An adaptive control method of automated vehicles with integrated longitudinal and lateral dynamics in road following

Lotfi Beji, Yasmina Bestaoui

- To cite this version:

Lotfi Beji, Yasmina Bestaoui. An adaptive control method of automated vehicles with integrated longitudinal and lateral dynamics in road following. IEEE Transaction On Intelligent Transportation Systems Council, 2005, 6, pp.113-123. 10.1109/ROMOCO.2001.973455 . hal-00342762

HAL Id: hal-00342762

https://hal.science/hal-00342762

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

©®®

AN ADAPTIVE CONTROL METHOD OF AUTOMATED VEHICLES WITH INTEGRATED LONGITUDINAL AND LATERAL DYNAMICS IN ROAD FOLLOWING

Lotfi BEJI, Yasmina BESTAOUI
Laboratoire des Systèmes Complexes, Université d'Evry, 91020 Evry, France.
Beji@iup.univ-evry.fr Bestaoui@iup.univ-evry.fr

Abstract

This paper proposes adaptive control using integrated both longitudinal and lateral dynamics models of automated vehicles. Dynamics are described by a nonlinear nonholonomic model. We show that the dynamics of the dc-actuated vehicle is asymptotically stable, with well updated dynamic parameters.

I. INTRODUCTION

This paper addresses the problem of road following : automatic movement along a predefined path. While an automated vehicle travels at a relatively low speed, controlling it with only a kinematics model may work. However, as automated vehicles are designed to travel at higher speeds, dynamics modeling becomes important. An important characteristic of many of the studies concerning the automated vehicle modeling and control [Cha95, Cho98, Fre97] is that they deal only with some simplified low order linear models. These models are too simple for studying the integrated longitudinal and lateral dynamics. Traditionally, the nonlinear model is considered useful in a simulation environment while the linear model is used for control design.
We are interested in control design for an automated vehicle represented by a full non linear model. [Fre97] have used pole placement technique. However, this technique is known to be sensitive to uncertainties. To take into account uncertainties on aerodynamic parameters and tire - road contact parameters we have chosen an adaptive control method.

II. MODELLING.

A single track model that includes the transverse and longitudinal dynamics, neglects roll and pitch angles and groups the front and rear wheels as a single wheel [Fre97], is considered in this paper. The guidance system operates the steering wheel causing some wheels to work with a sideslip and to generate lateral forces. These forces cause a change of
attitude of the vehicle and then a sideslip of all wheels. The resulting forces bend the trajectory. The important dynamical variables are (figure 1): the vehicle orientation ψ, the longitudinal velocity v and the sideslip angle β. In normal road conditions, particularly if radial tires are used, the sideslip angles become large only when approaching the limit lateral forces [Sha 2000].
The actual position of the center of gravity is determined by the Cartesian coordinates x and y in the absolute position. The quantities S_{v} and S_{k} represent respectively the front and rear side forces. The rear and front longitudina forces H and V respectively are resulting from the power train and brakes. The air resistance is represented by T and the steering angle is represented by δ. The following constants are also used : vehicle mass m; moment of inertia I and the distance $l_{v}\left(l_{h}\right)$ between the front (rear) wheels and the center of gravity.

The dynamic equations are given as [Fre97]:

$$
\begin{align*}
& \dot{\dot{x}}=v \cdot \cos (\psi-\beta) \\
& \dot{y}=v \cdot \sin (\psi-\beta) \\
& \dot{\beta}=\dot{\psi}-\frac{1}{m v}\left\{\begin{array}{l}
(H-T) \sin \beta+V \sin (\delta+\beta)+S_{v} \cos (\delta+\beta) \\
+S_{h} \cos \beta
\end{array}\right\} \\
& \ddot{\psi}=\frac{1}{I}\left\{S_{v} l_{v} \cos \delta-S_{h} l_{h}\right\} \\
& \dot{\nu}=\frac{1}{m}\left\{(H-T) \cos \beta+V \cos (\delta+\beta)-S_{v} \sin (\delta+\beta)-S_{h} \sin \beta\right\} \tag{1}
\end{align*}
$$

with the following relations

$$
\begin{align*}
& S_{v}=\frac{\Gamma_{v m}}{\alpha_{v m}}\left(\beta-l_{v} \frac{\dot{\psi}}{v}+\delta\right) \\
& S_{h}=\frac{\Gamma_{h m}}{\alpha_{h m}}\left(\beta+l_{h} \frac{\dot{\psi}}{v}\right) \tag{2}\\
& T=\frac{1}{2} C A \rho v^{2}
\end{align*}
$$

where $v=d s / d t$ and $\omega=d \delta / d t$. The aerodynamic resistance coefficient. C, atmospheric density ρ and the vehicle cross sectional surface A have been included. Here, $\Gamma_{h, v} / \alpha_{h, v}$ represent the characteristic curves of
the tires, with $\Gamma_{v m}=\max \left(\Gamma_{v}\right)$ and $\alpha_{v m}=\max \left(\alpha_{v}\right)$, etc. The characteristic lines include the limitations and the descending behavior for high values in the argument [Fre97].

Figure 1. The vehicle parameterization
The steering angle δ of the front wheel is the input for the vehicle in [Fre97]. However, the real input of the guidance system is the torque applied to the steering wheel, thus giving a steering wheel angle resulting in the front wheel orientation.
The sources of non linearities are mainly 3 : the presence of products of the variables of motion in the equation, the presence of trigonometrical functions and the nonlinear nature of the forces due to the tires. All these non linearities are often neglected, such as in [Fre97] [Gen97]. There, the steering angle and the sideslip angles of the wheels and of the vehicle are supposed very small.
In our model, the interaction between longitudinal and lateral forces due to the tires is not neglected.
Let τ_{r} denotes the rear axle torque and τ_{b} the steering torque. Then we can write using (1-2)
$\left.\begin{array}{l}\tau_{r}=r\binom{m \dot{\nu}+T+m v(\dot{\beta}-\dot{\psi}) \cot g(\delta)}{+S_{v} \cot g(\delta) \cos (\delta)+S_{h} \cot g(\delta)}+\frac{1}{r}\left(I_{r}+I_{f}\right) \dot{\nu} \\ \tau_{b}=\frac{1}{n} I_{d v} \dot{\delta}+\frac{1}{n} f_{\omega} \delta\end{array}\right\}$
where $\cot g(\delta)=1 / \tan (\delta), r$ is the wheels radii. I_{r} regroups the rear axle polar moment of inertia and the motor moment of inertia. l_{f} is the front axle polar moment of inertia. τ_{b} is the torque for steering intervention. We exclude here uses of differential brake, and the two wheels' δ is assumed to be identical. For vehicle steering intervention through
differential braking we can refer to Pilutti [Pil98].
The handling of the vehicle can be studied using these two equations. Aerodynamics forces being considered in this study, they introduce a strong dependence on v^{2}. A similar effect but far less important is due to rolling resistance.
The actuator of the steering column is an electric motor with dc-current available on certain standard vehicles. Figure 2 shows the site of the engine on the steering column as well as the sensor of couple to measure the effort exerted on the wheel.

Figure 2. Steering angle control
For a permanent magnet dc-motor, the torque τ is proportional to the armature current J.
Thus actuator dynamics can be characterized in a matrix form as [Bes99] [Bej97]:

$$
\left.\begin{array}{rl}
u & =L j+R . J+K(\nu \tag{4}\\
\tau & \omega)^{r} \\
\tau & =\left(\tau_{b}\right)^{T}=K . J
\end{array}\right\}
$$

where L, R and K are 2×2 regular diagonal matrices representing respectively the inductance, resistance and torque constants of the actuators. u is the motor voltage vector. We assume that the transmission from the motors to the mechanism to be perfectly rigid, i.e the transmission does not suffer from backlash or flexibility.

III. ADAPTIVE CONTROL.

Interest in adaptive control of nonlinear systems was stimulated by major advances in the differential geometric theory of nonlinear feedback control. A through treatment of this theory was given by Kristic [Kri95]. The control problem formulated here, consists of finding a control law to achieve tracking of a reference trajectory in task space with constant parametric uncertainties of the vehicle.

In fact, it is not easy to measure some physical parameters such that aerodynamics parameters, parameters of the characteristic line describing the side force values in the longitudinal and lateral directions, viscous friction and moment of inertia of the steering wheel around the center of gravity. We rewrite the vehicle kinodynamics model combined with actuators dynamics such that the model is linear in the updated parameters
We start with the following system (5) which is obtained from (3)

$$
\left.\begin{array}{l}
N(y) \ddot{y}+Z(y, \dot{y})=\tau \tag{5}\\
\dot{\tau}=L_{d c} u+R_{d c} . \tau+K_{d c} \dot{y}
\end{array}\right\}
$$

where $y=\left(\begin{array}{ll}s & \delta\end{array}\right)^{T}, \dot{y}=\left(\begin{array}{ll}\nu & \omega\end{array}\right)^{T}$ and $\ddot{y}=\left(\begin{array}{ll}\dot{v} & \dot{\omega}\end{array}\right)^{T}$. $L_{d c}, R_{d c}$ and $K_{d c}$ are function of the dc-motor parameters (see appendix). The expressions of $N($.$) and Z($.$) are also given in the appendix.$
The uncertainty parameters are regrouped in the following vector:

$$
\theta=\begin{gather*}
{ }^{r} r m+\frac{1}{r}\left(I_{r}+I_{f}\right) \\
r \frac{1}{2} C A \rho \\
r \ddot{m} \tag{7}\\
r \frac{\Gamma_{v m}}{\alpha_{v m}} \\
r \frac{\Gamma_{h m}}{\alpha_{h m}} \\
\frac{1}{n} I_{d \omega} \\
\frac{1}{n} f_{\omega}
\end{gather*},
$$

We are interested in the unknown vehicle parameters (aerodynamic parameters and tire road contact parameters). Parameters related to the dc-motors can be estimated separately. These parameters should be written linearly in the model in order to use the adaptive control procedure. To confirm the dependence in the constant parameters, we write the dynamics of the vehicle as

$$
\begin{equation*}
N(y, \theta) \ddot{y}+Z(y, \dot{y}, \theta)=\tau \tag{8}
\end{equation*}
$$

which takes the following compact form

$$
\begin{equation*}
\Phi(y, \dot{y}, \ddot{y}) \theta=\tau_{d}+e_{\tau} \tag{9}
\end{equation*}
$$

The form of $\Phi($.$) is detailed in appendix.$ $e_{\tau}=\tau-\tau_{d}$ denotes the error in torque which can be viewed as a perturbation to the vehicle' dynamics. τ_{d} is a suitable reference torque which will be specified later. In fact, the dynamic of e_{τ} is generated by the actuator' dynamics

$$
\begin{align*}
\dot{e}_{\tau} & =\dot{\tau}-\dot{\tau}_{d} \tag{10}\\
& =-\dot{\tau}_{d}+K_{d c} \dot{y}+R_{d c} . \Phi(y, \dot{y}, \ddot{y}) \theta+L_{d c} u
\end{align*}
$$

where u is the new input in armature' voltages. The aim of the control is to guarantee $e_{\tau} \rightarrow \infty$ as $t \rightarrow \infty$ (time), and to choose τ_{d}.

Let us introduce the following notations $\tilde{y}=y_{d}-y$, where $y_{d}=\left(\begin{array}{ll}s_{d} & \delta_{d}\end{array}\right)^{T}, s_{d}$ is an curvilinear abscissa and δ_{d} is the desired steering angle. $\tilde{\theta}=\hat{\theta}-\theta, \hat{\theta}$ is the estimation of $\theta, s_{y}=\dot{\tilde{y}}+\Lambda \tilde{y}$ which is a filter to \tilde{y} with $\Lambda=\Lambda^{T}>0$.

Lemma 1

The open-loop system dynamics represented by the state vector $x=\left(\begin{array}{llll}\tilde{y} & s_{y} & \tilde{\theta} & e_{\tau}\end{array}\right)^{T}$ is as

$$
\dot{x}=\left(\begin{array}{c}
\tilde{y} \tag{11}\\
\dot{s}_{y} \\
\dot{\dot{\theta}} \\
\dot{e}_{\tau}
\end{array}\right)=\left(\begin{array}{c}
\dot{y}_{d}-\dot{y} \\
\ddot{y}_{r}+N(y, \theta)^{-1}\left[-\tau_{d}+Z(y, \dot{y}, \theta)\right] \\
\dot{\hat{\theta}} \\
f\left(e_{\tau}\right)+F\left(e_{\tau}\right) \theta+L_{d c} u
\end{array}\right)(1
$$

Proof

The proof is immediate if we consider that $\dot{\theta}=0 \quad$ (constant parameters). Further $f\left(e_{\tau}\right)=-\dot{\tau}_{d}+K_{d c} \dot{y}$ and $F\left(e_{\tau}\right)=R_{d c} \Phi(y, \dot{y}, \ddot{y})$. $\hat{\theta}$ is an appropriate adaptive law should guarantee the vehicle dynamic stability.

Lemma 2

First, we consider the following notations $\Phi \equiv \Phi(y, \dot{y}, \ddot{y})$ and $\Phi_{r} \equiv \Phi\left(y, \dot{y}, \ddot{y}_{r}\right)$
Under the following control laws in

$$
\begin{equation*}
\tau_{d}=\Phi_{r} \hat{\theta}+K_{p} \tilde{y}+K_{v} \dot{\tilde{y}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
u=-L_{d c}^{-1}\binom{\Lambda_{\tau} e_{\tau}+f\left(e_{\tau}\right)+R_{d c} \Phi_{r} \hat{\theta}}{+R_{d c}\left(K_{p} \tilde{y}+K_{v} \dot{\tilde{y}}\right)} \tag{13}
\end{equation*}
$$

with $K_{p}=K_{p}^{T}>0, K_{v}=K_{v}^{T}>0$, the dynamics of the closed loop system is

$$
\dot{x}=\left(\begin{array}{c}
\dot{\tilde{y}} \tag{14}\\
\dot{s}_{y} \\
\dot{\tilde{\theta}} \\
\dot{e}_{\tau}
\end{array}\right)=\left(\begin{array}{c}
\dot{y}_{d}-\dot{y} \\
-N(y, \theta)^{-1}\left(\Phi_{r} \tilde{\theta}+K_{p} \tilde{y}+K_{v} \dot{\tilde{y}}\right) \\
\dot{\hat{\theta}} \\
-\Lambda_{\tau} e_{\tau}
\end{array}\right)
$$

Note that the origin ($\tilde{y}=0, s_{y}=0, \tilde{\theta}=0, e_{z}=0$) is an equilibrium point of (14).

Proof
First, we note that
$\Phi\left(y, \dot{y}, \ddot{y}_{r}\right) \hat{\theta}=N(y, \hat{\theta}) \ddot{y}_{r}+Z(y, \dot{y}, \hat{\theta})$
Then, if we consider the form of \dot{s}, we get

$$
\begin{align*}
N(y, \theta) \dot{s}_{y}= & N(y, \theta) \ddot{y}_{r}-N(y, \hat{\theta}) \ddot{y}_{r} \\
& +Z(y, \dot{y}, \theta)-Z(y, \dot{y}, \hat{\theta})-K_{p} \tilde{y}-K_{v} \dot{\tilde{y}} \\
= & -\Phi_{r} \tilde{\theta}-K_{p} \tilde{y}-K_{v} \dot{\tilde{y}} \tag{15}
\end{align*}
$$

Now, the input in voltages can be substituted to obtain the dynamic of \dot{e}_{τ}. Thus,

$$
\begin{equation*}
\dot{e}_{\tau}=R_{d c}\left(\Phi \theta-\Phi \Phi_{r} \hat{\theta}\right)-R_{d c}\left(K_{p} \tilde{y}+K_{v} \dot{\tilde{y}}\right)-\Lambda_{\tau} e_{\tau} \tag{16}
\end{equation*}
$$

We compute

$$
\begin{align*}
\Phi \theta-\Phi_{r} \hat{\theta}= & N(y, \theta)\left(\ddot{y}_{r}-\dot{s}_{y}\right)+Z(y, \dot{y}, \theta) \\
& -N(y, \hat{\theta}) \ddot{y}_{r}-Z(y, \dot{y}, \hat{\theta}) \\
= & -\left(N(y, \hat{\theta})-N(y, \theta) \dot{y}_{r}\right. \\
& -(Z(y, \dot{y}, \hat{\theta})-Z(y, \dot{y}, \theta))-N(y, \theta) \dot{s}_{y} \\
= & -\Phi, \tilde{\theta}-N(y, \theta) \dot{s}_{y} \tag{17}
\end{align*}
$$

Substituting the expression of $N(y, \theta) \dot{s}_{y}$ which is given by (15), in (17), leads to

$$
\begin{equation*}
\Phi \theta-\Phi r_{r} \hat{\theta}=K_{p} \tilde{y}+K_{v} \dot{\tilde{y}} \tag{18}
\end{equation*}
$$

So it is straightforward to verify that $\dot{e}_{\tau}=-\Lambda_{\tau} e_{\tau}$.

Our stability results are formulated in the following Theorem.

Theorem

The parametric model of the dc-actuated longitudinal-lateral vehicle given by (9) and (10)

$$
\left.\begin{array}{l}
\Phi(y, \dot{y}, \ddot{y}) \theta=\tau_{d}+e_{\tau} \tag{19}\\
\dot{e}_{\tau}=-\dot{\tau}_{d}+K_{d c} \dot{y}+R_{d c} . \Phi(y, \dot{y}, \ddot{y}) \theta+L_{d c} u
\end{array}\right\}
$$

having as inputs τ_{d} and u given by (12) and (13), respectively, and the update law

$$
\begin{equation*}
\dot{\hat{\theta}}=\Gamma \phi_{r}^{T}(\dot{\tilde{y}}+\Lambda \tilde{y}) \tag{20}
\end{equation*}
$$

is asymptotically stable. Then $\tilde{y} \rightarrow 0$ as $t \rightarrow \infty . \Gamma=\Gamma^{T}>0$.

Proof

The Lyapunov function is chosen as

$$
\begin{align*}
& V(x)=\frac{1}{2} s_{y}^{T} N(y, \theta) s_{y}+\frac{1}{2} \tilde{y}^{T}\left(K_{p}+\Lambda K_{v}\right) \tilde{y} \\
&+\frac{1}{2} \tilde{\theta}^{T} \Gamma^{-1} \tilde{\theta}+\frac{1}{2} e_{\tau}^{T} e_{\tau} \tag{21}
\end{align*}
$$

Note that $N(y, \theta)$ depends only in θ, so it is time derivative is equal to zero. The skew symmetry property which is not
available here can be ignored. Therefore, the time derivative of V is given by:

$$
\begin{align*}
\dot{V}(x)= & s_{y}^{T} N(\theta) \dot{s}_{y}+\tilde{y}^{T}\left(K_{p}+\Lambda K_{v}\right) \dot{\bar{y}} \\
& +\tilde{\theta}^{T} \Gamma^{-1} \dot{\hat{\theta}}+e_{\tau}^{T} \dot{e}_{\tau} \tag{22}
\end{align*}
$$

which takes this form

$$
\begin{align*}
\dot{V}(x)= & (\dot{\tilde{y}}+\Lambda \tilde{y})^{T}\left[-\Phi_{r} \tilde{\theta}-K_{p} \tilde{y}-K_{v} \dot{\tilde{y}}\right]+\tilde{y}^{T} K_{p} \dot{\tilde{y}} \\
& +\tilde{y}^{T} \Lambda K_{v} \dot{\tilde{y}}+\tilde{\theta}^{T} \Phi_{r}^{T}(\dot{\tilde{y}}+\Lambda \tilde{y})-e_{\tau}^{T} \Lambda_{\tau} e_{\tau} \tag{23}
\end{align*}
$$

some simplifications permits to write

$$
\begin{equation*}
\dot{V}(x)=-\tilde{y}^{T} \Lambda K_{p} \tilde{y}-\dot{\tilde{y}}^{T} K_{\nu} \dot{\tilde{y}}-e_{\tau}^{T} \Lambda_{\tau} e_{\tau} \tag{24}
\end{equation*}
$$

which is negative semi-definite (globally) meaning that the origin ($\tilde{y}=0, s_{y}=0, \tilde{\theta}=0, e_{\tau}=0$) is stable but not asymptotically. The LaSalle-Yoshizawa theorem permits to conclude the solution of $V(x)=0$ contains $x=0$. To do this, from \dot{s} for $\tilde{y}=\dot{\tilde{y}}=e_{\tau}=0$, we get $\Phi\left(y_{d}, \dot{y}_{d}, \ddot{y}_{d}\right) \tilde{\theta}=0$ which means that $\tilde{\theta}=0$. Therefore the origin is asymptotic stable. Now to determine a bound of \tilde{y} it is sufficient to prove, referring to the Barbalat' lemma, that
$\int_{0}^{\infty}\|\tilde{y}\|^{2} d t \leq \frac{V\left(\tilde{y}(0), s_{y}(0), \tilde{\theta}(0), e_{\tau}(0)\right)}{\lambda_{m}(Q)}$
where $Q=\operatorname{diag}\left(\Lambda K_{p}, K_{v}, \Lambda_{\tau}\right)$ and λ_{m} is the Q ' minimum eigenvalue.
As a result $\tilde{y} \rightarrow 0$ as $t \rightarrow \infty$

1V. NUMERICAL EXAMPLES.

4.1. vehicle characteristics.

Many simulations were performed with a vehicle that characteristics are [Gen97]: $m=1000 \mathrm{Kg}, I=1210 \mathrm{Kgm}^{2}, l_{v}=0.87 \mathrm{~m}$ $l_{h}=1.29 m$
Both motors are identical: $K_{d c}=1 . \mathrm{Nm} / \mathrm{A}$;
$n=1 ; \quad I_{\text {max }}=10 A ; \quad d I_{\max }=10000 A$;
$V_{\max }=25 \mathrm{~ms}^{-1}=90 \mathrm{Kmh}^{-1}$.

4.2. Simulation results.

The simulations are performed using MATLAB software. The parameters of the regulator are chosen as :
$\mathrm{K}_{\mathrm{p}}=10 \mathrm{I} ; \mathrm{K}_{\mathrm{v}}=\mathrm{I} ; \Gamma=\mathrm{I} ; \Lambda=\mathrm{I} ; \mathrm{I}$ is the identity matrix.
The initial conditions are $e_{\tau}(0)=s_{y}(0)=\tilde{y}(0)=\tilde{\theta}(0)=0$. The reference
trajectory is calculated using the approach presented in [Bes2000]. We suppose that we have no knowledge about the aerodynamic parameters and the front and rear road-tire contact parameters.

$$
\hat{\theta}_{2 \wedge_{\text {init }}}=0 \quad \hat{\theta}_{4 \wedge_{\text {init }}}=0 \quad \hat{\theta}_{\text {s^init }}=0
$$

The length of the path is 10 m . Three cases are tested :

- A straight line (the curvature $K(s)=0$).
- An arc of circle (the curvature $K(s)=0.5$).
- A clothoid (the curvature $\mathrm{K}(\mathrm{s})=0.5 * \mathrm{~s}$) : Figure 3 (due to space limit only this figure is presented).
In each figure, appear 12 schemes :
a - the path (y versus x),
the eleven left are all versus the time,
b - the position errors ($x-x_{d} ; y-y_{d}$);
c - the desired and real velocity on the path;
$d-$ the desired and real acceleration;
e - the desired and real jerk;
f - the voltage of the motors;
g - the angle δ;
h - the angular velocity ω;
i - the desired and real longitudinal torques;
j - the desired and real lateral torques;
k - the variation of the three estimated parameters $\hat{\boldsymbol{\theta}}_{2} ; \quad \hat{\boldsymbol{\theta}}_{4} \quad \hat{\boldsymbol{\theta}}_{5} ;$
l - the derivative of these three estimated parameters.
For the three cases, we obtain the following estimation of these three parameters :
Straight line
$\hat{\theta}_{2}=2.0018 \quad \hat{\theta}_{4}=0 \quad \hat{\theta}_{5}=-57.0281$
Arc
$\hat{\boldsymbol{\theta}}_{2}=2.0038 \quad \hat{\theta}_{4}=2.1751 \quad \hat{\theta}_{5}=-57.1132$
Clothoid
$\hat{\theta}_{2}=2.001 \quad \hat{\theta}_{4}=7.3899 \quad \hat{\theta}_{5}=-57.1991$

V. CONCLUSIONS AND FUTURE WORK.

This paper has presented a vehicle dynamic models suitable for path planning and control studies. We have used an adaptive Lyapunov approach to propose a controller. The aerodynamic coefficients and the rear road-tire contact parameters seem to be constant versus the curvature of the road, while the front roadtire contact parameter is greatly dependent on the curvature of the road.

Although dc-motors have been considered, other actuators such as ac-machines present the same kind of constraints on both the current and voltage.

References

[Bej97] L. Beji, A. Abichou 'A singular perturbation approach for tracking control of a parallel robot including motor dynamics' Int. J. of Control, 1997, Vol. 68, No. 4, 689-707.
[Bes99]Y. Bestaoui 'Longitudinal front wheel drive vehicle maneuvers considering DC-motors constraints' ASMEIMECE Symposium on Innovations in Vehicle design and Development, Nashville, TN, Nov. 1999.
[Bes2000] Y. Bestaoui 'An optimal velocity generation of a rear wheel drive tricycle along a specified path' American Control Conference, Chicago, IL, June 2000, pp. 29072911.
[Cha95] C.Y. Chan 'Open-loop trajectory design : for longitudinal vehicle maneuvers: case studies with design constraints' American Control Conference, Seattle, WA, June 1995, pp. 4091-4095.
[Cho98] S. B. Choi 'The design of a control coupled observer for the longitudinal conirol of autonomous vehicles' Journal of \therefore dynamic systems, measurement and control, june 1998, vol. 120, pp. 288-289
[Fre97] E. Freund, R. Mayr 'Non linear path control in automated vehicle guidance 'IEEE transactions on robotics and automation, vol 13, \#1, feb 1997, pp. 49-60
[Gen97] G. Genta 'Motor vehicle dynamics : modeling and simulation' World scientific, 1997.
[Krs95] M. Kristic et al. 'Nonlinear and adaptive control design' John Willey \& Sons, inc. New York, 1995.
[Out2000] R. Outbib, A. Rachid Control of vehicle speed : a non linear approach' IEEE Congress on Decision and Control, Melboune, Australia, dec. 2000.
[Pil98] T. Pilutti et al. 'Vehicle Steering intervention through differential
braking' Trans. of ASME, Vol. 120, pp314321, Sept. 1998.
[Shar2000] R.S. Sharp, et al. ‘A mathematical model for driver steering control, with design, tuning and performance results' J. of Vehicle System Dynamics, Vol.33, No.5, pp.289-326, 2000.

Appendix

The dc-motor parameters are the following $R_{d c}=R\left(n K_{t}\right)^{-1} ; K_{d c}=K_{b} n ; \quad L_{d c}=L\left(n K_{t}\right)^{-1} . \quad R$ and L are diagonal positive matrices of the armature resistance and inductance respectively. K_{b} is a diagonal matrix of the back e.m.f constant of the motors. u is the armature' input voltages. $n \in R^{222}$ is a diagonal matrix of the gear ratios ($n>0$). $K_{t} \in R^{2 \infty}\left(K_{t}>0\right)$ is a diagonal matrix of the motor torque constants.

Figure 3. A clothoide (the curvature $K(\mathrm{~s})=0.5 \mathrm{~s}$)

The expressions of coefficients given in (6)

$$
\begin{gathered}
N(y)=\left(\begin{array}{cc}
r m+\frac{1}{r}\left(I_{r}+I_{f}\right) & 0 \\
0 & I_{d \omega}
\end{array}\right) \\
\left.Z(y, \dot{y})=\begin{array}{c}
\\
\binom{\frac{1}{2} C A \rho v^{2}+m v(\dot{\beta}-\dot{\psi}) \cot g(\delta)}{+S_{\nu} \cot g(\delta) \cos (\delta)+S_{h} \cot g(\delta)} \\
f_{\omega} \omega
\end{array}\right)
\end{gathered}
$$

The form of $\Phi($.$) is as follows :$

$$
\Phi^{t}(y, \dot{y}, \ddot{y})=\begin{array}{cc}
0 & \dot{v} \\
0 & \frac{1}{2} \nu^{2} \\
0 & v(\dot{\beta}-\dot{\psi}) \cot g(\delta) \\
0 & \left(\beta-l_{\nu} \frac{\dot{\psi}}{v}+\delta\right) \cot g(\delta) \cos (\delta) \\
0 & \left(\beta+l_{h} \frac{\dot{\psi}}{v}\right) \cot g(\delta) \\
\ddot{\delta} & 0 \\
\dot{\delta} & 0
\end{array}
$$

