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Abstract

Nitrous oxide (NO) is the main biogenic greenhouse gas contributing to tbbajlwarming
potential (GWP) of agro-ecosystems. Evaluating the impécigriculture on climate there-
fore requires a capacity to predict®@ emissions in relation to environmental conditions and
crop management. Biophysical models simulating the dyosuwii carbon and nitrogen in agro-
ecosystems have a unique potential to explore these nedftijos, but are fraught with high
uncertainties in their parameters due to their variatiover ®ime and space. Here, we used a
Bayesian approach to calibrate the parameters of fiieguibmodel of the agro-ecosystem model
CERES-EGC. The submodel simulategNemissions from the nitrification and denitrification
processes, which are modelled as the product of a poteateivith three dimensionless factors
related to soil water content, nitrogen content and tentpe¥a These equations involve a total
set of 15 parameters, four of which are site-specific and Ishioe measured on site, while the
other 11 are considered global, i.e. invariant over timespate. We first gathered prior informa-
tion on the model parameters based on literature reviewaasined them uniform probability
distributions. A Bayesian method based on the Metropolstiigs algorithm was subsequently
developed to update the parameter distributions againatabdse of seven different field-sites
in France. Three parallel Markov chains were run to ensuaergence of the algorithm. This
site-specific calibration significantly reduced the spreagarameter distribution, and the un-
certainty in the NO simulations. The model’s root mean square error (RMSE) alss abated
by 73% across the field sites compared to the prior pararaten. The Bayesian calibration
was subsequently applied simultaneously to all data setsbtain better global estimates for
the parameters initially deemed universal. This made isinbs to reduce the RMSE by 33%
on average, compared to the uncalibrated model. Theselglab@meter values may be used

to obtain more realistic estimates of® emissions from arable soils at regional or continental



scales.
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1 Introduction

Soils are the main source of nitrous oxide( in the atmosphere, via the microbial processes of
nitrification and denitrification. Because of its heavyaalte on synthetic N-fertilisers, agricul-
ture has enhanced these two processes, as a result of wiheek@gsystems contribute 55-65%
of the global anthropogenic emissions ofON Compared to other ecosystem types or economic
sectors, they are thus responsible for the major part of tim@spheric build-up of DO (Smith

et al., 2007). Compared to other greenhouse gases (GHGhsuch), N,O fluxes are of small
magnitude and highly variable in space and time, being lirdhtked to the local climatic se-
guence and soil properties. PredictingdNemissions from agro-ecosystems thus requires taking
into account complex processes and interactions whichnatg from both environmental con-
ditions and agricultural practises (Duxbury and Bouldif82; Grant and Pattey, 2003; Pattey
et al., 2007). This poses a serious challenge to the estimafithe source strength of arable
soils, which is currently mostly based on available stassbn fertilizer ignoring these environ-
mental factors (IPCC, 2006; Lokupitiya and Paustian, 2008) the other hand, process-based
agro-ecosystem models may in principle capture theseteffand have thereby a unique poten-
tial to predict NO emissions from arable soils at the plot-scale as well asgadomnal and con-
tinental scales (Butterbach-Bahl et al., 2004; Li et alQ20Gabrielle et al., 2006a; Del Grosso
et al., 2006). Examples of biophysicab@®@-models include DAYCENT (Parton et al., 2001),
DNDC (Li, 2000), FASSET (Chatskikh et al., 2005) and CERESCEGabrielle et al., 2006b).
However, a major limitation to the wide-spread use of theselefs lies in the fact that their
predictions are highly dependent on parameter settingscarny a large uncertainty due to un-
certainties in parameter values, driving variables andehsttucture (Gabrielle et al., 2006a).
Although model parameterisation and uncertainty analgstswidely developed in the litera-

ture on agro-ecosystem models, they are rarely considéradtaneously (Monod et al., 2006;
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Makowski et al., 2006). Bayesian calibration makes it gasgio combine the two types of anal-
ysis by providing estimates of parameters values underattme 6f probability density functions
(pdfs), which may be also propagated to model outputs as(@HBagher and Doherty, 2007).
Probability density functions are initially the expressiof current imprecise knowledge about
model parameter values, this prior probability is then dupdawith the measured observations
into posterior probability distribution by means of Bayédstorem (Makowski et al., 2006).

In ecological and environmental sciences, Bayesian edldor has been applied to a wide range
of models (Hong et al., 2005; Larssen et al., 2006; Riccittal.e 2008), and this field is de-
veloping actively, mainly using Markov Chain Monte Carlo @C) methods to estimate the
posterior pdf for the model parameters. The Bayesian meiloggt described by Van Oijen et al.
(2005) was applied to dynamic process-based forest mod#istiae objective of calibrating
model parameters with various types of observed data fraesfed experimental sites (Svens-
son et al., 2008; Klemedtsson et al., 2007). In these exanMetropolis-Hastings MCMC-
algorithm was used to generate samples from the posterranyer distributions. Although
there is an increasing body of literature on the applicabbBayesian approaches to environ-
mental sciences, the latter have not been applied to prdzesses] model of soil ND emission
models, to the best of our knowledge.

The overall purpose of this paper was thus to calibrate thepeters of the MO emission mod-
ule of the CERES-EGC agro-ecosystem model and to quantdgrntainty of model simulations
by developing a suitable Bayesian calibration method. Batsaof measuredJD emission rates
were collected from seven field-sites in Northern Francaclwrepresent major soil types, crops
and management practices of the area. The Bayesian precedsrfirst applied separately to
each experimental site, and secondly to the ensemble oftdge Jhis made it possible to ex-
plore the spatial variability of model parameters, and #b vehether they could be considered as

universal and with which uncertainty range.
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2 Material and Methods

We carried out Bayesian calibration using the Metropolastihgs algorithm, to estimate the
joint probability distribution for the parameters of the®l emission module of the CERES-
EGC model. The equations of this module involve 15 pararegtdrwhich 11 were considered
as global (i.e. invariant over time and space) by the modeithor, the remaining 4 being site-
specific (Hénault et al., 2005). While the latter were labory-measured in all experimental
sites and set to the resulting values throughout, the solbddtglobal parameters was estimated
by our Bayesian procedure. We collated a database,&f flux measurements including 7
different field-sites in France, and various N fertilizerrfes and rates in 2 of the sites. Bayesian
calibration was applied either to each site or treatmenividdally, or directly to the ensemble

of the data sets.

2.1 The CERES-EGC model

2.1.1 A process-based agro-ecosystem model

CERES-EGC was adapted from the CERES suite of soil-crop mddenes and Kiniry, 1986),
with a focus on the simulation of environmental outputs sashitrate leaching, emissions of
N,O and nitrogen oxides (Gabrielle et al., 2006a). CERES-E®G on a daily time step, and
requires daily rain, mean air temperature and Penman pak&vapo-transpiration as forcing
variables. The CERES models are available for a large nuwitgpp species, which share the
same soil components (Jones and Kiniry, 1986).

CERES-EGC comprises sub-models for the major processesgoyg the cycles of water, car-
bon and nitrogen in soil-crop systems. A physical sub-meutelilates the transfer of heat, water
and nitrate down the soil profile, as well as soil evaporatmant water uptake and transpiration
in relation to climatic demand. Water infiltrates down thé poofile following a tipping-bucket

approach, and may be redistributed upwards after evapsgiation has dried some soil layers.
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In both of these equations, the generalised Darcy’s lawlasesjuently been introduced in order
to better simulate water dynamics in fine-textured soilsyigdle et al., 1995).

A biological sub-model simulates the growth and phenoldghe crops. Crop net photosynthe-
sisis a linear function of intercepted radiation accordmthe Monteith approach, with intercep-
tion depending on leaf are index based on Beer’s law of ddfus turbid media. Photosynthates
are partitioned on a daily basis to currently growing org@osts, leaves, stems, fruits) accord-
ing to crop development stage. The latter is driven by theiaedation of growing degree days,

as well as cold temperature and day-length for crops seasivernalisation and photoperiod.
Lastly, crop N uptake is computed through a supply/demahdrse, with soil supply depending

on soil nitrate and ammonium concentrations and root ledgtisity.

A micro-biological sub-model simulates the turnover ofamg matter in the plough layer. De-

composition, mineralisation and N-immobilisation are relbedd with three pools of organic mat-

ter (OM): the labil OM, the microbial biomass and the humd€isetic rate constants define the
C and N flows between the different pools. Direct field emissiof CG, N,O, NO and NH

into the atmosphere are simulated with different trace gegutes.
2.1.2 The nitrous oxide emission module

This module simulates the production of® in soils through both the nitrification and the
denitrification pathways, and was adapted from the semiwgrapmodel NOE (Hénault et al.,
2005). The denitrification component is derived from the NEMhodel (Hénault and Germon,
2000) that calculates the actual denitrification rate (Dg,Nkha! d=!) as the product of a
potential rate at 20 °C (PDR, kg N had~!) with three unitless factors related to water-filled

pore space (fr), nitrate content (k) and temperature (B in the topsoil, as follows:

Da = PDR Fy Fy Fr (1)
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In a similar fashion, the daily nitrification rate (Ni, kg N had—!) is modelled as the product
of a maximum nitrification rate at 20 °C (MNR, kg N had™!) with three unitless factors
related to water-filled pore space N, ammonium concentration (N and temperature (N
and expressed as follows:

Ni= MNR Ny Ny Ny )

Nitrous oxide emissions resulting from the two processessail-specific proportions of total

denitrification and nitrification pathways, and are caltedbaccording to:
N>O =r Da+ ¢ Ni (3)

where r is the fraction of denitrified N and c is the fractiomdfified N that both evolve as JD.
The N,O sub-model of CERES-EGC involves a total set of 15 parametiarvhich four of them
are site-specific and must be measured on site, while the bihare considered global, i.e. in-
variant over time and space. The local (site-specific) patars are the potential denitrification
rate (PDR), the maximum nitrification rate (MNR) and the fraigs of nitrified (c) and denitri-
fied (r) N that are evolved asJ®. They were measured in the laboratory for all sites using a
protocol that proved representative of field conditions imide range of situations (Hénault and
Germon, 2000; Hénault et al., 2005; Gabrielle et al., 20@#mbreville et al., 2008). The 11
global parameters are the constants of th®Khodule equations which are considered invariant
over time and space. They were estimated by Hénault and @ef2000) for the denitrification
pathway and by Garrido et al. (2002) and Laville et al. (20@5nitrification. The equations of
the response functions with the associated parametergaceiloed in Appendix A (Egs. 7-12).
Prior information was gathered on all parameters on a liteeareview. For lack of information
on the form of the pdf of these parameters, the latter weng@ad uniform distributions within
their likely range derived from literature data (Table 1)arémeters were supposed to be en-

tirely independent (i.e. non-correlated). This type of byreses, which are likely to be violated
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in ecosystem models, is not a significant issue in the agmlicaf Bayesian calibration. For
example, Naud et al. (2007) tested different levels of datie@n of prior distributions and con-
cluded that correlation was not a very important factor. ddiaion, Hong et al. (2005) reported
that the assumption of a priori independence does not inmalgpendence a posteriori, and the

calibration may still provide a posterior estimate of ctat®ns across parameters.

2.2 The database of DO measurements

The N,O measurements were carried out on seven experimentalaitdsd in Northern France.
The experiments were conducted on major arable crop typesaits types representative of
this part of France. For some sites, different treatmente wenducted with various N-fertiliser
amounts supplied to the crop, giving a total of 11 site/tre;it combinations (Table 2). Nitrous
oxide emissions were monitored by the static chamber maethitdeight replicates for all sites
(Hénault et al., 2005), except at Grignon where measurtsveere monitored with three auto-
matic chambers during 31 successive days from 13 May 2002 tiuthe 2005 (Lehuger et al.,
2007). The variance in the measurements was estimated astila@ce across the different
replicate chambers in the field. Soil nitrogen and moistangtents were monitored in the soil
profile for each site with different sampling frequenciesgseferences of Table 2 for details).
The resulting samples were analysed for moisture conteshirasrganic N using colorimetric
samples in the laboratory. Soil temperature was continyeuenitored using thermocouples in
most of the sites, except for the sites of Champnoél and leuRhhe input data required to run
the model were also collected in each site: the weather data taken from a local meteorolog-
ical station, and detailed information on soil propertiad arop management were compiled to
generate CERES-EGC input files using a standard paranegienzprocedure (Gabrielle et al.,
2006b). Uncertainty on these input data was not considezssidince CERES-EGC had already

been tested in most of the sites (Gabrielle et al., 2006bgid®gs, it likely had little impact on
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the N,O simulations since we checked that the model gave corredigirons of the major NO

drivers (topsoil environmental conditions and nitrate teor).

2.3 Bayesian calibration
2.3.1 Markov Chain Monte Carlo

Bayesian methods are used to estimate model parameteralyirsog two sources of infor-
mation: prior information about parameter values and olzgems on output variables. The
prior information is based on expert knowledge, literatte@ew or by measuring parameters
directly in the field or laboratory. In our case, the obseosag on output variables are field mea-
surements of the different fluxes between soil-crop-athespcompartments. Bayes’ theorem
makes it possible to combine the two sources of informatmoorder to calibrate the model pa-
rameters. The first step is to assign a probability distrdyuto the parameters, representing our
prior uncertainty about their values. In our case, we sptibwer and upper bounds of the pa-
rameters uncertainty, defining the prior parameter digtrdms as uniform. The aim of Bayesian
calibration is to reduce this uncertainty by using the mess$data, thereby producing the poste-
rior distribution for the parameters. This is achieved byltiplying the prior with the likelihood
function, which is the probability of the data given the paeters. The likelihood function is
determined by the probability distribution of errors in ebgtions. We assumed errors to be
independent and normally distributed with mean zero foilgwan Oijen et al. (2005) and in
the same fashion as Svensson et al. (2008) and Klemedtsabr(207). Because probability
densities may be very small numbers, rounding errors netxbd avoided and all calculations
were carried out using logarithms. The logarithm of the digglihood is thus set up, for each

data set Y, as follows:

logL; = Z (—0.5 (w) — 0.5log(2m) — log(%)) (4)

0'.
j=1 !
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where y is the mean BO flux measured on sampling date j in the data seindo; the standard
deviation across the replicates on that dateis the vector of model input data for the same
date, f(w;; 6;) is the model simulation of ywith the parameter vectd;, and K is the total
number of observation dates in the data sets. To generajgesentative sample of parameter
vectors from the posterior distribution, we used a Markoai@ivonte Carlo (MCMC) method:
the Metropolis-Hastings algorithm (Metropolis et al., 39%see Appendix B for details). We
formed Markov chains of length 10L0° using a multivariate Gaussian pdf to generate candidate
parameter vectors. The variance matrix of this Gaussiantwasd so that the Markov chains
would explore parameter space efficiently. We followed trezpdure of Van Oijen et al. (2005)
and defined the variances equal to the square of 1 to 5 % ofitbregarameter rang@(,;,. -0,z )
and zero covariances. Subsequently, the variances wezd gmthat the fraction of candidates
accepted during the random walk was between 20 to 30%. Teremeof the total number
of iterations at the beginning of the chain were discardedraspresentative “burn-in” of the
chains (Van Oijen et al., 2005). For each calibration, thpaeallel Markov chains were started
from three different starting point#{): the default parameter value and their lower and upper
boundsé,.;, andd,,..). Convergence was checked with the diagnostic proposedhy&h and
Rubin (1992), which is based on the comparison of withinitlaad between-chain variances,
and is similar to a classical analysis of variance. Convages reached when variance between
chains no longer exceeds the variance within each indiVidoan. The chains of parameter
values resulting from the random walk of the Metropolis-tifags algorithm are auto-correlated
because each iteration depends on the previous one. Wdatteetbinned the chains in two
steps: the auto-correlation was first computed for increptags and then the posterior chain
was extracted by keeping the iterations defined by the thgimiterval. We defined this as the
number of iterations between consecutive samples in a ¢bamhich the auto-correlation was

less than 60%. The chains filtered in this way were considerbd a representative sample from

10
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the posterior pdf, and from this sample were calculated teamvector, the variance matrix and
the 90% confident interval for each parameter.

The generation and analysis of the Markov chains were chaug with the statistical package
R (R Development Core Team, 2008) and in particulacoda package (Plummer et al., 2006).
The CERES-EGC model was encapsulated within R as a libranemted from the original

Fortran code.
2.3.2 Procedure for the NO module

The calibration procedure had two main objectives: (i) idocate the parameters for each dataset
Y, to explore the variations of global parameters acrossraxeatal sites and treatments, and
(i) to obtain better estimates for the global parametertiélly deemed universal in the model).
The first objective was pursued by calibrating the paramsdtereach data set separately, which is
referred to later on as th#ataset-by-dataset procedure. In a second step, the global parameters
were calibrated by running our procedure with the 11 data smhultaneouslynulti-dataset

procedure), i.e. by calculating the posterior distribution as:

p(0|Y1, ..., Y11) x p(Y1, ..., Y11]0) p(0) (5)

where Y, is the data of the't site and thex symbol means 'proportional to’. In this case, the
log-likelihood is calculated as the sum of the log-likellus of all the data sets (for a given

parameter set in the MCMC chain).

2.4 Evaluation of model predictions

The performance of the calibration procedures was asségsealculating the root mean square

error (RMSE). RMSE was defined, for each data sg@¥ follows (Smith et al., 1996):

K - 0))2
I \/ S (5 — Flwis6)) ©

K

11
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In both following cases, simulationsuif; 6;) were carried out using either the posterior ex-
pectancy of parameterg)(or the maximum a posteriori (MAP) estimate ®{0,;4p). Orap

is the single best value of the parameter vector in each MCM&n¢ at which the posterior
probability distribution is maximal (Van Oijen et al., 2003n the case of prior parameter pdfs,
the simulations were defined as the prior expectancy of th@ehqredictions in which parame-
ters were randomly drawn from the prior pdfs. For the postgrarameters pdfs, the simulations
were the posterior expectancy of predictions. RMSE was caetpafter calibration resulting

from the dataset-by-dataset or multi-dataset procedure.

3 Results

3.1 Simulation of soil state variables

Soil temperature, soil water content and nitrate and amuomrmontents were simulated by the
model and confronted against the measurements. Table 3 asur@ithe mean deviation (MD),
which is the mean difference between measurement and dioryland RMSEs computed with
the different topsoil state variables used as input vaeslolf the NO emission module. Soll
temperature and water content were well predicted by theeinewdh RMSE ranging from 1.2
to 3.0 ° C for the soil temperature and from 3 to 6 % (v/v) for ol water content across the
11 sites and treatments. The model's RMSE over the 11 sig$raatments ranged between
3.7 to 27.9 kg N ha! for the prediction of nitrate content and to 0.7 to 25.3 kg Nhfor the
ammonium content. Dynamics of surface nitrate and ammowgmients were mainly driven by
the fertiliser applications and mineralization of cropideses. Ammonium was rapidly nitrified
across all the sites but the model failed to reproduce th&drsaand topsoil ammonium stock.
Nitrate content was relatively well simulated except foré&atments for which N plant uptake

was under-estimated (La Saussaye, Champnoél AN and Le R\eu

12
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3.2 Posterior parameter distributions

Figure 1 shows boxplots of the posterior parameter distiolg after calibration with the dataset-
by-dataset and the multi-dataset procedures. Such repediesm makes it possible to visualize
differences between parameter pdfs across datasets, tvhikhape of the boxplot reveals the
dispersion and symmetry of the marginal distributions. Bayesian procedure generally gen-
erated uni-modal distributions, and convergence tesbbonated that the MCMC chains con-
verged. Figure 2 presents the 50 and 97.5% quantiles of thea&eRubin shrink factor for the
11 parameters calibrated with the data set of La Saussagteshemvs that it approached 1 for all
parameters, evidencing the convergence of the calibration

Figure 1 shows that the posterior distributions becameomgar compared to the uniform prior
distributions, which is undoubtedly due to the efficiencyaf calibration procedure. The pos-
terior pdfs converged to normal or log normal distributipas already observed by Svensson
et al. (2008) in the Bayesian calibration of a process-bésexst model. Thus, the choice of
an uniform distribution for the prior pdfs had little influe®, as the information contained in
the experimental data gradually became dominant in théredion process (Van Oijen et al.,
2005). For example, the posterior distributions of parangét (the WFPS threshold triggering
denitrification) had a narrow range for all datasets, sutjggshat the calibration had drastically
reduced its uncertainty. On the contrary, paramefg@ndd, (corresponding to the minimum
and maximum WFPS for nitrification activity, respectivetgmained spread across their prior
range of variation, and centered around their prior medEms means that the calibration did
not significantly reduce their uncertainty. Converselynsgosterior distributions were flattened
on one of the prior bounds, implying that their optimal valweas outside the prescribed range.
This was patrticular true for parametérg (the half-saturation constant of nitrification response
to ammonium) and,; (the Q10 factor for nitrification) for the data sets of Cham@hAN, La

Saussaye and Grignon. We should therefore reconsider iibrernges for these parameters.

13



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The rightmost boxplot in each of the 11 graphs in Figure 1cisghe distribution obtained with
the multi-dataset procedure. The shape of this boxplotsndedian value appeared to be more
constrained by certain datasets than others, which may plaiegd by the fact that data sets
with a comparatively larger number of observations of highrecision had substantially more
weight in the log-likelihood function. For example, the Iptots of the multi-dataset calibration
exhibited high similarity with those of the La Saussaye fiteparameterg,, ¢; andd;.

Some data sets were collected in the same sites, i.e. unelgiadl climate patterns and soil
types but with differentiated crop management (the RafidenRheu and Champnoél datasets).
Since the parameters of the®@ module are mostly related to soil properties, it was exgubct
that the calibration should produce similar distributiémsthese three sites. To a certain extent,
this was the case for the paramet@ssé; anddg, giving support to the idea that these param-
eters are mostly soil-dependent, and are little influengedrbp management. Conversely, the
strong variation of posterior pdfs across sites challertige®riginal idea in model development
that these parameters may be considered constant. Thesguppthe multi-dataset procedure
sought to investigate this option, by seeking the best-fiapater pdfs in relation to the en-
semble of the experimental situations collated in our dagab It could be expected to lead to
parameter pdfs with a wider spread (and thus higher uncgydaihan in the dataset-by-dataset
calibration, owing to the wide ranges covered by the datsgetific pdfs. While this was true
of some parameters (e.g., 05, andd-), it was the opposite for others (most notablyandds).
Figure 3 depicts the ranges of response functions of #@ &mission module resulting from the
various calibrations, and evidences ample differencessaatlatasets. The responses of nitrifi-
cation to soil ammonium content (N Fig. 3.a) were highly variable, reflecting the range taken
by their shape parametéy,. The response of nitrification to soil WFPS N\ Fig. 3.b) shows
that the minimum WFPS for nitrification activity{) were centred on a unique value, while the

optimum WFPS {;) was lower in the calibration with two data sets. The caliédamaximum

14
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WFPSs for nitrification ) were centred on 90%. The shapes of the response functidfiyy.
3.c) were similar for two sites (La Saussaye and Grignon) stiikingly different for the other
sites. The calibrated responses of denitrification to tatentent (v, Fig. 3.d) were highly
variable such as the response of nitrification to ammoniumesd. The shapes of the response
of denitrification to WFPS (f) varied widely, as a consequence of the large variationa@mp-
etersf; (the WFPS threshold triggering denitrification) afyd(the exponent of the power-law).
Hénault and Germon (2000) and Heinen (2006) showed thatrifieation was highly sensitive
to 01, and that this parameter was dependent on soil type. Themsspof denitrification to
soil temperature (F) had a similar shape across the various parameterizatmmgmperatures
lower than 25 °C which corresponds to the range encounterdke field experiments. This
leads to the conclusion that the function calibrated with thulti-dataset procedure could be
considered universal.

Bayesian calibration also quantifies correlations betwssameters in the posterior. Most pa-
rameters were cross-correlated, with coefficients highan 0.4 for 6 of them (Table 1) suggest-
ing that our uncertainty about their values is linked andliegithat some parameters should be
treated in clusters, as suggested by Svensson et al. (2B@&meterg, andd, are positively

correlated, and are both negatively correlated With

3.3 Model prediction uncertainty

The simulations of MO emissions generated with the posterior MCMC parameteinshao-
vided statistical distributions of model outputs resgtiinom parameter uncertainty, which is
a straight benefit of Bayesian approaches. Figure 4 showmd#an of simulated daily D
emissions for all datasets (Fig. 4.a to 4.k). Some discr@parbetween measurements and sim-
ulations remained, due to uncertainty on both sides. Measent points with high standard

deviations had less weight in the log likelihood functionddhus in the posterior probability,
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compared to lower fluxes with lower variability. For examplee two NO spikes measured in
Villamblain in springtime (Fig. 4.a) had a large experinarérror, but did not appear to con-
strain the calibration as much as the more frequent low& Nuxes with much lower standard
deviations. The same remark applies to Arrou (Fig. 4.b).tRerdataset of Champnoél AN (Fig.
4.e), a high spike of ND was observed in autumn that the model failed to predict,redwit
otherwise successfully simulated fluxes under 10NN ha ! d!.

For the Grignon site (Fig. 4.h), the observation points wenecentrated on 31 successive days
(from 13 May 2005 to 12 June 2005), and started a peak flux. Watefault parameter set,
the model simulated that peak along with two others in theofahg weeks that were not ob-
served in the field (results not shown, see Lehuger et al.AR0id response to significant rains.
The Bayesian calibration managed to circumvent the sinauladf these two unobserved peak
fluxes by raising the WFPS threshold for denitrification) (from 62% (default value) to 73%,
which is the highest value in all the calibrations (Fig. 1.As a result of this change in the
response to rainfall and soil water content, ngONpeaks were simulated throughout the year
in Grignon (Fig. 4.h). For the dataset of Rafidin NO (Fig. J4olservations also were concen-
trated on two short periods, but with fewer observationsfsihan at Grignon. The calibration
highly constrained the model during the measurement pebodappeared less constraining on
the N,O-fluxes outside this period.

Table 4 summarises the statistics of the annugD Emissions predicted by CERES-EGC for
the different datasets. The mean annual fluxes ranged be®&and 3672 g NO-N ha! y1,
with a large confidence interval especially for the datasts higher emission rates. An overall
conversion factor of fertilizer inputs toJD-N was calculated as the ratio of the annual flux to the
N fertiliser dose. This is different from an “emission factavhich takes background emissions
of N,O into account. Here, we also calculated this factor as tfierdnce between the annual

N,O-N emissions of fertilised and unfertilised crops (NN ha! y—!) to the N-fertiliser dose.
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The emission factors ranged from 0.05 and 1.12% across iexpetal sites, with a mean value
of 0.26%. This value is four times lower than the default ealecommended by the IPCC tier 1

methodology (IPCC, 2006).

3.4 Calibration efficiency and model prediction error

Table 5 summarises the RMSESs obtained with the various paemsets, and made it possi-
ble to compare the efficiency of model calibration whethethea dataset-by-dataset or in the
multi-dataset mode. In the dataset-by-dataset procetheeRMSEs computed with the pos-
terior expectancy of predictions were lower than those aseqb with the prior expectancy of
predictions for all datasets except one (Arrou), with a 73duction on average and a maxi-
mum of 98% in La Saussaye. In 8 of the remaining 9 dataset®ratbn lead to a reduction
of 79% to 96% in the model's RMSE. On average across all detaisee RMSE dropped from
39 down to 6 g NO-N ha! d—! after calibration. There were no differences in the RMSHs ca
culated either with simulations based on the posterior nodgrarametersf) or with posterior
mean of predictions. Thus, the mean of our sample from theeposcould be directly used for
the sites of our database or for sites with similar soil typEe use of the parameter set with
maximum posterior probabilitydg, 1), i.e. when likelihood was maximum and given that we
used a uniform prior, logically improved the RMSE comparedhe use of the posterior mean
of parametersH). As could be expected, the multi-dataset calibration was efficient than the
dataset-by-dataset one, enabling a decrease of only 3386 &MSE computed with posterior
expectancy of predictions compared to the prior expectafg@yedictions. This would lead us
to believe that the parameter set summarised in Table 1 dmukigood compromise when the
model will be applied for a new site.

In addition, Table 5 shows that the calibration did not reathprove the simulations for two

datasets: Villamblain and Arrou. For both datasets, the dagre not informative enough to
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significantly improve parameter estimation. In the case ob#, the discrepancies may also
be explained by the poor ability of CERES-EGC to simulateawéigging effects, as observed
in this experiment. The MO module and in particular its denitrification part (Eqs. 1879 -
Appendix A) were already shown unable of correctly rendgtime dynamics of denitrification
or N,O emissions for soils with high degrees of water saturatisiill, RMSE values quantify
the mismatch between simulations and the mean of the measate without taking measure-
ment uncertainty into account, or diagnosing whether gnoblies with the simulations or the
data. As a consequence, RMSE values should be interpretie@¢avition. More in-depth model

evaluation would require comparing the behaviour of migtipodels.

4 Discussion

4.1 Suitability and benefits of Bayesian calibration

Our main goal was to demonstrate the potential of a Baydgiaa-calibration procedure to im-
prove the parameterization of g@®-emission model, quantify parameter uncertainty andeedu
uncertainties of model outputs. In recent years, Bayesdibration was successfully applied to
process-based ecosystem models, such as forest biomash grodels (Van Oijen et al., 2005;
Svensson et al., 2008; Klemedtsson et al., 2007). Amongettieus possible Bayesian methods,
MCMC is in principle particularly well adapted to such mosiéhnd in particular CERES-EGC)
because they can handle a high number of parameters simoitaly (Makowski et al., 2002).
Their efficiency is also not hampered by a poor knowlegde efptor distributions, as is often
the case with this type of models, and may be judged from tige hzariation range of the param-
eters we calibrated here. Method of expert elicitation Hasen recently developed and could
be used in the future in order to refine prior distributionsraidel parameters. In short, elicita-
tion is the process of translating expert knowledge abouertain quantities into a probability

distribution (Oakley and O’Hagan, 2007). However, no atiesthad been made yet to calibrate
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processes so uncertain and irregular in time and spacge@sehhissions. This raised a number
of issues in the adaptation of the MCMC algorithm. In patacuthe chains were strongly auto-
correlated, which required a substantial number of iterati(10 to 10°), and drastic thinning.
Also, the convergence had to be tested by running threelprhhins and using a variance-based
diagnostic. An accurate simulation of the soil environnaédtivers (temperature, moisture and
mineral N contents) was a pre-requisite for the predictibiNgO fluxes. Tests against field
data showed that this condition was overall met, as notegnewaous test of CERES-EGC in a
subset of the sites used here (Gabrielle et al., 2006b). mresnstances, some discrepancies in
the simulation of topsoil water content (Arrou) or nitratenéent (La Saussaye, Champnoél AN
and Le Rheu AN) which affected the prediction of@fluxes. However, these errors point to
structural deficiencies of the model (for instance in theudation of soil water dynamics in the
water-logged soil of Arrou), and did not interfere with thalibration. This was evidenced by
the fact that inclusion of measured drivers improved mo@elggmance only marginally and in
a few sites. This option was thus disregarded.

Our procedure significantly reduced parameter uncertdortyhe datasets, and the uncertainty
in simulated NO rates as a result. We have also established a databas@®oémissions for
Northern France and in the future, it will be interesting se@this one to parameterise other mod-
els or to compare the performance of differentONemissions process-based module integrated
in CERES-EGC. Another direction could also be to use otheadl kif output data to parameterise
specific module, for example the use of NO emission measuresnfi@r calibration of the nitri-
fication sub-module (Egs. 2, 10, 11, 12) of CERES-EGC (Rdlletnal., 2008). The procedure
we successfully implemented here may be readily used farabmponents of CERES-EGC,
such as soil C turnover or crop photosynthesis and growth.

The calibration significantly reduced the model's RMSE canep with the prior parameter val-

ues, on average by 73% with the data-by-dataset proceddreyaf3% with the multi-dataset
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procedure. Still, the calibration did not result in a petfieatch between model simulations and
observations of the daily )D fluxes. Measured data with high uncertainty were in paldicu
less well predicted because they presented a high spatiabilily and consequently were less
constraining in the calculation of the likelihood functiorhis may also be seen as an advantage
since these extreme data points with large variance did midéicilly influence the parameter
values compared to lower-range values with better accutdeinen (2006) also showed with a
different calibration method that the optimised denitefion sub-module did not result in per-
fect fit at the daily compared to the seasonal scale.

Lastly, the dataset-by-dataset calibration points to walysptimising calibration efficiency:
when using manual chambers; ®l measurements should be carried out at least once a month
throughout the year, with a higher frequency during the piates subsequent to N-fertiliser
and crop residues inputs and when soil conditions are faaberto denitrification , e.g. when

soil moisture, soil temperature and mineralization ragtagh.

4.2 Spatial variability of model parameters

We sought to calibrate model parameters either on a dabgséataset basis in order to minimise
model error or simultaneously on all datasets to find parametlues that would be universally
applicable, following the premise behind the original depenent of the NO model. Such
values would be extremely useful to apply the model to new amditions and to spatially
extrapolate it. However, it was suggested that simple m®t@ased models such as the one we
used here needs to be parameterised on a site-specific Hagi®e, 2006). The latter authors
concluded to the impossibility of defining a set of responsefions for denitrification (Egs 1, 7
,8, 9 - appendix A) that would equally apply to sandy, loamg peat soil types. Our dataset-by-
dataset calibration gave further evidence to that statéfoethe N,O module of CERES-EGC,

judging from the large variations in parameter pdfs acrosss However, our multi-dataset
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procedure also demonstrated that it is still possible to dilothal estimates for those parameters
that encompass a wide range of experimental conditiond)eatdost of a higher RMSE than
with optimal, site-specific parameter sets. The parametés we obtained in the multi-dataset
calibration shows which parameter values would be plaasdrtd may thus be used to improve
the accuracy of NO simulations in new sites.

Models are often developed with the purpose of providingljatéons over a large domain (in
space and time). However, ensuring that their parametense accurate is a pre-requisite to
such application. When attempting at simulatingON\fluxes in a new site where no measured
data are available, the results of our calibration pointshi following strategy to meet this
requirement. First, the user should check if calibratechpeater sets already exist for similar
soil types, based on soil taxonomy or physico-chemicalattaristics. If not, the parameter
values derived from the multi-dataset calibration may beduslhey may also serve as default
values for the spatial extrapolation of the model at theaeai scale. In the future, new data
sets may be assimilated in the calibration to reduce thertaioty of global parameters and to
increase the application domain of the model. Alternayivelis clearly advisable to favour the
collection of NO emissions data for the new sites, which lead to a much bettdormance
of the model. One last obstacle to the extrapolation of CEHEE® lies in the 4 site-specific
parameters, which are supposed to be measured in the laboite chose to exclude them from
the calibration in accordance with the original model dasigowever, including them would be
interesting to simulate a situation where such experimelg@rmination is not possible, and to
see to what extent it influences the outcome of the calibratibis likely to result in different
parameter values since, for instance, the potential diécdtiion rate (a local parameter) was
shown to significantly correlate with three global parametelated to denitrification (Gabrielle,
2006). However, testing such a scenario appeared beyosdope of this paper since it implied

too strong a deviation from the model hypotheses.
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4.3 Prediction of N,O fluxes from agro-ecosystems

CERES-EGC and its specific;® module have already been used in a range of soil conditions
(Hénault et al., 2005; Dambreville et al., 2008; Heiner)@0 and model uncertainty had only
been quantified using simple Monte Carlo techniques for aetubf 5 parameters (Gabrielle
et al., 2006a). The effect of parameter uncertainty wasoseldnalysed with ecosystem models
simulating NO emissions, although (or perhaps also becaus€) Measurements are fraught
with a daunting spatial and temporal variability (DuxburydaBouldin, 1982). Our Bayesian
calibration resulted in a probabilistic simulation of then¢ course of NO emissions taking
such variability and uncertainty into account, throughrtkensequences on parameters’ distri-
butions. The calibrated model could predict dailyONfluxes rather well, except for the highest
peaks with high experimental error which it failed to preadicsome cases.

In addition, the procedure makes it possible to quantify eieditput uncertainty in the calcula-
tion of annual NO budget and emission factors (EFs). The model predictedamyO fluxes
were ranging from 88 to 3672 g-/-N haly—! over the various sites, and EFs ranging from
0.05to 1.12%. On the basis of these results, alongside tfoSabrielle et al. (2006a), it ap-
pears that the 1% default EF value of the IPCC Tier 1 methagaknot suitable for the sites we
studied because it would considerably overestimate theadr@missions (Table 4). In Belgium,
Beheydt et al. (2007) used the DNDC model to calculate ERgsponding to various scenarios
involving high N input levels and N surpluses, and obtainedweerage value of 6.49%, which
is 25 times higher than ours, compared to an estimate of 3U€fg the NO measurements.
Their observed emission range was an order of magnitudeshtblan that of our database. As-
similate such extreme data with our procedure would be hétpfenlarge the prediction range
of CERES-EGC, and to check its ability to predict annual sioiss higher than 10 kg JO-

N ha 'ty

Our results also suggested that annugDMNemissions were not strictly proportional to fertiliser
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N rate, which is in agreement with the results of Barton e{2008). The latter showed that,
in a semi-arid climate, in spite of the application of N fisgr the annual MO emissions were
not significantly increased in comparison with backgroundssions. They concluded that the
emissions of NO from arable soils could not be directly derived from thelaggion of N fer-
tiliser, and that other factors (e.g., soil properties)dtide taken into account.

Bayesian calibration provided valuable insight into theentainty of the simulated ) fluxes,
making it possible to take risk into account in a range of nhaghplications: estimation of the
global warming potential (GWP) of agro-ecosystems, assestof cropping systems’ environ-
mental balance, or decision support in agriculture. It wiaalso be interesting to compare the
ability of various agro-ecosystem models to predigONemissions on the same data sets, in a
similar fashion as Frolking et al. (1998) and Li et al. (2005)rthermore, Bayesian Model Com-
parison (Van QOijen et al., 2005; Kass and Raftery, 1995)ctbel applied to examine multiple
models and to quantify their relative likelihood, i.e. byt&enining which model is most prob-
able in view of the data and prior information. Finally, thetjputs of several models could be
combined to improve the accuracy of the prediction, as wggested with atmospheric models

(Fisher et al., 2002).

5 Conclusion and future work

Bayesian calibration was successfully applied to the CEEB®& agro-ecosystem model to im-
prove the parameterization of its,@ emission module, thanks to a careful analysis and diag-
nostic of the MCMC chains of parameters generated by thedgetis-Hastings algorithm. The
parameters were calibrated either (i) against separatgly skts or (ii) by using all the data sets
simultaneously, to satisfy our objectives which were, egtpely, to improve model simula-
tions at the field scale and to find universal values of pararagéh order to spatially extrapolate

the model. In addition, Bayesian calibration provided a mseaf quantifying uncertainties in
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both parameters and model outputs. Furthermore, it appeassnable to assume that when the
model should be applied at a larger scale than the plot-sitedgarameter values resulted from
the multi-dataset procedure could then be used for soiktygech will have never been parame-
terised. In fact, the posterior parameter distributionsoempass all our current observations and
give us the possibility of quantifying their uncertainty.

A remaining obstacle to the extrapolation of theONmodule lies in the 4 local parameters that
should be measured or estimated on site (Hénault et al§)2@8d that were accordingly not
calibrated here. Identifying the key soil or landscape abt@ristics that control these parame-
ters appears as a pre-requisite to the large-scale use dESHEGC.

Based on our results, we recommended a strategy to deal witlelnextrapolation and parame-
ters’ variability. Nevertheless, another option to tackpatial variability would consist in using
other types of prior information (e.g. on soil properties)rfer the parameters of the,® mod-
ule. In future work, it would be beneficial to identify suchyfierparameters” which may explain
spatial variability (Clark, 2005), and to develop a hieracal Bayesian approach to derive their

pdfs.
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Appendix A. Equations of the nitrous oxide emission module

The response functions are unitless and read:

[NO5]

Fyv —
N Kmdemt + [NO?)_}

(7)

where Fy is the denitrification response factor to [N{the soil nitrate content (mg N kg soil),
and Kmy.,.;; the half-saturation constant (mg Nkgsoil).
Fy =0, WFPS < Trwrps

(8)

WFPS —T pow
Fy = { Twrps  WFPS > Trwrps
1 —Trwrps

where Ry is the denitrification response factor to soil WFPS; Tk is a threshold value below

which no denitrification occurs and POW is the exponent ofibveer law.

T-TT eni { 10 eni -9 10 ent
Fr = exp {( Taenit) 11 (Q & 1) = 9In (Q104 “)} LT < TTrgens
9)
T —20)1 10geni
Fy = cap {( 0) Tié@ Ode t,2)} T > TTrgs

where F is the denitrification response function to soil tempemt{r, °C), in the form of two
sequential Q10 functions below and above a threshold teatyoer (TTy.,;;). The two QO
values (Q1Q.,;;1 and Q1Q.,; ) correspond to the relative increase in denitrificatiornvégtfor

every 10 °Cincrease in T.
[NH/{]

N = R x Hp + [NH]]

(10)

where Ny is the nitrification response factor to [N the soil ammonium content (mg N kgsoil).

The half-saturation constant K (mg N kg™ soil) is calculated at each soil water content (Hp,
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1 wiw).
_ WFPS — MINwpps
OPTWFPS - M[NWFPS

NW , M[NWFPS <WFPS < OPTWFPS

(11)
MAXwpps — WEPS

 MAXwrps — OPTwrps
else Ny =0
2 where Ny is the nitrification response function to soil water contéitrification is assumed to

Nw

, OPTWFPS < WEFPS < MAXWFPS

s Increase linearly from a minimum WFPS (M}N-ps) up to an optimal value (ORjf-ps) and
+ then to linearly decrease down to a maximum WFPS (MA>%s) (Rolland et al., 2008).

(T — 20)In(Q10,:)

Np = exp 10

(12)

s where N- is the response factor to soil temperature (T, °C) and,Q19the Q10 factor for this

¢ reaction.

. Appendix B. The Metropolis-Hastings algorithm

s The Metropolis-Hastings algorithm consists of three steps
sStep 1. Randomly generate a new “candidate” parameterecto

0" =0, 1+6 (13)
10 whereé is a random vector generated using a multivariate norméiloligion;

uStep 2. Calculate the ratio of the posterior probabilityleé tandidate vector over the posterior

12 probability of the current candidate:
_ p0Y) _ p(Y]0")p(07)
= = (14)
p(0ia|Y)  p(Y[0;-1)p(0i-1)
13 In our case, since calculations are made using logarithrgompute the log ok as the
14 difference between the log of the posterior probability leé tandidate vector minus the

15 log of the posterior probability of the current vector.
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1Step 3. Accept* if « > u wherewu is an uniform random variable from an uniform distribution
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on the interval (0,1), else reject afid= 6;_;.

The new point* is always accepted if its posterior value is no lower thanpibsterior value of
0;_1. Once the chain has attained tNeiterations, the chain must have converged to the target

distribution which is the posterior parameter distribatio
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Parameter vectdt = [6;...011] Prior probability Posterior probability

distribution distribution
0;  Symbol Description Unit Default 0,,;,()) 6m..() References Mean SD Correlated
value {6:}
0, Trwrps WFPS threshold for denitrification % 0.62 0.40 0.80 Gabei¢l006); Hénault et al. (2005) 0.689 0.0072,6}
Hénault and Germon (2000); Johnsson et al. (2004)
Oy KMgenit Half-saturation constant (denit) mg Nkgsoil 22.00 5.00 120.00 Gabrielle (2006); Ding et al. (2007) 6.94 22.47 {16}

Parton et al. (2001); Del Grosso et al. (2000)
Parton et al. (1996); Bateman and Baggs (2005)
Johnsson et al. (2004)

O3 TTrgenit Temperature threshold °C 11.00 10.00 15.00 Gabrielle (RA@ABINssoN et al. (2004) 10.27 0.17
Renault et al. (1994)

0y QL0init1 Q10 factor for low temperature Unitless 89.00 60.00 120.0@anfdrd et al. (1975); Maag and Vinther (1999) 89.46 18.38}

05 Q10icnit2 Q10 factor for high temperature Unitless 2.10 1.00 4.80 @Hbr(2006); Stanford et al. (1975) 262 1.17{410}

s POWyenit Exponent of power function Unitless 1.74 0.00 2.00 Stanédrdl. (1975); Smith et al. (1998) 153 0.23{% 2}

Johnsson et al. (2004); Maag and Vinther (1999)
Maag and Vinther (1996); Skopp et al. (1990)
6;  OPTwrps Optimum WFPS for nitrification % 0.60 0.35 0.75 Jambert etE397); Laville et al. (2005) 0.59 0.12
fs  MINwrps  Minimum WFPS for nitrification % 0.10 0.05 0.15 Linn and Dord®84); Jambert et al. (1997) 0.095 0.02
Skopp et al. (1990); Ding et al. (2007)
Parton et al. (2001); Bateman and Baggs (2005)

fy  MAXwrps Maximum WFPS for nitrification % 0.80 0.80 1.00 Linn and Dora884); Parton et al. (2001) 0.88 0.05
Bateman and Baggs (2005)

010 Km,; Half-saturation constant (nit) mg N k§soil 10.00 1.00 50.00 Linnand Doran (1984); Jambert et 897} 25.69 14.17 {5}
Pihlatie et al. (2004)

011 Q10 Q10 factor for nitrification Unitless 2.10 1.90 13.00 Maaglafinther (1996); Laville et al. (2005) 7.36 3.04

Smith (1997); Dobbie and Smith (2001)

Table 1: Description of the 11 parameters of th@Nemissions module. The prior probability distribution efided as multivariate
uniform between bounds,,;,, andd,,., which were extracted from a literature review. The postep@arameter distributions are
based on the multi-dataset procedure, and are charactdryséhe mean value of the posterior, their standard devigi8D).
Correlations with other parameters are reported if thegodhlte value exceeds 0.4 (underlined parameters expresgaive
correlation).



Site Treatment Year Soil texture  Crop type N fertiliser ~ Nwenbf  Source

class (kg N ha') observations

Rafidin NO 1994-1995 Rendzina Rapeseed 0 7 Gosse et al. (1999)

N1 1994-1995 Rendzina Rapeseed 155 8 Gosse et al. (1999)

N2 1994-1995 Rendzina Rapeseed 262 9 Gosse et al. (1999)
Villamblain 1998-1999 Loamy Clay Winter Wheat 230 15 Héhatal. (2005)
Arrou 1998-1999 Loamy Clay Winter Wheat 180 18 Hénault e{2005)
La Saussaye 1998-1999 Clay Loams Winter Wheat 200 14 Hiegizall (2005)
Champnoel CT 2002-2003 Silt Loam Maize 0 15 Dambrevilld 2908)

AN 2002-2003 Silt Loam Maize 110 23 Dambreville et al. (2008)
Le Rheu CT 2004-2005 Silt Loam Maize 18 24 Dambreville et2008)

AN 2004-2005 Silt Loam Maize 180 22 Dambreville et al. (2008)
Grignon 2005 Silt Loam Maize 140 31 Lehuger et al. (2007)

Table 2: Main characteristics of the,® emissions data base used in the model calibration. At
Rafidin, the treatments NO, N1 and N2 correspond to variodisriilizer applications and at Le
Rheu and Champnoél, the treatments AN correspond to anumonitrate application and CT

to the control plot.
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Site Treatment Soil temperature Soil water content Nitcatgtent Ammonium content
N Mean MD RMSE N Mean MD RMSE N Mean MD RMSE N Mean MD RMSE
(°C) (v/Iv) (kg NO;-N ha'l) (kg NH4-N hat)

Rafidin NO 294 8.7 -1.2 3.0 20 0.253 -0.027 0.043 21 108 55 9921 37 35 4.1

N1 294 8.7 -1.2 3.0 20 0.244 -0.035 0.051 21 129 8.0 11.8 21 580 6.8

N2 294 8.7 -1.2 3.0 20 0.240 -0.039 0.050 21 235 170 226 212 65.6 8.0

Villamblain 250 8.4 0.1 1.3 7 0.344 0.024 0.027 7 176 8.7 110 7 65 48 6.0

Arrou 250 8.4 0.2 1.2 7 0.343 0.053 0.056 7 18.1 118 149 7 9.1.0 910.6

La Saussaye 250 8.4 -1.2 2.4 7 0.307 0.030 0.038 7 153 -1599 27 7 59 538 8.8
2 09 07 0.7

Champnoél CT nodata nodata nodata nodata 14 0.239 -0.009 0.049 2 288 34 3.7

AN nodata nodata nodata nodata 14 0.239 -0.006 0.027 11 224 -20.8 295 11 134 8.0 14.6
Le Rheu CT nodata nodata nodata nodata 13 0.212 0.004 0.028 9 178 -14 15.4 9 4.6 4.3 4.6

AN nodata nodata nodata nodata 13 0.212 0.004 0.028 10 543 -16.6 27.8 10 45 -7.8 25.3
Grignon 364 11.7 -0.4 2.4 13 0.249 0.002 0.028 11 714 -17 214. 11 123 6.8 13.6

Table 3: Sample size (N), mean of measured in situ soil veEsafMean), mean deviation (MD) and root mean square errors
(RMSE) computed with the predicted and measured soil vimsalsoil temperature, soil water content and topsoil tetend

ammonium contents for the 11 data sets.



Site Treatment Year O Fluxes 0.05 quantile  0.95 quantile IPCC Conversion factomisKion factor

(Nha'y™) (gNha'y™) (gNha'y™) (gNha'y™) (%) (%)

Rafidin NO 1994-1995 689 578 741 0 - -

N1 1994-1995 584 473 824 1550 0.4 (0.3-0.5) 0.07 (0.00-0.22)

N2 1994-1995 819 629 1183 2620 0.3(0.2-0.5)  0.10 (0.03)0.24
Villamblain 1998-1999 1465 454 2989 2300 0.6(0.2-1.3)  ((B60-1.02)
Arrou 1998-1999 3672 1676 5874 1800 2.0(0.9-3.3) 0.26 (0.@9)
La Saussaye 1998-1999 3215 572 6035 2000 1.6 (0.3-3.0) @.a@-2.53)
Champnoél CT 2002-2003 218 49 746 0 - -

AN 2002-2003 336 106 855 1100 0.3(0.1-0.8)  0.06 (0.00-0.53)
Le Rheu cT 2004-2005 88 66 115 180 0.5 (0.4-0.6) -

AN 2004-2005 183 146 220 1800 0.10 (0.08-0.12) 0.05 (0.08)0.
Grignon 2005-2006 150 143 163 1400 0.11 (0.10-0.12) 0.@®0.05)

Table 4: Annual NO fluxes (g NO-N ha'y~!) calculated as the sum of mean, 0.05 and 0.95
guantiles of daily simulations with the calibrated paraenesets. Annual estimates from IPCC
methodology (corresponding to the emissions due to feetilapplication), conversion factor
(%) and emission factor (%) are also reported (see text féinitlen), along with their 90%
confidence band.
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RMSE (in g NO-N ha! d—1) computed with:

Site Treatment
Prior expectancy Posterior expectancy Posterior expectancgxinvim a posteriori  Posterior expectancy of predictions

of predictions of predictions of parameters parameterorect  with the multi-dataset procedure
Rafidin NO 4.6 0.7 0.3 0.3 4.6
N1 7.5 1.2 1.4 1.2 12.8
N2 10.5 21 3.0 2.8 20.4
Villamblain 5.2 4.8 4.9 4.9 5.5
Arrou 25.4 27.1 25.3 23.8 29.2
La Saussaye 93.0 2.0 2.3 2.4 2.3
Champnoél CT 21.5 14 0.9 0.9 0.9
AN 65.58 13.8 14.0 13.8 14.0
Le Rheu CT 149.5 6.1 6.0 6.0 6.0
AN 30.4 2.0 2.2 2.2 2.4
Grignon 16.9 1.0 1.2 1.3 11

Table 5: Root mean square errors (RMSE, ingD\N ha ! d~!) based on: the prior expectancy
of predictions, the posterior expectancy of predictiohg, posterior expectancy of parameters,
the maximum a posteriori parameter vector and the postexipectancy of predictions from the

multi-dataset procedure.
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Figure 1: Posterior distributions of the 11 calibrated pagters ¢, to 0,,) represented as box-

plots over the prior range of variation (corresponding te tAnge of the y-axis). The boxplots

are computed from calibration dataset-by-dataset and th@H'multi-dataset” procedure. The
boxplots depict the median (solid line), the 2nd and 3rd tjear(bars), the 1st and 4ht quartiles

(dotted line), and the extreme values (excluding outliers)
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Figure 3: Response functions of the®lemission module traced with different parameters sets:
mean of the posterior for each dataset-by-dataset cabbréine), and mean of the posterior for
the multi-dataset calibration (dashed line).
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Figure 4. Simulated (lines) and observed (symbolgPNemissions for the different sites and
treatments. The simulated line is the posterior expectahpyedictions from dataset-by-dataset
calibrations.
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