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Abstract1

Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming2

potential (GWP) of agro-ecosystems. Evaluating the impactof agriculture on climate there-3

fore requires a capacity to predict N2O emissions in relation to environmental conditions and4

crop management. Biophysical models simulating the dynamics of carbon and nitrogen in agro-5

ecosystems have a unique potential to explore these relationships, but are fraught with high6

uncertainties in their parameters due to their variations over time and space. Here, we used a7

Bayesian approach to calibrate the parameters of the N2O submodel of the agro-ecosystem model8

CERES-EGC. The submodel simulates N2O emissions from the nitrification and denitrification9

processes, which are modelled as the product of a potential rate with three dimensionless factors10

related to soil water content, nitrogen content and temperature. These equations involve a total11

set of 15 parameters, four of which are site-specific and should be measured on site, while the12

other 11 are considered global, i.e. invariant over time andspace. We first gathered prior informa-13

tion on the model parameters based on literature review, andassigned them uniform probability14

distributions. A Bayesian method based on the Metropolis-Hastings algorithm was subsequently15

developed to update the parameter distributions against a database of seven different field-sites16

in France. Three parallel Markov chains were run to ensure a convergence of the algorithm. This17

site-specific calibration significantly reduced the spreadin parameter distribution, and the un-18

certainty in the N2O simulations. The model’s root mean square error (RMSE) wasalso abated19

by 73% across the field sites compared to the prior parameterization. The Bayesian calibration20

was subsequently applied simultaneously to all data sets, to obtain better global estimates for21

the parameters initially deemed universal. This made it possible to reduce the RMSE by 33%22

on average, compared to the uncalibrated model. These global parameter values may be used23

to obtain more realistic estimates of N2O emissions from arable soils at regional or continental24
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1 Introduction1

Soils are the main source of nitrous oxide (N2O) in the atmosphere, via the microbial processes of2

nitrification and denitrification. Because of its heavy reliance on synthetic N-fertilisers, agricul-3

ture has enhanced these two processes, as a result of which agro-ecosystems contribute 55-65%4

of the global anthropogenic emissions of N2O. Compared to other ecosystem types or economic5

sectors, they are thus responsible for the major part of the atmospheric build-up of N2O (Smith6

et al., 2007). Compared to other greenhouse gases (GHG) suchas CO2, N2O fluxes are of small7

magnitude and highly variable in space and time, being tightly linked to the local climatic se-8

quence and soil properties. Predicting N2O emissions from agro-ecosystems thus requires taking9

into account complex processes and interactions which originate from both environmental con-10

ditions and agricultural practises (Duxbury and Bouldin, 1982; Grant and Pattey, 2003; Pattey11

et al., 2007). This poses a serious challenge to the estimation of the source strength of arable12

soils, which is currently mostly based on available statistics on fertilizer ignoring these environ-13

mental factors (IPCC, 2006; Lokupitiya and Paustian, 2006). On the other hand, process-based14

agro-ecosystem models may in principle capture these effects, and have thereby a unique poten-15

tial to predict N2O emissions from arable soils at the plot-scale as well as at regional and con-16

tinental scales (Butterbach-Bahl et al., 2004; Li et al., 2001; Gabrielle et al., 2006a; Del Grosso17

et al., 2006). Examples of biophysical N2O-models include DAYCENT (Parton et al., 2001),18

DNDC (Li, 2000), FASSET (Chatskikh et al., 2005) and CERES-EGC (Gabrielle et al., 2006b).19

However, a major limitation to the wide-spread use of these models lies in the fact that their20

predictions are highly dependent on parameter settings, and carry a large uncertainty due to un-21

certainties in parameter values, driving variables and model structure (Gabrielle et al., 2006a).22

Although model parameterisation and uncertainty analysisare widely developed in the litera-23

ture on agro-ecosystem models, they are rarely considered simultaneously (Monod et al., 2006;24
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Makowski et al., 2006). Bayesian calibration makes it possible to combine the two types of anal-1

ysis by providing estimates of parameters values under the form of probability density functions2

(pdfs), which may be also propagated to model outputs as pdfs(Gallagher and Doherty, 2007).3

Probability density functions are initially the expression of current imprecise knowledge about4

model parameter values, this prior probability is then updated with the measured observations5

into posterior probability distribution by means of Bayes’theorem (Makowski et al., 2006).6

In ecological and environmental sciences, Bayesian calibration has been applied to a wide range7

of models (Hong et al., 2005; Larssen et al., 2006; Ricciuto et al., 2008), and this field is de-8

veloping actively, mainly using Markov Chain Monte Carlo (MCMC) methods to estimate the9

posterior pdf for the model parameters. The Bayesian methodology described by Van Oijen et al.10

(2005) was applied to dynamic process-based forest models with the objective of calibrating11

model parameters with various types of observed data from forested experimental sites (Svens-12

son et al., 2008; Klemedtsson et al., 2007). In these examples, Metropolis-Hastings MCMC-13

algorithm was used to generate samples from the posterior parameter distributions. Although14

there is an increasing body of literature on the applicationof Bayesian approaches to environ-15

mental sciences, the latter have not been applied to process-based model of soil N2O emission16

models, to the best of our knowledge.17

The overall purpose of this paper was thus to calibrate the parameters of the N2O emission mod-18

ule of the CERES-EGC agro-ecosystem model and to quantify uncertainty of model simulations19

by developing a suitable Bayesian calibration method. Datasets of measured N2O emission rates20

were collected from seven field-sites in Northern France, which represent major soil types, crops21

and management practices of the area. The Bayesian procedure was first applied separately to22

each experimental site, and secondly to the ensemble of the sites. This made it possible to ex-23

plore the spatial variability of model parameters, and to test whether they could be considered as24

universal and with which uncertainty range.25
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2 Material and Methods1

We carried out Bayesian calibration using the Metropolis-Hastings algorithm, to estimate the2

joint probability distribution for the parameters of the N2O emission module of the CERES-3

EGC model. The equations of this module involve 15 parameters, of which 11 were considered4

as global (i.e. invariant over time and space) by the model’sauthor, the remaining 4 being site-5

specific (Hénault et al., 2005). While the latter were laboratory-measured in all experimental6

sites and set to the resulting values throughout, the subsetof 11 global parameters was estimated7

by our Bayesian procedure. We collated a database of N2O flux measurements including 78

different field-sites in France, and various N fertilizer forms and rates in 2 of the sites. Bayesian9

calibration was applied either to each site or treatment individually, or directly to the ensemble10

of the data sets.11

2.1 The CERES-EGC model12

2.1.1 A process-based agro-ecosystem model13

CERES-EGC was adapted from the CERES suite of soil-crop models (Jones and Kiniry, 1986),14

with a focus on the simulation of environmental outputs suchas nitrate leaching, emissions of15

N2O and nitrogen oxides (Gabrielle et al., 2006a). CERES-EGC runs on a daily time step, and16

requires daily rain, mean air temperature and Penman potential evapo-transpiration as forcing17

variables. The CERES models are available for a large numberof crop species, which share the18

same soil components (Jones and Kiniry, 1986).19

CERES-EGC comprises sub-models for the major processes governing the cycles of water, car-20

bon and nitrogen in soil-crop systems. A physical sub-modelsimulates the transfer of heat, water21

and nitrate down the soil profile, as well as soil evaporation, plant water uptake and transpiration22

in relation to climatic demand. Water infiltrates down the soil profile following a tipping-bucket23

approach, and may be redistributed upwards after evapo-transpiration has dried some soil layers.24
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In both of these equations, the generalised Darcy’s law has subsequently been introduced in order1

to better simulate water dynamics in fine-textured soils (Gabrielle et al., 1995).2

A biological sub-model simulates the growth and phenology of the crops. Crop net photosynthe-3

sis is a linear function of intercepted radiation accordingto the Monteith approach, with intercep-4

tion depending on leaf are index based on Beer’s law of diffusion in turbid media. Photosynthates5

are partitioned on a daily basis to currently growing organs(roots, leaves, stems, fruits) accord-6

ing to crop development stage. The latter is driven by the accumulation of growing degree days,7

as well as cold temperature and day-length for crops sensitive to vernalisation and photoperiod.8

Lastly, crop N uptake is computed through a supply/demand scheme, with soil supply depending9

on soil nitrate and ammonium concentrations and root lengthdensity.10

A micro-biological sub-model simulates the turnover of organic matter in the plough layer. De-11

composition, mineralisation and N-immobilisation are modelled with three pools of organic mat-12

ter (OM): the labil OM, the microbial biomass and the humads.Kinetic rate constants define the13

C and N flows between the different pools. Direct field emissions of CO2, N2O, NO and NH314

into the atmosphere are simulated with different trace gas modules.15

2.1.2 The nitrous oxide emission module16

This module simulates the production of N2O in soils through both the nitrification and the17

denitrification pathways, and was adapted from the semi-empirical model NOE (Hénault et al.,18

2005). The denitrification component is derived from the NEMIS model (Hénault and Germon,19

2000) that calculates the actual denitrification rate (Da, kg N ha−1 d−1) as the product of a20

potential rate at 20 °C (PDR, kg N ha−1 d−1) with three unitless factors related to water-filled21

pore space (FW ), nitrate content (FN ) and temperature (FT ) in the topsoil, as follows:22

Da = PDR FN FW FT (1)
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In a similar fashion, the daily nitrification rate (Ni, kg N ha−1 d−1) is modelled as the product1

of a maximum nitrification rate at 20 °C (MNR, kg N ha−1 d−1) with three unitless factors2

related to water-filled pore space (NW ), ammonium concentration (NN ) and temperature (NT )3

and expressed as follows:4

Ni = MNR NN NW NT (2)

Nitrous oxide emissions resulting from the two processes are soil-specific proportions of total5

denitrification and nitrification pathways, and are calculated according to:6

N2O = r Da + c Ni (3)

where r is the fraction of denitrified N and c is the fraction ofnitrified N that both evolve as N2O.7

The N2O sub-model of CERES-EGC involves a total set of 15 parameters of which four of them8

are site-specific and must be measured on site, while the other 11 are considered global, i.e. in-9

variant over time and space. The local (site-specific) parameters are the potential denitrification10

rate (PDR), the maximum nitrification rate (MNR) and the fractions of nitrified (c) and denitri-11

fied (r) N that are evolved as N2O. They were measured in the laboratory for all sites using a12

protocol that proved representative of field conditions in awide range of situations (Hénault and13

Germon, 2000; Hénault et al., 2005; Gabrielle et al., 2006b; Dambreville et al., 2008). The 1114

global parameters are the constants of the N2O module equations which are considered invariant15

over time and space. They were estimated by Hénault and Germon (2000) for the denitrification16

pathway and by Garrido et al. (2002) and Laville et al. (2005)for nitrification. The equations of17

the response functions with the associated parameters are described in Appendix A (Eqs. 7-12).18

Prior information was gathered on all parameters on a literature review. For lack of information19

on the form of the pdf of these parameters, the latter were assigned uniform distributions within20

their likely range derived from literature data (Table 1). Parameters were supposed to be en-21

tirely independent (i.e. non-correlated). This type of hypotheses, which are likely to be violated22
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in ecosystem models, is not a significant issue in the application of Bayesian calibration. For1

example, Naud et al. (2007) tested different levels of correlation of prior distributions and con-2

cluded that correlation was not a very important factor. In addition, Hong et al. (2005) reported3

that the assumption of a priori independence does not imply independence a posteriori, and the4

calibration may still provide a posterior estimate of correlations across parameters.5

2.2 The database of N2O measurements6

The N2O measurements were carried out on seven experimental siteslocated in Northern France.7

The experiments were conducted on major arable crop types and soils types representative of8

this part of France. For some sites, different treatments were conducted with various N-fertiliser9

amounts supplied to the crop, giving a total of 11 site/treatment combinations (Table 2). Nitrous10

oxide emissions were monitored by the static chamber methodwith eight replicates for all sites11

(Hénault et al., 2005), except at Grignon where measurements were monitored with three auto-12

matic chambers during 31 successive days from 13 May 2005 to 12 June 2005 (Lehuger et al.,13

2007). The variance in the measurements was estimated as thevariance across the different14

replicate chambers in the field. Soil nitrogen and moisture contents were monitored in the soil15

profile for each site with different sampling frequencies (see references of Table 2 for details).16

The resulting samples were analysed for moisture content and inorganic N using colorimetric17

samples in the laboratory. Soil temperature was continuously monitored using thermocouples in18

most of the sites, except for the sites of Champnoël and Le Rheu. The input data required to run19

the model were also collected in each site: the weather data were taken from a local meteorolog-20

ical station, and detailed information on soil properties and crop management were compiled to21

generate CERES-EGC input files using a standard parameterization procedure (Gabrielle et al.,22

2006b). Uncertainty on these input data was not considered here since CERES-EGC had already23

been tested in most of the sites (Gabrielle et al., 2006b). Besides, it likely had little impact on24
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the N2O simulations since we checked that the model gave correct predictions of the major N2O1

drivers (topsoil environmental conditions and nitrate content).2

2.3 Bayesian calibration3

2.3.1 Markov Chain Monte Carlo4

Bayesian methods are used to estimate model parameters by combining two sources of infor-5

mation: prior information about parameter values and observations on output variables. The6

prior information is based on expert knowledge, literaturereview or by measuring parameters7

directly in the field or laboratory. In our case, the observations on output variables are field mea-8

surements of the different fluxes between soil-crop-atmosphere compartments. Bayes’ theorem9

makes it possible to combine the two sources of information in order to calibrate the model pa-10

rameters. The first step is to assign a probability distribution to the parameters, representing our11

prior uncertainty about their values. In our case, we specified lower and upper bounds of the pa-12

rameters uncertainty, defining the prior parameter distributions as uniform. The aim of Bayesian13

calibration is to reduce this uncertainty by using the measured data, thereby producing the poste-14

rior distribution for the parameters. This is achieved by multiplying the prior with the likelihood15

function, which is the probability of the data given the parameters. The likelihood function is16

determined by the probability distribution of errors in observations. We assumed errors to be17

independent and normally distributed with mean zero following Van Oijen et al. (2005) and in18

the same fashion as Svensson et al. (2008) and Klemedtsson etal. (2007). Because probability19

densities may be very small numbers, rounding errors neededto be avoided and all calculations20

were carried out using logarithms. The logarithm of the datalikelihood is thus set up, for each21

data set Yi, as follows:22

logLi =

K
∑

j=1

(

−0.5

(

yj − f(ωi; θi)

σj

)2

− 0.5log(2π) − log(σj)

)

(4)
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where yj is the mean N2O flux measured on sampling date j in the data set Yi andσj the standard1

deviation across the replicates on that date,ωi is the vector of model input data for the same2

date,f(ωi; θi) is the model simulation of yj with the parameter vectorθi, and K is the total3

number of observation dates in the data sets. To generate a representative sample of parameter4

vectors from the posterior distribution, we used a Markov Chain Monte Carlo (MCMC) method:5

the Metropolis-Hastings algorithm (Metropolis et al., 1953) (see Appendix B for details). We6

formed Markov chains of length 104-105 using a multivariate Gaussian pdf to generate candidate7

parameter vectors. The variance matrix of this Gaussian wastuned so that the Markov chains8

would explore parameter space efficiently. We followed the procedure of Van Oijen et al. (2005)9

and defined the variances equal to the square of 1 to 5 % of the prior parameter range (θmin-θmax)10

and zero covariances. Subsequently, the variances were tuned so that the fraction of candidates11

accepted during the random walk was between 20 to 30%. Ten percent of the total number12

of iterations at the beginning of the chain were discarded asunrepresentative “burn-in” of the13

chains (Van Oijen et al., 2005). For each calibration, threeparallel Markov chains were started14

from three different starting points (θ0): the default parameter value and their lower and upper15

bounds (θmin andθmax). Convergence was checked with the diagnostic proposed by Gelman and16

Rubin (1992), which is based on the comparison of within-chain and between-chain variances,17

and is similar to a classical analysis of variance. Convergence is reached when variance between18

chains no longer exceeds the variance within each individual chain. The chains of parameter19

values resulting from the random walk of the Metropolis-Hastings algorithm are auto-correlated20

because each iteration depends on the previous one. We therefore thinned the chains in two21

steps: the auto-correlation was first computed for increasing lags and then the posterior chain22

was extracted by keeping the iterations defined by the thinning interval. We defined this as the23

number of iterations between consecutive samples in a chainfor which the auto-correlation was24

less than 60%. The chains filtered in this way were consideredto be a representative sample from25
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the posterior pdf, and from this sample were calculated the mean vector, the variance matrix and1

the 90% confident interval for each parameter.2

The generation and analysis of the Markov chains were carried out with the statistical package3

R (R Development Core Team, 2008) and in particular itscoda package (Plummer et al., 2006).4

The CERES-EGC model was encapsulated within R as a library, generated from the original5

Fortran code.6

2.3.2 Procedure for the N2O module7

The calibration procedure had two main objectives: (i) to calibrate the parameters for each dataset8

Yi, to explore the variations of global parameters across experimental sites and treatments, and9

(ii) to obtain better estimates for the global parameters (initially deemed universal in the model).10

The first objective was pursued by calibrating the parameters for each data set separately, which is11

referred to later on as thedataset-by-dataset procedure. In a second step, the global parameters12

were calibrated by running our procedure with the 11 data sets simultaneously (multi-dataset13

procedure), i.e. by calculating the posterior distribution as:14

p(θ|Y1, ..., Y11) ∝ p(Y1, ..., Y11|θ) p(θ) (5)

where Yi is the data of the ith site and the∝ symbol means ’proportional to’. In this case, the15

log-likelihood is calculated as the sum of the log-likelihoods of all the data sets (for a given16

parameter set in the MCMC chain).17

2.4 Evaluation of model predictions18

The performance of the calibration procedures was assessedby calculating the root mean square19

error (RMSE). RMSE was defined, for each data set Yi, as follows (Smith et al., 1996):20

RMSE =

√

∑K

j=1
(yj − f(ωi; θi))2

K
(6)
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In both following cases, simulations f(ωi; θi) were carried out using either the posterior ex-1

pectancy of parameters (θ) or the maximum a posteriori (MAP) estimate ofθ (θMAP ). θMAP2

is the single best value of the parameter vector in each MCMC chain, at which the posterior3

probability distribution is maximal (Van Oijen et al., 2005). In the case of prior parameter pdfs,4

the simulations were defined as the prior expectancy of the model predictions in which parame-5

ters were randomly drawn from the prior pdfs. For the posterior parameters pdfs, the simulations6

were the posterior expectancy of predictions. RMSE was computed after calibration resulting7

from the dataset-by-dataset or multi-dataset procedure.8

3 Results9

3.1 Simulation of soil state variables10

Soil temperature, soil water content and nitrate and ammonium contents were simulated by the11

model and confronted against the measurements. Table 3 summarizes the mean deviation (MD),12

which is the mean difference between measurement and simulation, and RMSEs computed with13

the different topsoil state variables used as input variables of the N2O emission module. Soil14

temperature and water content were well predicted by the model with RMSE ranging from 1.215

to 3.0 ° C for the soil temperature and from 3 to 6 % (v/v) for thesoil water content across the16

11 sites and treatments. The model’s RMSE over the 11 sites and treatments ranged between17

3.7 to 27.9 kg N ha−1 for the prediction of nitrate content and to 0.7 to 25.3 kg N ha−1 for the18

ammonium content. Dynamics of surface nitrate and ammoniumcontents were mainly driven by19

the fertiliser applications and mineralization of crop residues. Ammonium was rapidly nitrified20

across all the sites but the model failed to reproduce the background topsoil ammonium stock.21

Nitrate content was relatively well simulated except for 3 treatments for which N plant uptake22

was under-estimated (La Saussaye, Champnoël AN and Le RheuAN).23

12



3.2 Posterior parameter distributions1

Figure 1 shows boxplots of the posterior parameter distributions after calibration with the dataset-2

by-dataset and the multi-dataset procedures. Such representation makes it possible to visualize3

differences between parameter pdfs across datasets, whilethe shape of the boxplot reveals the4

dispersion and symmetry of the marginal distributions. OurBayesian procedure generally gen-5

erated uni-modal distributions, and convergence test corroborated that the MCMC chains con-6

verged. Figure 2 presents the 50 and 97.5% quantiles of the Gelman-Rubin shrink factor for the7

11 parameters calibrated with the data set of La Saussaye, and shows that it approached 1 for all8

parameters, evidencing the convergence of the calibration.9

Figure 1 shows that the posterior distributions became narrower compared to the uniform prior10

distributions, which is undoubtedly due to the efficiency ofour calibration procedure. The pos-11

terior pdfs converged to normal or log normal distributions, as already observed by Svensson12

et al. (2008) in the Bayesian calibration of a process-basedforest model. Thus, the choice of13

an uniform distribution for the prior pdfs had little influence, as the information contained in14

the experimental data gradually became dominant in the calibration process (Van Oijen et al.,15

2005). For example, the posterior distributions of parameter θ1 (the WFPS threshold triggering16

denitrification) had a narrow range for all datasets, suggesting that the calibration had drastically17

reduced its uncertainty. On the contrary, parametersθ8 andθ9 (corresponding to the minimum18

and maximum WFPS for nitrification activity, respectively)remained spread across their prior19

range of variation, and centered around their prior median.This means that the calibration did20

not significantly reduce their uncertainty. Conversely, some posterior distributions were flattened21

on one of the prior bounds, implying that their optimal values was outside the prescribed range.22

This was particular true for parametersθ10 (the half-saturation constant of nitrification response23

to ammonium) andθ11 (the Q10 factor for nitrification) for the data sets of Champnoël AN, La24

Saussaye and Grignon. We should therefore reconsider the prior ranges for these parameters.25
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The rightmost boxplot in each of the 11 graphs in Figure 1 depicts the distribution obtained with1

the multi-dataset procedure. The shape of this boxplot and its median value appeared to be more2

constrained by certain datasets than others, which may be explained by the fact that data sets3

with a comparatively larger number of observations of higher precision had substantially more4

weight in the log-likelihood function. For example, the boxplots of the multi-dataset calibration5

exhibited high similarity with those of the La Saussaye sitefor parametersθ1, θ3 andθ6.6

Some data sets were collected in the same sites, i.e. under identical climate patterns and soil7

types but with differentiated crop management (the Rafidin,Le Rheu and Champnoël datasets).8

Since the parameters of the N2O module are mostly related to soil properties, it was expected9

that the calibration should produce similar distributionsfor these three sites. To a certain extent,10

this was the case for the parametersθ2, θ3 andθ6, giving support to the idea that these param-11

eters are mostly soil-dependent, and are little influenced by crop management. Conversely, the12

strong variation of posterior pdfs across sites challengesthe original idea in model development13

that these parameters may be considered constant. The purpose of the multi-dataset procedure14

sought to investigate this option, by seeking the best-fit parameter pdfs in relation to the en-15

semble of the experimental situations collated in our database. It could be expected to lead to16

parameter pdfs with a wider spread (and thus higher uncertainty) than in the dataset-by-dataset17

calibration, owing to the wide ranges covered by the dataset-specific pdfs. While this was true18

of some parameters (e.g.,θ4, θ5, andθ7), it was the opposite for others (most notablyθ1 andθ3).19

Figure 3 depicts the ranges of response functions of the N2O emission module resulting from the20

various calibrations, and evidences ample differences across datasets. The responses of nitrifi-21

cation to soil ammonium content (NN , Fig. 3.a) were highly variable, reflecting the range taken22

by their shape parameterθ10. The response of nitrification to soil WFPS (NW , Fig. 3.b) shows23

that the minimum WFPS for nitrification activity (θ8) were centred on a unique value, while the24

optimum WFPS (θ7) was lower in the calibration with two data sets. The calibrated maximum25
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WFPSs for nitrification (θ9) were centred on 90%. The shapes of the response function NT (Fig.1

3.c) were similar for two sites (La Saussaye and Grignon), but strikingly different for the other2

sites. The calibrated responses of denitrification to nitrate content (FN , Fig. 3.d) were highly3

variable such as the response of nitrification to ammonium content. The shapes of the response4

of denitrification to WFPS (FW ) varied widely, as a consequence of the large variations of param-5

etersθ1 (the WFPS threshold triggering denitrification) andθ6 (the exponent of the power-law).6

Hénault and Germon (2000) and Heinen (2006) showed that denitrification was highly sensitive7

to θ1, and that this parameter was dependent on soil type. The response of denitrification to8

soil temperature (FT ) had a similar shape across the various parameterizations,for temperatures9

lower than 25 °C which corresponds to the range encountered in the field experiments. This10

leads to the conclusion that the function calibrated with the multi-dataset procedure could be11

considered universal.12

Bayesian calibration also quantifies correlations betweenparameters in the posterior. Most pa-13

rameters were cross-correlated, with coefficients higher than 0.4 for 6 of them (Table 1) suggest-14

ing that our uncertainty about their values is linked and implies that some parameters should be15

treated in clusters, as suggested by Svensson et al. (2008).Parametersθ1 andθ2 are positively16

correlated, and are both negatively correlated withθ6.17

3.3 Model prediction uncertainty18

The simulations of N2O emissions generated with the posterior MCMC parameter chains pro-19

vided statistical distributions of model outputs resulting from parameter uncertainty, which is20

a straight benefit of Bayesian approaches. Figure 4 shows themean of simulated daily N2O21

emissions for all datasets (Fig. 4.a to 4.k). Some discrepancies between measurements and sim-22

ulations remained, due to uncertainty on both sides. Measurement points with high standard23

deviations had less weight in the log likelihood function, and thus in the posterior probability,24
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compared to lower fluxes with lower variability. For example, the two N2O spikes measured in1

Villamblain in springtime (Fig. 4.a) had a large experimental error, but did not appear to con-2

strain the calibration as much as the more frequent lower N2O fluxes with much lower standard3

deviations. The same remark applies to Arrou (Fig. 4.b). Forthe dataset of Champnoël AN (Fig.4

4.e), a high spike of N2O was observed in autumn that the model failed to predict, whereas it5

otherwise successfully simulated fluxes under 10 g N2O-N ha−1 d−1.6

For the Grignon site (Fig. 4.h), the observation points wereconcentrated on 31 successive days7

(from 13 May 2005 to 12 June 2005), and started a peak flux. Withits default parameter set,8

the model simulated that peak along with two others in the following weeks that were not ob-9

served in the field (results not shown, see Lehuger et al. (2007)), in response to significant rains.10

The Bayesian calibration managed to circumvent the simulation of these two unobserved peak11

fluxes by raising the WFPS threshold for denitrification (θ1) from 62% (default value) to 73%,12

which is the highest value in all the calibrations (Fig. 1.a). As a result of this change in the13

response to rainfall and soil water content, no N2O-peaks were simulated throughout the year14

in Grignon (Fig. 4.h). For the dataset of Rafidin N0 (Fig. 4.i), observations also were concen-15

trated on two short periods, but with fewer observations points than at Grignon. The calibration16

highly constrained the model during the measurement period, but appeared less constraining on17

the N2O-fluxes outside this period.18

Table 4 summarises the statistics of the annual N2O emissions predicted by CERES-EGC for19

the different datasets. The mean annual fluxes ranged between 88 and 3672 g N2O-N ha−1 y−1,20

with a large confidence interval especially for the datasetswith higher emission rates. An overall21

conversion factor of fertilizer inputs to N2O-N was calculated as the ratio of the annual flux to the22

N fertiliser dose. This is different from an “emission factor”, which takes background emissions23

of N2O into account. Here, we also calculated this factor as the difference between the annual24

N2O-N emissions of fertilised and unfertilised crops (g N2O-N ha−1 y−1) to the N-fertiliser dose.25
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The emission factors ranged from 0.05 and 1.12% across experimental sites, with a mean value1

of 0.26%. This value is four times lower than the default value recommended by the IPCC tier 12

methodology (IPCC, 2006).3

3.4 Calibration efficiency and model prediction error4

Table 5 summarises the RMSEs obtained with the various parameters sets, and made it possi-5

ble to compare the efficiency of model calibration whether inthe dataset-by-dataset or in the6

multi-dataset mode. In the dataset-by-dataset procedure,the RMSEs computed with the pos-7

terior expectancy of predictions were lower than those computed with the prior expectancy of8

predictions for all datasets except one (Arrou), with a 73% reduction on average and a maxi-9

mum of 98% in La Saussaye. In 8 of the remaining 9 datasets, calibration lead to a reduction10

of 79% to 96% in the model’s RMSE. On average across all datasets, the RMSE dropped from11

39 down to 6 g N2O-N ha−1 d−1 after calibration. There were no differences in the RMSEs cal-12

culated either with simulations based on the posterior meanof parameters (θ) or with posterior13

mean of predictions. Thus, the mean of our sample from the posterior could be directly used for14

the sites of our database or for sites with similar soil types. The use of the parameter set with15

maximum posterior probability (θMAP ), i.e. when likelihood was maximum and given that we16

used a uniform prior, logically improved the RMSE compared to the use of the posterior mean17

of parameters (θ). As could be expected, the multi-dataset calibration was less efficient than the18

dataset-by-dataset one, enabling a decrease of only 33% of the RMSE computed with posterior19

expectancy of predictions compared to the prior expectancyof predictions. This would lead us20

to believe that the parameter set summarised in Table 1 couldbe a good compromise when the21

model will be applied for a new site.22

In addition, Table 5 shows that the calibration did not really improve the simulations for two23

datasets: Villamblain and Arrou. For both datasets, the data were not informative enough to24
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significantly improve parameter estimation. In the case of Arrou, the discrepancies may also1

be explained by the poor ability of CERES-EGC to simulate water-logging effects, as observed2

in this experiment. The N2O module and in particular its denitrification part (Eqs. 1, 7, 8, 9 -3

Appendix A) were already shown unable of correctly rendering the dynamics of denitrification4

or N2O emissions for soils with high degrees of water saturation.Still, RMSE values quantify5

the mismatch between simulations and the mean of the measurements without taking measure-6

ment uncertainty into account, or diagnosing whether problem lies with the simulations or the7

data. As a consequence, RMSE values should be interpreted with caution. More in-depth model8

evaluation would require comparing the behaviour of multiple models.9

4 Discussion10

4.1 Suitability and benefits of Bayesian calibration11

Our main goal was to demonstrate the potential of a Bayesian-type calibration procedure to im-12

prove the parameterization of a N2O-emission model, quantify parameter uncertainty and reduce13

uncertainties of model outputs. In recent years, Bayesian calibration was successfully applied to14

process-based ecosystem models, such as forest biomass growth models (Van Oijen et al., 2005;15

Svensson et al., 2008; Klemedtsson et al., 2007). Among the various possible Bayesian methods,16

MCMC is in principle particularly well adapted to such models (and in particular CERES-EGC)17

because they can handle a high number of parameters simultaneously (Makowski et al., 2002).18

Their efficiency is also not hampered by a poor knowlegde of the prior distributions, as is often19

the case with this type of models, and may be judged from the large variation range of the param-20

eters we calibrated here. Method of expert elicitation havebeen recently developed and could21

be used in the future in order to refine prior distributions ofmodel parameters. In short, elicita-22

tion is the process of translating expert knowledge about uncertain quantities into a probability23

distribution (Oakley and O’Hagan, 2007). However, no attempts had been made yet to calibrate24
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processes so uncertain and irregular in time and space as N2O emissions. This raised a number1

of issues in the adaptation of the MCMC algorithm. In particular, the chains were strongly auto-2

correlated, which required a substantial number of iterations (104 to 105), and drastic thinning.3

Also, the convergence had to be tested by running three parallel chains and using a variance-based4

diagnostic. An accurate simulation of the soil environmental drivers (temperature, moisture and5

mineral N contents) was a pre-requisite for the prediction of N2O fluxes. Tests against field6

data showed that this condition was overall met, as noted in aprevious test of CERES-EGC in a7

subset of the sites used here (Gabrielle et al., 2006b). In some instances, some discrepancies in8

the simulation of topsoil water content (Arrou) or nitrate content (La Saussaye, Champnoël AN9

and Le Rheu AN) which affected the prediction of N2O fluxes. However, these errors point to10

structural deficiencies of the model (for instance in the simulation of soil water dynamics in the11

water-logged soil of Arrou), and did not interfere with the calibration. This was evidenced by12

the fact that inclusion of measured drivers improved model performance only marginally and in13

a few sites. This option was thus disregarded.14

Our procedure significantly reduced parameter uncertaintyfor the datasets, and the uncertainty15

in simulated N2O rates as a result. We have also established a database of N2O emissions for16

Northern France and in the future, it will be interesting to use this one to parameterise other mod-17

els or to compare the performance of different N2O emissions process-based module integrated18

in CERES-EGC. Another direction could also be to use other kind of output data to parameterise19

specific module, for example the use of NO emission measurements for calibration of the nitri-20

fication sub-module (Eqs. 2, 10, 11, 12) of CERES-EGC (Rolland et al., 2008). The procedure21

we successfully implemented here may be readily used for other components of CERES-EGC,22

such as soil C turnover or crop photosynthesis and growth.23

The calibration significantly reduced the model’s RMSE compared with the prior parameter val-24

ues, on average by 73% with the data-by-dataset procedure and by 33% with the multi-dataset25
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procedure. Still, the calibration did not result in a perfect match between model simulations and1

observations of the daily N2O fluxes. Measured data with high uncertainty were in particular2

less well predicted because they presented a high spatial variability and consequently were less3

constraining in the calculation of the likelihood function. This may also be seen as an advantage4

since these extreme data points with large variance did not artificially influence the parameter5

values compared to lower-range values with better accuracy. Heinen (2006) also showed with a6

different calibration method that the optimised denitrification sub-module did not result in per-7

fect fit at the daily compared to the seasonal scale.8

Lastly, the dataset-by-dataset calibration points to waysof optimising calibration efficiency:9

when using manual chambers, N2O measurements should be carried out at least once a month10

throughout the year, with a higher frequency during the peakfluxes subsequent to N-fertiliser11

and crop residues inputs and when soil conditions are favourable to denitrification , e.g. when12

soil moisture, soil temperature and mineralization rate are high.13

4.2 Spatial variability of model parameters14

We sought to calibrate model parameters either on a dataset-by-dataset basis in order to minimise15

model error or simultaneously on all datasets to find parameter values that would be universally16

applicable, following the premise behind the original development of the N2O model. Such17

values would be extremely useful to apply the model to new soil conditions and to spatially18

extrapolate it. However, it was suggested that simple process-based models such as the one we19

used here needs to be parameterised on a site-specific basis (Heinen, 2006). The latter authors20

concluded to the impossibility of defining a set of response functions for denitrification (Eqs 1, 721

,8, 9 - appendix A) that would equally apply to sandy, loamy and peat soil types. Our dataset-by-22

dataset calibration gave further evidence to that statement for the N2O module of CERES-EGC,23

judging from the large variations in parameter pdfs across sites. However, our multi-dataset24
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procedure also demonstrated that it is still possible to findglobal estimates for those parameters1

that encompass a wide range of experimental conditions, at the cost of a higher RMSE than2

with optimal, site-specific parameter sets. The parameter pdfs we obtained in the multi-dataset3

calibration shows which parameter values would be plausible, and may thus be used to improve4

the accuracy of N2O simulations in new sites.5

Models are often developed with the purpose of providing predictions over a large domain (in6

space and time). However, ensuring that their parameterisation is accurate is a pre-requisite to7

such application. When attempting at simulating N2O fluxes in a new site where no measured8

data are available, the results of our calibration points tothe following strategy to meet this9

requirement. First, the user should check if calibrated parameter sets already exist for similar10

soil types, based on soil taxonomy or physico-chemical characteristics. If not, the parameter11

values derived from the multi-dataset calibration may be used. They may also serve as default12

values for the spatial extrapolation of the model at the regional scale. In the future, new data13

sets may be assimilated in the calibration to reduce the uncertainty of global parameters and to14

increase the application domain of the model. Alternatively, it is clearly advisable to favour the15

collection of N2O emissions data for the new sites, which lead to a much betterperformance16

of the model. One last obstacle to the extrapolation of CERES-EGC lies in the 4 site-specific17

parameters, which are supposed to be measured in the laboratory. We chose to exclude them from18

the calibration in accordance with the original model design. However, including them would be19

interesting to simulate a situation where such experimental determination is not possible, and to20

see to what extent it influences the outcome of the calibration. It is likely to result in different21

parameter values since, for instance, the potential denitrification rate (a local parameter) was22

shown to significantly correlate with three global parameters related to denitrification (Gabrielle,23

2006). However, testing such a scenario appeared beyond thescope of this paper since it implied24

too strong a deviation from the model hypotheses.25
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4.3 Prediction of N2O fluxes from agro-ecosystems1

CERES-EGC and its specific N2O module have already been used in a range of soil conditions2

(Hénault et al., 2005; Dambreville et al., 2008; Heinen, 2006), and model uncertainty had only3

been quantified using simple Monte Carlo techniques for a subset of 5 parameters (Gabrielle4

et al., 2006a). The effect of parameter uncertainty was seldom analysed with ecosystem models5

simulating N2O emissions, although (or perhaps also because) N2O measurements are fraught6

with a daunting spatial and temporal variability (Duxbury and Bouldin, 1982). Our Bayesian7

calibration resulted in a probabilistic simulation of the time course of N2O emissions taking8

such variability and uncertainty into account, through their consequences on parameters’ distri-9

butions. The calibrated model could predict daily N2O fluxes rather well, except for the highest10

peaks with high experimental error which it failed to predict in some cases.11

In addition, the procedure makes it possible to quantify model output uncertainty in the calcula-12

tion of annual N2O budget and emission factors (EFs). The model predicted annual N2O fluxes13

were ranging from 88 to 3672 g N2O-N ha−1y−1 over the various sites, and EFs ranging from14

0.05 to 1.12%. On the basis of these results, alongside thoseof Gabrielle et al. (2006a), it ap-15

pears that the 1% default EF value of the IPCC Tier 1 methodology is not suitable for the sites we16

studied because it would considerably overestimate the annual emissions (Table 4). In Belgium,17

Beheydt et al. (2007) used the DNDC model to calculate EFs corresponding to various scenarios18

involving high N input levels and N surpluses, and obtained an average value of 6.49%, which19

is 25 times higher than ours, compared to an estimate of 3.16%using the N2O measurements.20

Their observed emission range was an order of magnitude higher than that of our database. As-21

similate such extreme data with our procedure would be helpful to enlarge the prediction range22

of CERES-EGC, and to check its ability to predict annual emissions higher than 10 kg N2O-23

N ha−1 y−1.24

Our results also suggested that annual N2O emissions were not strictly proportional to fertiliser25
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N rate, which is in agreement with the results of Barton et al.(2008). The latter showed that,1

in a semi-arid climate, in spite of the application of N fertiliser the annual N2O emissions were2

not significantly increased in comparison with background emissions. They concluded that the3

emissions of N2O from arable soils could not be directly derived from the application of N fer-4

tiliser, and that other factors (e.g., soil properties) should be taken into account.5

Bayesian calibration provided valuable insight into the uncertainty of the simulated N2O fluxes,6

making it possible to take risk into account in a range of model applications: estimation of the7

global warming potential (GWP) of agro-ecosystems, assessment of cropping systems’ environ-8

mental balance, or decision support in agriculture. It would also be interesting to compare the9

ability of various agro-ecosystem models to predict N2O emissions on the same data sets, in a10

similar fashion as Frolking et al. (1998) and Li et al. (2005). Furthermore, Bayesian Model Com-11

parison (Van Oijen et al., 2005; Kass and Raftery, 1995) could be applied to examine multiple12

models and to quantify their relative likelihood, i.e. by determining which model is most prob-13

able in view of the data and prior information. Finally, the outputs of several models could be14

combined to improve the accuracy of the prediction, as was suggested with atmospheric models15

(Fisher et al., 2002).16

5 Conclusion and future work17

Bayesian calibration was successfully applied to the CERES-EGC agro-ecosystem model to im-18

prove the parameterization of its N2O emission module, thanks to a careful analysis and diag-19

nostic of the MCMC chains of parameters generated by the Metropolis-Hastings algorithm. The20

parameters were calibrated either (i) against separately data sets or (ii) by using all the data sets21

simultaneously, to satisfy our objectives which were, respectively, to improve model simula-22

tions at the field scale and to find universal values of parameters in order to spatially extrapolate23

the model. In addition, Bayesian calibration provided a means of quantifying uncertainties in24
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both parameters and model outputs. Furthermore, it appearsreasonable to assume that when the1

model should be applied at a larger scale than the plot-scale, the parameter values resulted from2

the multi-dataset procedure could then be used for soil types which will have never been parame-3

terised. In fact, the posterior parameter distributions encompass all our current observations and4

give us the possibility of quantifying their uncertainty.5

A remaining obstacle to the extrapolation of the N2O module lies in the 4 local parameters that6

should be measured or estimated on site (Hénault et al., 2005), and that were accordingly not7

calibrated here. Identifying the key soil or landscape characteristics that control these parame-8

ters appears as a pre-requisite to the large-scale use of CERES-EGC.9

Based on our results, we recommended a strategy to deal with model extrapolation and parame-10

ters’ variability. Nevertheless, another option to tacklespatial variability would consist in using11

other types of prior information (e.g. on soil properties) to infer the parameters of the N2O mod-12

ule. In future work, it would be beneficial to identify such “hyperparameters” which may explain13

spatial variability (Clark, 2005), and to develop a hierarchical Bayesian approach to derive their14

pdfs.15
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Appendix A. Equations of the nitrous oxide emission module1

The response functions are unitless and read:2

FN =

[

NO−

3

]

Kmdenit +
[

NO−

3

] (7)

where FN is the denitrification response factor to [NO−

3 ] the soil nitrate content (mg N kg−1 soil),3

and Kmdenit the half-saturation constant (mg N kg−1 soil).4

FW = 0, WFPS < TrWFPS

FW =

[

WFPS − TrWFPS

1 − TrWFPS

]POW

, WFPS ≥ TrWFPS

(8)

where FW is the denitrification response factor to soil WFPS, TrWFPS is a threshold value below5

which no denitrification occurs and POW is the exponent of thepower law.6

FT = exp

[

(T − TTrdenit) ln (Q10denit,1) − 9ln (Q10denit,2)

10

]

, T < TTrdenit

FT = exp

[

(T − 20)ln(Q10denit,2)

10

]

, T ≥ TTrdenit

(9)

where FT is the denitrification response function to soil temperature (T, °C), in the form of two7

sequential Q10 functions below and above a threshold temperature (TTrdenit). The two Q108

values (Q10denit,1 and Q10denit,2) correspond to the relative increase in denitrification activity for9

every 10 °C increase in T.10

NN =

[

NH+

4

]

Kmnit ∗ Hp +
[

NH+

4

] (10)

where NN is the nitrification response factor to [NH+

4 ], the soil ammonium content (mg N kg−1 soil).11

The half-saturation constant Kmnit (mg N kg−1 soil) is calculated at each soil water content (Hp,12
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w/w).1

NW =
WFPS − MINWFPS

OPTWFPS − MINWFPS

, MINWFPS < WFPS ≤ OPTWFPS

NW =
MAXWFPS − WFPS

MAXWFPS − OPTWFPS

, OPTWFPS ≤ WFPS < MAXWFPS

else NW = 0

(11)

where NW is the nitrification response function to soil water content. Nitrification is assumed to2

increase linearly from a minimum WFPS (MINWFPS) up to an optimal value (OPTWFPS) and3

then to linearly decrease down to a maximum WFPS (MAXWFPS) (Rolland et al., 2008).4

NT = exp

[

(T − 20)ln(Q10nit)

10

]

(12)

where NT is the response factor to soil temperature (T, °C) and Q10nit is the Q10 factor for this5

reaction.6

Appendix B. The Metropolis-Hastings algorithm7

The Metropolis-Hastings algorithm consists of three steps:8

Step 1. Randomly generate a new “candidate” parameter vector9

θ∗ = θi−1 + δ (13)

whereδ is a random vector generated using a multivariate normal distribution;10

Step 2. Calculate the ratio of the posterior probability of the candidate vector over the posterior11

probability of the current candidate:12

α =
p(θ∗|Y )

p(θi−1|Y )
=

p(Y |θ∗)p(θ∗)

p(Y |θi−1)p(θi−1)
(14)

In our case, since calculations are made using logarithms, we compute the log ofα as the13

difference between the log of the posterior probability of the candidate vector minus the14

log of the posterior probability of the current vector.15
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Step 3. Acceptθ∗ if α ≥ u whereu is an uniform random variable from an uniform distribution1

on the interval (0,1), else reject andθi = θi−1.2

The new pointθ∗ is always accepted if its posterior value is no lower than theposterior value of3

θi−1. Once the chain has attained theN iterations, the chain must have converged to the target4

distribution which is the posterior parameter distribution.5

References6

Barton, L., Kiese, R., Gatter, D., Butterbach-Bahl, K., Buck, R., Hinz, C., Murphy, D. V., 2008.7

Nitrous oxide emissions from a cropped soil in a semi-arid climate. Glob. Change Biol. 14,8

177–192.9

Bateman, E. J., Baggs, E. M., 2005. Contributions of nitrification and denitrification to N2O10

emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388.11

Beheydt, D., Boeckx, P., Sleutel, S., Li, C. S., Van Cleemput, O., 2007. Validation of DNDC for12

22 long-term N2O field emission measurements. Atmos. Environ. 41, 6196–6211.13

Butterbach-Bahl, K., Kesik, M., Miehle, P., Papen, H., Li, C., 2004. Quantifying the regional14

source strength of N-trace gases across agricultural and forest ecosystems with process based15

models. Plant Soil. 260, 311–329.16

Chatskikh, D., Olesen, J., Berntsen, J., Regina, K., Yamulki, S., 2005. Simulation of effects of17

soils, climate and management on N2O emission from grasslands. Biogeochem. 76, 395–419.18

Clark, J. S., 2005. Why environmental scientists are becoming bayesians. Ecol. Lett. 8, 2–14.19

Dambreville, C., Morvan, T., Germon, J. C., 2008. N2O emission in maize-crops fertilized with20

pig slurry, matured pig manure or ammonium nitrate in Brittany. Agric. Ecosys. Environ. 123,21

201–210.22

27



Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E., Phongpan, S.,1

2000. General model for N2O and N2 gas emissions from soils due to dentrification. Global2

Biogeochem. Cycles. 14, 1045–1060.3

Del Grosso, S. J., Parton, W. J., Mosier, A. R., Walsh, M. K., Ojima, D. S., Thornton, P. E.,4

2006. DAYCENT national-scale simulations of nitrous oxideemissions from cropped soils in5

the united states. J. of Environ. Qual. 35, 1451–1460.6

Ding, W. X., Cai, Y., Cai, Z. C., Yagi, K., Zheng, X. H., 2007. Nitrous oxide emissions from an7

intensively cultivated maize-wheat rotation soil in the North China Plain. Sci. Total Environ.8

373, 501–511.9

Dobbie, K. E., Smith, K. A., 2001. The effects of temperature, water-filled pore space and land10

use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 52, 667–673.11

Duxbury, J. M., Bouldin, D. R., 1982. Emission of nitrous oxide from soils. Nature. 298, 462–12

464.13

Fisher, B. E. A., Ireland, M. P., Boyland, D. T., Critten, S. P., 2002. Why use one model? An14

approach for encompassing model uncertainty and improvingbest practice. Environ. Model.15

and Assess. 7, 291–299.16

Frolking, S. E., Mosier, A. R., Ojima, D. S., Li, C., Parton, W. J., Potter, C. S., Priesack, E.,17

Stenger, R., Haberbosch, C., Dorsch, P., Flessa, H., Smith,K. A., 1998. Comparison of N2O18

emissions from soils at three temperate agricultural sites: simulations of year-round measure-19

ments by four models. Nutr. Cycl. Agroecosys. 52, 77–105.20

Gabrielle, B., 2006. Sensitivity and uncertainty analysisof a static denitrification model. In Wal-21

lach, D., Makowski, D., Jones, J. W., editors, Working with dynamic crop models: evaluating,22

analyzing, parameterizing and using them. Chapter 14. Elsevier.23

28



Gabrielle, B., Laville, P., Duval, O., Nicoullaud, B., Germon, J. C., Hénault, C., 2006a. Process-1

based modeling of nitrous oxide emissions from wheat-cropped soils at the subregional scale.2

Global Biogeochem. Cycles. 20. doi:10.1029/2006GB002686.3

Gabrielle, B., Laville, P., Hénault, C., Nicoullaud, B., Germon, J. C., 2006b. Simulation of4

nitrous oxide emissions from wheat-cropped soils using CERES. Nutr. Cycl. Agroecosys. 74,5

133–146.6

Gabrielle, B., Menasseri, S., Houot, S., 1995. Analysis andfield-evaluation of the CERES7

models water-balance component. Soil Sci. Soc. Am. J. 59, 1403–1412.8

Gallagher, M., Doherty, J., 2007. Parameter estimation anduncertainty analysis for a watershed9

model. Environ. Model. Software 22, 1000–1020.10

Garrido, F., Hénault, C., Gaillard, H., Perez, S., Germon,J. C., 2002. N2O and NO emissions by11

agricultural soils with low hydraulic potentials. Soil Biol. Biochem. 34, 559–575.12

Gelman, A., Rubin, D. B., 1992. Inference from iterative simulation using multiple sequences.13

Stat. Sci. 7, 457–472.14

Gosse, G., Cellier, P., Denoroy, P., Gabrielle, B., Laville, P., Leviel, B., Justes, E., Nicolardot,15

B., Mary, B., Recous, S., Germon, J. C., Hénault, C., Leech,P. K., 1999. Water, carbon and16

nitrogen cycling in a rendzina soil cropped with winter oilseed rape: the Chalons Oilseed Rape17

Database. Agronomie. 19, 119–124.18

Grant, R. F., Pattey, E., 2003. Modelling variability in N2O emissions from fertilized agricultural19

fields. Soil Biol. Biochem. 35, 225–243.20

Heinen, M., 2006. Application of a widely used denitrification model to Dutch data sets. Geo-21

derma. 133, 464–473.22

29



Hénault, C., Bizouard, F., Laville, P., Gabrielle, B., Nicoullaud, B., Germon, J. C., Cellier, P.,1

2005. Predicting in situ soil N2O emission using NOE algorithm and soil database. Glob.2

Change Biol. 11, 115–127.3

Hénault, C., Germon, J. C., 2000. NEMIS, a predictive modelof denitrification on the field scale.4

Eur. J. Soil Sci. 51, 257–270.5

Hong, B. G., Strawderman, R. L., Swaney, D. P., Weinstein, D.A., 2005. Bayesian estimation of6

input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard7

Brook Watershed Six. Water Resourc. Res. 41, doi:10.1029/2004WR003551.8

IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by9

the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K.,10

Ngara T. and Tanabe K. (eds). Published: IGES, Japan.11

Jambert, C., Serca, D., Delmas, R., 1997. Quantification of N-losses as NH3, NO, N2O and N212

from fertilized maize fields in Southwestern France. Nutr. Cycl. Agroecosys. 48, 91–104.13

Johnsson, H., Klemedtsson, L., Nilsson, A., Bo, H., Svensson, B., 2004. Simulation of field14

scale denitrification losses from soils under grass ley and barley. Plant Soil. 138, 287–302.15

Jones, C. A., Kiniry, J. R., 1986. CERES-N Maize: a simulation model of maize growth and16

development. Texas A&M University Press, College Statio, Temple, TX.17

Kass, R. E., Raftery, A. E., 1995. Bayes factors. J. Am. Stat.Assoc. 90, 773–795.18

Klemedtsson, L., Jansson, P.-E., Gustafsson, D., Karlberg, L., Weslien, P., von Arnold, K., Ern-19

fors, M., Langvall, O., Lindroth, A., 2007. Bayesian calibration method used to elucidate20

carbon turnover in forest on drained organic soil. Biogeochemistry.doi:10.1007/s10533-007-21

9169-0.22

30



Larssen, T., Huseby, R. B., Cosby, B. J., Host, G., Hogasen, T., Aldrin, M., 2006. Forecast-1

ing acidification effects using a Bayesian calibration and uncertainty propagation approach.2

Environ. Sci. Technol. 40, 7841–7847.3

Laville, P., Hénault, C., Gabrielle, B., Serca, D., 2005. Measurement and modelling of NO4

fluxes on maize and wheat crops during their growing seasons:effect of crop management.5

Nutr. Cycl. Agroecosys. 72, 159–171.6

Lehuger, S., Gabrielle, B., Larmanou, E., Laville, P., Cellier, P., Loubet, B., 2007. Predicting the7

global warming potential of agro-ecosystems. Biogeosciences Discussions. 4, 1059–1092.8

Li, C., Zhuang, Y., Cao, M., Crill, P., Dai, Z., Frolking, S.,Moore III, B., Salas, W., Song, W.,9

Wang, X., 2001. Comparing a process-based agro-ecosystem model to the IPCC methodology10

for developing a national inventory of N2O emissions from arable lands in China. Nutr. Cycl.11

Agroecosys. 60, 159–175.12

Li, C. S., 2000. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroe-13

cosys. 58, 259–276.14

Li, Y., Chen, D. L., Zhang, Y. M., Edis, R., Ding, H., 2005. Comparison of three modeling ap-15

proaches for simulating denitrification and nitrous oxide emissions from loam-textured arable16

soils. Global Biogeochem. Cycles. 19. doi:10.1029/2004GB002392.17

Linn, D. M., Doran, J. W., 1984. Effect of Water-Filled Pore Space on Carbon Dioxide and18

Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Sci. Soc. Am. J. 48, 1267–1272.19

Lokupitiya, E., Paustian, K., 2006. Agricultural soil greenhouse gas emissions: A review of20

National Inventory Methods. J. Environ. Qual. 35, 1413–1427.21

31



Maag, M., Vinther, F. P., 1996. Nitrous oxide emission by nitrification and denitrification in1

different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol.2

4, 5–14.3

Maag, M., Vinther, F. P., 1999. Effect of temperature and water on gaseous emissions from soils4

treated with animal slurry. Soil Sci. Soc. Am. J. 63, 858–865.5

Makowski, D., Hillier, J., Wallach, D., Andrieu, B., Jeuffroy, M. H., 2006. Parameter estimation6

for crop models. In Wallach, D., Makowski, D., Jones, J. W., editors, Working with dynamic7

crop models: evaluating, analyzing, parameterizing and using them. Chapter 4. Elsevier.8

Makowski, D., Wallach, D., Tremblay, M., 2002. Using a Bayesian approach to parameter9

estimation; comparison of the GLUE and MCMC methods. Agronomie. 22, 191–203.10

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., 1953. Equation11

of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.12

Monod, H., Naud, C., Makowski, D., 2006. Uncertainty and sensitivity analysis for crop models.13

In Wallach, D., Makowski, D., and Jones, J. W., editors, Working with dynamic crop models:14

evaluating, analyzing, parameterizing and using them. Chapter 3. Elsevier.15

Naud, C., Makowski, D., and Jeuffroy, M. H., 2007. Application of an interacting particle filter16

to improve nitrogen nutrition index predictions for winterwheat. Ecol. Model. 207, 251–263.17

Oakley, J. E., and O’Hagan, A., 2007. Uncertainty in prior elicitations: a nonparametric ap-18

proach. Biometrika 94: 427–441.19

Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R.,20

Ojima, D. S., Schimel, D. S., 2001. Generalized model for NOx and N2O emissions from21

soils. J. Geophys. Res-Atmos. 106, 17403–17419.22

32



Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., Kulmala,1

A. E., 1996. Generalized model for N2 and N2O production from nitrification and denitrifica-2

tion. Global Biogeochem. Cycles. 10, 401–412.3

Pattey, E., Edwards, G. C., Desjardins, R. L., Pennock, D. J., Smith, W., Grant, B., MacPherson,4

J. I., 2007. Tools for quantifying N2O emissions from agroecosystems. Agr. Forest Meteorol.5

142, 103–119.6

Pihlatie, M., Syvasalo, E., Simojoki, A., Esala, M., Regina, K., 2004. Contribution of nitrification7

and denitrification to N2O production in peat, clay and loamy sand soils under different soil8

moisture conditions. Nutr. Cycl. Agroecosys. 70, 135–141.9

Plummer, M., Best, N., Cowles, K., Vines, K., 2006. CODA: Convergence diagnosis and output10

analysis for MCMC. R News. 6, 7–11.11

R Development Core Team, 2008. R: A Language and Environmentfor Statistical Computing.12

R Foundation for Statistical Computing Vienna, Austria. ISBN 3-900051-07-0.13

Renault, P., Sierra, J., Stengel, P., 1994. Oxygen-transport and anaerobiosis in aggregated soils -14

contribution to the study of denitrification. Agronomie. 14, 395–409.15

Ricciuto, D. M., Butler, M. P., Davis, K. J., Cook, B. D., Bakwin, P. S., Andrews, A., Teclaw,16

R. M., 2008. Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a17

northern Wisconsin forest using a Bayesian model calibration. Agr. Forest Meteorol. 148,18

309–327.19

Rolland, M. N., Gabrielle, B., Laville, P., Serca, D., Cortinovis, J., Larmanou, E., Lehuger, S.,20

Cellier, P., 2008. Modeling of nitric oxide emissions from temperate agricultural soils. Nutr.21

Cycl. Agroecosys. 80, 75–93.22

33



Skopp, J., Jawson, M. D., Doran, J. W., 1990. Steady-State Aerobic Microbial Activity as a1

Function of Soil Water Content. Soil Sci. Soc. Am. J. 54, 1619–1625.2

Smith, J., Smith, P., Addiscott, T., 1996. Quantitative methods to evaluate and compare soil3

organic matter (SOM) models. In Evaluation of soil organic matter models using existing4

long-term datasets (eds Powlson, D., Smith, P., and Smith, J. E.), 183–202. NATO ASI Series5

1, Vol. 38. Springer-Verlag, Heidelberg.6

Smith, K. A., 1997. The potential for feedback effects induced by global warming on emissions7

of nitrous oxide by soils. Glob. Change Biol. 3, 327–338.8

Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., Conen, F., 1998. Effects of temper-9

ature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos.10

Environ. 32, 3301–3309.11

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., OMara,12

F., Rice, C., Scholes, B., Sirotenko, O., 2007. Agriculture. In Climate Change 2007: Mitiga-13

tion. Contribution of Working Group III to the Fourth Assessment Report of the Intergovern-14

mental Panel on Climate Change, [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer15

(eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.16

Stanford, G., Dzienia, S., Vander Pol, R. A., 1975. Effect ofTemperature on Denitrification Rate17

in Soils. Soil Sci. Soc. Am. J. 39, 867–870.18

Svensson, M., Jansson, P. E., Gustafsson, D., Kleja, D. B., Langvall, O., Lindroth, A., 2008.19

Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal20

forest stand. Ecol. Model. 213, 331–344.21

Van Oijen, M., Rougier, J., Smith, R., 2005. Bayesian calibration of process-based forest models:22

bridging the gap between models and data. Tree Physiol. 25, 915–927.23

34



List of Tables1

1 Description of the 11 parameters of the N2O emissions module. The prior prob-2

ability distribution is defined as multivariate uniform between boundsθmin and3

θmax which were extracted from a literature review. The posterior parameter4

distributions are based on the multi-dataset procedure, and are characterised by5

the mean value of the posterior, their standard deviation (SD). Correlations with6

other parameters are reported if their absolute value exceeds 0.4 (underlined pa-7

rameters express a negative correlation). . . . . . . . . . . . . . .. . . . . . . . 368

2 Main characteristics of the N2O emissions data base used in the model calibra-9

tion. At Rafidin, the treatments N0, N1 and N2 correspond to various N-fertilizer10

applications and at Le Rheu and Champnoël, the treatments AN correspond to11
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Parameter vectorθ = [θ1...θ11] Prior probability Posterior probability
distribution distribution

θi Symbol Description Unit Default θmin(i) θmax(i) References Mean SD Correlated
value {θi}

θ1 TrWFPS WFPS threshold for denitrification % 0.62 0.40 0.80 Gabrielle (2006); Hénault et al. (2005) 0.689 0.007{2,6}
Hénault and Germon (2000); Johnsson et al. (2004)

θ2 Kmdenit Half-saturation constant (denit) mg N kg−1 soil 22.00 5.00 120.00 Gabrielle (2006); Ding et al. (2007) 66.94 22.47 {1,6}
Parton et al. (2001); Del Grosso et al. (2000)
Parton et al. (1996); Bateman and Baggs (2005)
Johnsson et al. (2004)

θ3 TTrdenit Temperature threshold °C 11.00 10.00 15.00 Gabrielle (2006); Johnsson et al. (2004) 10.27 0.17
Renault et al. (1994)

θ4 Q10denit,1 Q10 factor for low temperature Unitless 89.00 60.00 120.00 Stanford et al. (1975); Maag and Vinther (1999) 89.46 18.28{5}
θ5 Q10denit,2 Q10 factor for high temperature Unitless 2.10 1.00 4.80 Gabrielle (2006); Stanford et al. (1975) 2.62 1.17{4,10}
θ6 POWdenit Exponent of power function Unitless 1.74 0.00 2.00 Stanfordet al. (1975); Smith et al. (1998) 1.53 0.23{1, 2}

Johnsson et al. (2004); Maag and Vinther (1999)
Maag and Vinther (1996); Skopp et al. (1990)

θ7 OPTWFPS Optimum WFPS for nitrification % 0.60 0.35 0.75 Jambert et al. (1997); Laville et al. (2005) 0.59 0.12
θ8 MINWFPS Minimum WFPS for nitrification % 0.10 0.05 0.15 Linn and Doran (1984); Jambert et al. (1997) 0.095 0.02

Skopp et al. (1990); Ding et al. (2007)
Parton et al. (2001); Bateman and Baggs (2005)

θ9 MAX WFPS Maximum WFPS for nitrification % 0.80 0.80 1.00 Linn and Doran (1984); Parton et al. (2001) 0.88 0.05
Bateman and Baggs (2005)

θ10 Kmnit Half-saturation constant (nit) mg N kg−1 soil 10.00 1.00 50.00 Linn and Doran (1984); Jambert et al. (1997) 25.69 14.17 {5}
Pihlatie et al. (2004)

θ11 Q10nit Q10 factor for nitrification Unitless 2.10 1.90 13.00 Maag and Vinther (1996); Laville et al. (2005) 7.36 3.04
Smith (1997); Dobbie and Smith (2001)

Table 1: Description of the 11 parameters of the N2O emissions module. The prior probability distribution is defined as multivariate
uniform between boundsθmin andθmax which were extracted from a literature review. The posterior parameter distributions are
based on the multi-dataset procedure, and are characterised by the mean value of the posterior, their standard deviation (SD).
Correlations with other parameters are reported if their absolute value exceeds 0.4 (underlined parameters express a negative
correlation).
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Site Treatment Year Soil texture Crop type N fertiliser Number of Source
class (kg N ha−1) observations

Rafidin N0 1994-1995 Rendzina Rapeseed 0 7 Gosse et al. (1999)
N1 1994-1995 Rendzina Rapeseed 155 8 Gosse et al. (1999)
N2 1994-1995 Rendzina Rapeseed 262 9 Gosse et al. (1999)

Villamblain 1998-1999 Loamy Clay Winter Wheat 230 15 Hénault et al. (2005)
Arrou 1998-1999 Loamy Clay Winter Wheat 180 18 Hénault et al. (2005)
La Saussaye 1998-1999 Clay Loams Winter Wheat 200 14 Hénault et al. (2005)
Champnoël CT 2002-2003 Silt Loam Maize 0 15 Dambreville et al. (2008)

AN 2002-2003 Silt Loam Maize 110 23 Dambreville et al. (2008)
Le Rheu CT 2004-2005 Silt Loam Maize 18 24 Dambreville et al. (2008)

AN 2004-2005 Silt Loam Maize 180 22 Dambreville et al. (2008)
Grignon 2005 Silt Loam Maize 140 31 Lehuger et al. (2007)

Table 2: Main characteristics of the N2O emissions data base used in the model calibration. At
Rafidin, the treatments N0, N1 and N2 correspond to various N-fertilizer applications and at Le
Rheu and Champnoël, the treatments AN correspond to ammonium nitrate application and CT
to the control plot.
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Site Treatment Soil temperature Soil water content Nitratecontent Ammonium content
N Mean MD RMSE N Mean MD RMSE N Mean MD RMSE N Mean MD RMSE

(°C) (v/v) (kg NO3-N ha−1) (kg NH4-N ha−1)
Rafidin N0 294 8.7 -1.2 3.0 20 0.253 -0.027 0.043 21 10.8 5.5 9.9 21 3.7 3.5 4.1

N1 294 8.7 -1.2 3.0 20 0.244 -0.035 0.051 21 12.9 8.0 11.8 21 5.65.0 6.8
N2 294 8.7 -1.2 3.0 20 0.240 -0.039 0.050 21 23.5 17.0 22.6 21 6.2 5.6 8.0

Villamblain 250 8.4 0.1 1.3 7 0.344 0.024 0.027 7 17.6 8.7 11.0 7 6.5 4.8 6.0
Arrou 250 8.4 0.2 1.2 7 0.343 0.053 0.056 7 18.1 11.8 14.9 7 9.1 9.0 10.6
La Saussaye 250 8.4 -1.2 2.4 7 0.307 0.030 0.038 7 15.3 -15.9 27.9 7 5.9 5.8 8.8
Champnoël CT no data no data no data no data 14 0.239 -0.009 0.049 2 28.8 3.4 3.7 2 0.9 0.7 0.7

AN no data no data no data no data 14 0.239 -0.006 0.027 11 22.4 -20.8 29.5 11 13.4 8.0 14.6
Le Rheu CT no data no data no data no data 13 0.212 0.004 0.028 9 17.8 -1.4 15.4 9 4.6 4.3 4.6

AN no data no data no data no data 13 0.212 0.004 0.028 10 54.3 -16.6 27.8 10 4.5 -7.8 25.3
Grignon 364 11.7 -0.4 2.4 13 0.249 0.002 0.028 11 71.4 -1.7 14.2 11 12.3 6.8 13.6

Table 3: Sample size (N), mean of measured in situ soil variables (Mean), mean deviation (MD) and root mean square errors
(RMSE) computed with the predicted and measured soil variables: soil temperature, soil water content and topsoil nitrate and
ammonium contents for the 11 data sets.
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Site Treatment Year N2O Fluxes 0.05 quantile 0.95 quantile IPCC Conversion factor Emission factor
(g N ha−1 y−1) (g N ha−1 y−1) (g N ha−1 y−1) (g N ha−1 y−1) (%) (%)

Rafidin N0 1994-1995 689 578 741 0 - -
N1 1994-1995 584 473 824 1550 0.4 (0.3-0.5) 0.07 (0.00-0.22)
N2 1994-1995 819 629 1183 2620 0.3 (0.2-0.5) 0.10 (0.03-0.24)

Villamblain 1998-1999 1465 454 2989 2300 0.6 (0.2-1.3) 0.36(0.00-1.02)
Arrou 1998-1999 3672 1676 5874 1800 2.0 (0.9-3.3) 0.26 (0.00-1.49)
La Saussaye 1998-1999 3215 572 6035 2000 1.6 (0.3-3.0) 1.12 (0.00-2.53)
Champnoël CT 2002-2003 218 49 746 0 - -

AN 2002-2003 336 106 855 1100 0.3 (0.1-0.8) 0.06 (0.00-0.53)
Le Rheu CT 2004-2005 88 66 115 180 0.5 (0.4-0.6) -

AN 2004-2005 183 146 220 1800 0.10 (0.08-0.12) 0.05 (0.03-0.08)
Grignon 2005-2006 150 143 163 1400 0.11 (0.10-0.12) 0.05 (0.04-0.05)

Table 4: Annual N2O fluxes (g N2O-N ha−1y−1) calculated as the sum of mean, 0.05 and 0.95
quantiles of daily simulations with the calibrated parameter sets. Annual estimates from IPCC
methodology (corresponding to the emissions due to fertiliser application), conversion factor
(%) and emission factor (%) are also reported (see text for definition), along with their 90%
confidence band.
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Site Treatment RMSE (in g N2O-N ha−1 d−1) computed with:
Prior expectancy Posterior expectancy Posterior expectancy Maximum a posteriori Posterior expectancy of predictions

of predictions of predictions of parameters parameter vector with the multi-dataset procedure
Rafidin N0 4.6 0.7 0.3 0.3 4.6

N1 7.5 1.2 1.4 1.2 12.8
N2 10.5 2.1 3.0 2.8 20.4

Villamblain 5.2 4.8 4.9 4.9 5.5
Arrou 25.4 27.1 25.3 23.8 29.2
La Saussaye 93.0 2.0 2.3 2.4 2.3
Champnoël CT 21.5 1.4 0.9 0.9 0.9

AN 65.58 13.8 14.0 13.8 14.0
Le Rheu CT 149.5 6.1 6.0 6.0 6.0

AN 30.4 2.0 2.2 2.2 2.4
Grignon 16.9 1.0 1.2 1.3 1.1

Table 5: Root mean square errors (RMSE, in g N2O-N ha−1 d−1) based on: the prior expectancy
of predictions, the posterior expectancy of predictions, the posterior expectancy of parameters,
the maximum a posteriori parameter vector and the posteriorexpectancy of predictions from the
multi-dataset procedure.
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Figure 1: Posterior distributions of the 11 calibrated parameters (θ1 to θ11) represented as box-
plots over the prior range of variation (corresponding to the range of the y-axis). The boxplots
are computed from calibration dataset-by-dataset and withthe “multi-dataset” procedure. The
boxplots depict the median (solid line), the 2nd and 3rd quartiles (bars), the 1st and 4ht quartiles
(dotted line), and the extreme values (excluding outliers).
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Figure 2: Evolution of the Gelman and Rubin’s shrink factor for the calibration of the site La
Saussaye.
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Figure 3: Response functions of the N2O emission module traced with different parameters sets:
mean of the posterior for each dataset-by-dataset calibration (line), and mean of the posterior for
the multi-dataset calibration (dashed line).
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Figure 4: Simulated (lines) and observed (symbols) N2O emissions for the different sites and
treatments. The simulated line is the posterior expectancyof predictions from dataset-by-dataset
calibrations.
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