
HAL Id: hal-00342772
https://hal.science/hal-00342772

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An efficient modeling of a flexible airships
Selima Bennaceur, Naoufel Azouz, Djaber Boukraa

To cite this version:
Selima Bennaceur, Naoufel Azouz, Djaber Boukraa. An efficient modeling of a flexible airships. ASME
8th Biennial Conference on Engineering Systems Design and Analysis, Jul 2006, Turin, Italy. pp.573-
582, �10.1115/ESDA2006-95741�. �hal-00342772�

https://hal.science/hal-00342772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


AN EFFICIENT MODELLING  OF FLEXIBLE AIRSHIPS 

Selima BENNACEUR, Naoufel AZOUZ, Djaber BOUKRAA 

Laboratoire des Systèmes Complexes, CNRS FRE 2494 
Université d’Evry Val d’Essonne 

40 Rue du Pelvoux, 91020 Evry cedex, France 
E-mail :  Selima.Bennaceur, Azouz,boukraa@iup.univ-evry.fr  

Abstract 
This paper presents an efficient modelling of 

airships with small deformations moving in an 
ideal fluid. The formalism is based on the Updated 
Lagrangian Method (U.L.M.).This formalism 
proposes to take into account the coupling between 
the rigid body motion and the deformation as well 
as the interaction with the surrounding fluid. The 
resolution of the equations of motion is 
incremental. The behaviour of the airship is 
defined relatively to a virtual non-deformed 
reference configuration moving with the body. The 
flexibility is represented by a deformation modes 
issued from a Finite Elements Method analysis. 
The increment of rigid body motion is represented 
similarly by rigid modes. A modal synthesis is 
used to solve the general system equations of 
motion. Time constant matrices appears (i.e. mass 
and structural stiffness matrices), and we show a 
convenient technique to actualise the time 
dependant matrices.  

      Keywords: flexible airships, small deformations,            
incremental scheme, modal synthesis. 

1. Introduction
The interest for the modelling and control of 

airships increases   significantly in the last years. 
The complexity and capability of airships are 
expanding rapidly and the range of missions they 
designed to support is growing. However in order 
for airships to reach this potential, significant 
technical issue must be overcome. One main point 
of this challenge is the modelling of the structural 
flexibility. It is important to note that several kinds 
of airships, usually called blimps, are mainly 
constituted of a balloon filled of gas. The only 
solid parts are the careen and the tail fins. The 
integration of the structural flexibility in the 

dynamic analysis is then useful, but it is now in an 
embryonic state and is only just emerging. Several 
researches were done using the assumption of rigid 
body behaviour for airships [1, 2]. The flexibility 
effects are sometimes modelled as a perturbation. 
However in other flying objects, such as light 
aircrafts, the introduction of the flexibility in the 
dynamic model becomes essential [3, 4]. We try by 
this study to contribute to the analysis of the 
deformation of the airships by introducing the 
effect of flexibility as non controlled 
supplementary degrees of freedom. The 
deformation of the blimp is not considered as a 
perturbation but rather acting on the motion of the 
airship. 

The influence of structural flexibility on 
dynamics of mechanical systems has become 
increasingly important in classical robotics [5, 6] 
and recently in flying robots (i.e. Airships, 
UAVs…).  

Several approaches, to study the problems of 
flexible bodies, have been proposed in the 
literature. These approaches can be classified into 
two groups. The first group uses the Newton-Euler 
description [7] which is an interesting method in 
regard of the time computation. However it is not 
easy to use it in the case of the flexible body and it 
is sometimes sensitive to the numerical simulation. 
In the other hand the total Lagrangian method [8], 
this consists to define the motion relatively to a 
fixed reference frame, leads also to complex 
relations when describing stresses and strains in 
the flexible body. 

An Updated Lagrangian Method (U.L.M.) was 
proposed by Bathe & al. [9] and developed for 
deformable bodies that undergo large translational 
and rotational displacements. The resolution of the 
dynamic problem is incremental. The configuration 
and the motion of the body are identified using a 
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moving reference configuration representing the 
position of the deformable body in the preceding 
step. Azouz & al. [10] propose as reference 
configuration a rigid body configuration which 
follows the motion of the body without coinciding 
with it. This approach is convenient for a body 
with small deformations. Using this approach, we 
develop an efficient formalism to describe the 
behaviour of airships with small deformations. The 
motion is given by coupled sets of rigid and elastic 
variables. The nonlinear equations are formulated 
in terms of a set of time invariant matrices 
expressed in a reference configuration (i.e. mass 
and stiffness matrices). Time-variant quantities 
appear in the nonlinear terms that represent the 
dynamic coupling between the rigid body modes 
and the elastic deformation. We show in this study 
a suitable technique to actualise these terms using 
matrix partitioning and canonical decomposition. 
The dynamic system is reduced and solved through 
a modal synthesis. The elastic deformation is 
represented by a set of generalised variables and 
natural modes issued from a Finite Element 
method (FEM) discretization. 

Airships are also governed by the aerodynamic 
forces that have to be modelled. The basis to 
analyse the motion of a rigid body in a perfect 
fluid has been established in the 19th century and 
has been described by Lamb [11]. In his work, 
Lamb considered the case of simple displacement 
in a big infinite mass of fluid and where the 
movement of this last is entirely due to the motion 
of a solid, and it is irrotational and acyclic. He 
proved that the kinetic energy of the fluid can be 
expressed as a quadratic shape of the six velocities 
of translation and rotation of the vehicle. The 
derivations given by Lamb will be used in the 
description of the airship, in a stationary uniform 
atmosphere. The terms depending on the 
acceleration or the added masses come from the 
fact that the fluid considered perfect is accelerated. 
When an ellipsoid body moves in an 
incompressible and infinite inviscid fluid so that 
the external flow is everywhere irrotational and 
continuous, the kinetic energy of the fluid 
produces an effect equivalent to an important 
increase of the mass and of the moments of inertia 
of the body [12, 13]. In our model, the fluid effects 
have been introduced into the dynamical system 
through a modal synthesis to build the global 
dynamic system of the flexible airship. 

2. Dynamic model of the airship
The dynamics of the airship with small 

deformation is highly non-linear. The non 
linearities are essentially due to the large rotations 
of the body and the interaction between rigid body 
motion and the deformation. 

         Figure 1.  Presentation of the different frames 

In our formulation, we use an Update 
Lagrangian Method. The description of the airship 
behaviour is made relatively to a reference 
configuration which changes in the time 
accordingly to the airship configuration. This 
method is chosen because it takes into account the 
buckling between the rigid body motion and the 
deformation, and could be coupled with results of 
classical structural dynamics. In fact, many 
dynamic parameters will be kept unchanged during 
the simulation. In the case of a small deformation, 
the configuration at the time t (Ct) is not so 
different from the one obtained by the 
transformation of a rigid body in the initial 
configuration. We choose as a reference 
configuration, the configuration of a virtual rigid 
body following the motion. Hence, we can 
linearize the airship displacement around this 
configuration. We consider two frames in the 
derivation of the motion equations. These frames 
are: the fixed frame related to the earth Rf and the 
moving frame Rm related to the reference 
configuration (Cref). The position and the 
orientation of the vehicle should be described 
relatively to the reference frame. The origin O’ of 
Rm coincides with the inertia centre of the 
undeformed vehicle in the reference frame. Its axes 
are the principal axes of symmetry. 

2.1 Description of the reference configuration 

 

Figure 2.  Incremental scheme 

In this model we use an incremental scheme. 
The displacement of each point L is given by: 
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( ) ( ) ( ) ( )= + ∆ +ref ref d

Q

U L U L U L U L          (1) 

Where Ud is the small displacement related to the 

whole deformation, refU∆  is the increment of the 

rigid body motion. Let us note H  the rotation 
matrix between the initial frame and the local 

reference Rm such as .T T
dH H H H I= = , and 

let us note  tQ H Q=  ; from the equation (1) we

can obtain the following expression: 

( )2refU U H Q H Q H Q= + + +              (2) 

,Q and Q  represent the time derivative of the

displacementQ . 

2.2 Description of the strains 
To describe the strains we use the symmetric 

Green-Lagrange tensor ε  which is related to the 
reference configuration. We note J the gradient 
tensor relative at the reference configuration co-

ordinates J Q= ∇ and the Green tensor ε  can be

expressed as:  ( )1
.

2
t tJ J J Jε ⎡ ⎤= + +⎣ ⎦ .

In this case we have small deformations, 

consequently 1J ; we can then neglect the non
linear terms, hence the strain tensor becomes: 

1

2
tJ Jε ⎡ ⎤= +⎣ ⎦ .

When using the vector notation such as: 

[ ]11 22 33 12 13 23

Tε ε ε ε ε ε ε= , we can 

obtain this relation: 

DQε = (3)                          

Where D is a differential operator, ijε  are the 

components of the strain tensor.  

2.3 Description of the stresses 
For the description of the stresses applied on 

the airship, we use the second tensor of Piola-

Kirchoff  kP  defined on the reference 

configuration  . .
ref

t t
kP J J

ρ σ
ρ

−= , with σ  is

the stress tensor of Cauchy, dJ I J= + ,  Id is the 

3x3 identity matrix, and refρ  is the mass density 

of the reference configuration  equal to its initial 

value 0ρ defined on the initial configuration (C0). 

The material of the careen is assumed elastic, 
homogeneous and isotropic such as we have a 
linear behaviour law between stresses and strains:     

                  Eσ ε= (4)   

Here σ  is the vector of the stress components and 

E the symmetric tensor of elastic properties of the 
material. 

2.4 Dynamic equilibrium 
Let's consider the dynamic equilibrium of an 

airship. According to the classical mechanics laws, 
the equilibrium is represented by the two following 
relations [14]:  

vdiv f Uσ ρ+ =    on (Ct) (5)

n.n tσ = on board( )tC∂ (6)

fv are the volumic forces acting on the elements of 
volume such as gravity. tn is the boundary stress 
vector, it represents the boundary surfacic forces 
such as the air pressure. 

Now, we consider the following assumption: 

ref refV V and S S≈ ≈  the volume and surface of 

the actual configuration (Ct) are close to those of 
the reference configuration. This permits to 

confuse the Piola stress tensor kP  with the 

Cauchy stress tensorσ . 
If we use the principle of the virtual works and 

consider a small displacementQδ , the equation of

equilibrium becomes: 

ref ref

ref

ref ref

TT
ref ref refV V

T T
v ref n

V S

.U . Q.dV . .dV

f . Q.dV t . Q.dS

ρ σ ε

δ

∂ + ∂ =

+ ∂

∫ ∫
∫ ∫

              (7) 

Consequently, the equation (7) is similar to the 
dynamic equation of the deformable bodies in 
structural mechanics. 

3. Resolution of the dynamic equation
To define the exact configuration of the 

deformable airship, we should use an infinite 
number of co-ordinates in order to calculate the 
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location of every point of the body. It has been 
shown that the motion of the deformable airship is 
governed by a set of partial differential equations 
that are space and time dependent. The 
discretization consists to subdivide the airship in a 
number of sub-domains with simple shapes that 
could be studied easily. We will use approximate 
techniques namely Rayleigh-Ritz method coupled 
with Finite Elements discretization. 

3.1 Discretization of the airship 
We indicate that the discretization consists to 

subdivide the airship in a number of sub-domains 
with simple shape. The displacement of the airship 
is then described through some interpolations 
functions and nodal displacement. We must note 
that the number of elements required for an 
acceptable approximation of the displacement 
should be high. However when using modal 
synthesis, this number of elements play a part only 
in a preliminary computation. Just a few numbers 
of "useful" nodes are kept. 

We should note that the nacelle is represented 
by three points in the bottom of the airship. In the 
central point we apply its actual heavy, in the other 
point we model the effect of the two propellers.  

  Figure 3.  Discretization of the airship 

Let us now consider a displacement field Ui of 
an element i of the body. It can be expressed in 
function of the column matrix u  representing the 
displacement, relatively to the local reference frame, 
of all nodes as follows: 

i iU N u=  where Ni is an interpolation space 
function [15]. This relation is valid for any given 
displacement, especially for: 

Q N.q= (8) 

We note Mi and i
LK  the mass and stiffness 

matrices of the element i defined as follows:  

i

i iT i i
ref refV

M .N .N .dVρ= ∫ (9)

i

i iT T i i i i
L refV

K N .D .E .D .N .dV= ∫ (10)             

V i and Ei are respectively the volume and the 
tensor of the elastic properties of the element i, 
Di is the differential operator of an element i. 

The mass and stiffness matrices of the whole 
airship are built by an adequate assembly of 
elementary matrices of mass and stiffness:  

     
ne

i

i 1

M M
=

=∑ (11) 

    
ne

i
L L

i 1

K K
=

=∑ (12) 

ne is the number of elements of the airship. 

3.2 Equation of motion of the discretized airship 
Lets us now analyse the different terms of the 

equilibrium equation (7). 
According to the equation (2), the first left hand 
term could be expressed as: 

( )
ref

ref

ref

T T
ref ref ref ref refV

V

T

ref ref

V

.U. QdV .U . QdV

. HQ 2HQ HQ . QdV

ρ δ ρ δ

ρ δ

= +

+ +

∫ ∫

∫
    (13)   

We just add here that, in the incremental scheme 

the reference acceleration refU  related to the

reference configuration is known. 

Using the equations (3) and (7), we can write the 
second left hand term as: 

ref ref

T T T T
ref refV V

. .dV q .N .D.E.(D.N) q.dVσ ε∂ = ∂∫ ∫ (14)

 Relations (3;  8-13) give : 

e f rK.q B.q M.q F F F+ + = + − (15)

   We define here the diagonal bloc matrix of 

rotation H   which concerns the rotation of all the 
nodes: 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/01/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

4



[ ]
[ ]

[ ]

H

H

.
H

.

.

H

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎡ ⎤ = ⎜ ⎟⎣ ⎦
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

          (16)       

The stiffness matrix K is constituted by: 

KL the structural stiffness, and T
DK M H H=  the

dynamic stiffness due to the Coriolis effect. 

s gB C C= +  with T
gC 2M H H=  the anti-

symmetric matrix of gyroscopic terms; Cs is a matrix 
of structural damping. We suppose in the following 

that we can neglect this matrix is front of gC . KD 

and B are consistent matrices which take into 
account the inertial coupling between the overall 

motion and the deformation. T
e eF H F=  ,

T
f fF H F=  are respectively the external (volumic

and boundary forces) and fluid forces; 
T

r refF M H u=  is the column matrix of residual

inertia terms due to the dynamics of the reference 
configuration.  

The structural stiffness and mass matrices are 
defined relatively to a moving reference frame Rm 
in the “rigid” reference configuration. They are 
then constant. The dynamic equation (15) has a 
huge size and the number of degree of freedom 
(d.o.f) is tremendous, especially if we choose to 
model the airship with small elements; this leads to 
a very high computational cost and many problems 
to establish control laws. For this reason, we tried 
to solve this dynamic equation using a modal 
synthesis. 

3.3 Modal synthesis 

We decompose the increment  Q  into a rigid 

contribution rQ  and a deformable part dQ  such 

as in its discretized form we have: 

     
6

r ri ri
i 1

q Y X
=

=∑ (17) 

Yri being the modal amplitude of the rigid mode i. 
Hence for a 3D motion, we have six 

variables( )trax tray traz rotx roty rotzY , Y ,Y ,Y , Y ,Y .

3x3

3x3

rig
d

d

I O L

0 I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟′⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. .

. .

. .

. .
X

. .

. .

(18) 

tra rotX X

X tra : are three modes of the translation motion.       
Xrot : are the three modes of rotation. 
The displacement due to the deformation of the 
airship is: 

nd

d di di
i 1

q Y X
=

=∑                          (19)

nd: is the number of significant deformable modes 
kept for the study, Ydi is a time dependent variable 
of the deformable mode i, Xdi is a free-free natural 
mode of rank i. The choice of these boundary 
conditions is in harmony with the real 
configuration of the airship. O’ is the origin of Rm, 

L is a given nodal point, ′O L  is the skew matrix 

associated with the vector ′O L .  

The deformable airship could be considered as low 
frequency structure. We can model its vibration 
accurately with the first modes of lower 
frequencies. 
The projection of dynamical equation of motion 
(15) in the modal basis composed of rigid and 
flexible modes permits to reduce the number of 
d.o.f. The dynamic equation can then be written as: 

e f R.Y .Y Y .Y+ + + = + −D LM B K K F F F           (20)  

M  and K L are the constant mass and stiffness 

matrices projected in the modal basis (M = XT.M. 

X  ), X  is the matrix of the modal basis issued from 
the collection of all rigid and flexible modes. The 
other bold terms are terms projected in the modal 
basis: 

   M =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

TT TR Td

RR Rd

dd

M M M

M M

Sym M

and
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    K L = 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0

0 0

ddSym K

 The mass matrix is defined in the “rigid” reference 
configuration. We have then as sub-matrix of 
translation (MTT) a diagonal matrix corresponding 
to the mass of the airship. MRR is the inertia matrix 
of rotation; and according that the centre of gravity 
coincides with the origin of the reference frame, 
we have MTR = 0. The choice of free modes of 
deformation allows to say that MTd = MRd = 0.    

The use of constant mass and stiffness matrices is 
important for the reduction of the computational 
time. In the other hand, we obtain two time-variant 
matrices (B  and K D) that we should actualise at 
each step. However we develop a computational 
technique which makes easier this task. For 
example a given matrix A can be written as: 

11 12 13

21 22 23 ij ij 11 12
ij ij

31 32 33

a a a 1 0 0 0 1 0

A a a a ab a 0 0 0 a 0 0 0 ...

a a a 0 0 0 0 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑∑

This decomposition is useful for our block-
diagonal matrices such as: 

[ ]
[ ]

[ ]

H

H

.
H

.

.

H

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
=⎡ ⎤ ⎜ ⎟⎣ ⎦
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=
3 3

ij IJ
i 1 j 1

H .A
= =

⎡ ⎤⎣ ⎦∑∑     (21) 

 
Here I J i jA e e= ⊗  are canonical matrices. The 

symbol ⊗  represents the tensorial product. 

 For example:  

12

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0A

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

.

.

.

The matrix K D can then be computed by this way: 
3 3

T T T
IJij

i 1 j 1

2 M H H 2 H H Z
= =

⎡ ⎤= = ⎣ ⎦∑∑DK X . . X       (22) 

where T
I J I JZ M A= X X  are constant

matrices defined before the beginning of the time 
varying simulation of motion. 

4. Interaction fluid-airship
Consider a simple dynamical model of the 

action of a fluid on a body. To present this model, 
we assume that the flow is quasi-steady, i.e. the 
distribution of the velocities of particles of the 
medium coincides with the distribution 
corresponding to the steady motion of the body. 
Thus the medium responds only to the current 
motion of the body and forgets its initial 
conditions. Therefore, within the framework of this 
hypothesis, the resultant force and torque acting on 
the body can be represented in the form of a 
function of the instantaneous distribution of 
velocities in this body. Thus we arrive at the 
statement of the problem of the motion of a body 
in a dragging medium as a problem of classical 
dynamics. 

4.1 Flow representation 
To take into account the interaction of the 

airship with the surrounding fluid medium, a 
model of the flow is needed. Here, we rely on the 
potential flow theory corresponding to the 
following hypothesis: 

a. the air can be considered as a perfect fluid
with uniform density ρair , i.e. an
incompressible gas with vanishing
viscosity,

b. the flow is irrotational

c. Only the flow outside the airship contributes
significantly to the aerodynamics forces. 
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Denoting by v the velocity field in the fluid 
domain Ωair, the incompressibility and irrotational 
assumptions leads to: 

   .v 0 ; v 0∇ = ∇∧ = (23) 

∧  is the vectorial  product of two vectors.∇  is 
the gradient symbol, and the flow field may be 
described in terms of a potential F such that: 

        v = ∇Φ (24) 

From the incompressibility constraint, it is easy to 
show that the potential obeys to the homogeneous 
Laplace equation: 

2
air0 in∇ Φ = Ω (25) 

with Newman boundary conditions: 

[ ] ( )tn q n Y n on C∇Φ = − = − ∂. . ( X ).   (26)

[X ] is the matrix of all the modes (rigid and 
deformable modes), Y is the column matrix of all 
the time dependent variables defined in §3.4, n is a 

unit vector, normal to( )tC∂ .

Thus, one of the important characteristic of this 
representation is that v only depends on the current 
boundary conditions, and not on the history of the 
flow: the model is quasi-steady. To solve the 
potential equation, we use the boundary integral 
representation of the Laplace equation, together 
with standard boundary element method. It 
consists in the determination of a piecewise 

constant distribution of singularities over  ( )tC∂

(see [16] for details on the numerical treatment). 

4.2 Fluid forces 
For this assumption, the pressure at any point 

in the fluid domain (including( )tC∂ ) is given by

Bernoulli theorem: 

air air
1 1

P v.v P . v .v
2 t 2∞ ∞ ∞

∂Φ⎡ ⎤+ρ + = +ρ⎢ ⎥∂⎣ ⎦
(27) 

 The subscript ∞  denotes the undisturbed 
conditions far from the airship. This pressure 
distribution over the airship surface can be 
integrated to compute the resulting forces and 
torques which in turn are projected on the modal 
basis. At the end, and with the linear property of 
the Laplace equation, the generalised fluid forces 
vector can be rewritten as: 

f ad fF M Y B Y= − − (28) 

where Mad is the matrix of the added masses 
(virtual masses), and Y is the column matrix of all 
Y i, Bf is a modal damping due to the flexibility of 
the hull. 

4.3 Modal projection 
Taking into account the previous 

developments, the dynamic equation (20) becomes: 

e R.Y .Y Y .Y+ + + = −dM' B' K K F F (29)  

we note M’=M+Mad , B’=B+ Bf. The effect of the 
fluid on the structure is then represented mainly by 
the adjunction of the added masses matrix M ad to 
the mass matrix of the structure. 

Where  

1

2

2

ad
3 y

3 y

k m 0 0 0 0 0 0 0

0 k m 0 0 0 0 0 0

0 0 k m 0 0 0 0 0

0 0 0 0 0 0 0 0
M

0 0 0 0 k I 0 0 0

0 0 0 0 0 k I 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

m is the mass of the body; 1k , 2k  and k3 are

constants depending of the shape of the airship, 

xI , yI and zI are moments of the inertia’s body.

For a quasi-ellipsoid airship the extra-diagonal 
terms of M ad can be neglected (for more details 

about the constitutive terms of M ad, the reader can 
see [11, 1]). 

5. Simulation results
To illustrate this incremental formalism we 

study the blimp belonging to the L.S.C having the 
following characteristics: 

       -The envelope: 
          Length: 6.25 m. 
          Diameter: 1.52 m.  
         Volume: 7.48 m3. 
        -Mass of the airship: 5.8 Kg.  
        - Payload: 1.58 Kg. 

The blimp is thrusted by two contrarotating 
propellers. 
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      Figure 4. The LSC airship  

To illustrate our incremental formalism, two kinds 
of motions are tested for this airship. 

In the first step we apply to the blimp two opposite 
forces in the propellers to generate a yaw motion 
(Fig 7).The flexible airship should rotate about 90° 
around the z-axis. A P.I.D controller will impose 
this task, and we study the behaviour of the airship 
during this manoeuvre. The number of deformable 
modes kept is nd = 2. This number seems to give 
an acceptable approximation of the flexible 
behaviour. We were guided for that by the modal 
masses of these two modes which represent 
roughly 65% of the total mass of the airship. 
In this simulation one applied around the yaw 
angle a torque consigns with: 

 

dK = 800, vK = 50, dψ : desired angular

position andψ : angular position of the airship. 

One notices in figure 5 that the amplitude of 
deviation of the yaw angle decreases significantly 
in few seconds, it stabilizes oneself while merging 
with the instruction. 

We show the position of the tip of the airship in 
figure 6. 

    Figure 5.   The superposition of trajectories  
(yaw angle and desired).      

Figure 6.  Position of the tip of the airship 

In figure 7 one superimposes total displacement 
along the X-axis of the rigid airship and the 
flexible device. It is noticed that the flexible device 
continues to oscillate what proves the impact of 
flexibility on displacement. For the rigid behaviour 
we eliminate the two deformable modes and kept 
only the six rigid modes. 

Figure 7. Superposition of the motions of the 
  flexible and rigid airship 

0

0

0

0

0

( ) ( )

eg

d d v d

f

k kψ ψ ψ ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− + −⎝ ⎠

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/01/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

8



Figure 8.  The deformation’s displacement  

The deformations (in figure 8) are about 0.15m 
what is more or less significant considering one 
has small deformations. In this simulation one 
visualized the tip of the airship, and one sees well 
the oscillation of the latter with non-negligible 
amplitude.One classical motion of an airship is the 
helicoidally motion. This usually represents the 
optimal trim trajectories.  

 Figure 9.  Rise of the airship. 

This represents a complete aerial motion of the 
airship. The propellers were oriented adequately to 
assure a combined motion along the moving x-axis 
and z-axis and the tails were oriented to give a 
homogeneous yaw motion.  

One can see (in figure 9) the influence of the 
deformation on the overall motion of the airship. 
This proves that in our model, the deformation is 
not a sample perturbation around the main rigid 
motion, but it acts on this motion. 
Experimental data will be available in few months 
to validate the results of our incremental scheme.  

Finally we show the influence of the added masses 
on the total displacement of the airship. 

   Figure  10.  Superposition of the displacement of 
the airship with and without air environing 

It is noticed (in figure 10) that the immersed 
airship has a delay compared to the body alone and 
this is because of the addition of the virtual masses 
representing the influence of the displacement of 
the mass of air around the airship when this last 
accelerates. 

6. Conclusion
The study of the flexible structures in the space 

has different performance requirements which may 
lead to troublesome calculation and inextricable 
problems of controllability. 

We introduced in this paper the flexibility of 
the airship as an extension of the classical 
structural dynamics taking into account the 
coupling between the rigid body motion and the 
deformation.  

The Updated Lagrangian Method (U.L.M) 
applied on rigid reference configuration and the 
uses of an updated modal synthesis permit to 
diminish the dynamic equations of the flexible 
airship to a reduced set of degrees of freedom. 

Simulation results prove that the integration of 
the flexibility in the dynamic system of the airship 
is very important and could not be neglected. The 
influence of surrounding air is also taken into 
account in our global model by the mean of added 
masses and through the same modal algorithm. 

The effect of surrounding air with the 
flexibility of the hull will be treated in future 
works. 
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