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Abstract: This paper proposes . adaptive 
control using integrated both longitudinal and 
lateral dynamics models of automated vehicles. 
Dynamics are described by a nonlinear non
holonomic model. We show that the dynamics 
of the de-actuated vehicle is asymptotically 
stable, with well updated dynamic parameters. 

I. INTRODUCTION 
This paper addresses the problem of road 
following : automatic movement along a 
predefined path. While an automated vehicle 
travels at a relatiyelyJow speed, controlling it 
with only a kirieniatics model may work. 
However, as automated vehicles are designed 
to travel at higher speeds, dynamics modeling 
becomes important. An important 
characteristic of many of . the studies 
concerning the automated vehicle modeling 
and control [Cha95, Cho98, Fre97] is that they . 
deal only with some simplified low Rrder · 
lineo/.modeJs. These models are too simple for 
stUdyfug the integrated longitudinal and lateral 
dynamics. Traditionally, the nonlinear model is 
considered useful in a simulation environment 
while the linear model is used for control 
design. 
We are· interested in control · design for an 
automated vehicle represented by a full non 
linear model. [Fre97] have used pole 
placement technique. However, this technique 
is known to be sensitive to uncertainties. To 
take into account uncertainties on aerodynamic 
parameters and tire - road contact parameters 
we have chosen an adaptive control method. 

II. MODELLING.
A single track model that includes the 
transverse and longitudinal dynamics, neglects 
roll and pitch angles and groups the front and
rear' wheels as a single wheel [Fre97], is 
considered 'in this paper. The gliidance system 
operates the steering wheel causing some 
wheels to work with a sideslip and to generate 
lateral forces. These forces cause a change of 

attitude of the vehicle and then a sideslip of all 
wheels. The resulting forces bend the 
trajectory. The important dynamical. variables 
are (figure 1): the vehicle orientation 'I', the 
longitudinal velocity v and the sideslip angle 
� . In normal road conditions, particularly if 
radial tires are used, the sideslip angles become 
large only when approaching the limit lateral
forces [Sha 2000]. · ·
The actu<tl position of the center of gravity is 
determined. by the Cartesian coordinates x and 
y in the absolute position. 'Ibe quantities sv 
and Sh represent respectively the front and 
rear side forces. The rear and front longitudinal 
forces H and V respectively are resulting from 
the power. train and brakes. The air resistance 
is represented by T and . the . steering angle is
represented by o . The following constants are 
also used : vehicle mass m; moment ofinertia I 
and the distance I� (th)· between the front
(rear) wheels and the center of gravity. 

The dynamic equations are given as [Fre97]: 
x=v.cos(\jf-P) · · 

y = v.sin(lJf-P)
. . 1 {(H-T)sinP+Vsin(<l+P)+s.cos(<l+P)}P='!f--

mv ,+ShcosP 
i[i=.!.{s.zv cos<l-Shlh}

I 
v =1-{(H -T)cosP+ V cos(<I+ p)-Sv sin(5+ p)-Sh sin p}

m 

with the following relations 

sv = rvm (p-i)t+o) 
Clvm V 

sh= r hm (p+1)�-) 
ahm v 

T=.!_CApv2 2 

(1) 

(2) 

where v = ds I dt and ro= do/ dt. The
aerodynamic resistance coefficient C, 
atmospheric density p and the vehicle cross 
sectional surface A hav.e been included. Here,
rh,v I a.h,v represent the characteristic curves of 
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the tires, with rvm = maxcrv) and 

cxvm = max(cxv), etc. The characteristic lines 
include the limitations and the descending · 
behavior for high values in the argument 
[Fre97]. 

Figure 1. The vehicle parameterization 

The steering angle 8 of the front wheel is the 
input for the vehicle in [Fre97]. However, the 
real input of the guidance system is the torque 
applied to the steering wheel, thus giving a 
steering wheel angle resulting in the front 
wheel orientation. 
The sources of non linearities are mainly 3 : 
the presence of products of the variables of 
motion in the equation, the presence of 
trigonometrical functions and the nonlinear 
nature of the forces due to the tires. All these 
non linearities are often IJ.eglected, such as in 
[Fre97] [Gen97]: There, the steering angle and 
the sideslip angles of the wheels and of the 
vehicle are supposed very small. 
In our model, the interaction between 
longitudinal and lateral forces due to the tires 
is not neglected. 
Let 't, denotes the rear axle torque and 'tb the 
steering torque. Then we can write using (1-2) 
't =r(mii+T+mv�-\jl)cotg(O) )+l.(I +I )ii l ' 1 � s. ;'t�(o)cos(o) +Sh cotg(S) r ' f 

tb =-Idw6+-f.,6n n 
(3) 

where cotg(o) = 1/tan(O), r is the wheels radii. 

I, regroups the rear axle polar moment of 

inertia and the motor moment of inertia. I 1 is 

the front axle polar moment of· inertia. 'tb is 
the torque for steering intervention. We 
exclude here uses of differential brake, and the 
two wheels' 8 is assumed to be identical. For 
vehicle steering intervention through 

differential braking we can refer to Pilutti 
[Pi198].· 
The handling of the vehicle can be studied 
using these two equations. Aerodynamics 
forces being considered in this study, they 
introduce a strong dependence on v2• A similar 
effect but far less important is due to rolling 
resistance. 
The actuator of the steering column is an 
electric motor with de-current available on 
certain standard vehicles. Figure 2 shows the 
site of the engine on the steering column as 
well as the sensor of couple to measure the 
effort exerted on the wheel. · 

· 

Steering dc·motor 

Figure 2. Steering angle control 

For a permanent magnet de-motor, the torque 
't is proportional to the armature current J. 
Thus actuator dynamics can be characterized in 
a matrix form as [Bes99] [Bej97]: 

u =Li +R.J +K(v rof} (4)
t=(t, tb f =K.J 

where L, R and K are 2x2 regular diagonal 
matrices · representing respectively the 
inductance, resistance and torque constants of 
the actuators. u is the motor voltage vector. We 
assume. that the transmission from the

. 
motors 

to the mechanism to be perfectly rigid, i.e the 
transmission does not suffer from backlash or 
flexibility. 

ill. ADAPTIVE CONTROL. 
Interest in. adaptive control of nonlinear 
systems was stimulated by major advances in 
the differential geometric theory of nonlinear 
feedback control. A through treatment of this 
theory was given by Kristie [Kri95]. The 
control problem formulated here, consists of 
finding a control law to achieve tracking of a 
reference trajectory in task space with constant 
parametric uncertainties of the vehicle. 
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In fact, it is not e!!SY to measure some physical 
parameters such that aerodynamics ·P8r¥Ileters, 
parameters of the char�teristic line describing 
the side force values· in the · 1ongitridinal and 
lateral directions, viscous friction and moment 
of inertia of the steering wheel around the 
center of gravity. We rewrite the vehicle 
kinodynamics model combined with actuators 
dynamics such that the model is linear in the 
updated parameters 
We start with the following system (5) which 
is obtained from (3) 

· N(y)y+Z(y,y)="C } (S) 
t = Ldcu + Rdc-"C+ KdcY 

where y=(s oY ,.Y=(v roY and .Y=(v roY. 
Ldc• Rdc and Kdc are function of the de-motor 

parameters (see appendix). The expressibi1s of 
N(.) and Z(.) are also gi�eh in the appendix. 
The

· 
uncertainty parameters .. iire regrouped � 

the following vector : . 
rm+�(/, +11) 

1 r2CAp 

8= r� m 
r rhm 

ahm 
1 
-;Jd(J) 
�f(J) 

We are interested in the unknown vehicle 
parameters (aerodynamic parameters and tire -
road contact parameters). Parameters related to 
the de-motors can be estimated separately. 
These parameters should be written linearly in 
the model in order to use the adaptive control 
procedure. To confirm the dependence in the 
constant parameters, we write the dynamics of 
the vehicle as 

N(y,0)y+Z(y,y,0)="C (8) 
·which takes the following compact form 

cI>(y, y, )i)O = 'td +et (9) 
The form of cl>(.) is detailed in appendix. 
et= 't-'td denotes the error in torque which 
can be viewed as a perturbation to the vehicle' 
dynamics. 't d is a suitable reference torque 
which will be ·specified later. In fact, tqe
dynamic of et is generated by the actuatO,r' 
dynamics ' "i 

where u is the new input in armature' voltages. 
The aim �f the �ontrol is to gµarantee et � oo 
as t � oo (time), and to choose 'td . 

Let us introduce the following notations 
y=yd-Y• where Yd =(sd 8d)7, sd is an 
curvilinear abscissa and 8 d is the desired 

steering angle. e = 9- e ' e is the estimation 
of e , s Y = y + Ay which is a filter to y with 

A=A7 >0. 

Lemmal 
The open�loop system dynamics represented 
by the state vector x = � s y e e, r is as 

. Sy Yr +N(y,8)-1[-'td +Z(y,y,8)] [YI [ . 
yd-y··.

Ix = 9 = � c11) 

e, f(e,)+F(e,)9+Ldcu 

Proof 
The proof is immediate if we consider that 
0 = O (constant parameters). Further 
f(et)=-td +KdcY and F(et)=RdccI>(y,y,y): 
0 is an appropriate adaptive law should,
guarantee the vehicle dynam1c stability. 

. 

Lemma2 
First, we consider the following notations 
cI> = <I>(y, y, y) and cI> r = cI>(y, y, yr} 
Under the following control laws in 

"Cd =cI>,a+Kpy+KvY 

and 

(12) 

-t
.
(
.
Atet+ f(et)

·
+

·
Rdcct>,0] .

u =-Ld ( . 
) · (13)

· c +Rdc Kpy+K,,'y 
. h T K KT 0 h d . wit KP = KP > O , v = v > , t e ynarmcs 

of the closed loop system is . 111 [-N(y,9)-1 (!:i:KPy+K.y)l
x= !. = ;. (14) 

e e 
e, -A,e, 

Note that the origin (y = O; s y = 0, e = 0, e, = 0)

is an equilibrium point of (14). 

Proof '·;· 
First, we ndte that 
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<I>(y, y, Yr)B ;:N(y, S)yr + Z(y, y, B) 
Then, if we consider the form of s , we get 

N(y,S)sy =N(y,0)y, -N(y,B)y, 
+Z(y,y,0)-Z(y, y,S)-K Py-Kvy 

=-<I> S-K y--K y.:. r p v 

(15) 
Now, the input in voltages can be substituted to 
obtain the dynamic of e't. Thus, 

e't = Rdc {ct>e-<I> ,e )-Rdc (K pY + KvY )-A'te't 
(16) 

We compute 

<I>9-<I>,S = N(y, 9)(y, -sy )+Z(y, y, 9) 
-N(y,S)y, -Z(y,y,S) 

=-{N(y,S)-N(y,9)�, 
-{zcy, y, e)-Z(y, :Y. 9) )-N(y, 9)s y 

= _q," ,e-N(y, 9)sy (17) 

Substituting the expression of N(y, 9)s Y which is 
. 

given by (15), in (17), leads to 

<I>9-<I>,e=Kpy+Kv'Y (18) 

So it is straightforward to verify that 
e't =-A'te't. 

Our stability results are formulated in the 
following Theorem. 

Theorem 
The parametric model of the de-actuated 
longitudinal-lateral vehicle given by (9) and 
(10) 

�(y, y'. ji)0 = 'td. + e-t: . .. } (l 9) e-t: =-'td + KdcY+ Rdc .<l>(y, y, y)9+ Ldcu 
having a.S inputs 'td and u given by (12) 

and (13), respectively, and the update law 

S = r<j>� (y + Ay) (20)

is asymptotically stable. Then y � O as

t�oo. r=rr >0. 

Proof 
The Lyapunov function is chosen as 

V(x) =�s�N(y,9)sy +� y7(KP +AKJy 
(21) 1 -0r -1-9 1 r +l r +le'te't

Note that N(y,9) depends only in 9, so it 

is time derivative is equal to zero. The 
skew symmetry property which is not 

available here :Can be ·ignored. Therefore, 
the time derivative of Vis given by : 

V(x) = s� N(9)s Y + y7 (KP+ AKv )Y 
+'EVr-1e+e7e 't t 

which takes this form 

(22) 

V(x) = (y +Ay/ �<I>,S-K pY-KvY ]+YT K pY 
-r .:. -0r<I>r r.:. A-) rA + y AKvY + r I)+ y -e't 'te't: 

(23) 
some simplifications permits to write 

V(x) =-yr AK Py-yr Kvy-e� A'te't (24) 

which is negative semi-definite (globally) 
meaning that the origin 
<Y =0,sY =O, 8 = O,e, =O) is stable but not

asymptotically. The LaSalle-Yoshizawa 
theorem permits to conclude the solution 
of V(x)=O contains x=O. To do this, from

s for y = y = et = O , we get 

<I>(yd, yd,jid )S =0 which means that 8 =0. 
Therefore the origin is asymptotic stable. 
Now to determine a bound of )i it is 

sufficient to prove, referring to the 
Barbalat' lemma, that 

r'l-ll2 dt < v(yco), s y (O), S(O),e.(o))
0 Y A.m(Q)

where Q=diag(AKp,Kv,A't) and A.m is the 

Q' minimum eigenvalue. 
As a result y.�O as t�oo 

IV. NUMERICAL EXAMPLES.
4�1.. vehicle characteristics. 
Many simulations were performed ·. with a 
vehicie that characteristics are [Gen97]: 
m = lOOOKg, I =1210Kgm2, lv =0.87m 
lh =l.29m 
Both motors are identical: K de = l .Nm I A;
n=l; I= = lOA ; dlmax =lOOOOA; 

V max = 2Sms-1 = 90Kmh-1• 

4.2. Simulation results. 
. The simulations are performed using 

MATLAB software. The parameters of the 
regulator are chosen as : 

Kp = IOI; Kv = I; r = I; _A=I; I is the identity 
matrix. 
The initial conditions are 

e, (0) = s Y (0) = y (0) = 0(0) = 0 . The reference
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trajectory is calculated using the approach 
presented in [Bes2000}. We suppose that we 
have no knowledge about the aerodynamic 
parameters and the front and rear road-tire 
contact parameters. 

(} 2Ainit = 0 e 4Ainit = 0 (} 5Ainit = 0 
The length of the path is lOm. Three cases are 
tested: 
• A straight line (the curvature K(s)=O).
• An arc of circle (the curvature K(s)=0.5).
• A clothoid (the curvature K(s)=0.5*s)

Figure 3 (due to space limit only this
figure is presented).

In eac;h figure, appear 12 schemes: 
a - the path ( y versus x), 
the eleven left are all versus the time,
b - the position errors ( x-Xd ; y-yd ); 
c - the desired and real velocity on the path; 
d - the desired and real acceleration;
e - the desired and real jerk; 
f- the voltage of the motors; 
g-the angle o; 
h - the angular velocity co; 
i - the desired and real longitudinal torques;
j - the desired and real lateral torques; 
k -: the variation of the three estimated

parameters 8 2 ; 8 4 (} s ; 
l - the derivative of these three estimated
parameters. 
For the three cases, we obtain the following 
estimation of these three parameters : 
Straight line 

lh=2.0018 {J4=Q 8s = -57.0281 
Arc 

82 =2.0038 94=2.1751 Os =-57,1132.
Clothoid 

82 = 2.001 94 =7.3899 Bs =-57.1991

V. CONCLUSIONS AND FUTURE 
WORK. 
This paper has presented a vehicle dynamic 
models suitable for path planning and control 
studies. We have used an adaptive Lyapunov 
approach to propose a controller. The 
aerodynamic coefficients .and th_e rear road-tire 
contact parameters seem to be constant versus 
the curvatirre of the road;· while the front road
tire contact parameter is greatly dependent on 
the curvature of the road. 

Although de-motors .have been considered, 
other actuators such as ac-machines present the 
same kind of constraints; on both the current 
and voltage . . · 

. 
. · · 
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Appendix 
The de-motor parameters are the following 

Rdc = R(nK,)-1; Kdc = Kbn; Ldc = L(nK,)-1 • R
and Lare diagonal positive matrices of the 
armature resistance and inductance 
respectively. Kb is a diagonal matrix of the 

back e.m.f constant of the motors. u is the 

armature' input voltages. n e R212 is a 
diagonal matrix of the gear ratios ( n > o ). 

K, e Rw ( K, > 0) is a diagonal matrix of

the motor torque constants. 

0 20 40 
t 

Figure 3. A clothoide (the curvature K(s)=0.5s) 

The expressions of coefficients given in (6) . 

N(y)= [rm+�(Ir+l1) 0 .] 
0 Idoo 

Z(y, y) = 
2cApv +mv(�-ljl)cotg(o) 

[ [I 2 
• 

J] r + Sv cot g(o) cos(o) +Sh cot g(o) 
f oo(J) 

The form of <l>(.) is as follows : 

0 v 1 2 0 2V 

O v(�-\jf)cotg(o)
;n l ( . ..) 0 (� - lv \jf + o) cot g (o) cos(o) '*' y, y, y = v 

o (�+lh \jf )cotg(o) v -
8 0 

0 
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