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It is well-known that the domains of static stability and dynamic stability (even for a
linear approach) do not match each other when the system is no more conservative and
the dynamic approach is usually privileged, meaning that the dynamic stability domain
is included in the static one. Following previous works proposing a new criterion of static
stability of nonconservative systems and prolonging a paper of Gallina devoted to linear
dynamic instability (flutter), we show in this paper some remarkable relations between
the two approaches: contrary to the common thought, the new static stability criterion
implies partially the dynamic one.
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1. Introduction

In Ref. 1, Gallina introduces new algebra and symbolic computation results2 for the
study of nonconservative undamped elastic systems. These results are interesting
because they provide the critical load of dynamic instability (flutter) for such sys-
tems. Unfortunately, the algebraic conditions do not seem to have any mechanical
basis. The aim of this paper is to make these formal conditions meaningful and
to draw conclusions about comparison between static and dynamic stabilities from
these results.

Gallina splits his result into two theorems. The first one deals with the resultant
of the system’s characteristic polynome P and its derivative P ′, the second with
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the sign of the coefficients of P . Our paper addresses the second theorem, for which
we provide a mechanical basis.

As in a previous paper,3 we shall first give a new definition of static instability.
Such a definition coincides with the classical one (divergence) for conservative sys-
tems but is better adapted to nonconservative systems. This definition leads to a
new criterion of static stability.

Some of the properties of this criterion are then introduced, and finally the
criterion is applied to the stability conditions given by the second theorem in Ref. 1
and one can then demonstrate that they are automatically satisfied, thus providing
the mechanical basis for the conditions of the second theorem.

Following other papers3,4 where examples illustrate this fact, such a result also
suggests that the stability of structures should be investigated through both static
and dynamic approaches. Contrary to the common opinion privileging systemat-
ically the dynamic approach, the better criterion for ensuring stability should be
chosen in each case after both calculations. An example coming from aerodynamics
and another about Ziegler’s model submitted to a partial follower force illustrate
finally our approach and our result.

Before starting the development of the paper, let us note that the background
of this work is the linear theory.

2. A New Definition of Static Stability

2.1. Stability definitions and conservative systems

We shall first investigate the stability of the equilibrium in a discrete mechanical
system represented by 0. It is assumed that this system is nonconservative but
elastic. The linearized equations of the system become

Mδẍ + K(λ)δx = 0, (1)

where δx = col(δx1, . . . , δxn) is an unknown vector describing the deformation of
the system, M the mass matrix, K = K(λ) the stiffness matrix and λ the loading
parameter. M is symmetric positive definite and K(λ) is any matrix that in a
conservative system is symmetric positive. Before we detail the new approach, the
classical approach in statics and dynamics is now recalled.

More precisely, there is a function F : (λ, q) �→ F (λ, q) such that q = 0 is a
solution to the complete equilibrium equations,

F (λ, q) = 0 ∀ λ ∈ [0, α] , (2)

and then ∂F
∂q (λ, 0) = K(λ). The equilibrium of the system is said to be stable

or dynamically stable when for minute initial conditions of position and velocity,
‖q(0)‖ ≤ ε, ‖q̇(0)‖ ≤ ε, the solution t �→ q(t) = (q1(t), . . . , qn(t)) of the nonlin-
earized dynamic equations remains in a small well-defined neighborhood around
the origin ‖q(t)‖ ≤ O(ε)∀t > 0. The main difficulty, not studied here, is to con-
clude about the stability using only linearized equations. If only the solution of the
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linearized equations is stable in the same sense as for the nonlinearized equations,
one speaks of weak stability. In the rest of the paper, we shall only look at weak
stability.

Static instability, i.e. the problem of the bifurcation, concerns the study of the
solutions t �→ q(t) to Eq. (2). The associated linearized problem is

K(λ)δx = 0. (3)

Equation (3) may be interpreted as the homogeneous problem associated with the
nonhomogeneous one formulated by Absi.5,6

A system is considered statically stable if for any infinitesimal perturbation δs
of the actions, the vector of the coordinates of generalized effective actions, the
system moves infinitesimally to a new equilibrium defined by δx. δx and δs follow
the equations

δs = K(λ)δx. (4)

In the following, K(0) is regular and symmetric (elastic system) and we are looking
for a value of λ > 0 (the lowest) for which stability is not ensured. It is called a
critical value of loading and:

(a) In classical static instability or divergence [in the case of Eq. (3)], we shall speak
of s instability and λs is its corresponding value.

(b) In dynamic instability (in the case of complete dynamic equations), we shall
speak of d instability and λd is its corresponding value.

(c) In weak dynamic instability or flutter [in the case of Eq. (1)], we shall speak of
w instability and λw is its corresponding value.

It is known that, for a conservative system, s instability and w instability appear
for the same value of the parameter of loading λs = λw obtained by the equation

det(K(λ)) = 0. (5)

Moreover, the (complete) stability is ensured by an energy criterion preventing
movement in the system if it is stable (λs = λw = λd).

2.2. Mixed perturbation: a new stability criterion

We propose a new formulation of static stability which makes, use of the concept
of mixed perturbation. Because of the symmetry of the matrix K in a conservative
system, the variations δs and δx mentioned above play a symmetric role and only
one pure perturbation, δs, is needed to analyze static stability. However, in non-
conservative systems, the nonsymmetry of K implies that the stability has to be
studied together with the so-called system’s mixed perturbations. This means that
we need to consider in Eq. (4) perturbations like (δsi1 , . . . , δsik

, δxik+1 , . . . , δxin) for
all i1, . . . ik because of the duality between the displacements δx and the external
actions δs.
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Definition. The system is said to be statically stable if the linear system

δs = K(λ)δx

is nonsingular for all mixed perturbation (δsi1 , . . . , δsik
, δxik+1 , . . . , δxin). As in real-

life, it is also assumed that (δs | δx) ≥ 0 for any mixed perturbation. This criterion is
obviously the direct generalization of the stability criterion of conservative systems.

Notation. In the new static criterion of instability, we shall speak of m instability
and λm is its corresponding value.

Therefore, m instability appears when K(λ) is no longer positive definite or if
there is a vector x �= 0 such that txKx ≤ 0. More precisely, K = K(λ) and K(0)
is symmetric positive definite (a conservative system if λ = 0). Consequently, by
continuity, the system stops being m stable if K(λ) stops being positive definite or,
in this study, if there is a vector x �= 0 such that txK(λ)x = 0.

It is usual to speak of positive definite symmetric matrices. But the property of
positive definiteness may be defined for any matrix by:

Definition . Let A be a square matrix. A is said to be positive definite if and
only if

txAx > 0 ∀x ∈ R
n x �= 0.

The proposed new criterion leads us to analyze these positive definite matrices
(symmetric or not).

3. About Positive Definite Matrices

If A is a matrix, As = A+ tA
2 and Aa = A− tA

2 are respectively the symmetric and
the skew-symmetric parts of A. It is clear that for all x in R

n,
txAx = txAsx.

The m criterion concerns only the symmetric part of the system’s stiffness matrix
and there is no way we can get direct relationships between the proper values of A
and As.

However, some specific properties of a positive definite matrix, whether it is
symmetric or not, remain valid. It is known that for a symmetric matrix A, A is
positive definite if and only if all principal minors are positive [a principal minor
di(A) is the determinant of the matrix obtained by suppressing row i and column
i]. Positive definite matrices follow Theorem 1:

Theorem 1. If A is a positive definite matrix, then every principal minor of A
is positive.

Before this is demonstrated, we can note that a positive definite matrix has the
following property: If A is a positive definite matrix, every principal submatrix is
also positive definite. Consequently, any submatrix s(A) obtained by suppressing
the same lines and columns is positive definite too.
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Proof. Let k be the suppressed line and column index of A, resulting in matrix
s(A), and y �= 0 in R

n−1. In addition, let x �= 0 be in R
n such that xk = 0, xi = yi

if i < k and xi = yi−1 if i > k. The condition txAx > 0 becomes tys(A)y > 0 and
s(A) is positive definite.

Proof of Theorem 1. According to the previous paragraph, it is enough to prove
that the determinant of A is strictly positive if A is positive definite. Decomposing
A = As + Aa and noting that As is symmetric positive definite, let us consider B
the square root of As and let us write

A =t B(I +t B−1AaB−1)B =t B(I + Am)B.

Am is skew-symmetric and

det(A) = det(tBB)det(I + Am) = det(As)det(I + Am) > 0

if and only if det(I + Am) > 0 (because det(As) > 0).

The properties of a skew-symmetric matrix depend on the dimension n of the
space, i.e. of the size of the matrix (see Ref. 7, for example): if n = 2p + 1 (n is
odd), Am is singular. Let um be the morphism canonically attached to Am and
E = Ker(um).

Because um(x | y) = −(x | um(y)) for all x and y, E and E⊥ are um-stable.
Considering the restriction vm of um to E⊥, vm is skew-symmetric and nonsingular
and dim(E⊥) = 2p. There is a basis in which the matrix of vm is diag(Q1, . . . ,Qp)
with Qk = qkS and

S =
(

0 −1
1 0

)
.

Proof. v2
m is symmetric real and if λ is a proper value of v2

m and x a proper
vector, then vm(x) is also a proper vector. There are λ1, . . . , λp proper values with
x1, vm(x1), . . . ,xp, vm(xp) associated proper vectors. By normalizing these vectors,
the required basis is then obtained.]

It follows that

det(I + Am) =
n∏

k=1

(1 + q2k) > 0.

Remark . Another proof of this result may be directly obtained by using the
following result (see Ref. 9): If S is symmetric positive definite and A anti-symmetric
then det(S + A) ≥ det(S). By applying this result to the previous decomposition
A = As + Aa and to apply standard results (Sylvester’s theorem) concerning
symmetric definite positive matrices, one get another proof of Theorem 1.

4. Application to the Stability of Nonconservative
Undamped Systems

Let Σ be a nonconservative undamped system, and M and K its mass and stiffness
matrices. In addition, let P (λ) = det(Mλ + K) be its characteristic polynomial.
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The following property holds:

Theorem 2. If Σ is m stable, then the coefficients of P (λ) are positive.

Proof. According to the definition of the m stability, M is symmetric positive
definite and K is positive definite. Let A be the square root of M; then A is also
symmetric positive definite, tAA = M and

Mλ+ K = tA(λI + tA−1KA−1)A = tA(λI + KA)A,

with KA = tA−1KA−1. Note that because A−1 is symmetric positive definite, KA

is positive definite like K itself (txKAx = tyKy with y = A−1x and x �→ A−1x is
an automorphism of R

n).
We deduce that

P (λ) = det(M)det(λI + KA).

If we now consider the polynomial KA = (rij)1≤i,j≤n,

Q(X1, . . . , Xn) = det



X1 + r11 r12 . . . r1n

r21 X2 + r22 . . . r2n

...
...

rn1 rn2 . . . Xn + rnn


 .

Then P (λ) = Q(λ, . . . , λ) and

Q(X1, . . . , Xn) =
∑

p

∑
i1<···<ip

Xi1 , . . . , Xipdet(si1,...,ip(KA)),

where si1,...,ip(KA) is the submatrix of KA obtained by suppression of lines and
columns i1, . . . , ip. According to Theorem 1, the coefficients of Q and consequently
of P are positive.

5. Examples

Two examples are investigated. The first one is issued from aerodynamics and is a
two degree of freedom model of a wing. The second one is the Ziegler’ system under
partial follower force.

5.1. A two dof wing

The chosen example comes from aerodynamics. This example may be found in
Ref. 10. The system is a two degrees of freedom model of a wing (see Fig. 1). The
loading parameter λ is the speed V of the wind. Let be K1 and K2 the bending
and torsion stiffness of the system, θ the bending angle and ψ the torsion angle. We
investigate the stability of relatif equilibrium of the wing compared to the plane.
In equilibrium position, the wing is supposed plane in the plan OXZ, the speed V
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Fig. 1. Example 1.

of the wing is opposed to axis OX and is constant. The frame 0xyz is supposed
attached to the wing that is regarded as a rigid body and Ox lies in the plan OXY .
The aerodynamic actions are reduced to a drag balanced by the reactions of the
plane on the wing and to a lift �L perpendicular to the wing regarded as a plate.
This force is applied at the point C on the axis Oz such as OC = a. The intensity
L of the lift force is then given by L = ΓSV 2ψ where Γ is a shape coefficient and
S is the surface of the wing. Straightforward calculations lead to both following
expressions:

the mass matrix is given by

M =
[
A −E
−E C

]

and the stiffness matrix is

K =
[
K1 aΓSV 2

0 K2

]
.

We now investigate the critical values of V according to the different approaches
of stability and the eventual relations between themselves.

5.1.1. Classical static instability or divergence

det(K(V )) = K1K2. There is no critical value of divergence (S-instability) of the
speed wind!!: Us = +∞.
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5.1.2. Weak instability or Flutter

The characteristic polynomial of the system is:

P (x) = (1 − α)x2 +
(
ω2

1 + ω2
2 +

αΓaSV 2

E

)
x+ ω2

1ω
2
2

where 0 ≤ α = E2

AC < 1 (because M is symmetric positive definite), ω2
1 = K1

A ,
ω2

2 = K2
C . Straightforward calculations give:

∆ = (ω1 − ω2)2 + 4αω2
1ω

2
2 +

αΓaSV 2

E

(
αΓaSV 2

E
+ 2(ω2

1 + ω2
2)

)

• If E > 0 there is no critical value of flutter of the speed of wind!!: Uw = +∞.
• If E < 0 the critical value Uw of flutter (w instability) is then:

U2
w = − E

αaΓS
(ω2

1 + ω2
2 − 2ω1ω2

√
1 − α)

obtaining by annulating ∆ according to Gallina’s criterion because if V < Uw

the coefficients of P are > 0. Indeed, V < Uw implies ω2
1 +ω2

2 + αΓaSV 2

E > 0, the
other coefficients of P being obviously positive.

5.1.3. New criterion of static stabilty

Calculations give here the following expression of critical value Um of static insta-
bility according to the new criterion (m instability):

U2
m =

2
√
K1K2

ΓaS
=

2ω1ω2

√
AC

ΓaS
= ±2ω1ω2E

ΓaS
√
α

according to the sign of E.
We first may note that there always is a critical speed Um of wind (for E > 0

or for E < 0) and obviously:

• Um < Us = +∞ (see Theorem 1),
• for E > 0 then Um < Uw = +∞,
• for E < 0,

U2
w

U2
m

=
1

2
√
α

(
ω1

ω2
+
ω2

ω1
− 2

√
1 − α

)

that may be > 1 or < 1 which means the comparison between the both criteria
depends on the mass repartition (A,C,E) of the structure.

To conclude with this example, let us observe how it works concerning the
Theorem 2.

If V < Um, then:

ω2
1 + ω2

2 +
αΓaSV 2

E
= ω2

1 + ω2
2 + 2ω1ω2

V 2

U2
m

E√
AC

> ω2
1 + ω2

2 − 2ω1ω2 = (ω1 − ω2)2 ≥ 0

8
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because −√
AC ≤ E ≤ √

AC and V < Um. We observe on this example the results
of Theorems 1 and 2. We see also that no general implication exists between the
both criteria but only the partial implication given by the Theorem 2.

5.2. Ziegler’s system under partial follower force

The application of the new criterion to Ziegler’s system under follower force has been
already done in a previous paper.3 A straightforward calculation could show that
the result of last theorem holds in the corresponding example. We now illustrate
our results on a most general case of similar system under a partial follower force.
With the standard notations (any mass repartition), we obtain by using standard
notations (see for example Ref. 8 (see Fig. 2):

M =
[
A −E
−E C

]

and the stiffness matrix is

K = K(α, p) = k

[
2 − p −1 + (1 − α)p
−1 1 − αp

]

where λ = p = Fl
k is the load parameter of the system and α is the partial follower

parameter. α = 1 corresponds of the conservative case and α = 0 to the complete
follower load case treated by Ziegler. In Ref. 3, some calculations using the new
criterion have been already done for this case.

Fig. 2. Example 2.
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5.2.1. Classical static instability or divergence

det(K(p)) = αp2 − 3pα+ 1 = 0. That determines a region of divergence for each α
and a curve α �→ ps(α).

5.2.2. New criterion of static stability

By applying the new criterion, we obtain a curve α �→ pm(α) solution of p2(a2 −
6a+1)+12ap−4 = 0 with 0 < p < 2. On Fig. 3, we may observe that new criterion
is better than this one of divergence because of the relative position of the both
curves α �→ ps(α) and α �→ pm(α): pm(α) ≤ ps(α) for all 0 < α < 1.

5.2.3. Weak stability

We investigate only the case of uniform mass distribution. Calculations lead to
following characteristic polynomial:

P (x) =
7
4
x2 +

(
9 − 5

2
p(1 + α)

)
ω2x+ ω4(1 + p2α− 3αp)

where ω2 = k
C . Calculations show that if p < pm(α) then 9 − 5

2p(1 + α) > 0 for
0 < α < 1 which is Theorem 2.

1,6

2

1,2

0,4

0,8

10,80,60,2 0,40

p (α)

p

α

s

p (α)
m

Fig. 3. Comparison of static criteria for Ziegler’s system.
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6. Conclusion

The announced result has been demonstrated in three steps. First, a new criterion
of static stability has been proposed for analyzing the static stability of any system
(whether it is conservative or not). The second step consisted in analyzing the
structure of positive definite operators. Thirdly, the result has been deduced: the
coefficients of the characteristic polynomial of undamped nonconservative m stable
systems are always positive. This brings a mechanical basis to the second condition
of stability in Gallina’s article1 and solves it. The conditions of the first theorem
should be studied in the same way.

Concerning the stability of structures, the obtained result shows that, introduc-
ing a definition of static stability more suitable for the nonconservative cases (and
equivalent to the usual static stability for conservative systems), the links between
the two approaches do not seem so obvious as what is usually supposed. On the
contrary, the link that is only partial is in the opposite direction: if any undamped
system is static m stable, then the second part of conditions of its dynamic stability
necessarily holds.

For engineers, this means that it would be wiser to use both approaches and to
choose the safer one. Unfortunately, such a choice must be made for each structure,
because there are examples where the dynamic approach leads to a lower critical
load of instability and other examples where the static approach is better.3,4

The examples studied in the last section illustrate this situation.
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