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About the synchronization of MEMs

Jean Lerbet∗

IBISC, FRE CNRS 2873, Universit´e d’Evry Val d’Essone, 40 Rue du Pelvoux, CE 1455 Courcouronnes, 91020 Evry Cedex, 

France 

Abstract

The stabilization of motions of MEMs is a difficult and important problem for the users because of the many nonlinearities of
the system and the advantage for the structure to work close to resonance for a better electro-mechanical coupling. In this paper,
we investigate the synchronized motion of a one degree of freedom model of MEMs taking into account the nonlinear effect of
the electric force. By using the theory of synchronization with µ =

δV
Ve

as small parameter, we propose a procedure to ensure the
synchronized motion close to resonance and to investigate its asymptotic stability. To our knowledge, this problem has never been
investigated.

Keywords: MEMs; Synchronization; Small parameter; Nonlinear effects

1. Introduction

For many years, several modeling of MEMs have been proposed and specific procedures are now programmed
with softwares like ANSYS. Nonlinear effects (geometry, electrostatic forces . . . ) are taken into account and coupled
electo-mechanical calculations are also proposed. As noted in [7], the situation is not so clear concerning dynamic
calculations and several investigations have to be carried out, for example about damping or dynamic electro-
mechanical coupling effects. Dynamics of nonlinear systems may have complicated behavior from regular to chaotic
one with every kind of instability (divergence, flutter, Hopf bifurcations, limit cycles . . . ) (see [4,6,8,13,9], etc).
Moreover, the MEMs are used close to resonance because of a better electro-mechanical coupling. However, that
may induce the collapse or pull-in and the control of motion close to resonance is in fact one of the final aims
in using MEMs. We propose here to contribute to such an aim by applying the theory of synchronization to the
dynamics of MEMs. In order to present the essence of the method, we only use a one degree of freedom equivalent
system. The limitations of such a model are well-known but we think that the higher forgetting lies in a frequent
assumption consisting in supposing that the electrostatic force is “vertical” and is not a real pression. However,
nonlinear nonuniform pression may induce effects like those induced by a follower force. Such effects are (often
and here by nature of a one d.o.f. system) neglected and we focus only on nonlinear effects. Remark nevertheless that
without neglecting the previously mentioned effects, static instability (divergence) (as pull-in is often presented) is
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Fig. 1. The model.

not identical to the dynamic one (flutter) ([3,5,1], . . . ). That is also mentioned in [10] after simulations. The author
mentions “that the system may become unstable before the static pull-in voltage due to the dynamical effect and thus
one should consider the dynamic pull-in voltage”.

In the first section the mechanical model is presented. The second section is devoted to the derivation of
synchronization’s equations. In the last part, MAPLE procedure allowing numerical simulations and experimental
verifications are given.

2. The model and the equation

According to the mechanical model, the dynamic equations are:

mv̈ + kv = F(v, V ) (1)

where m is the equivalent mass and k is the equivalent rigidity of the system. F(v, V ) denotes the electric force acting
on the mass when a voltage V is applied and (see [2] for example):

F(v, V ) =
aV 2

(1 + b(1 − v))2
= V 2 H(v)

with a, b parameters depending on geometrical and physical data. This expression means that fringing effects are here
neglected [12]. Because V is supposed not depending on v, coupling effects are neglected too. m and k are scalars
containing as much as possible information about the real system and

H(v) =
a

(1 + b(1 − v))2
. (2)

For example, they are obtained after using of Rayleigh–Ritz Method and may take into account the boundary
conditions. More precisely, we have got:

a =
ε2

n A

2e0ε
2
0e2

n

=
ε0ε̃n

2 A

2e0e2
n

(3)

b =
εne0

ε0en
=
ε̃ne0

en
(4)

where ε0 is the dielectric constant of vacuum, εn is the dielectric constant of the matter, ε̃n the relative dielectric
constant of the matter, e0 is the gap spacing of the cavity, en the thickness of the membrane and A the capacitor
surface (see Fig. 1). v =

w
e0

is dimensionless and w is the displacement.
Let us suppose that an equilibrium position ve is reached when the DC voltage Ve is applied. This means that:

kve = F(ve, Ve) = V 2
e H(ve). (5)
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In the following, the nonlinearity shall be investigated through a small parameter µ defined by:

V = Ve(1 + µ sin(ωt)) or µ =
δV

Ve

where δV is the amplitude of additional AC voltage. Consider u = v − ve. (1) becomes successively by using (5),
considering u as a small quantity and neglecting the terms containing µ2:

mü + ku = V 2 H(u + ve)− kve

= V 2
e (1 + µ sin(ωt))2 H(u + ve)− kve

≈ V 2
e H(u + ve)+ 2µ sin(ωt)H(u + ve)− V 2

e H(ve)

≈ V 2
e (H(ve)+ u H ′(ve))+ 2µ sin(ωt)H(u + ve)− V 2

e H(ve)

≈ V 2
e u H ′(ve)+ 2µ sin(ωt)V 2

e H(u + ve).

This leads to the following equation:

ü + ω2
1u = µh(u, ωt) (6)

where

ω2
1 =

k − V 2
e H ′(ve)

m

=
V 2

e

m

(
H(ve)

ve
− H ′(ve)

)
(7)

and

h(u, ψ) = 2
V 2

e

m
H((ve + u) sin(ψ)). (8)

In the relation (7) appears the so-called “softening” of the structure, a phenomenon well-known in the community
of MEMs. θ defined by: We shall now investigate the solution of (6) and more precisely the possibility of a periodic
motion.

3. Synchronization

We recall now the fundamental result concerning the synchronization and we apply it to our problem. Our reference
is [11].

3.1. Synchronized motion and its stability

Let us consider the following differential system:
dx

dt
= Ax + µ f (x, y, µ, t)

dy

dt
= µg(x, y, µ, t)

(9)

where x, y are vectorial n-dimensional and p-dimensional variables, A an n × n real constant matrix. Suppose that
f : U × V × I × R → Rn and g : U × V × I × R → Rp are continuous, C1 with respect to x, y, µ, T -periodic as
function of t , U an open of Rn containing 0,V an open of Rp containing y0 such that

G(0, y0) = 0 (10)

with

G(x, y) =
1
T

∫ T

0
g(x, y, 0, t)dt (11)
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with I = [0, µ0]. If

P(y0, t) =
∂g

∂y
(0, y0, 0, t)

and if

S = S(y0) =
1
T

∫ T

0
P(y0, t)dt (12)

then the following result holds: Fundamental Theorem
If S is a nonsingular matrix, if dx

dt = Ax has no T -periodic solution, then the system (9) has got for sufficiently
small µ, a T -periodic solution, that for µ → 0 tends towards the solution x = 0, y = y0. Moreover, if the proper
values of S and A have got negative real parts, this periodic solution is asymptotic stable for t → ∞,µ > 0.
(see [11] pp. 242)

The goal of the following subsection is to transform (6) into a system similar to (9) and to explicit Eq. (10) for our
problem.

3.2. Obtention of a system similar to (9)

Put:

ω2
1 = ω2(1 + µη)

which defines the number η. The principle of the method consists in a change of unknowns allowing the modulation
of amplitude of the response. Let y and z be two new unknowns such that

u = y cos(z + φ) (13)

where the new variable φ is given by

φ = ωt. (14)

We obtain

du

dφ
= −y sin(z + φ) (15)

if the following additional condition holds

dy

dφ
cos(z + φ)− y

dz

dφ
sin(z + φ) = 0 (16)

(6) is then successively equivalent to:

d2u

dφ2 = −
ω2

1

ω2 u +
1

ω2µh(u, φ)

= −(1 + µη)u +
1

ω2µh(u, φ)

= −u + µ

(
−ηu +

1

ω2 h(u, φ)

)
(17)

(15) gives by differentiation:

d2u

dφ2 = −
dy

dφ
sin(z + φ)− y cos(z + φ)− y

dz

dφ
cos(z + φ)

or by using (17) and (13):

−
dy

dφ
sin(z + φ)− y

dz

dφ
cos(z + φ) = µ

(
−ηy cos(z + φ)+

1

ω2 h(y cos(z + φ), φ)

)
(18)
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(16) and (18) lead after multiplying conveniently by sin(z + φ) and cos(z + φ) and after addition and subtraction to:
dy

dφ
= µ sin(z + φ)g(y, z, µ, φ)

dz

dφ
=
µ

y
cos(z + φ)g(y, z, µ, φ)

(19)

with

g(y, z, µ, φ) = ηy cos(z + φ)−
1

ω2 h(y cos(z + φ), φ)

= ηy cos(z + φ)−
1 + µη

ω2
1

h(y cos(z + φ), φ). (20)

System (19) is strictly similar to (9) with the following identifications:

n = 0, p = 2, y = (y, z), ωt = φ,

T =
2π
ω
, g(x, y, µ, t) = (sin(z + φ)g(y, z, , µ, φ), cos(z + φ)g(y, z, , µ, φ))

where g(y, z, µ, φ) is given by (20).

3.3. Obtention of equations of synchronization equivalent to (10)

According to the theory of synchronization, consider now both the following average quantities that must vanish:

Y (y, z) =
1

2π

∫ 2π

0
sin(z + φ)g(y, z, 0, φ)dφ

Z(y, z) =
1

2π

∫ 2π

0
cos(z + φ)g(y, z, 0, φ)dφ.

Calculations give:

Y (y, z) = −
1

2πω2
1

∫ 2π

0
sin(z + φ)h(y cos(z + φ), φ)dφ

Z(y, z) =
η

2
−

1

2πω2
1 y

∫ 2π

0
cos(z + φ)h(y cos(z + φ), φ)dφ.

Equations of synchronization being Y (y, z) = Z(y, z) = 0 we have to compute functions Y and Z . According to
previous expression of h(u, ψ), Y and Z may be rewritten as:

Y (y, z) = −
V 2

e

πmω2
1

∫ 2π

0
sin(z + φ)H(ve + y cos(z + φ)) sin(φ)dφ

Z(y, z) =
η

2
−

V 2
e

πmω2
1 y

∫ 2π

0
cos(z + φ)H(ve + y cos(z + φ)) sin(φ)dφ.

Using that

ω2
1 =

k − V 2
e H ′(ve)

m
=

V 2
e

m

(
H(ve)

ve
− H ′(ve)

)
=

V 2
e

m
Ξ (ve)

with

Ξ (v) =
H(v)

v
− H ′(v) (21)
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we obtain:

Y (y, z) = −
1

πΞ (ve)

∫ 2π

0
sin(z + φ)H(ve + y cos(z + φ)) sin(φ)dφ

Z(y, z) =
η

2
−

1
πΞ (ve)y

∫ 2π

0
cos(z + φ)H(ve + y cos(z + φ)) sin(φ)dφ

or by an obvious change of variables

Y (y, z) = −
1

πΞ (ve)

∫ z+2π

z
sin(β)H(ve + y cos(β)) sin(β − z)dβ

= −
1

πΞ (ve)

∫ z+2π

z

a sin(β) sin(β − z)

(1 + b(1 − ve + y cos(β)))2
dβ

= −
a

πb2 y2Ξ (ve)

∫ z+2π

z

sin(β) sin(β − z)

(r + cos(β))2
dβ (22)

Z(y, z) =
η

2
−

1
πΞ (ve)y

∫ z+2π

z

a cos(β) sin(β − z)

(1 + b(1 − ve + y cos(β)))2

=
η

2
−

1
πΞ (ve)y

∫ z+2π

z

a cos(β) sin(β − z)

(a cos(β))2
dβ

=
η

2
−

a

πb2 y3Ξ (ve)

∫ z+2π

z

cos(β) sin(β − z)

(r + cos(β))2
dβ (23)

where

r =
1
y

(
1
b

+ 1 − ve

)
.

We then are led to compute integrals like

I (s, r) =

∫ s+2π

s

cos(β) sin(β − s)

(r + cos(β))2
dβ

and

J (s, r) =

∫ s+2π

s

sin(β) sin(β − s)

(r + cos(β))2
dβ

or

K (s, r) = I (s, r)+ iJ (s, r) =

∫ s+2π

s

eiβ sin(β − s)

(r + cos(β))2
dβ.

An explicit calculation of these quantities is done in the appendix by using Cauchy’s Theorem.
Solving these equations, we find y0 = (y0, z0) and coming back to the initial problem (relation (13)), we obtain a

2π
ω

-periodic solution u of equations of motion (6) close to u0(t) = y0 cos(z0 + ωt).
We present now Maple Procedures from which the electro-geometrico-mechanical data generate functions h, H, g

integrals I, J , functions Y, Z , compute solution y0 = (y0, z0) of equations of synchronization and generate matrix
S = S(y0) = S(y0, z0). These procedures allow us to compute periodic motion and investigate its stability.

4. Maple procedures

Each procedure corresponds to a variable or a function introduced in the paper by a relation or an equation. It
is referenced in each procedure in a comment attached to the procedure. In the first subsection, we present the
procedures to generate variables and functions lying in equations of synchronization. In the second subsection,
functions generating equations and matrix S are given.
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4.1. Maple procedures for defining the variables and the functions lying in equations of synchronization

> λ := proc(ε0, εn, e0, en, A)] scalar a in the paper according to (3)
> ε0 ∗ εn ∗ A/(2 ∗ e0 ∗ en);
> end proc;
> α := proc(εn, e0, en)] scalar b in the paper according to (4)
> (εn ∗ e0)/en ;
> end proc;
> H := proc(v)] function allowing to define the right-hand side of equation according to (2) in the paper
> local a, b;
> global ε0, e0, en, εn ;
> a := λ(ε0, εn, e0, en, A);
> b := α(εn, e0, en);
> a/(1 + b ∗ (1 − v))2;

> end proc;
> ω2

1 := proc(Ve, ve,m)] according to (7) in the paper
> local a, b, c, d;

> a := V 2
e /m;

> b := H(v)/v;
> c := diff(H(v), v);
> d := unapply(a ∗ (b − c), v);
> d(ve);

> end proc;
> G := proc()] procedure giving function Ξ of the paper according to (21)
> local b, c, d;

> b := H(v)/v;
> c := diff(H(v), v);
> d := unapply(b − c, v);
> end proc;
> h := proc(u, ψ)] procedure giving function h(u, ψ) of the paper according to (8)
> global Ve, ve,m, ε0, e0, en, εn;

> local a, b;

> a := λ(ε0, εn, e0, en, A);
> b := α(εn, e0, en);

> 2 ∗ (V 2
e /m) ∗ H(u + ve) ∗ sin(ψ);

> end proc;
> I I := proc(s, r)] first integral I (s, r) in the paper according to (32)
> local a
> a := −r + sqrt(r2

− 1);
> (4 ∗ a ∗ pi ∗ sin(s)) ∗ (2 ∗ a + 2 ∗ r/(r2

− 1))/(a2
− 1);

> end proc;
> I J := proc(s, r)] second integral J (s, r) in the paper according to (33)
> local a;

> a := −r − sqrt(r2
− 1);

> (4 ∗ pi ∗ cos(s))/(1 − a2);

> end proc;

4.2. Equations of synchronization

Now, we propose procedures for generating equations of synchronization and matrix S for investigating the stability
of the motion. > Y := proc(y, z)] synchronization: average over a period of first equation according to (22)
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> local a, b, c, a1, a2, a3;

> global Ve, ve, ε0, e0, en, εn, A;

> a := H(v)/v;
> b := diff(H(v), v);
> c := unapply(a − b, v);
> a1 := λ(ε0, εn, e0, en, A);
> a2 := α(εn, e0, en);

> a3 := (1/a2 + 1 + ve)/y;

> −(a1/(pi ∗ c(ve) ∗ y2
∗ a22)) ∗ I J (z, a3);

> end proc;
> Z := proc(y, z)] synchronization: average over a period of second equation according to (23)
> local a, b, c, a1, a2, a3;

> global η, Ve, ve, ε0, e0, en, εn, A;

> a := H(v)/v;
> b := diff(H(v), v);
> c := unapply(a − b, v);
> a1 := λ(ε0, εn, e0, en, A);
> a2 := α(εn, e0, en);

> a3 := (1/a2 + 1 + ve)/y;

> (η/2)− (a1/(2 ∗ pi ∗ c(ve) ∗ y3
∗ a22)) ∗ I I (z, a3);

> end proc;
> S := proc()] procedure giving the solution y0 = (y0, z0) of equations of synchronization and matrix S = S(y0) =

S(y0, z0) of synchronization defined by (12)
> local sol, a, b, g, g1, g2, g3, g4, g5, g6, c;
> global Y, Z , h,G, H, ve, η;

> sol := fsolve(Y (y, z), Z(y, z), y, z);
> a := eval(y, sol); ] First component y0 of y0
> b := eval(z, sol); ] Second component z0 of y0
> c := G()(ve)

> g := unapply(η ∗ y ∗ cos(z + φ)− (2 ∗ H(ve + y ∗ cos(z + φ), φ)/c), y, z, φ);
> g5 := unapply(sin(z + φ) ∗ g(y, z, φ), y, z, φ);
> g6 := unapply((1/y) ∗ cos(z + φ) ∗ g(y, z, φ), y, z, φ);
> g1 := unapply(D[1](g5)(a, b, φ), φ);
> g1 := value(Int(g1(φ), φ = 0..Pi)/(2 ∗ Pi));
> g1 := evalf(%);
> g2 := unapply(D[2](g5)(a, b, φ), φ);
> g2 := value(Int(g2(φ), φ = 0..Pi)/(2 ∗ Pi));
> g2 := evalf(%);
> g3 := unapply(D[1](g6)(a, b, φ), φ);
> g3 := value(Int(g3(φ), φ = 0..Pi)/(2 ∗ Pi));
> g3 := evalf(%);
> g4 := unapply(D[2](g6)(a, b, φ), φ);
> g4 := value(Int(g4(φ), φ = 0..Pi)/(2 ∗ Pi));
> g4 := evalf(%);
> Matrix([[g1, g2], [g3, g4]]); ] Matrix S according to (12)
> end proc;

5. Conclusion

This paper is devoted to the investigation of synchronized motion of MEMs close to resonance. This difficult
and important problem (for the practice) has never been investigated up to now (to our knowledge). In order
to do it, a nonlinear one degree of freedom model has been developed and the theory of synchronization with
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µ =
δV
Ve

as small parameter has been used. Some necessary analytic developments allowing to generate equations of
synchronization have been led. To achieve the program, Maple procedures have been given. To use these procedures,
equilibrium configuration has to be described (Ve, ve). We think the obtention of these data through the experimental
measurements should be better than through the calculations on models because of the other eventual nonlinearities
(finite displacements and deformations, nonlinear elasticity). To conclude we have to be precise that the concrete use
of MEMs is often made in water which introduces damping in equations, the main result keeping usable.
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Appendix. Calculation of K (s, r)

Lemma.

K (s, r) =
2iz1π

(z2
1 − 1)(r2 − 1)

[(2z1(r
2
− 1)+ r)eis

− re−is
]

where z1 = −r +
√

r2 − 1. We shall use the Cauchy’s theorem of residus. Put z = eiβ and let γ the circle |z| = 1. It
follows that dβ = −i dz

z and:

K (s, r) =

∫
γ

−i
z
(

ze−is
−

eis

z

)
2i

(
r +

(
z+ 1

z
2

))2

dz

z

or

K (s, r) =

∫
γ

−2
(z2e−is

− eis)

z(z2 + 2r z + 1)2
dz (24)

(24) becomes by Cauchy’s Theorem:

K (s, r) = −4iπ(Res(0, R)+ Res(z1, R)) (25)

where

R(z) =
(z2e−is

− eis)

z(z2 + 2r z + 1)2

and z1 the root of z2
+ 2r z + 1 such that |z1| < 1. Naming z2 the other root, computations give:

Res(0, R) = −eis

but the calculation of Res(z1, R) is not so straightforward. Rational decomposition of R is:

R(z) =
−eis

z
+

a1

z − z1
+

b1

(z − z1)2
+

a2

z − z2
+

b2

(z − z2)2
(26)

where after obvious computations:

a1 = Res(z1, R)

b1 =
(z2

1e−is
− eis)

z1(z1 − z2)2

a2 = Res(z2, R)

b2 =
(z2

2e−is
− eis)

z2(z1 − z2)2
.

9



Multiplying (26) by z and doing z → ∞, we get:

eis
= a1 + a2. (27)

Evaluating relation (26) at z = z1 + z2 = −2r , and using z1z2 = 1 we get too:

(4r2e−is
− eis)

−2r(4r2 − 4r2 + 1)2
=

−eis

−2r
+

a1

z2
+

b1

(z2)2
+

a2

z1
+

b2

(z1)2

(4r2e−is
− eis)

−2r
=

eis

2r
+ a1z1 + b1(z1)

2
+ a2z2 + b2(z2)

2. (28)

But successively we may write:

b1(z1)
2
+ b2(z2)

2
=

z1(z2
1e−is

− eis)

(z1 − z2)2
+

z2(z2
2e−is

− eis)

(z1 − z2)2

=
1

4(r2 − 1)
(z1(z

2
1e−is

− eis)+ z2(z
2
2e−is

− eis))

=
1

4(r2 − 1)
((z3

1 + z3
2)e

−is
− (z1 + z2)eis)

=
1

4(r2 − 1)
((−8r3

+ 6r)e−is
+ 2reis) (29)

where we use z1z2 = 1, z1 + z2 = −2r and other relations that may be deduced like

z3
1 + z3

2 = (z1 + z2)
3
− 3z2

1z2 − 3z2
2z1 = −8r3

− 3z1z2(z1 + z2) = −8r3
+ 6r

and

(z1 − z2)
2

= (z1 + z2)
2
− 4z1z2 = 4r2

− 4 = 4(r2
− 1).

From (28) and (29) we deduce:

a1z1 + a2z2 =
(4r2e−is

− eis)

−2r
−

eis

2r
−

1

4(r2 − 1)
((−8r3

+ 6r)e−is
+ 2reis)

= −2re−is
−

2r

4(r2 − 1)
((−4r2

+ 3)e−is
+ eis)

= −2r

[
e−is

+
1

4(r2 − 1)
((−4r2

+ 3)e−is
+ eis)

]
= −

2r

4(r2 − 1)
(eis

− e−is). (30)

We then obtain the following system giving the residus:a1 + a2 = eis

a1z1 + a2z2 = −
r

2(r2 − 1)
(eis

− e−is).
(31)

Solving (31), we get:

a1 =
1

1 − z2
1

(
eis

+
z1r

2(r2 − 1)

(
eis

− e−is
))

a2 =
1

1 − z2
2

(
eis

+
z2r

2(r2 − 1)

(
eis

− e−is
))

and then according to (25):
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K (s, r) = −4iπ

[
−eis

+
1

1 − z2
1

(
eis

+
z1r

2(r2 − 1)
(eis

− e−is)

)]

=
4iz1π

z2
1 − 1

[
z1eis

+
r

2(r2 − 1)
(eis

− e−is)

]
=

2iz1π

(z2
1 − 1)(r2 − 1)

[(2z1(r
2
− 1)+ r)(eis

− re−is)]

with z1 = −r +
√

r2 − 1 root of z2
+ 2r z + 1 such that |z1| < 1.

We deduce

I (s, r) =
4z1π

z2
1 − 1

[
2z1 +

2r

r2 − 1

]
sin(s) (32)

J (s, r) =
4π

1 − z2
2

cos(s) (33)

with z2 = −r −
√

r2 − 1 root of z2
+ 2r z + 1 such that |z2| > 1.

These expressions allow us to compute numerical solutions of system of equations of synchronization Y (y, z) =

Z(y, z) = 0.
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