize its opposite direction to
the friction force.Fig. 2. Projection and gap vector.
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Classically, a rate independent dry friction law is charac-
terized by a kinematic slip rule. In this work, the classical
Coulomb friction rule is used. The set of admissible forces,
denoted by Kl, is defined by

Kl ¼ r 2 R
3 such that krtk � lrn 6 0

� �

ð44Þ

Kl is the so-called Coulomb’s cone and is convex.

3.3. Complete frictional contact law

We consider now the previous friction law embedding
an impenetrability condition for completeness. On the con-
tact surface Cc, the sliding rule can be combined with the
rate form of the Signorini conditions to obtain the fric-
tional contact law that specifies possible scenarios on the
contact area (stick, slip, separation). The multivalued
nature of this strongly nonlinear law makes problems
involving frictional contact among the most difficult ones
in solid mechanics. Two overlapped ‘‘if. . .then. . .else’’
statements can be used to write it analytically:

if rn ¼ 0 then _unP 0 ! separating

elseif r2 int Kl then _un ¼ 0 and _ut ¼ 0 ! sticking

else ðr2bd Kl and rn > 0Þ

_unP 0 and 9 _k> 0 such that � _ut ¼ _k rt
krtk

n o

! sliding

endif

ð45Þ

where ‘‘intKl’’ and ‘‘bdKl’’ denote the interior and the
boundary of Kl, respectively. The multivalued character
of the law lies in the first and the second part of the state-
ment. If rn is null then _u is arbitrary but its normal compo-
nent _un should be positive. In other words, one single
element of R3 (r = 0) is associated with an infinite number
of velocity vectors _u 2 R

3. The same arguments can be
developed for the second part of the statement.

4. The bi-potential method

De Saxcé and Feng [11] have shown that the contact law
(45) is equivalent to the following differential inclusion:

� _ut þ ð _un þ lk _utkÞnð Þ 2 o

[

Kl

r ð46Þ

where
S

Kl
r denotes the so-called indicatory function of the

closed convex set Kl:

[

Kl

ðrÞ ¼
0 if r 2 Kl

þ1 otherwise

	

ð47Þ

The following contact bi-potential is obtained:

bcð� _u; rÞ ¼
[

R�

ð� _unÞ þ
[

Kl

ðrÞ þ lrnk � _utk ð48Þ

where R� ¼ ��1; 0� is the set of the negative and null real
numbers.

In order to avoid nondifferentiable potentials that occur
in nonlinear mechanics, such as in contact problems, it is
convenient to use the Augmented Lagrangian Method
[17–19,11,20]. For the contact bi-potential bc, given by
(48), provided that _un P 0 and r 2 Kl, we have:

8r0 2 Kl; .lðr0n � rnÞk _utk þ r� ðr� . _uÞð Þðr0 � rÞP 0

ð49Þ

where . is a solution parameter which is not user-defined.
In order to ensure numerical convergence, . can be chosen
as the maximum value of the diagonal terms of the local
contact stiffness matrix. Taking account of the decomposi-
tion (35) and (36), the following inequality has to be
satisfied:

r0 2 Kl; ðr� sÞ � ðr0 � rÞP 0 ð50Þ

where the modified augmented surface traction s is defined
by

s ¼ r� . _ut þ ð _un þ lk _utkÞnð Þ ð51Þ

The inequality (50) means that r is the projection of s onto
the closed convex Coulomb’s cone:

r ¼ projðs;KlÞ ð52Þ

For the numerical solution of the implicit equation (52),
Uzawa’s algorithm can be used, which leads to an iterative
process involving one predictor-corrector step:

Predictor siþ1 ¼ ri � .i _uit þ ð _uin þ lk _uitkÞn
� �

Corrector riþ1 ¼ projðsiþ1;KlÞ
ð53Þ

It is worth noting that, in this algorithm, the unilateral
contact and the friction are coupled via the bi-potential.
Another gist of the bi-potential method is that the correc-
tor can be analytically found with respect to the three pos-
sible contact statuses: s � Kl (contact with sticking),
s � K�

l (no contact) and s � R
3 � Kl

S

K�
l (contact with

sliding). K�
l is the polar cone of Kl. This corrector step is

explicitly given as follows:

if ljsiþ1
t j < �siþ1

n then riþ1 ¼ 0 ! separating

elseif jsiþ1
t j < lsiþ1

n then riþ1 ¼ s
iþ1 ! sticking

else riþ1 ¼ s
iþ1 �

ðksiþ1
t k�lsiþ1

n Þ

ð1þl2Þ

s
iþ1
t

ksiþ1
t k

þ ln

 �

! sliding

ð54Þ

5. Global solution algorithm

Generally, nonlinear mechanical behaviors of solid
media, discretized by Ne finite elements are governed by a
set of equilibrium equations:

FintðuÞ � Fext � R ¼ 0 ð55Þ

where Fext is the vector of external loads, R the vector of
contact forces in the global coordinate frame. The vector
of internal forces Fint(u) is calculated by
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FintðuÞ ¼
N̂ e

e¼1

Fe
intðuÞ ð56Þ

with

Fe
intðuÞ ¼

Z

V e

BT
rðuÞdV ð57Þ

The symbol ^ denotes a standard finite element assembly
operator. The solution of Eq. (55) is obtained by using
the Newton–Raphson iterative procedure:

Ki
TDu

i ¼ Fext þ Ri � Fi
intðu

iÞ

uiþ1 ¼ ui þ Dui

(

ð58Þ

where KT is the global tangent stiffness matrix:

KT ¼
N̂ e

e¼1

Ke
T ð59Þ

The tangent stiffness matrix Ke
T for each element is ob-

tained by taking the derivative of Fe
int with respect to the

nodal displacements u. In addition, by using Eqs. (31)
and (57), we obtain

Ke
T ¼

oFe
intðuÞ

ou
¼

Z

V e

BTDepBdV ð60Þ

6. Numerical application

The elasto-plastic contact model described above has
been implemented in an in-house finite element program.
In this study, the nanoindentation problem is solved with
the program. A tetrahedral indenter of Berkovitch type
comes in contact onto a thin layer surface (thickness of
300 nm) on a substrate. The thin layer is supposed to have
an elasto-plastic behavior. The indenter is supposed to be
rigid with a blunted point of radius of curvature of approx-
imately 50 nm. Fig. 3 shows the model with a grid in 3D as
well as a more detailed view in 2D. It should be noted that
the symmetry of the model is taken into account in order to
reduce the computing time. We needed to have a triangular
base pyramid with the tip rounded. The tip of the indenter
has been created with a 3D animation program (LIGTH-

WAVE 7.5). It has several special features that have
allowed us to realize the rounded tip with a radius of
50 nm with a tolerance of 2% as shown in Fig. 3. Then
we have realized a mesh on this 3D object. The mesh of
the film and the substrate are generated by the finite ele-
ment code ANSYS. We have chosen an appropriate level
of meshing to have the minimum number of contact ele-
ments between the tip and our meshed material, as we
can see in Fig. 3.

Fig. 4 shows the print left on the surface and the distri-
bution of stresses around the zone of indentation. The
triangular form of the print accurately reproduces what
we observe in experiments on this scale.

7. Conclusion

We have carried out a finite element model at a nano-
length scale in the case of an analysis of nanoindentation
properties for metal thin films. The elasto-plastic model
with contact reveals to be also powerful for treating this
kind of simulation at smaller length scales. We confronted
the numerical results obtained with experimental measure-
ments of the mechanical behaviors taken on monolithic
films, by taking account of the real and imperfect form of
the tip. We obtained a good agreement such as the print
left on surface and distribution of stress around the zone
of indentation. The extension of the model is to perform
nanoindentation on multi-structured films. The model will
be then developed to take into account the interaction at
interfaces between different layers. Recent works suggest
to couple the finite element model with a molecular
dynamic model to study material behavior at different
length scales [21,22]. So we plan to apply this model for
the modeling of scratch indentation tests and fracture
problems.
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