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3D TRAJECTORY TRACKING FOR A FIXED WING UNMANNED AERIAL VEHICLE USING 

DYNAMIC INVERSION 

D. Boukraa, Y. Bestaoui, and N. Azouz 

IBISC Laboratory, FRE CNRS 2873, 40, rue de Pelvoux 91020 Evry Cedex, France 

Abstract: In this paper we present a dynamic inversion based control technique for an 

autonomous aerial vehicle for the trajectory tracking problem. Our approach takes 

account of the model nonlinearities. The adopted scheme subdivides the vehicle 

dynamics into two scales of time: fast and slow. This is justified by the difference 

between the dynamic of the angular velocity and that of UAV airspeed and attitude 

(pitch, roll and yaw). Our controller uses two control loops: stabilization-tracking loop 

which controls the angular velocity the sideslip, pitch and roll angles. And a guidance 

loop which controls the vehicle altitude and heading. This approach was validated on 

IBISC UAV model developed in our laboratory.  Copyright © 2007 IFAC 

Keywords: Autonomous vehicles, Aircraft control,, Nonlinear control, Feedback 

linearization, Inverse dynamics control. 

1. INTRODUCTION

Since decades the automatic control occupies 

increasingly significant place in aeronautic, in 

particular with the advent of the UAV (Unmanned 

Aerial Vehicle) systems and their potential civilian 

and military applications. Many works were made 

treating various aspects related to the control systems 

automation. Among these aspects: 

- The UAV control system must answer some 

performance and stability criteria. These 

specifications are generally based on linear model for 

different stages of flight (Uy-Loi, 1997, Stevens et 

al., 2003).  

- It must offer a minimal margin of stability and 

performances of the closed loop system. Indeed, the 

mathematical model used during the control laws 

design is nominal model, its reliability is always 

questioned. Moreover, physical systems change 

behaviour in function of their configurations in the 

space; this is translated by a parametric variation in 

the dynamic model. Finally, External disturbances 

and the measurements noises can deteriorate the 

controller efficiency. 

- Take account of nonlinearities of dynamical model, 

and compensate them instead of neglect them 

(Stevens et al., 2003, Megretski, 2003). The principal 

idea of dynamic inversion techniques rests, in part on 

the fact that the principal obstacle in the control laws 

design is the nonlinearities of the dynamical model. 

And in other part, the important number of linear 

analysis and synthesis tools of control laws. If we 

can, by using adequate nonlinear transformations, 

replacing the nonlinear model by a linear equivalent 

one, the use of linear techniques becomes possible 

(Slotine et al., 1991, Isidori et al., 1992). In the case 

of state feedback all the dynamical equations are 

linearised by a coordinates transformation and static 

state feedback. However, this linearization can be 

applied only to a restricted class of physical systems, 

because it not always possible that all the state 

variables are accessible, from where the idea to 

realise a partial dynamic linearization, more precisely, 

the equations describing the In/Out transfer 

(Guardabassi et al., 2001). The residual dynamics, 

which do not depend explicitly of the input, are not 

linearsables, there are called internal dynamics. The 

problem with this partial state linearization comes of 

the fact that the internal dynamics (non observables) 

can be unstable; this is the case of Non Minimum 

Phase systems (Kanter et al., 2002). 

In this paper we propose an input/output feedback 

linearization based approach. This idea is inspired 

from the works of (Bugajski et al., 1992, Van soest et 

al., 2006, Singh et al., 1995, Wang, 2005 and 

Schumacher et al., 1998a, b). The dynamic inversion 
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is realised on two times scales (Bugajski et al., 1992). 

A first feedback (inner loop) is applied on the angular 

velocity dynamic. A second one (outer loop) is 

applied on three variables which represent the 

sideslip, the pitch and the roll angles. This approach 

is validated on a UAV model. This paper is organized 

as follows: 

In the first time we present the IBISC UAV Project 

developed in our laboratory. Than we present a 

nonlinear control approach based on the dynamic 

inversion for trajectory tracking. Finally, in order to 

validate this approach we present some simulation 

results. 

2. IBISC UAV PROJECT 
 
IBISC UAV is a project in our laboratory which 

consists of designing an autonomous microlight 

aircraft, intended for supervising missions by means 

of cameras (forests fires, littoral pollution, borders, 

flooded areas…).  

 

 
 

Fig. 1. IBISC UAV CAO view. 

 

It can cover a perimeter of 50 km about the take 

off/landing area. I twill fly with a cruise speed of 

50m/s at an altitude of 2400 m. Its range is 50 km. It 

will be propelled by a single engine piston with a 

propeller; the engine power is 20 CV. The vehicle 

total mass is estimated at 120 kg. Table I recapitulates 

the vehicle characteristics. 

 
Dimensions : length : 4,27 m ; Wing-span : 4,8 m ; Mean 

chord : 0,51 m ; Wing area : 2,5 m2 

Masses : Total mass : 120 kg ; Payload :  30 kg 

Inertia en kg.m2 : 
xxI =252,72 ;

yyI =519,49; 
zzI =701,01 ; 

xzI =28,13 ; 
xyI =

yzI =0 

Aerodynamic coefficients 

Lift: 
0LC =0,59 ; αLC =4,28 ; 

αLC =-2,43; 
LqC =6,83 ; 

 
eLC δ

=0,33 

Pitching moment : 
0mC =0,194 ; αmC =-0,55 ;

mqC =-30,47 

; 
αmC =-10,86 ; 

emC δ
=-1,48 

Drag : 
0DC =0,06; αDC =0,2 ; 

DqC =0 ; 
eDC δ =0 

  

Rolling moment : βlC =-0,03 ; lpC =-0,3 ; lrC =0,15 

;
alC δ =-0,12 ; 

rlC δ =0,004 

Lateral force: βYC =-0.43 ;
rYC δ =0,217 ;

YpC =-0.14 

;
YrC =0,29 

Yawing moment : βnC =0,2 ;
npC =-0,06 ; 

nrC =-0,137 

anC δ =0,008 ; 
rnC δ

=0,1 

Performances: Stalling speed : 22m/s; Cruise speed : 50 m/s; 

Cruise altitude:2400 m; Engine power :20 CV; Range:50 Km. 

 

Table. 1. IBISC UAV characteristics. 

 

3. DYNAMIC INVERSION FOR IBISC UAV 

 

In this section we present a input/output feedback 

linearization based approach. The dynamic inversion 

is realised on two times scales (Bugajski et al., 1992). 

A first feedback (inner loop) is applied on the angular 

velocity dynamic ( p , q and r ). A second one (outer 

loop) is applied on three variables which represent the 

sideslip β , the pitchθ and the rollφ  angles. We will 

not present the principle of the standard dynamic 

inversion or feedback linearization. The reader can 

find this technique detailed in (Slotine et al., 1991, 

Isidori et al., 1992). 

The controller structure is represented in Fig. 3. It 

constituted from two feedbacks. The inner loop uses 

the three aerodynamic control surfaces to controlling 

the fast dynamic variables ( p , q and r ). The outer 

loop uses the angular velocity like a control input to 

control the slow dynamic ( β ,θ  and φ ). In this loop 

we have neglected the directly influence of control 

surfaces in the slow variables, this simplification is 

justified by the significantly difference observed in 

open loop simulation between the slow and fast 

dynamics. 

 

 
 

Fig. 2. Controller structure. 

 

The variables p , q and r  are considered like fast 

variables because the control surfaces have a more 

significant and direct effect on their derivatives 

( p , q and r ). The vocation of control surfaces is to 

control the UAV rotation about its three axes. 

Because their locations far from the UAV gravity 

centre, they generate important moments with weak 

forces. The UAV nonlinear dynamics are described 

by a system of eight differential equations. The 

spatial dependency of dynamic is not considered in 

this model. Thus, the position (x, y and z) and the 

heading dynamics are decoupled from the remainder 

of the equations. The choice of the variables to be 

controlled is dictated on a side by the constraints 

related to the used technique (unstable internal 

dynamics), and another side by the aim of the control. 

This last consists to maintain the UAV on a reference 

trajectory in the space by controlling its altitude and 

heading angle. We have supposed here that the UAV 
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airspeed is controlled by the throttle (its original 

vocation) and maintained at constant value during 

each trajectory. The longitudinal attitude (pitch angle) 

will be used to control the UAV altitude, the UAV 

heading (yaw angle) will be controlled by the lateral 

attitude (roll angle). In our case the internal dynamic 

is that of the angle of attack, which we need to study 

its stability. It will be the subject of the section 

(4.3.2). 

 

 

3.1 Dynamic inversion inner loop 

This feedback allows to track the reference values of 

the angular velocity ( , , )
c c c

p q r . The control inputs 

are the control surfaces ( , , )e a rδ δ δ . The controller 

structure is represented in Fig. 2. The consign values 

are generated by the outer loop of slow dynamic.  

The functions ( , , )p q rw w w  are low-pass filters with 

bandwidth
p

w ,
q

w and 
r

w respectively. For choosing 

these frequencies (8 rad/s), we must take account the 

natural modes of the structure and the actuators 

modes (30 rad/s). 

The dynamical equations of p , q and r can be 

rewritten under the following form: 

 
( )

( ) .

( )

p e

q a

r r

p f x

q f x B

r f x

δ
δ
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (1) 

 

 
Fig. 3. Inner loop: fast dynamic. 
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With: [ ]T
x V p q rα β φ θ= ,  

 
ˆ . . ( . . . )

l lp lr
L q S b C C p C rβ β= + +   (2) 

0
ˆ . . .( . . )m m mqM q S c C C C qα α= + +   (3) 

ˆ . . ( . . . )
n np nr

N q S b C C p C rβ β= + +   (4) 

 

The aerodynamic coefficients in the moment’ 

expressions (2-4) are constants. The system is input 

affine, the matrix B is given by:  

2 2

2 2

. . . . . . . . . . . . . . . .
0

. .

. . .
0 0

. . . . . . . . . . . . . . . .
0

. .

a a r r

e

a a r r

z l xz n z l xz n

x z xz x z xz

m

y

x n xz l x n xz l

x z xz x z xz

I q S b C I q S b C I q S b C I q S b C

I I I I I I

q S c C
B

I

I q S b C I q S b C I q S b C I q S b C

I I I I I I

δ δ δ δ

δ

δ δ δ δ

⎡ ⎤+ +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥+ +⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 

From B we observe the control inputs appear 

explicitly in dynamical equations. The output vector 

being [ ]T
y p q r= , we can deduce the relative 

degree vector [1 1 1]r = .  

We choice the control law as follows: 

 

1

1

2

3

( )

. ( )

( )

e p

a q

r r

v f x

B v f x

v f x

δ
δ
δ

−

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

   (5) 

 

With: 

  

1

0 0
. . .

. . . .
0

. . ( . . ) . . ( . . )

. . . .
0

. . ( . . ) . . ( . . )

e

r r r r

r a a r a r r a

a a a a

a r r a r a a r

y

m

x n xz l z l xz n

n l n l n l n l

x n xz l z l xz n

n l n l n l n l

I

q S c C

I C I C I C I C
B

q S b C C C C q S b C C C C

I C I C I C I C

q S b C C C C q S b C C C C

δ

δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ

δ δ δ δ δ δ δ δ

−

⎡ ⎤
⎢
⎢
⎢ + +⎢=
⎢ − −
⎢

+ +⎢
⎢ − −⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

[ ]1 2 3

T
v v v v=  is called auxiliary input vector. By 

replacing the control vector by (5) in (1) we obtain: 

 

1

2

3

p v

y q v v

r v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (6) 

 

For each of three outputs of the equivalent linear 

system is a simple integrator. The control law will be 

designed according to problem to be solved: 

regulation or tracking problem. Below these two 

cases for any relative degree r . 

Regulation problem: The aim is to maintain the 

output ( )y t  with constant value
c

y . To be done we can 

choice a control law: 
2 1

0 1 2 1( ) .( ( ) ) . ( ) . ( ) . ( )r

c f f r fv t a h x y a L h x a L h x a L h x−
−= − − − − − −  

The coefficients 
i

a ( 0 1i r= − ) must be chosen such 

as the eigvalues of the polynomial: 
1 2

1 2 1 0. . .r r r

r r
s a s a s a s a− −

− −+ + + + +  

are stable (with negative real part). 

For our case the relative degree is 1. we can choice a 

control ( )v t as : 
0( ) .( )cv t a y y= − −  with the 

corresponding polynomial 
0s a+ . Thus, it’s enough to 

choice 
0 0a > so that the control ( )v t  maintain the 

output ( )y t  with the value
cy . 

Tracking problem: The aim is to tracking the 

reference trajectory ( )
c

y t . We define the error 

dynamic: ( ) ( ) ( )
c

e t y t y t= −  

We can easily deduce: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

c

c

r r r r

c c

e t y t y t

e t y t y t

e t y t y t v y t

= −
= −

= − = −

 

 

It’s enough to choice the control ( )v t as: 

 
( )

0 1
2 1

2 1

( ) ( ) .( ( ) ) . ( )

. ( ) . ( )

r

c c f
r

f r f

v t y t a h x y a L h x

a L h x a L h x−
−

= − − −
− − −

 

 

The coefficients 
i

a ( 0 1i r= − ) must be chosen 

such as the polynomial: 
1 2

1 2 1 0. . .r r r

r rs a s a s a s a− −
− −+ + + + +  

Are stables (with negative real part). 

For our case the relative degree is 1. The error 

dynamic derivative is given by: 

( ) ( ) ( ) ( )
c c

e t y t y t v y t= − = −  

The control ( )v t  can be chosen as: 

0( ) ( ) .( )c cv t y t a y y= − −  

With the corresponding polynomial
0s a+ . For well 

tracking of the reference trajectory ( )cy t  it’s enough 

to take 
0 0a > . 

 

 
3.2 Dynamic inversion outer loop ( , , )β θ φ  

The slow inversed dynamics are those of the 

sideslip β , the pitchθ  and the rollφ  angles. In fact, 

in this loop we neglect the direct effect of the control 

surfaces on these variables. Moreover, we suppose a 

perfect reference following of fast variables. By 

examining the dynamical equations of the slow 

variables ( , , )β θ φ we can observe that these variables 

depend mainly to the angular velocity (fast variables), 

from which the idea to using the angular velocity like 

a control input for the slow dynamic. The scheme is 

represented in Fig. 4. 

 

 
 

Fig. 4. Outer loop : slow dynamic. 

 

We note that the airspeed dynamic is constant during 

the all the flight trajectory, and that is controlled by 

the Throttle input (which the position is supposed 

fixed).Thus, the slow dynamic is represented by four 

state variables: the aerodynamic angles (α and β ) 

the UAV attitude (θ andφ ). The output vector 

is [ ]y β θ φ= . The angle of attack dynamic α  

represents the internal dynamic which the stability 

must be ensured. 

The dynamical equations of ( , , )β θ φ can be rewritten 

as:   

 

1

1 1 2

1

( )

( ) . .

( )

e

a

r

f x p

f x B q B

f x r

β

θ

φ

β δ
θ δ
φ δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

  (7) 

 

1
0

1 . .( . . . . . . . )
( ) . ( . . ( . ). ). Y D D

m g s c s c s c c c s s
f x q S C c C C smV

β
β α

θ α β θ φ β θ φ α β
β β α β

+ −⎛ ⎞= ⎜ ⎟+ + +⎝ ⎠
 

 

1 1
( ) ( ) 0f x f xθ φ= =  

 

with 
1x  is the slow variables vector : 

1 [ ]T
x V α β φ θ=  

 

1

sin 0 cos

0 cos sin

1 sin . tan cos . tan

B

α α
φ φ

φ θ φ θ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

2

. . .sin . . .cos
0

. .

0 0 0

0 0 0

e rD Y
q S C q S C

mV mV

B

δ δβ β⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The bandwidths wβ , wθ et wφ are chosen (2 rad/s) 

such that they are sufficiently lower than that of the 

fast dynamics, in order to avoid the coupling between 

the two loops. The terms of the matrix 1B are 

kinematics relations; it is an invertible except 

for / 2θ π= ± . The matrix 2B contains only two terms 

different from zero, but their values are negligible, 

this is justified by the weak values of the coefficients 

0.015
eDC δ =  and 0.19

ry
C δ = . 

Moreover, we consider that the control surfaces 

dynamic is very fast so that it has a direct effect on 

the slow variables. The system (7) thus becomes: 

 

1

1 1

1

( )

( ) .

( )

f x p

f x B q

f x r

β

θ

φ

β
θ
φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

  (8) 

 

In the same way that for the inner loop, by analysing 

the matrix 1B
we can observe that the control inputs 

appear explicitly in the first derivative output 

vector [ ]T
y β θ φ= , We deduce the relative degree 

vector: [1 1 1]r = .  

We chose the control law as: 

 

1

1

1 2

3

( )

. ( )

( )

p v f x

q B v f x

r v f x

β

θ

φ

−

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

  (9) 

with: 

1

1

. . . .
1

. . . . . . .
. . .

. . . . .

s c s s c c c

B s c s c s c c s s c
c c c s s

c c s s s s c c

θ α φ θ α φ θ
φ θ α φ θ α θ α φ θ

α φ θ α θ
φ θ α φ θ α φ θ

−

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥+
⎢ ⎥− −⎣ ⎦
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by replacing the control vector by (9) in (8) we 

obtain: 

 

1

2

3

v

y v v

v

β
θ
φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

   (10) 

 

For each of the three outputs of the equivalent linear 

systems a simple integrator. In order to ensure a will 

tracking of ( )
c

y t , it’s enough to choose ( )v t  as: 

0( ) ( ) .( )
c c

v t y t a y y= − −  

With the coefficient 0a strictly positive. 

Now, we return to internal dynamic in order to check 

its stability. The airspeed being constant the 

unobservable dynamic is represented by the angle of 

attack dynamic: 

1( ) .[ ]T
f x B p q rα αα = +   (11) 

with:  

 

( )1

1 . .(cos( ).cos( ).cos( )
( )

sin( ).sin( )) . .( . ). .cos( ) Lo L

g m
f x

q S C CmV
α

α

θ φ α
θ α αβ

= + − +
 

 
. .cos( ) . .cos( ).sin( ) sin( ).sin( )

cos( ) . .cos( ) cos( )

Lq
mV q S C

B
mV

α

βα β α β
β β β

− +⎡ ⎤− −
= ⎢ ⎥

⎣ ⎦

 

 

We replace the control vector in (11) by its 

expressions (9) then we study the stability of α in the 

equilibrium i.e. with an auxiliary control vector equal 

to zero [0 0 0]T
v =  and the outputs: 

0β β=
0θ θ= and

0φ φ= . 

For simplifying the study we consider the case of 

longitudinal (symmetrical) flight (
0 0 0β φ= = ) with a 

constant flight path angle 0γ . Thus, the equation (11) 

becomes: 

 

0

1
.(cos( ) . .( . ))

.
Lo Lq S C C

mV
αα γ α= − +  (12) 

 

The equilibrium condition is given:  

 

0
0

cos( ) . .

. .

Lo

L

q S C

q S C α

γα −
=  

 

With the constants q , S  and 
L

C α are positives. We 

deduce easily that this equilibrium is asymptotically 

stable, and this whatever the flight path angle 0γ . 

Thus, the stability of the internal dynamic is checked. 

 

4. SIMULATION RESULTS 

 

In this section we present some simulations results of 

the application of our approach on the model of 

IBISC UAV. The controller which we have designed 

allows to controlling the sideslip, the pitch and the 

roll angles. The trajectory generator provides the 

altitude and heading reference values. The injection 

of these values in the controller loop is made via an 

external loop (guidance loop). The idea consists to 

use the pitch and roll angles like inputs for controlling 

respectively the altitude and the yaw angle. The 

guidance loop is made of two PI controllers. It 

generates the reference values of the altitude and the 

yaw angle as is shown in Fig. 6.  

 

 
 

Fig. 6. Guidance loop ensuring the inter connexion 

between the generator and the controller. 

 

We present here an example of mission with two 

waypoints. The scenario consists to supervising a 

geographical area which is to be flown over at cruise 

altitude (2.400 meters). This area is represented by a 

target point (15km North et 25 km East). Moreover, 

the UAV must be forward by two waypoints before 

reaching the target area which is same with that of a 

first example. The waypoints coordinates are 

respectively 15 km North and 5 km West (-5 km East) 

and 5 km North and 10 km East. Fig. 7 shows the 

trajectory in three dimensions. The curve in blue 

presents the reference trajectory and the red one the 

trajectory traversed by the UAV. 

 

 
 

Fig. 7. Example of scenario with two waypoints. 

 

We note that because the UAV airspeed is constant, 

the altitude and heading control would be enough to 

ensuring a good tracking of the UAV horizontal 

position. 

 

 
 

Fig. 8. Example of scenario with two waypoints : 

Altitude tracking. 
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Fig. 9. Example of scenario with two waypoints: 

Heading tracking 

 

 
 

Fig. 10. Example of scenario with two waypoints: 

North position (x). 

 

 
 

Fig. 11. Example of scenario with two waypoints: 

East position (y). 

 

Fig. 12 presents the angle of attack variation during 

the mission. As we saw previously, the angle of 

attack dynamic represents the internal dynamic which 

is unobservable. We have analyzed its stability in the 

case of a longitudinal flight. We observe here that its 

dynamic is stable even for the case of turn.  

 

 
 

Fig. 12. Example of scenario with two waypoints: 

Angle of attack. 

 

In Fig. 13 the three first figures present the slow 

variables, the three figures of the second line present 

the fast variables. And those of the third line present 

the control surfaces deflections. The sideslip angle 

stabilization is ensured by the rudder via the yaw rate 

(r). The rudder deflection does not exceed 3 degrees, 

this justifies this original vocation like a stabilizator. 

The pitch angle is controlled the elevator via the pitch 

rate (q). We notice that during this stage the elevator 

deflection is positive. We can explain this by the 

setting-off of a moment which tends to pulling up the 

UAV (the gravity centre being behind the 

aerodynamic centre). 

 

 
 

Fig. 13. Example of scenario with two waypoints: 

Slow and fast variables and control surfaces 

deflections. 

 

In the case where the UAV executes a turn flight the 

elevator deflection is negative what generates positive 

moment to compensate the loss in lift due to the 

banked (roll) angle of UAV. The roll angle is used to 

controlling the heading. The roll angle is controlled 

by the ailerons via roll rate (p). 

 

 

5. CONCLUSION 

 

In this study we synthesised a dynamic inversion 

based control technique. The advantage of this 

technique is that takes account the model 

nonlinearities. The adopted scheme subdivides the 

UAV dynamic into two scales of time: fast and slow. 

This is justified by the difference between the 

behaviour in open loop between the dynamic of the 

angular velocity and that of UAV airspeed and 

attitude (pitch, roll and yaw). In our approach we 

have used two control loops: stabilization-tracking 

loop which controls the angular velocity the sideslip, 

pitch and roll angles, and a guidance loop which 

controls the UAV altitude and heading. The first 

results obtained are promising. However, 

improvements can be brought to this approach. This 

last is validated in simulation with a simplified 

model. The robustness of control laws to the model 

uncertainties and the external disturbances is not 

addressed in this study. Finally, in this approach we 

consider instantaneous actuators responses. An 

improvement could be brought by introducing the 

actuators dynamics. 
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