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AN ADAPTIVE CONTROL METHOD OF AUTOMATED VEHICLES WITH INTEGRATED LONGITUDINAL AND LATERAL DYNAMICS IN ROAD FOLLOWING

This paper proposes . adaptive control using integrated both longitudinal and lateral dynamics models of automated vehicles. Dynamics are described by a nonlinear non holonomic model. We show that the dynamics of the de-actuated vehicle is asymptotically stable, with well updated dynamic parameters.

I.

INTRODUCTION

This paper addresses the problem of road following : automatic movement along a predefined path. While an automated vehicle travels at a relatiyelyJow speed, controlling it with only a kirieniatics model may work. However, as automated vehicles are designed to travel at higher speeds, dynamics modeling becomes important. An important characteristic of many of . the studies concerning the automated vehicle modeling and control [Cha95, Cho98, Fre97] is that they . deal only with some simplified low Rrder • lineo/ . modeJs. These models are too simple for stUdyfug the integrated longitudinal and lateral dynamics. Traditionally, the nonlinear model is considered useful in a simulation environment while the linear model is used for control design. We are • interested in control • design for an automated vehicle represented by a full non linear model. [Fre97] have used pole placement technique. However, this technique is known to be sensitive to uncertainties. To take into account uncertainties on aerodynamic parameters and tire -road contact parameters we have chosen an adaptive control method.

II.

MODELLING.

A single track model that includes the transverse and longitudinal dynamics, neglects roll and pitch angles and groups the front and rear' wheels as a single wheel [Fre97], is considered 'in this paper. The gliidance system operates the steering wheel causing some wheels to work with a sideslip and to generate lateral forces. These forces cause a change of attitude of the vehicle and then a sideslip of all wheels. The resulting forces bend the trajectory. The important dynamical. variables are (figure 1 In our model, the interaction between longitudinal and lateral forces due to the tires is not neglected.

Let 't, denotes the rear axle torque and 'tb the steering torque. Then we can write using (1-2)

't =r(mii+T+m v�-\jl)cotg( O) )+l.(I +I )ii l ' 1 � s. ;'t�(o)cos(o) +Sh cotg(S) r ' f tb =-Idw6+-f.,6 n n
(3) where cotg(o) = 1/tan(O), r is the wheels radii.

I, regroups the rear axle polar moment of inertia and the motor moment of inertia. I 1 is the front axle polar moment of• inertia. 'tb is the torque for steering intervention. We exclude here uses of differential brake, and the two wheels' 8 is assumed to be identical. For For a permanent magnet de-motor, the torque 't is proportional to the armature current J.

Thus actuator dynamics can be characterized in a matrix form as [Bes99] [Bej97]: We are interested in the unknown vehicle parameters (aerodynamic parameters and tireroad contact parameters). Parameters related to the de-motors can be estimated separately. These parameters should be written linearly in the model in order to use the adaptive control procedure. To confirm the dependence in the constant parameters, we write the dynamics of the vehicle as N(y,0)y+Z(y,y,0)="C (8)

u =Li +R.J +K(v rof}
• which takes the following compact form cI>( y , y,

)i)O = 'td + et (9)
The form of cl>(.) is detailed in appendix.

et= 't-'td denotes the error in torque which can be viewed as a perturbation to the vehicle' dynamics. 't d is a suitable reference torque which will be •specified later. I n fact, tqe dynamic of et is generated by the actuatO,r' dynamics

' "i
where u is the new input in armature' voltages.

The aim �f the �ontrol is to gµarantee et � oo as t � oo (time), and to choose 'td .

Let us introduce the following notations y =yd -Y• where Yd =(sd 8d)7, sd is an curvilinear abscissa and 8 d is the desired steering angle. e = 9-e ' e is the estimation of e , s Y = y + Ay which is a filter to y with A=A7 >0.

Lemmal

The open�loop system dynamics represented by the state vector x = � s y e e, r is as

. Sy

Yr +N(y,8)-1[-'td +Z(y,y,8)]

[ YI [ . is an equilibrium point of ( 14).

Proof '•;•

First, we ndte that trajectory is calculated using the approach presented in [Bes2000}. We suppose that we have no knowledge about the aerodynamic parameters and the front and rear road-tire contact parameters.

(} 2Ainit = 0 e 4Ainit = 0 (} 5Ainit = 0 The length of the path is lOm. Three cases are tested:

• A straight line (the curvature K(s)=O).

• An arc of circle (the curvature K(s)=0.5).

• A clothoid (the curvature K(s)=0.5*s) Figure 3 (due to space limit only this figure is presented). In eac;h figure, appear 12 schemes: This paper has presented a vehicle dynamic models suitable for path planning and control studies. We have used an adaptive Lyapunov approach to propose a controller. The aerodynamic coefficients . and th_ e rear road-tire contact parameters seem to be constant versus the curvatirre of the road;• while the front road tire contact parameter is greatly dependent on the curvature of the road.

Although de-motors . have been considered, other actuators such as ac-machines present the same kind of constraints; on both the current and voltage . . 

  ): the vehicle orientation 'I', the longitudinal velocity v and the sideslip angle � . In normal road conditions, particularly if radial tires are used, the sideslip angles become large only when approaching the limit lateral forces [Sha 2000]. • • The actu<tl position of the center of gravity is determined. by the Cartesian coordinates x and y in the absolute position. 'Ibe quantities sv and Sh represent respectively the front and rear side forces. The rear and front longitudinal forces H and V respectively are resulting from the power . train and brakes. The air resistance is represented by T and . the . steering angle is represented by o . The following constants are also used : vehicle mass m; moment ofinertia I and the distance I� (th)• between the front (rear) wheels and the center of gravity. The dynamic equations are given as [Fre97]: x=v.cos(\jf-P) • • y = v.sin(lJf-P) . . 1 {(H-T)sinP+Vsin(<l+P)+s.cos(<l+P) } P='!f -mv ,+ShcosP i[i=.!.{s.zv cos<l-Shl h} I v =1-{(H -T)cosP+ V cos(<I+ p)-Sv sin(5+ p)-Sh sin p} m with the following relations sv = rvm (p-i)t+o) where v = ds I dt and ro= do/ dt. The aerodynamic resistance coefficient C, atmospheric density p and the vehicle cross sectional surface A hav. e been included. Here, rh,v I a.h,v represent the characteristic curves of the tires, with rvm = maxcrv) and cxvm = max(cxv), etc. The characteristic lines include the limitations and the descending • behavior for high values in the argument [Fre97].

Figure 1 .

 1 Figure 1. The vehicle parameterization The steering angle 8 of the front wheel is the input for the vehicle in [Fre97]. However, the real input of the guidance system is the torque applied to the steering wheel, thus giving a steering wheel angle resulting in the front wheel orientation. The sources of non linearities are mainly 3 : the presence of products of the variables of motion in the equation, the presence of trigonometrical functions and the nonlinear nature of the forces due to the tires. All these non linearities are often IJ.eglected, such as in [Fre97] [Gen97]: There, the steering angle and the sideslip angles of the wheels and of the vehicle are supposed very small.

Figure 2 .

 2 Figure 2. Steering angle control

  tb f =K.J where L, R and K are 2x2 regular diagonal matrices • representing respectively the inductance, resistance and torque constants of the actuators. u is the motor voltage vector. We assume. that the transmission from the . motors to the mechanism to be perfectly rigid, i.e the transmission does not suffer from backlash or flexibility. ill . ADAPTIVE CONTROL. Interest in. adaptive control of nonlinear systems was stimulated by major advances in the differential geometric theory of nonlinear feedback control. A through treatment of this theory was given by Kristie [Kri95]. The control problem formulated here, consists of finding a control law to achieve tracking of a reference trajectory in task space with constant parametric uncertainties of the vehicle. In fact, it is not e!!SY to measure some physical parameters such that aerodynamics •P8r¥Ileters, parameters of the char�teristic line describing the side force values• in the • 1ongitridinal and lateral directions, viscous friction and moment of inertia of the steering wheel around the center of gravity. We rewrite the vehicle kinodynamics model combined with actuators dynamics such that the model is linear in the updated parametersWe start with the following system (5) which is obtained from (3)• N(y)y + Z (y,y)="C } (S) t = Ld cu + Rdc -"C+ Kd cY where y=(s oY ,.Y=(v roY and .Y=(v roY.Ldc• Rdc and Kd c are function of the de-motor parameters (see appendix). The expressibi1s of N(.) and Z(.) are also gi�eh in the appendix. The • uncertainty parameters .. iire regrouped � the following vector : . rm+�(/, +11)

  )=-t d + Kd cY and F(et)=R dccI>(y,y,y): 0 is an appropriate adaptive law should, guarantee the vehicle dynam1c stability. .Lemma2First, we consider the following notations cI> = <I>(y, y, y) and cI> r = cI>(y, y, yr} Under the following control laws in "C d = cI>,a+ K py+ K vY and = K P > O , v = v > , t e ynarmcs of the closed loop system is . 1 11 [ -N(y,9)-1 ( !:i:KP y +K.yNote that the origin (y = O; s y = 0, e = 0, e , = 0)

  a -the path ( y versus x), the eleven left are all versus the time, b -the position errors ( x-Xd ; y-yd ); cthe desired and real velocity on the path; d -the desired and real acceleration; e -the desired and real jerk; fthe voltage of the motors; g-the angle o; hthe angular velocity co; ithe desired and real longitudinal torques; j -the desired and real lateral torques; k -: the variation of the three estimated parameters 8 2 ; 8 4 (} s ; lthe derivative of these three estimated parameters. For the three cases, we obtain the following estimation of these three parameters : Straight line lh=2.0018 {J4=Q 8s = -57.0281 Arc 82 =2.0038 94=2.1751 Os =-57,1132.

  •

<I>(y, y, Yr)B ;:N(y, S)yr + Z(y, y, B)

Then, if we consider the form of s , we get N(y,S)sy =N(y,0)y, -N(y,B)y, +Z(y,y,0)-Z(y, y,S) -K P y-Kvy =-<I> S-K y --K y.:. r p v (15) Now, the input in voltages can be substituted to obtain the dynamic of e' t. Thus, e't = Rdc {ct>e-<I> ,e )-Rdc (K pY + KvY )-A 'te't (16) We compute <I>9-<I>,S = N(y, 9)(y, -sy )+Z(y, y, 9) -N(y,S)y, -Z(y,y,S) =-{N(y,S)-N(y,9)�, -{zcy, y, e)-Z(y, :Y. 9) )-N(y, 9)s y = _q," ,e-N(y, 9)sy

Substituting the expression of N(y, 9)s Y which is .

given by (15), in (17), leads to

So it is straightforward to verify that e't =-A'te't.

Our stability results are formulated in the following Theorem.

Theorem

The parametric model of the de-actuated longitudinal-lateral vehicle given by ( 9) and

(10)

�(y, y'. ji)0 = 'td . + e-t:

. . . } (l 9) e-t: =-'td + KdcY+ Rdc . <l>(y, y, y)9+ Ldc u having a.S inputs 't d and u given by ( 12) and ( 13), respectively, and the update law S = r<j>� (y + Ay)

is asymptotically stable. Then y � O as t�oo. r=rr >0.

Proof

The Lyapunov function is chosen as V(x) =�s�N(y,9)sy +� y7(K P +AK J y (21) 1 -0 r -1 -9 1 r +l r +le'te't

Note that N(y,9) depends only in 9, so it is time derivative is equal to zero. The skew symmetry property which is not available here :Can be •ignored. Therefore, the time derivative of Vis given by :

which takes this form ( 22)

V(x) = (y +Ay/ �<I>,S-K pY-KvY ]+YT K pY r .:. -0 r <I> r r.:. A -) r A + y AKvY + r I)+ y -e't 'te't:

(23) some simplifications permits to write V(x) =-yr AK P y-yr Kvy-e� A 'te't f oo(J)

The form of <l>(.) is as follows :

;n l ( . . .