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Unmanned Aerial Vehicle Speed Estimation via Nonlinear Adaptive
Observers

Khadidja Benzemrane, Giovanni L. Santosuosso and Gilney Damm

Abstract— In this paper the problem of the speed estimation
of an Unmanned Aerial Vehicle is addressed, when acceleration,
the angles and the angular speeds are available for measu-
rement. We focus our analysis on a prototype drone - a 4
rotors helicopter robot- which is not equipped with GPS related
devices and relies on the Inertial Measurement Unit (IMU) only.
A global exponential solution to this open problem is provided
in the framework of adaptive observation theory when exact
measurements are available. A modified estimator is presented
to enhance robustness in velocity estimation in the realistic case
of noisy acceleration measurements.

I. INTRODUCTION

The problem of speed estimation has an important role
in the context of vehicles control. For land moving robots,
the odometry time derivative has a satisfactory performance
while for large flying airships (manned or unmanned) velo-
city estimations can be obtained via approximate derivation
of the successive measurements from GPS sensors, motivated
by the small resulting errors compared to the measured va-
riables. For fast aircrafts the standard procedure is integrating
the acceleration, and coupling this result to the derivative of
GPS measurements.

Two critical issues arise in an “open loop” strategy like
direct acceleration integration : an unknown constant es-
timation error is produced even when exact acceleration
measurements are available while a random drift is induced
by noisy acceleration estimations. In practice, numerical
integration along with measurement noise induces a very fast
growing velocity measurement error. Thus the information
obtained from the GPS is used to bound this error in the fra-
mework of sensor fusion technique where initial conditions
for acceleration integration are provided by GPS devices.
This technique provides bounded errors that are related to
the GPS order of magnitude precision. The resulting errors
are usually small compared to the size of airships and the
distance to obstacles ; In the same way, the control systems
usually applied on these airships are robust enough to accept
the residual disturbance on the speed estimation provided by
these methods.

Unfortunately, the estimation approach above cannot be
implemented on small drones less than 1 meter wide and
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flying at low speed that we consider in this note. This
issue is even more relevant in indoors or simply urban
applications. As a matter of fact, errors induced by a GPS
system may reach many meters ; a technical solution would
be the use of a D-GPS system. These systems are known as
centimetric GPS and have a precision of some centimeters,
but they also are very expensive and low-range operating
equipment. Doppler measurements coupled with GPS can
actually increase velocity accuracy estimation. In this paper
we focus our attention on Inertial Measurement Units only
which represent a feasible choice : they are easily available,
low cost devices. More important, they have a low size,
limited weight, and provide very good airship measurements
of accelerations, angles and angular speeds.

However, the information provided by these devices needs
to be processed to yield reliable velocity estimates. The
latter quantity is necessary for an efficient drone control
design, since most literature about small flying robots control
assumes that at least the speeds are available (see [5], [6],
[7], [8]) ; This is motivated by the fact that is hardly possible
for a human pilot (inboard or in tele-operation) to regulate
a drone by giving references and trajectories as inputs based
on the sole acceleration measurement. Notice that in the
general case,the reliable estimation of the speed vector is
still an open problem.

Motivated by previous arguments, in this note we describe
a novel observation strategy that solves the problem of the
speed estimation of an Unmanned Aerial Vehicle, when
the angular acceleration, the angles and the angular speeds
are available for measurement. We focus our analysis on
a prototype drone - a 4 rotors helicopter robot shown in
Fig. 1 - produced to operate in an urban environment at the
Laboratoire IBISC - CNRS, Universite d’Evry, which is not
equipped with GPS related devices and relies on the Inertial
Measurement Unit only. We provide a global exponential
solution to this open problem in the light of classical adaptive
estimation theory when exact measurements are available.
A modified estimator is presented to enhance robustness in
velocity estimation in the realistic case of noisy acceleration
measurements. The observation strategy final goal is an
efficient robot’s stabilization control. The simulation results
obtained on the model of the real drone -even in the presence
of noise- are very promising, and will be soon implemented
on the physical prototype.



Fig. 1. Prototype Drone

In section II we formulate the problem statement and
describe the drone model. We then use this information
in section III where the main results are shown about the
observer design procedure as well as a sketch of estimation
convergence proof. In section V we report some simulations
that illustrate the observer performance and stress the in-
fluence of some parameters on the observer behavior. Finally
in section VI we conclude the note with few remarks along
with an outline of our future research on this topic.

II. PROBLEM FORMULATION

The motion of a four rotor aerial robot can be described
by the following equations (see [4]).

ẋ = cosθ cosψ u

+(sinφ sinθ cosψ − cosφ sinψ) v

+(cosφ sinθ cosψ + sinφ sinψ)w

ẏ = cosθ sinψ u

+(sinφ sinθ sinψ + cosφ cosψ) v

+(cosφ sinθ sinψ − sinφ cosψ) w

ż = −sinθ u+ sinφ cosθ v + cosφ cosθ w (1)

φ̇ = p+ (sin(φ) q + cos(φ) r) tan(θ)

θ̇ = cos(φ) q − sin(φ) r

ψ̇ = (sin(φ) q + cos(φ) r) cos(θ)−1 (2)

Ixxṗ = −lbkT (ω2
1 cosβ1 − ω2

3 cosβ3) − (Izz − Iyy)rq
−qIr(ω1 cosβ1 + ω2 + ω3 cosβ3 + ω4)

Iyy q̇ = lbkT (ω2
2 − ω2

4) − (Ixx − Izz)rp
−rIr(ω1sinβ1 + ω3sinβ3)
+pIr(ω1cosβ1 + ω2 + ω3cosβ3 + ω4)
+kM (ω2

3sinβ3 − ω2
1sinβ1)

Izz ṙ = −lbkT (ω2
1sinβ1 − ω2

3sinβ3) − (Iyy − Ixx)pq
+qIr(ω1sinβ1 + ω3sinβ3)
+kM (ω2

3sinβ3 + ω2
4 − ω2

1sinβ1 − ω2
2)

(3)

u̇ = (−qw + rv − g sinθ) − kT

m
(ω2

1 sinβ1 + ω2
3 sinβ3)

v̇ = (−ru+ pw + g sinφ cosθ)

ẇ = (−pv + qu+ g cosφ cosθ)

−kT

m
(ω2

1 cosβ1 + ω2
2 + ω2

3 cosβ3 + ω2
4)

(4)
whereη1 , [x y z]T is the position vector represented in
the global reference frame,η2 , [φ θ ψ]T is the Euler
angles vector represented in the global reference frame
(roll pitch and yaw respectively),ν1 , [u v w]T is the
speed vector represented in the local reference frame (surge,
sway and heave respectively) andν2 , [p q r]T is the
angular speed vector represented in the local reference
frame. In this model, the control input vector isu =
[ω1 ω2 ω3 ω4 β1 β3]

T where ωi i = 1 . . . 4 are the
angular speed of the 4 rotors, andβ1 and β3 represent the
orientation of the rotors 1 and 3.
kT and kM are respectively the constants relating rotor
speeds and resulting thrust and torque,lB is the lenght
of each drone’s arm, andIr is the rotor’s inertia moment
constant.

The paper objective may then be stated as to design an
observer that provides estimation for the unmeasurable state
variablesν1, based on the measurable variablesη2, ν̇1,
ν2 given by the standard sensors embedded in the drone.
Furthermore, the observer should be able to obtain arbitrary
L∞ andL2 disturbance attenuation from measurement noise
on the acceleration towards the estimation errors.

III. O BSERVERDESIGN

In this section we describe the estimation strategy follo-
wing the techniques presented in [1] and [2], as well as an
outline of its stability proof.

In the first, we re-write system (4) as

ν̇1(t) = A(t)ν1(t) + b(t) (5)

y = ν̇1

whereA, b andy are defined by

A(t) =





0 r −q
−r 0 p

q −p 0





b(t) =





−g sinθ − kT

m
(ω2

1 sinβ1 + ω2
3 sinβ3)

g sinφcosθ

g cosφ cosθ − kT

m
(ω2

1 cosβ1 + ω2
2 + ω2

3 cosβ3 + ω2
4)





y(t) = ν̇1 =





u̇

v̇

ẇ





Consider the cascaded filters with matrix statesM ∈ R
3
×

R
3
, Q ∈ R

3
×R

3
, with arbitrary initial conditions such that

‖Q(0)‖ > 0, defined as :



Ṁ = −αM +A(t) (6)

Q̇ = −βQ+MTM (7)

whereα ∈ R
+

, β ∈ R
+

are tuning parameters chosen by
the designer, along with the two vector systems with state
ρ ∈ R

3
, δ ∈ R

3

ρ̇ = −α ρ+ ν̇1 − b(t) +Mν̇1 (8)

δ̇ = −βδ + ρ , −βδ + z̃ +Mν1 (9)

with arbitrary initial conditions. Notice that the vector(ρ−
Mν1) exponentially converges to zero. In fact, by setting
z̃ = ρ−Mν1, we have

˙̃z = −α (ρ−Mν1) = −αz̃ (10)

We introduce an estimate of the linear velocity

ν̂1 =





û

v̂

ŵ





along with a filter vector stateξ ∈ R
3

that satisfy the
differential equations :

ξ̇ = −βξ +Qν̇1 − ṀT δ (11)

˙̂ν1 = γ(−Qν̂1 +MT δ + ξ) + ν̇1 (12)

with γ ∈ R
3

tuning parameter to be chosen by the designer
By setting the estimation error variablesν̃1 , ν1 − ν̂1 and

χ , Qν1 −MT δ − ξ, we obtain :

χ̇ = −βχ−MT z̃ (13)

˙̃ν1 = γ(−Qν̃1 + χ) (14)

From (14) along with (10) and (13), we will show that
exponential convergence to zero of estimation error is gua-
ranteed if matrix Q is positive definite. This is a consequence
of the following assumption.

Hypothesis 1: There are positive integersT , K∗

1 andK∗

2

such that

K∗

1 I ≥

∫ t+T

t

A(τ)TA(τ)dτ ≥ K∗

2 I for all t ∈ R

Remark 1: Hypothesis 1 is a mathematical formulation
of the properties that A(t) is bounded and persistently exci-
ting (PE). The first property is a natural requirement. The
second one can be shown to be guaranteed if the UAV
tracks a trajectory which is in practice a small periodic orbit.
Besides, the nature of the airship provides vibrations in real
applications, that may already give enough persistency of
excitation).

Previous arguments can be summarized in the following

Proposition 1: Consider the UAV model described by
(1)-(4). Under Hypothesis 1, if the variablesη2, ν2, ν̇1 are
available for measurement, the dynamic observer described
by (6), (7), (8), (9) with stateM(t) ∈ R

3
× R

3
, Q(t) ∈

R
3
× R

3
, ρ(t) ∈ R

3
, δ(t) ∈ R

3
, ν̂1(t) ∈ R

3
, is such that

the vectorν1 − ν̂1 converges to zero globally exponentially
for any initial conditionsM(0) ∈ R

3
×R

3
,Q(0) ∈ R

3
×R

3
,

ρ(0) ∈ R
3
, δ(0) ∈ R

3
, ν̂1(0) ∈ R

3
with |Q(0)| > 0.

Proof: The stability proof is standard and follows
Lyapunov techniques. Consider the Lyapunov function :

V =
1

2
κ1 ν̃

T
1 ν̃1 +

1

2
κ2 χ

Tχ+
1

2
κ3 z̃

T z̃ (15)

By computing the time derivativėV and recalling (10),
(13), (14) we obtain

V̇ = −ακ3 ‖z̃‖
2
− βκ2 ‖χ‖

2
− κ2χ

TMT z̃

− γκ1ν̃
T
1 Qν̃1 + γκ1ν̃

T
1 χ (16)

Defining the constants|λmax(M)| = c1 andλmin(Q) =
c2 we deduce the following inequalities

κ2χ
TMT z̃ ≤

κ2β

4
‖χ‖

2
+
κ2

β
c21 ‖z̃‖

2

γχT ν̃1 ≤
γc2

2
‖ν̃1‖

2
+

γ

2c2
‖χ‖

2

that substituted in (16) yield

V̇ ≤ −(κ3α−
κ2

β
c21) ‖z̃‖

2
− (κ2β −

κ2β

4
+
κ1γ

2c2
) ‖χ‖

2

− κ1γ(c2 −
c2

2
) ‖ν̃1‖

2

By setting

κ3 = 1

κ2 =
2γ

βc2

κ1 =
2κ2c

2
1

βα
=

4γc21
β2αc2

we finally obtain

V̇ ≤ −(
2γc21
β2c2

) ‖z̃‖
2
− (

γ

2c2
) ‖χ‖

2
− (

γc2

2
) ‖ν̃1‖

2 (17)

Previous inequality implies that there exist a suitable po-
sitive real constantλ such thatV̇ ≤ −λV, which guarantees
the convergence of all errors exponentially to zero.

Simulations were carried out to illustrate the performance
of the observer, as well as to verify the effects of the design
parameters (see sectionV). Furthermore, simulations were
made searching insights on the effect of noisy measurements



on the observer system. These simulations were the motiva-
tion for the development of new schemes aiming a better
performance in the presence of noise.

IV. ROBUST OBSERVER

In order to quantify the observer performance in case of
measurement noise applied on the acceleration signals, we
propose a modification on the previous observer. We assume
now that a disturbed accelerationaµ is available ;aµ , ν̇1 +

µ, where the vectorµ ∈ R
3

represents the measurement
noise such that (definingµM ∈ R

+
) :

‖µ‖ ≤ µM

Consider the cascaded filters with matrix statesMµ ∈

R
3
× R

3
, Qµ ∈ R

3
× R

3
, with arbitrary initial conditions

(with |Qµ(0)| > 0) defined as :

Ṁµ = −ᾱMµ +A(t) (18)

Q̇µ = −βQµ −
k

4
QµQ

T
µQµ +MT

µ Mµ (19)

whereᾱ ∈ R
+

is such that̄α = α+ k
4
, β ∈ R

+
are tuning

parameters chosen by the designer, along with the two vector
systems with stateρµ ∈ R

3
, δµ ∈ R

3

ρ̇µ = −ᾱ ρµ +A(t)ν1 + µ+Mµaµ

= −ᾱ ρµ + aµ − b(t) +Mµaµ (20)

δ̇µ = −βδµ + ρµ

, −βδµ + z̃µ +Mµν1 (21)

with arbitrary initial conditions.
In fact, by settingz̃µ = ρµ −Mµν1, we now have :

˙̃zµ = −ᾱ z̃µ + (Mµ + I)µ (22)

We introduce an estimate of the linear velocity

ν̂1 =





û

v̂

ŵ





along with a filter vector stateξµ ∈ R
3

that satisfy the
differential equations :

ξ̇µ = −βξµ−
k

4
QµQ

T
µ ξ+Qµaµ−Ṁµ

T
δµ−

k

4
QµQ

T
µM

T
µ δµ

(23)

˙̂ν1 = γ(−Qµν̂1 +MT
µ δµ + ξµ) + aµ (24)

with γ ∈ R
3

tuning parameter to be chosen by the designer
By setting the estimation error variablesν̃1 , ν1 − ν̂1 and

χµ , Qν1 −MT
µ δµ − ξµ, we obtain :

χ̇µ = −(β +
k

4
QµQ

T
µ )χµ −MT

µ z̃µ −Qµµ (25)

˙̃ν1 = γ(−Qµν̃1 + χµ) − µ (26)

Proposition 2: Consider the UAV model described by
(1)-(4). Under Hypothesis 1, if the variablesη2, ν2, aµ are
available for measurement, the dynamic observer described
by (18), (19), (20), (21) with stateMµ(t) ∈ R

3
× R

3
,

Qµ(t) ∈ R
3
× R

3
, ρµ(t) ∈ R

3
, δµ(t) ∈ R

3
, ν̂1(t) ∈ R

3
,

is such that for any givenǫ > 0, there exist a suitable
combination of the tuning parameters yeldingL2 and L∞

gains from the measurement errorµ to the estimations error
(ν1 − ν̂1) smaller thanǫ, for any initial conditionsMµ(0) ∈

R
3
× R

3
, Qµ(0) ∈ R

3
× R

3
, ρµ(0) ∈ R

3
, δµ(0) ∈ R

3
,

ν̂1(0) ∈ R
3

with |Qµ(0)| > 0.

Proof: The stability proof follows the same method
applied before. Consider the Lyapunov function

V =
1

2
κ1 ν̃

T
1 ν̃1 +

1

2
κ2 χ

T
µχµ +

1

2
κ3 z̃

T
µ z̃µ (27)

By computing the time derivative ofV , we have :

V̇ = −κ1γν̃
T
1 Qµν̃1 − κ2βχ

T
µχµ − κ2

k

4
χT

µQµQ
T
µ χµ

− κ3(α+
k

4
)z̃T

µ z̃µ + κ1γν̃
T
1 χµ − κ2χ

T
µM

T
µ z̃µ

− κ1ν̃
T
1 µ− κ2χ

T
µQµµ+ κ3z̃

T
µ (Mµ + I)µ

As in the previous scheme, matrixQµ must be positive
definite. Defining now the constants|λmax(Mµ)| = c1,
λmin(Qµ) = c2, we obtain :

V̇ ≤ −κ1γc2 ‖ν̃1‖
2
− κ2β ‖χµ‖

2
− κ3α ‖z̃µ‖

2

+κ1γ
c2

2
‖ν̃1‖

2
+ κ1k ‖ν̃1‖

2
+
κ1γ

2c2
‖χµ‖

2

+
κ2β

4
‖χµ‖

2
+
c21κ2

β
‖z̃µ‖

2
+
κ3

k
(c1 + 1)2 ‖µ‖

2

+
κ2

k
‖µ‖

2
+
κ1

k
‖µ‖

2 (28)

By choosing :

κ1 =
1

γ

κ2 =
2

βc2

κ3 =
2κ2c

2
1

βα
=

4c21
β2αc2

and by setting the design conditionγ > 2k
c2

, we may finally

state that for a suitableαi ∈ R
+

, one may rewrite equation
(28) as :

V̇ ≤ −α1 ‖ν̃1‖
2
− α2 ‖χµ‖

2
− α3 ‖z̃µ‖

2
+
α4

k
‖µ‖

2

(29)



which guarantees arbitraryL∞ andL2 robustness from the
measurement errorµ to the estimation errors̃ν1, χµ and z̃µ

.

V. SIMULATION RESULTS

In this section we illustrate the observer designed above
to estimate the linear velocity of an UAV based on the mea-
surable angles, angular velocities and linear accelerations.
These simulations also illustrate the effect of the tuning
parametersα, β andγ on the observer performances. In all
simulations the observer estimations have initial conditions
set to zero, while the desired states are time varying (and
different from zero att = 0). In all simulations both
observers track the desired time varying states, with different
performances and noise rejections. We have used the follo-
wing parameters values :

m = 2.500Kg kT = 10
−5N.s2

lb = 23cm IR = 10010
−7Kgm2

Ixx = 22493110
−7Kgm2 Iyy = 22261110

−7Kgm2

Izz = 32513010
−7Kgm2 kM = 910

−5Ns2m

uG = 0.032m

Consider the first version of the observer, that does not
take into account the measurement noise. The time history
of the three speeds to be observed is shown in Fig. 2a, and
observer estimates in Fig. 2b, while estimation errors going
exponentially to zero are shown in Fig. 2c. In Fig. 3 the
angular speeds, the angles, and the accelerations are plotted.
Small periodic orbits were considered in order to satisfy the
persistency of excitation condition.
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Fig. 2. (a) Linear Speed, (b) Speed Estimation, (c) EstimationError

We have considered the first observer in the case of
additive measurement noise using . The measured acce-

leration is presented in Fig. 4 where the noiseµ is 10
percent of the measured acceleration. One may see in Fig.
5a the velocity estimated by the observer, while Fig. 5b
describes the estimation time history, and Fig. 5c illustrates
the observation error going exponentially to a residual set
given by the noise amplitude.
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Fig. 3. (a) Angular Speed, (b) Angles, (c) Acceleration
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Fig. 4. Acceleration

The same simulation is undertaken using the second
version of the observer, where the disturbance is attenuated
following the design parameterk. To describe the effect of
this parameter, we present three simulations using different
values ofk. The real speed and the measurement noise are
the same presented in Fig. 5 a and b, while in Fig. 6 we
show the results of the simullations usingk = 0, k = 10
and k = 50. The main effects of larger values ofk are



a greater attenuation, in trend of a slower convergence rate.
These results are in accordance with our claims, and illustrate
the mechanisms of the tuning procedure.
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Fig. 5. (a) Linear Speed, (b) Speed Estimation, (c) EstimationError
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VI. CONCLUSION

In this work, the classical problem of speed estimation of
an Unmanned Aerial Vehicle has been adressed when the
acceleration, the angles and the angular speeds are available
for measurement. A solution has been provided for a class

of systems via the tools of adaptive observation theory with
promissing results. Future research directions will focuson
executing experiments on the physical prototype, along with
relaxing the condition of persistency of excitation used to
prove exponential convergence. Complementary work will
also be done in the direction of faster convergence of para-
meters, as well as a better independence from exponential
convergence rate, and noise attenuation.
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