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Z.-Q. Feng Æ P. Joli Æ J.-M. Cros Æ B. Magnain

The bi-potential method applied to the modeling
of dynamic problems with friction

Abstract The bi-potential method has been successfully
applied to the modeling of frictional contact problems in
static cases. This paper presents an extension of this
method for dynamic analysis of impact problems with
deformable bodies. A first order algorithm is applied to
the numerical integration of the time-discretized equa-
tion of motion. Using the Object-Oriented Programming
(OOP) techniques in Cþþ and OpenGL graphical
support, a finite element code including pre/postpro-
cessor FER/Impact is developed. The numerical results
show that, at the present stage of development, this
approach is robust and efficient in terms of numerical
stability and precision compared with the penalty
method.

Keywords Impact Æ Bi-potential method Æ Finite
element method Æ Time-integration

1 Introduction

Problems involving contact and friction are the most
difficult ones in mechanics and at the same time of
crucial and practical significance in many engineering
branches. The main mathematical difficulty lies in the
severe contact non-linearities because the natural first
order constitutive laws of contact and friction phe-
nomena are expressed by non-smooth multivalued force-
displacement or force-velocity relations. In the past
decade, substantial progress has been made in the
analysis of contact problems using finite element pro-
cedures. A large number of algorithms for the numerical
solution to the related finite element equations and
inequalities have been presented in the literature. Re-

views may be consulted for an extensive list of references
[1–3]. Also see the monographs by Kikuchi and Oden
[4], Zhong [5] and Wriggers [6]. The popular penalty
approximation [7] and ‘mixed’ or ‘trial-and-error’
methods appear, at first glance, suitable for many
applications. But in this kind of method, the contact
boundary conditions and friction laws are not satisfied
accurately and it is tricky for the users to choose
appropriate penalty factors. They may fail for stiff
problems because of unpleasant numerical oscillations
among contact statuses [8]. The augmented Lagrangian
method first appeared to deal with constrained minimi-
zation problems. Since friction problems are not mini-
mum problems, the formulation needs to be extended.
Alart and Curnier [9], Simo and Laursen [10] and De
Saxcé and Feng [11] have obtained some extensions in
mutually independent works. Alart and Curnier applied
Newton’s method to the saddle-point equations of the
augmented Lagrangian. Simo and Laursen developed an
augmented Lagrangian formulation and a Uzawa type
scheme for frictional contact problems. De Saxcé and
Feng proposed a theory called ISM (Implicit Standard
Materials) and a bi-potential method, in which another
augmented Lagrangian formulation was developed,
which is different from that of the first two works. In
particular, in the bi-potential method, the frictional
contact problem is treated in a reduced system by means
of a reliable and efficient predictor-corrector solution
algorithm. For the unilateral contact problems with
friction, the classic approach is based on two minimum
principles or two variational inequalities: the first for
unilateral contact and the second for friction. The bi-
potential method leads to a single displacement varia-
tional principle and a unique inequality. In consequence,
the unilateral contact and the friction are coupled via a
contact bi-potential. The application of the augmented
Lagrangian method to the contact laws leads to an
equation of projection onto Coulomb’s cone, strictly
equivalent to the original inequality [12]. For additional
comments, also see the interesting discussion by Klar-
bring et al. [13, 14].
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For dynamic implicit analysis in structural mechan-
ics, the most commonly used integration algorithm is the
second order algorithm such as Newmark, Wilson, etc.
Armero and Petocz [15] and Laursen and Chawla [16]
have considered frictionless dynamic impact under the
auspices of a conservative system, and have proposed
the means to address the dynamic contact conditions so
that they preserve the global conservation properties.
Armero and Petocz [15] presume a penalty enforcement
of the contact constraint, algorithmically preserving the
energy dissipation associated with a new contact event
and restoring it to the system upon release. Laursen and
Chawla [16] also choose to concede an interpenetration
of the contact surfaces in order to establish a Lagrange
multiplier solution for each contact time step with en-
ergy conservation. In both cases, the contact constraints
have been modified in pursuit of the conservation
properties, resulting in an incomplete enforcement of
what might be considered normal geometric constraints
(i.e. impenetrability). Recently, Laursen and Love [17]
have proposed an improved implicit integration scheme
with a velocity update algorithm to avoid the interpen-
etration of the contact surfaces. It is well known that in
impact problems, the velocity and acceleration are not
continuous because of sudden changes in contact con-
ditions (impact, release of contact). So the second order
algorithms with regularity constraints may lead to seri-
ous errors. To avoid this shortcoming, some first order
algorithms have been proposed by Zienkiewicz et al.
[18], Moreau [19], Jean and Wronski [20, 21].

The aim of the present paper is to extend the bi-
potential method for contact modeling in dynamic cases
in the field of Non-Smooth Dynamics using the first
order algorithm for integration of the equation of mo-
tion. The developed algorithm is implemented into the
code FER/Impact, using Cþþ with object oriented
programming techniques and OpenGL graphical sup-
port. Two numerical examples are performed in this
study to show the validity of the model developed. The
first example concerns the oblique impact of a 2D elastic
plate onto a rigid surface with rebounding. The perfor-
mance of FER/Impact is reported as compared to the
general purpose finite element code ANSYS in which the
penalty method is used for contact modeling [22, 23].
The second example simulates the impact of an elastic
disc between two rigid plates. The frictional effects are
clearly shown on the motion behavior of the disc and on
the energy dissipation.

2 The bi-potential method

2.1 Unilateral contact and Coulomb’s friction laws

First of all, some basic definitions and notations are set
up. Let X1 and X2 be two bodies in contact at a point M
for some value of the time (Fig. 1). The instantaneous
velocity of the particles of X1 and X2 passing at point M
and its projection point M0 being, respectively, _u1 and _u2,

where the superposed dot denotes the time derivative.
The relative velocity is _u ¼ _u1 � _u2. Let r be the contact
reaction acting at M0 from X2 onto X1. Then X2 is
subjected to the reaction �r, acting from X1. Let n de-
note the normal unit vector at point M0 to the bodies,
directed towards X1, and T(t1, t2) denotes the orthogo-
nal plane to n in <3. Any element _u and r may uniquely
be decomposed in the form:

_u ¼ _ut þ _unn; _ut 2 T; _un 2 < ð1Þ

r ¼ rt þ rnn; rt 2 T; rn 2 < ð2Þ
Classically, a unilateral contact law is characterized by a
geometric condition of non-penetration, a static condi-
tion of no-adhesion and a mechanical complementarity
condition. These three conditions are the so-called Si-
gnorini conditions written in terms of the signed contact
distance xn and the normal contact force rn:

xn � 0; rn � 0 and rnxn ¼ 0 ð3Þ
where xn denotes the magnitude of the gap between the
contact node and the target surface and is a violation of
the contact compatibility:

xn ¼ gþ un ð4Þ
with the initial gap:

g ¼ x1 � x2ð Þ � n ð5Þ
where x1 and x2 denote respectively the coordinates of
contact nodes of X1 and X2.

In the case of dynamic analysis such as impact
problems, the Signorini’s condition can be described in
terms of velocity in conjunction with the sliding rule. At
any time, the potential contact surfaces Caða ¼ 1; 2Þ can
be split into two disjoint parts: Cþa where the bodies are
already in contact (g = 0) and C�a where the body are
not in contact (g > 0). On Cþa , the unilateral contact
conditions turns into

un � 0; rn � 0 and rnun ¼ 0 on Cþa ð6aÞ
or in a rate form:

_un � 0; rn � 0 and rn _un ¼ 0 on Cþa ð6bÞ
Let Kl denote Coulomb’s cone:

Kl ¼ r 2 <3 such that krtk � l rn
� �

ð7Þ
Kl is a closed convex set. The complete contact law is a
complex non-smooth dissipative law including three

Fig. 1 Contact kinematics
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statuses: no contact, contact with sticking and contact
with sliding. The resulting analytical transcripts yield
two overlapped ‘‘if. . .then. . .else’’ statements:

if rn ¼ 0; then _un > 0; ! no contact
else if r 2 I Kl

� �
; then _u ¼ 0; ! sticking

else rn > 0; r 2 B Kl
� �

; _un ¼ 0 and 9k � 0
such that _ut ¼ �k rt

krtk ! sliding

ð8Þ

where I Kl
� �

and B Kl
� �

represent respectively the inte-
rior and the boundary of Kl

� �
. The parameter k repre-

sents indeed the magnitude of the relative velocity.
An alternative statement is the inverse law:

if _un > 0; then r ¼ 0; ! no contact
else if _u ¼ 0; then r 2 I Kl

� �
; ! sticking

else _u 2 T; rn > 0 and rt ¼ �lrn
_ut
k _utk ! sliding

ð9Þ

De Saxcé and Feng [12] have proposed a more compact
form of the contact law. They have shown that the
contact law (8) is equivalent to

_ut þ _un þ lk _utkð Þn½ � 2 o
[

Kl

ðrÞ ð10Þ

where
S

Kl

ðrÞ denotes the so-called indicator function

of the closed convex set Kl:

[

Kl

ðrÞ ¼ 0 if r 2Kl
þ1 otherwise

�
ð11Þ

@
S

Kl

ðrÞ is the subdifferential of
S

Kl

at r.

The following contact bi-potential is obtained:

bcð� _u; rÞ ¼
[

<�
� _unð Þ þ

[

Kl

ðrÞ þ lrnj � _utj ð12Þ

where <� is the set of the negative and null real num-
bers. Then the contact laws (8) and (9) can be, respec-
tively, written in compact forms of implicit subnormality
rules or differential inclusion rules

� _u 2 @rbcð� _u; rÞ; r 2 @� _ubcð� _u; rÞ ð13Þ

2.2 Local algorithm

In order to avoid nondifferentiable potentials that occur
in nonlinear mechanics, such as in contact problems, it is
convenient to use theAugmented LagrangianMethod [9–
13]. Let q > 0 be chosen in a suitable range to ensure
numerical convergence. It can be determined directly
according to the reduced contact flexibilitymatrix [24] (see
Appendix). Consider the flexibility matrix for one contact
node:

W ¼ wnn wnt

wtn wtt

� �
ð14Þ

the parameter q is then defined by

q ¼ 1=min wnn;wttð Þ or

q ¼ 1=g with g the smallest eigenvalue of W ð15Þ
So, q is not a user-defined factor, as opposed to the
penalty factor. For the contact bi-potential bc, given by
(12), provided that _un � 0 and r 2 Kl, we have

8 r0 2 Kl; ql r0n�rn
� �

j _utjþ½r�ðr� q _uÞ� � ðr0�rÞ�0

ð16Þ
Taking into account the decomposition (1), the follow-
ing inequality has to be satisfied:

8 r0 2 Kl; ðr� sÞ � r0 � rð Þ � 0 ð17Þ
where the modified augmented contact force s is defined
by:

s ¼ r� q _ut þ _un þ lj _utjð Þn½ � ð18Þ
The inequality (17) means that r is the projection of s
onto the closed convex Coulomb’s cone:

r ¼ proj s;Kl
� �

ð19Þ
For the numerical solution of the implicit equation (19),
Uzawa’s algorithm can be used, which leads to an iter-
ative process involving one predictor–corrector step:

Predictor: siþ1 ¼ ri � q _ui
t þ _ui

n þ lj _ui
tj

� �
n

� 	
ð20Þ

Corrector: riþ1 ¼ proj siþ1;Kl
� �

ð21Þ
It is worth noting that, in this algorithm, the unilateral
contact and the friction are coupled via the contact bi-
potential. This approach may be compared with the
augmented Lagrangian method developed by Jean and
Touzot [25], and with the return mapping method
developed by Giannakopoulos [26] and Wriggers et al.
[27] in which the unilateral contact and the friction are
not coupled. Another gist of the bi-potential method is
that the corrector can be analytically found with respect
to the three possible contact statuses: s 2 Kl (contact
with sticking), s 2 K�l (no contact) and

s 2 <3 � Kl [ K�l

 �

(contact with sliding). K�l is the

polar cone of Kl (Fig. 2).
This corrector step is explicitly given as follows:

if ljsiþ1
t j<�siþ1

n then riþ1¼ 0 ! no contact

else if jsiþ1
t j � lsiþ1

n then riþ1¼ siþ1 ! sticking

else riþ1¼ siþ1� jsiþ1
t j�lsiþ1

nð Þ
1þl2

siþ1
t

jsiþ1
t j
þln


 �
! sliding

ð22Þ
After the convergence of the predictor-corrector process,
the reaction forces in the global frame are obtained by

Rc ¼ HðuÞ r ð23Þ
where H(u) is the mapping from the local frame to the
global frame.
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3 Global integration algorithms

Generally, non-linear dynamic mechanical behaviors of
solid media with contact are governed by the dynamic
equilibrium equation (after finite element discretisation):

M €u ¼ Fþ Rc ð24Þ
where

F ¼ Fext þ Fint � C _u ð25Þ
The vectors Fint and Fint denote, respectively, the internal
and external forces. Rc is the assembled vector of contact
forces obtained fromEq. (23).M is themass matrix andC
the damping matrix. _u is the velocity vector and €u the
acceleration vector. It is noted that the stiffness effect is
taken into account by the internal forces vector Fint. The
most common method for integrating the dynamics
Eq. (24) is the Newmark method. It is based on the
following assumptions concerning the relation between
displacement, velocity and acceleration:

utþDt ¼ ut þ Dt _ut þ Dt2 ð0:5� aÞ€ut þ a€utþDt� 	
ð26Þ

_utþDt ¼ _ut þ Dt 1� bð Þ€ut þ b€utþDt� 	
ð27Þ

The parameters a and b determine the stability and
precision of the algorithm. In standard applications
without contact, the values corresponding to trapezoidal
rule (with parameters b ¼ 0:5 and a ¼ 0:25) are com-
monly used. A second order scheme ensures good sta-
bility and regularity of the solution. Chaudhary and
Bathe [28] presented a solution method for dynamic
analysis of 3D contact problems with friction. The
Lagrange multiplier method and the Coulomb friction
law were used to solve the constrained boundary
conditions. The implicit time integration of the dynamic
response was performed using the Newmark scheme
with parameters b ¼ 0:5 and a ¼ 0:5. A very small time
step was used to ensure the energy and momentum
balance criteria. However, in high-velocity impact
problems, higher order approximation does not neces-

sarily mean better accuracy, and may even be superflu-
ous. At the moment of sudden change of contact
conditions (impact, release of contact), the velocity and
acceleration are not continuous, and excessive regularity
constraints may lead to serious errors such as an
unstable increase of the energy during the numerical
simulations [15]. Moreau [19], Jean and Wronski [20, 21]
have proposed a first order algorithm that is used in this
work. Equation (24) can be transformed into

M d _u ¼ F dt þ Rc dt ð28Þ
We can now integrate Eq. (28) between consecutive time
configuration t and t þ Dt, using the following approxi-
mations:

ZtþDt

t

M d _u ¼M _utþDt � _ut� �
ð29Þ

ZtþDt

t

F dt ¼ Dt 1� nð ÞFt þ nFtþDt
� 	

ð30Þ

ZtþDt

t

Rc dt ¼ DtRtþDt
c ð31Þ

utþDt � ut ¼ Dt 1� hð Þ _ut þ h _utþDt� 	
ð32Þ

where 0 � n � 1; 0 � h � 1. In the iterative solution
procedure, all the values at time t þ Dt are replaced by
the values of the current iteration iþ 1; for example,
FtþDt ¼ Fiþ1. A standard approximation of Fiþ1 gives

Fiþ1 ¼ Fi
int þ

oF

ou
uiþ1 � ui
� �

þ oF

o _u
_uiþ1 � _ui� �

¼ Fi
int � KiDu� CiD _u ð33Þ

where K and C are respectively the tangent stiffness
matrix and the damping matrix.

Finally, we obtain the recursive form of Eq. (28) in
terms of displacements

�K
i
Du ¼ �F

i þ Riþ1
c ð34Þ

uiþ1 ¼ ui þ Du ð35Þ
where the so-called effective terms are given by

�K
i ¼ nKi þ n

hDt
Ci þ 1

hDt2
Mi ð36Þ

�F
i ¼ 1� nð Þ Ft

int þ Ft
ext

� �
þ n Fi

int þ FtþDt
ext

� �

� 1

hDt2
Mi ui � ut � Dt _ut� �

ð37Þ

In this algorithm, the acceleration does not need to be
computed. At the end of each time step, the velocity is
updated by

_utþDt ¼ 1� 1

h

� �
_ut þ 1

hDt
utþDt � ut
� �

ð38Þ

Fig. 2 Coulomb’s cone Kl and its polar one K�l
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Eq. (34) is strongly non-linear, because of finite strains
and large displacements of solid, for instance in large
deformation problems. Besides, the constitutive law of
contact with friction is usually represented by inequali-
ties and the contact potential is even nondifferentiable.
Instead of solving this equation in consideration of all
nonlinearities at the same time, Feng and Domaszewski
[29] have proposed a solution strategy that consists in
separating the nonlinearities in order to overcome the
complexity of calculation and to improve the numerical
stability. As Du and Rc are both unknown, Eq. (34)
cannot be directly solved. First, Eq. (34) is solved
without considering the contact forces so as to determine
the contact interpenetration. Then, the vector Rc is
determined by the bi-potential method (Eqs. 20–23) in a
reduced system, which only concerns contact nodes.
Then, the vector Du can be computed in the whole
structure, using contact reactions as external loading.
This solution procedure involving contact modeling can
be summarized in Box 1.

Box 1. Solution procedure
It is very important to note that, as opposed to the

penalty method or Lagrange multiplier method, the bi-
potential method neither changes the global stiffness
matrix, nor increases the degrees of freedom. One conse-
quence of this interesting property is that it is easy to
implement contact and friction problems in an existing
general-purpose finite element code by this method. In

addition, the solution procedure is more stable because of
the separation of nonlinearities and improved numerical
algorithms for calculation of contact reactions.

4 Numerical results

The algorithms presented above have been implemented
and tested in the finite element code FER/Impact. Many
application examples, in static or quasi-static cases, have
been carried out using the present method [24, 30, 31].

The first example of dynamics analysis will be pre-
sented to show the validity of the model developed. The
problem concerns the oblique impact of a 2D elastic
plate onto a rigid surface with rebounding. This example
has been proposed and studied by Kim and Kwak [32]
using Linear Complementarity Problem (LCP) formu-
lation. The geometric configuration and finite element
mesh are displayed in Fig. 3. Finer finite element meshes
are generated near the contact surface so as to improve
the accuracy on the contact modeling. A non-uniform
mesh is thus used instead of a uniform one. A mesh-
adaptive technique in contact mechanics has been
developed by Wriggers and Scherf [33].

The characteristics of this example are: Young’s
modulus: E = 107 Pa; Poisson’s ratio: m = 0.25; Mass
density: q = 1000 kg/m3; Friction coefficient: l = 0.2;
Initial velocity: vx = 3 m/s, vy ¼ �5 m/s; Geometric size:
L=0.04 m,H=0.08 m, radius R=0.101 m, thickness
e = 0.01 m; Integration time: 3 � 10�3 s. The plate is
modeled by 296 nodes and 259 linear quadrilateral plane
stress elements (Fig. 3). The solution parameters are
reported in Table 1.

Fig. 3 Oblique impact of an elastic plate and finite element mesh

Table 1 Solution parameters

Code time step Dt (s) Integration
parameters

Penalty
factor

ANSYS 10)5 (initial step) (Newmark) b = 0.5,
a = 0.25

105

FER/Impact 10)5 h ¼ n = 0.5 no

1. Read the data: mesh, material properties,
boundary conditions, …

2. Determine the mass matrix M and the damping
matrix C

3. For each time step
3.1. Determine the external force vector Fext

3.2. Detect contact conditions (local frame, gap
vector…)

3.3. For each Newton-Raphson equilibrium itera-
tion

3.3.1. Compute the tangent stiffness matrix K and
the internal force vector Fint

3.3.2. Compute the effective stiffness matrix �K and
the effective force vector �F

3.3.3. Modify �K and �F for essential boundary con-
ditions

3.3.4. Solve �K Du ¼ �F
3.3.5. Compute reaction forces Rc by local algorithm
3.3.6. Solve �K Du ¼ �F + Rc

3.3.7. Actualize u = u + Du
3.3.8. Check convergence criteria, if not met, go to

3.3.1.
3.4. Compute the velocity vector
3.5. Gather element nodal displacement
3.6. Compute stresses and strains for each element

and output
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Figure 4 shows the evolution of contact and friction
forces versus time at the center point B of arch ABC.
Figure 5 shows the deformed meshes at different times.

From Fig. 4, the rebounding occurred at 1.85 � 10�3 s.
Figure 6 shows the evolution of Von Mises stress con-
tours in the plate. The maximum value is 916500 Pa. As
shown in Figs. 5 and 6, the rebound is not in the normal
direction of the rigid surface because of the friction effect
and the oblique impact. The French IPSI workshop
proposed this example as a test example [34]. Several
industrial codes (ANSYS, ABAQUS, LS-DYNA,

Fig. 4 Evolution of reaction
forces at point B versus time

Fig. 5 Deformed meshes at different time steps

Fig. 6 Evolution of Von Mises stress versus time

Table 2 Comparison between the codes

Code Formulation Contact algorithm tr (ms)

ANSYS Second order implicit Penalty 1.8
SYSTUS Second order implicit Penalty 1.9
ABAQUS/

Standard
Second order implicit Lagrange

multiplier
1.8

RADIOSS Explicit Penalty 1.8
LS-DYNA Explicit Penalty 1.7
FER/Impact First order implicit Bi-potential 1.85
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SYSTUS, RADIOSS) have been used for analysis of this
example. Table 2 summarizes the formulation used by
each code and the instant (tr) of rebounding of point B.
The comparison is rather homogeneous. In a more de-
tailed investigation, we can observe significant differ-
ences between FER/Impact and ANSYS. Figure 7
shows the deformed shapes obtained by the two codes
with zoom. We can see the penetration in the case of
ANSYS, but not with FER/Impact. The performance of
the present approach, as compared to ANSYS, is re-
ported in Table 3 in which the iteration number is the
cumulative Newton–Raphson iteration number neces-
sary to achieve the analysis. These results show once
again the efficiency of the proposed method. It is noted
that the analysis is performed on a PC (Pentium III 733
MHz).

Some test examples of contact problems in static case
have been proposed by Feng [30]. We propose in this
paper another test example of impact problems. This
example simulates the impact of an elastic disc between
two rigid plates. Dimensionless data are intentionally
used. The disc has a diameter of 2 and a thickness of 1.
The Saint–Venant–Kirchhoff material model is assumed
for the disc with material constants: E = 1000, m= 0.45,
q = 1. The disc is given an initial velocity of vx = 2 and
vy ¼ �2, hitting the bottom plate and afterwards the top
plate and so on. The total simulation time is 8 and the

solution parameters are taken as: Dt ¼ 10�3,
n ¼ h ¼ 0:5. In order to show the frictional effects, both
frictionless contact and frictional contact (with l ¼ 0:5)
are considered. Fig. 8 shows the deformed meshes of the
disc for both cases. It is quite easy to understand the
situation of the frictionless case where the disc does not
rotate and moves regularly from the left to the right as
shown in Fig. 8 (a). However, in the case of frictional
contact, the motion behavior is not predictable. After
the first shock, the disc rotates due to the tangential
friction forces. After the second shock, the rotation is
inverted and the tangential friction forces make the disc
move to the left. So the disc returns almost to its initial
position as shown in Fig. 8 (b). Fig. 9 shows the distri-
bution of the Von Mises stress of the disc when it hits the
bottom plate at t ¼ 1:588. Without friction, the distri-
bution is symmetric as expected, but this is not the case
with friction. Once again, the frictional effects are
apparently demonstrated. It is also interesting to
examine the energy evolution. Figures 10 and 11 show
the plots of the kinetic energy Ek, the elastic strain en-
ergy Ee and the total energy Et. We can observe clearly
that the total energy is perfectly conserved in the case of
frictionless contact (Fig. 10). However, in the case of
frictional contact, the total energy decreases at each
shock (Fig. 11). So the energy is dissipated by frictional
effects as expected.

5 Conclusion

In this paper, we have presented the recent development
of the bi-potential method applied to dynamic analysis in
contact mechanics. The numerical algorithms have been
described. The proposed algorithm is based on the local
analysis of frictional contact problems by the bi-potential
method and on the global resolution of the dynamic

Fig. 7 Deformed meshes with isovalues of UY at t ¼ 1:0 ms

Table 3 Performance of FER/Impact and ANSYS

Code Number
of time steps

Iteration
number

CPU time (s)

ANSYS 766 7821 8733
FER/Impact 300 2423 1850

Fig. 8 Deformed meshes (t = 0, 1.588, 3.888, 6.258, 7.498)
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equation using the first order algorithm. Numerical re-
sults demonstrated that our model could provide better
performance in terms of numerical stability and precision
when compared to other existing formulations such as
penalty and second order implicit integration schemes.
The proposed algorithm not only preserves the energy
conservation property of frictionless contact of solids
exactly, but also determines the physical energy dissipa-
tion by frictional effects quantitatively.

Appendix: computation of the flexibility matrix

In order to reduce the dimension of the problem before
the iterative procedure, one can use the condensation

technique. Reformulating the structure equilibrium Eq.
(34) under the following form:

�Krr
�Krc

�K
T
rc

�Kcc

� 
Dur

Duc

� �
¼

�F
Rc

� �
ðA.1Þ

where Duc is the displacement vector of the contact node
and Dur for the others. The condensed degrees Dur are
eliminated by:

Dur ¼ �K
�1
rr

�F� �KrcDucð Þ ðA.2Þ
Replacing (A.2) into (A.1), one obtains:

�K
�
ccDuc ¼ �F

� þ Rc ðA.3Þ
with

Fig. 9 Isovalues of Von Mises
stress at t = 1.588

Fig. 10 Energy evolution with-
out friction (l = 0.0)

Fig. 11 Energy evolution with
friction (l = 0.5)
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�K
�
cc ¼ �Kcc � �K

T
rc

�K
�1
rr

�Krc and

�F
� ¼ ��K

T
rc

�K
�1
rr

�F ðA.4Þ
The contact flexibility matrix is thus obtained by

Wcc ¼ �K
�
cc

� ��1 ðA.5Þ
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