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Abstract – The bi-potential method has been successfully applied for the modelling of frictional contact
problems in static cases. This paper presents the extension of this method for dynamic analysis of impact
problems with multiple deformable bodies. Instead of second order algorithms, a first order algorithm is
applied for the numerical integration of the time-discretized equation of motion. The solution algorithm,
named Bi-First, is simple and efficient. The principle of energy conservation for the given exemples is
well preserved using the algorithm without any regularization. The numerical results also show clearly the
physical energy dissipation introduced by frictional effects between the solids in contact.
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1 Introduction

Problems involving contact and friction are among the
most difficult ones in mechanics and at the same time
of crucial practical importance in many engineering
branches. The main mathematical difficulty lies in the se-
vere contact non-linearities because the natural first order
constitutive laws of contact and friction phenomena are
expressed by non-smooth multivalued force-displacement
or force-velocity relations. In the last decade, substan-
tial progress has been made in the analysis of contact
problems using finite element procedures. A large num-
ber of algorithms for the numerical solution of the re-
lated finite element equations and inequalities have been
presented in the literature. Review papers may be con-
sulted for an extensive list of references [1–3]. See also
the monographs by Kikuchi and Oden [4], Zhong [5] and
Wriggers [6]. The popular penalty approximation and
’mixed’ or ’trial-and-error’ methods [7, 8] appear, at first
glance, suitable for many applications. But in this kind
of method, the contact boundary conditions and friction
laws are not satisfied accurately and it is tricky for the
users to choose appropriate penalty factors. They may
fail for stiff problems because of unpleasant numerical os-
cillations between contact statuses. The augmented La-
grangian method first appeared to deal with constrained
minimization problems. Since friction problems are not
minimization problems, the formulation needs to be ex-
tended. Alart and Curnier [9], Simo and Laursen [10] and
De Saxcé and Feng [11] have obtained some extensions in
mutually independent works. The first two works consist
of applying Newton’s method to the saddle-point equa-
tions of the augmented Lagrangian. De Saxcé and Feng

proposed a theory called ISM (Implicit Standard Mate-
rials) and a bi-potential method, in which another aug-
mented Lagrangian formulation was developed, which is
essentially different from that of the first two works. In
particular, in the bi-potential method, the frictional con-
tact problem is treated in a reduced system by means of
a reliable and efficient predictor-corrector solution algo-
rithm. For the unilateral contact problems with friction,
the classic approach is based on two minimum principles
or two variational inequalities: the first for unilateral con-
tact and the second for friction. The bi-potential method
leads to a single displacement variational principle and a
unique inequality. In consequence, the unilateral contact
and the friction are coupled via a contact bi-potential.
The application of the augmented Lagrangian method
to the contact laws leads to an equation of projection
onto Coulomb’s cone, strictly equivalent to the original
inequality [12]. For additional comments, see also the in-
teresting discussion by Klarbring et al. [13, 14].

For dynamic implicit analysis in structural mechanics,
the most commonly used time integration algorithm is
the second order algorithm such as Newmark, Wilson,
HHT. Wriggers et al. [15] have developed a radial re-
turn mapping scheme to deal with impact-contact pro-
blems. Laursen et al. [16–18] have considered dynamic
impact under the auspices of a conservative system and
have proposed the means to address the dynamic contact
conditions so that they preserve the global conservation
properties. The integration scheme is based on the second
order algorithm. Some first order algorithms have also
been proposed by Zienkiewicz et al. [19] and Jean [20] for
time stepping in structural dynamics.
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Fig. 1. Contact kinematics.

The aim of the present paper is to apply the bi-
potential method for contact modeling in dynamic cases
in the field of Non-Smooth Dynamics using the first or-
der algorithm for integration of the equation of motion.
The algorithm developed is named Bi-First and is imple-
mented into the finite element code FER/Contact, using
C++ with object oriented programming techniques. Two
numerical examples are performed in this study to show
the validity of the model developed. The first example
concerns the oblique impact of an elastic plate onto a
rigid surface with rebounding. The second example simu-
lates the impact of two elastic cylinders in rigid walls. In
order to show the physical energy dissipation by frictional
effects and the behavior of the energy dissipation with re-
spect to the friction coefficient, frictionless and frictional
contact are considered for both examples.

2 Problem setting

2.1 Contact kinematics

In the following, basic definitions and notations used are
described. Two deformable bodies Bα (Fig. 1), α = 1, 2,
are considered. Each of them occupies the open, simply
connected, bounded domain Ωα ⊂ R

3, whose generic
point is denoted Xα. Furthermore, the solids are elas-
tic and undergo large displacements. The boundary Γ α

of each body is assumed to be sufficiently smooth every-
where such that an outward unit normal vector, denoted
by nα, can be defined at any point M on Γ α. At each
time t ∈ I, where I = [ 0,T ] denotes the time interval
corresponding to the loading process, the boundary Γ α

of the body Bα can, in general, be split into three parts:
Γ α

u with prescribed displacements ūα, Γ α
t with prescribed

boundary loads t̄α, and the potential contact surfaces Γ α
c

where the two bodies B1 and B2 may possibly come into
contact at some time t :

Γ α = Γ α
u ∪ Γ α

t ∪ Γ α
c . (1)

The successive deformed configurations of Bα are de-
scribed at each time t by the displacement fields uα de-
fined on Ω̄α (i.e. the closure of Ωα). On the contact sur-
face, a unique normal n directed towards B1 (n ≡ n2) is
defined and the tangential plane, orthogonal to n in R

3,
is denoted by T. To construct an orthonormal local basis,
two unit vectors tx and ty are defined within the plane
T. For describing the frictional contact interactions that

may occur on Γc , we introduce the relative velocity with
respect to B2

u̇ = u̇1 − u̇2 (2)

where u̇1 and u̇2 are the instantaneous velocities of B1 and
B2, respectively. Let r be the contact force distribution
exerted on B1 at M from B2. According to the action-
reaction principle, B2 is subjected to the stress vector −r.
In the local coordinate system defined by the tangential
plane T and the normal n, any element u̇ and r may be
uniquely decomposed as

u̇ = u̇t + u̇n n, u̇t ∈ T, u̇n ∈ R. (3)
r = rt + rn n, rt ∈ T, rn ∈ R. (4)

2.2 Contact law and friction rule

The unilateral contact law is characterized by a geomet-
ric condition of non-penetration, a static condition of
no-adhesion and a mechanical complementary condition.
These three conditions are known as the Signorini condi-
tions. The non-penetration condition constraints the dis-
placement fields uα and is given by

g(X) = (X1 − X2) · n ≥ 0 (5)

where
Xα(t) = Xα(t = 0) + uα. (6)

The position vector X2 is found as the closest-point pro-
jection of the point X1 ∈ Γ 1

c on the surface Γ 2
c . Denoting

by h the initial gap obtained at the beginning of each time
step.

h = (X1 − X2) · n ≥ 0. (7)

The impenetrability Signorini conditions are given by

un + h ≥ 0, rn ≥ 0, (un + h) rn = 0. (8)

These conditions have to be satisfied at each time-instant
t ∈ I. Assume now that the bodies are initially in contact
on a certain portion of Γc. On this part of Γc, the Signorini
conditions turn into

un ≥ 0, rn ≥ 0, un rn = 0. (9)

In general, at any time t ∈ I, the potential contact sur-
faces Γ α

c can be split into two disjoint parts: +Γc where
the bodies are already in contact and −Γ α

c where the bod-
ies are not in contact:

Γ α
c = +Γc ∪ −Γ α

c . (10)

In contrast to Γ α
c , +Γc and −Γ α

c change in time t and can
be empty at some t ∈ I. We must stress that with the
formulation (9) only a loss of contact is allowed and the
extension of the contact area cannot be modelled with
these relations. In the case of dynamic analysis such as
impact problems, the Signorini conditions can be formu-
lated, on +Γc, in terms of relative velocity

u̇n ≥ 0, rn ≥ 0, u̇n rn = 0 on +Γc. (11)
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if rn = 0 then u̇n ≥ 0 ! separating
elseif r ∈ intKµthenu̇n = 0 and − u̇t = 0 ! sticking
else (r ∈ bdKµ and rn > 0){

u̇n ≥ 0 and ∃ λ̇ > 0 such that − u̇t = λ̇
rt

‖rt‖
}

! sliding

endif

(13)

When u̇n ≥ 0, the bodies are separating while they re-
main in contact for u̇n = 0. The previous formulation of
the Signorini conditions (11) can be combined with the
sliding rule to derive the complete frictional contact law
applicable on the contacting part of Γc . This complete law
specifies possible velocities of bodies that satisfy impen-
etrability, non-adhesion and the sliding rule. Obviously,
for a strictly positive gap (un ≥ 0), the normal relative
velocity is arbitrary (u̇n ∈ R) and the normal reaction
force is equal to zero (rn = 0). Motions of bodies that are
not in contact are arbitrary until contact is made. This
choice is motivated by the fact that the emphasis is put
on the definition of admissible evolutions for contacting
bodies where the time-integration has to be performed.
In the rest of the paper, a “minus” sign will always pre-
cede the relative tangential velocity −u̇t to emphasize its
opposite direction to the friction force.

Classically, a rate independent dry friction law is char-
acterized by a kinematic slip rule. In this work, the clas-
sical Coulomb friction rule is used. The set of admissible
forces, denoted by Kμ, is defined by

Kμ =
{
r ∈ R

3 such that ‖rt‖ − μrn ≤ 0
}
. (12)

Kμ is the so-called Coulomb’s cone and is convex.

2.3 Complete frictional contact law

We consider now the previous friction law embedding an
impenetrability condition for completeness. On the con-
tact surface Γc, the sliding rule can be combined with
the rate form of the Signorini conditions to obtain the
frictional contact law that specifies possible scenarios on
the contact area (stick, slip, separation). The multivalued
nature of this strongly non-linear law makes problems in-
volving frictional contact among the most difficult ones in
solid mechanics. Two overlapped “if...then...else” state-
ments can be used to write it analytically:

see equation (13) above

where “intKμ” and “bdKμ” denote the interior and the
boundary of Kμ, respectively. The multivalued character
of the law lies in the first and the second part of the state-
ment. If rn is null then u̇ is arbitrary but its normal com-
ponent u̇n should be positive. In other words, one single
element of R

3 (r = 0) is associated with an infinite num-
ber of velocity vectors u̇ ∈ R

3. The same arguments can
be developed for the second part of the statement. The

inverse law, i.e. the relationship r(−u̇), can be written as:

if u̇n > 0 then rn = 0 ! separating
elseif u̇ = 0 then r ∈ Kμ ! sticking
else (u̇ ∈ T− {0}){

u̇n ≥ 0 and rt = μ rn
−u̇t‖ − u̇t‖

}
! sliding

endif
(14)

The complete form of the frictional contact law involves
three possible states, which are separating, contact with
sticking, and contact with sliding. Only the last state pro-
duces energy dissipation.

3 The bi-potential method

De Saxcé and Feng [12] have shown that the contact law
(13) is equivalent to the following differential inclusion:

−(
u̇t + (u̇n + μ‖ − u̇t‖)n

) ∈ ∂
⋃
Kµ

r (15)

where
⋃
Kµ

r denotes the so-called indicatory function of

the closed convex set Kμ:

⋃
Kµ

(r) =
{

0 if r ∈ Kμ

+∞ otherwise .
(16)

The following contact bi-potential is obtained:

bc(−u̇, r) =
⋃
R−

(−u̇n) +
⋃
Kµ

(r) + μ rn‖ − u̇t‖ (17)

where R− = ] −∞, 0] is the set of the negative and null
real numbers.

In order to avoid nondifferentiable potentials that oc-
cur in nonlinear mechanics, such as in contact problems,
it is convenient to use the Augmented Lagrangian Method
[9–13]. For the contact bi-potential bc, given by (17), pro-
vided that u̇n ≥ 0 and r ∈ Kμ, we have:

∀ r
′ ∈ Kμ, �μ(r

′
n−rn)‖−u̇t‖+

(
r
′−(r−�u̇)

)·(r′−r) ≥ 0
(18)

where � is a solution parameter which is not user-defined.
In order to ensure numerical convergence, � can be chosen
as the maximum value of the diagonal terms of the local
contact stiffness matrix. Taking account of the decompo-
sition (3,4), the following inequality has to be satisfied:

r
′ ∈ Kμ, (r − τ ) · (r′ − r) ≥ 0 (19)
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if μ|τt
i+1| < −τ i+1

n then ri+1 = 0 ! separating
elseif |τt

i+1| < μ τ i+1
n then ri+1 = τ i+1 ! sticking

else ri+1 = τ i+1 − (‖τ i+1
t ‖ − μ τ i+1

n )

(1 + μ2)

( τ i+1
t

‖τ i+1
t ‖ + μn

)
! sliding

(23)

where the modified augmented surface traction τ is de-
fined by

τ = r − �
(
u̇t + (u̇n + μ‖ − u̇t‖)n

)
. (20)

The inequality (19) means that r is the projection of τ
onto the closed convex Coulomb’s cone:

r = proj(τ , Kμ). (21)

For the numerical solution of the implicit equation (21),
Uzawa’s algorithm can be used, which leads to an iterative
process involving one predictor-corrector step:

Predictor τ i+1 = ri − �i
(
u̇i

t + (u̇i
n + μ‖ − u̇i

t‖)n
)
,

Corrector ri+1 = proj(τ i+1, Kμ).
(22)

It is worth noting that, in this algorithm, the unilateral
contact and the friction are coupled via the bi-potential.
Another gist of the bi-potential method is that the cor-
rector can be analytically found with respect to the three
possible contact statuses: τ ⊂ Kμ (contact with sticking),
τ ⊂ K∗

μ (no contact) and τ ⊂ R
3−Kμ

⋃
K∗

μ (contact with
sliding). K∗

μ is the polar cone of Kμ. This corrector step
is explicitly given as follows:

see equation (23) above

It is important to emphasize the fact that this explicit
formula is valid for both 2D and 3D contact problems with
Coulomb’s friction and allows us to obtain very stable and
accurate results.

4 Finite element formulation of nonlinear
structures

4.1 Total Lagrangian formulation

In the linear analysis, a linear relation is assumed between
strains and displacements. However, if there are large
displacements and rotations, such as in the case of dy-
namic multibody contact problems, the nonlinear relation
between strains and displacements cannot be ignored.
Also, the equilibrium equation of internal and external
forces should be considered in the deformed configura-
tion. See the monographs by Crisfield [21] and Simo and
Hughes [22] for more details on computational aspects of
nonlinear problems. The geometrically nonlinear analysis
may be described by using the total or the updated La-
grangian formulations. The total Lagrangian formulation
is derived with respect to the initial configuration. The
updated Lagrangian formulation is derived with respect
to the current configuration. In other words, the total La-
grangian formulation constructs the tangent stiffness ma-
trix with respect to the initial configuration. On the other

hand, the updated Lagrangian formulation constructs the
tangent stiffness matrix with respect to the current config-
uration. The updated Lagrangian formulation is compu-
tationally effective because it does not include the initial
displacement matrix. In the total Lagrangian formulation,
the initial configuration remains constant. This simplifies
the computation. Therefore, the total Lagrangian formu-
lation was selected in this work for the finite element dis-
cretization. In order to describe the geometrical trans-
formation problems, the deformation gradient tensor is
defined by

Φ = Id + ∇u (24)

where Id is the unity tensor and ∇u the displacement
gradient tensor. Because of large displacements and ro-
tations, Green-Lagrangian strain is adopted for the non-
linear relationships between strains and displacements.
We note C the stretch tensor or the right Cauchy-Green
deformation tensor (C = ΦTΦ). The Green-Lagrangian
strain tensor E is defined by

E =
1
2
(C− I). (25)

In the context of the finite element method and from
equations (24, 25), the Green-Lagrangian strain includes
formally linear and nonlinear terms in function of nodal
displacements:

E =
(
BL +

1
2
BNL(u)

)
u (26)

where BL is the matrix which relates the linear strain
term to the nodal displacements, and BNL(u), the ma-
trix which relates the nonlinear strain term to the nodal
displacements. From equation (26), the incremental form
of the strain-displacement relationship is

δE =
(
BL + BNL(u)

)
δu. (27)

In the case of elastic or hyperelastic laws, there exists
an elastic potential function W (or strain energy density
function) which is a scalar function of the strain tensors,
whose derivative with respect to a strain component de-
termines the corresponding stress component. This can
be expressed by

S =
∂W

∂E
= 2

∂W

∂C
(28)

where S is the second Piola-Kirchhoff stress tensor. In the
particular case of isotropic Saint-Venant-Kirchhoff mate-
rial models, we have

W =
1
2

E : DE. (29)
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So S can be written by

S = DE (30)

where D denotes the usual material secant tangent. Using
the principle of virtual displacement, the virtual work δU
is given as

δU = Mü δu+Au̇ δu+
∫

V0

S δE dV −Fext δu−R δu = 0

(31)
where V0 is the volume of the initial configuration, Fext

the vector of external loads, R the contact reaction vec-
tor, M the mass matrix, A the damping matrix, u̇ the
velocity vector and ü the acceleration vector. Substitut-
ing δE from equation (27) into equation (31) results in

δU = Mü δu + Au̇ δu+∫
V0

S
(
BL + BNL(u)

)
δu dV − Fext δu − R δu = 0.

(32)

The vector of internal forces is defined by

Fint =
∫

V0

S
(
BL + BNL(u)

)
dV. (33)

Since δu is arbitrary, a set of nonlinear equations can be
obtained as

Mü + Au̇ + Fint − Fext − R = 0. (34)

It is noted that the stiffness effect is taken into account
by the internal forces vector Fint. Equation (34) can be
transformed into

Mü = F + R, where F = Fext − Fint − Au̇ (35)

with the initial conditions at t = 0

u̇ = u̇0 and u = u0. (36)

Taking the derivative of Fint with respect to the nodal
displacements u gives the tangent stiffness matrix as

K =
∂Fint

∂u
=

∫
V0

(∂S
∂u

(
BL+BNL(u)

)
+S

∂BNL(u)
∂u

)
dV.

(37)
In addition, by using equations (27, 30), the tangent stiff-
ness matrix is in fact the sum of the elastic stiffness matrix
Ke, the geometric stiffness (or initial stress stiffness) ma-
trix Kσ and the initial displacement stiffness matrix Ku:

K = Ke + Kσ + Ku (38)

where
Ke =

∫
V0

BT
LDBL dV, (39)

Kσ =
∫

V0

S
∂BNL

∂u
dV, (40)

Ku =
∫

V0

(
BT

LDBNL + BT
NLDBL + BT

NLDBNL

)
dV.

(41)

4.2 First order integration algorithm

We can now integrate equation (35) between consecu-
tive time configuration t and t + Δt. The most common
method to do that is the Newmark method which is based
on a second order algorithm. However, in impact pro-
blems, higher order approximation does not necessarily
mean better accuracy, and may even be superfluous. At
the moment of a sudden change of contact conditions (im-
pact, release of contact), the velocity and acceleration are
not continuous, and excessive regularity constraints may
lead to serious errors. For this reason, Jean [20] has pro-
posed a first order algorithm which is used in this work.
This algorithm is based on the following approximations:

∫ t+Δt

t

M du̇ = M
(
u̇t+Δt − u̇t

)
(42)

∫ t+Δt

t

F dt = Δt
(
(1 − ξ)Ft + ξ Ft+Δt

)
(43)

∫ t+Δt

t

R dt = ΔtRt+Δt (44)

ut+Δt − ut = Δt
(
(1 − θ) u̇t + θ u̇t+Δt

)
(45)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution
procedure, all the values at time t+Δt are replaced by the
values of the current iteration i+1; for example, Ft+Δt =
Fi+1. A standard approximation of Fi+1 gives

Fi+1 = Fi
int +

∂F
∂u

(ui+1 − ui) +
∂F
∂u̇

(u̇i+1 − u̇i)

= Fi
int − Ki Δu− Ai Δu̇. (46)

Finally, we obtain the recursive form of (19) in terms of
displacements:

K̄i Δu = F̄i + F̄i
acc + Ri+1,

ui+1 = ui + Δu (47)

where the so-called effective terms are given by

K̄i = ξ Ki +
ξ

θ Δt
Ai +

1
θ Δt2

Mi, (48)

F̄i
acc = − 1

θΔt2
Mi

{
ui − ut − Δt u̇t

}
, (49)

F̄i = (1 − ξ)
(
Ft

int + Ft
ext

)
+ ξ

(
Fi

int + Ft+Δt
ext

)
. (50)

At the end of each time step, the velocity is updated by

u̇t+Δt =
(
1 − 1

θ

)
u̇t +

1
θ Δt

(ut+Δt − ut). (51)

By setting θ = 1
2 , this scheme is then called the implicit

trapezoidal rule and it is equivalent to the Tamma - Nam-
buru method in which the acceleration need not be com-
puted [23]. See [24] for the interesting comments on time
stepping algorithms and on energy conservation.

It is noted that equation (47) is strongly non-linear,
because of large rotations and large displacements of solid,
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for instance in multibody contact/impact problems. Be-
sides, as mentioned above, the constitutive law of contact
with friction is usually represented by inequalities and
the contact potential is even nondifferentiable. Instead of
solving this equation in consideration of all nonlineari-
ties at the same time, Feng [25] has proposed a solution
strategy which consists in separating the nonlinearities in
order to overcome the complexity of calculation and to
improve the numerical stability. As Δu and R are both
unknown, equation (47) cannot be directly solved. First,
the vector R is determined by the bi-potential method
in a reduced system, which only concerns contact nodes.
Then, the vector Δu can be computed in the whole struc-
ture, using contact reactions as external loading. It is very
important to note that, as opposed to the penalty method
or Lagrange multiplier method, the bi-potential method
neither changes the global stiffness matrix, nor increases
the degrees of freedom. One consequence of this inter-
esting property is that it is easy to implement contact
and friction problems in an existing general-purpose fi-
nite element code by this method. In addition, the solu-
tion procedure is more stable because of the separation
of nonlinearities and improved numerical algorithms for
calculation of contact reactions.

4.3 Energy computation

After determining the displacement and the velocity
fields, we can calculate different energies. The total elas-
tic strain energy of the contact bodies (discretized by nel

finite elements) is then written by

Ee =
nel∑
e=1

∫
Ωe

We dΩ. (52)

The total kinetic energy can be calculated at the global
level by

Ek =
1
2

u̇TMu̇. (53)

Finally, the total energy of the system of solids is

Et = Ee + Ek. (54)

The case of interest for the analysis presented below cor-
responds to the homogeneous Neumann problem, charac-
terized by no imposed boundary displacements and no ex-
ternal loading. In addition, if frictionless contact is consid-
ered, the total energy should be conserved. For the given
examples, this fundamental energy conservation property
has been observed.

5 Numerical results

The algorithms presented above have been implemented
and tested in the finite element code FER/Contact [26].
Many application examples, in static or quasi-static cases,
have been carried out using the present method [25,27,28].

Fig. 2. Oblique impact of an elastic plate: geometry and de-
formed shapes vs time.

Table 1. Comparison of CPU time.

Method Computer CPU time (s)
Ko & Kwak [29] CRAY 2S/4-128 19 000
Kim & Kwak [30] HP 720 430
present PC Pentium 4/2.8 GHz 7

To illustrate the behavior of a contact/impact simu-
lation by the Bi-First algorithm described above, we con-
sider two example applications. For both cases, we as-
sume that no amortissement exists except for Coulomb
friction between contact surfaces, i.e. A = 0 in equa-
tions (34, 35, 48).

5.1 Oblique impact of an elastic plate with rebounding

The first example of dynamics analysis will be presented
to show the validity and efficiency of the model developed.
The problem concerns the oblique impact of an elastic
plate onto a rigid surface with rebounding. This example
has been proposed and studied by Kwak et al. [29, 30]
using Linear Complementarity Problem (LCP) formu-
lation. The geometric configuration and successive de-
formed meshes are displayed in Figure 2. For compari-
son purposes, we have used the same mesh as in [30].
The characteristics of this example are: Young’s modu-
lus E = 107 Pa, Poisson’s ratio υ = 0.25, mass density
ρ = 1000 kg/m3, Friction coefficient μ = 0.1, Initial ve-
locity: vx = 3 m/s, vy = −5 m/s. The geometric sizes are:
L = 0.04 m, H = 0.08 m, radius R = 0.101 m, thickness
e = 0.01 m. The total simulation time is 3.10−3 s and
the solution parameters are: Δt = 10−5 s, ξ = θ = 0.5.
The plate is modeled by 54 nodes and 37 linear quadri-
lateral plane stress elements (Fig. 2). The performance of
the present approach in terms of CPU time, as compared
to Kwak’s solutions, is reported in Table 1, which shows
the efficiency of the proposed method. It is noted from
Figure 3 that the total energy is dissipated by frictional
effects and the dissipated energy is calculated quantita-
tively. It is also interesting to examine another question:
is the dissipated energy monotone to the friction coeffi-
cient? The answer is no according to numerical results.
The proof is illustrated by Figure 4 which shows the evo-
lution of the dissipated energy with respect to the friction
coefficient. In fact, when the friction coefficient increases,
the friction forces increase. However, the tangential slips
will decrease. We know that the dissipated energy de-
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Fig. 3. Energy evolution vs time.
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Fig. 4. Evolution of the dissipated energy with respect to the
friction coefficient.

pends not only on the friction forces but also on the tan-
gential slips on the contact nodes, so it is understandable
to have the behavior as shown in Figure 4.

5.2 Impact between two cylinders

The second example simulates the impact of two cylinders
inside rigid walls. In doing so, we wish to further explore
the performance of the present method in a general situa-
tion with complicated contact sequences. The problem is
displayed in Figure 5. Dimensionless data are intention-
ally used. The cylinders have a diameter of 2. The Saint-
Venant-Kirchhoff material model is assumed for both
cylinders with material constants: E = 2700, υ = 0.33,
and mass density ρ = 1. The left cylinder is given an
initial velocity of vx = 1, vy = −2, hitting the bottom
rigid wall and afterwards the right cylinder as depicted
in Figure 5. The total simulation time is 15 and the so-
lution parameters are: Δt = 10−3, ξ = θ = 0.5. Figure 6
shows the deformed configurations of the two cylinders A
and B at different times (1.558, 2.898, 5.278, 6.298) cor-

4

4

4

Fig. 5. Impact of two cylinders inside rigid walls.

Fig. 6. Deformed configurations at different times (with fric-
tion).

responding respectively to (A1, B1), (A2, B2), (A3, B3)
and (A4, B4) as shown in the figure. The isolines repre-
sent the distribution of the Mises stress. Figure 7 shows
the plots of the kinetic energy Ek, the elastic strain en-
ergy Ee and the total energy Et. We can observe clearly
that the total energy is perfectly conserved in the case of
frictionless contact. However, in the case of frictional con-
tact (μ = 0.2), the total energy decreases at each shock
(Fig. 8). So the energy is dissipated by frictional effects
as expected.

It is interesting to note from Figure 7 that the left
cylinder hits another one at t = 2.45. On the other hand,
t = 2.8 in the case of frictional contact as indicated in
Figure 8. This fact can be explained as follows: because of
friction forces, the rebounding direction is changed such
that the running distance of the left cylinder from the
bottom wall to the right cylinder becomes longer. Thus,
it takes more time to hit each other. Figure 9 shows the
distribution of the shear stress of the left cylinder when it
hits the bottom wall. Without friction, the distribution is
symmetric, but this is not true with friction. Once again,
the frictional effects are apparently demonstrated.
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Fig. 7. Energy evolution without friction (μ = 0.0).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

E
ne

rg
y

Time (s)

Et
Ek
Ee

Fig. 8. Energy evolution with friction (μ = 0.2).

Fig. 9. Distribution of shear stress at t = 1.56.

6 Conclusion

In this paper, we have presented the recent development
of the bi-potential method applied to dynamic analysis
of two-dimensional contact problems with Coulomb fric-
tion. The Bi-First algorithm has been described and in-
vestigated numerically for two problems using different
coefficients of friction. From numerical experiments, we
have found that:

– The total energy is well conserved in the case of fric-
tionless contact of solids.

– The Bi-First algorithm permits to determine quanti-
tatively the physical energy dissipation by frictional
effects.

– The dissipated energy is not monotone with respect
to the friction coefficient.

– The Bi-First algorithm is simple and efficient:
– no modification of the global stiffness matrix;
– no regularization of contact and friction laws;
– accurate calculation of contact forces in a reduced

system;
– first order time stepping instead of second or

higher order integration.

We have felt that this approach could easily be ex-
tended to three-dimensional dynamic contact problems
including nonlinear material constitutive laws and more
complex frictional models [31]. This work is being under-
taken.
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