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A mathematical model for unsteady mixed flows in

closed water pipes

Christian Bourdarias∗, Mehmet Ersoy†and Stéphane Gerbi‡

Laboratoire de Mathématiques, Université de Savoie

73376 Le Bourget du Lac, France

Abstract

We present the derivation of a new unidirectionnal model for unsteady

mixed flows in non uniform closed domains. We introduce a local reference

frame to take into account the local perturbation caused by the changes of

section and slope. Then an asymptotic analysis is performed to obtain a model

for the free surface flow and another for the pressurised flow. By coupling these

models through the transition points by the use of a common set of variables

and a suitable pressure law, we obtain a simple formulation called PFS-model

close to the shallow water equations with source terms. It takes into account

the changes of section and the slope variation in a continuous way through

transition points.

Keywords : Shallow water equations, mixed flows, free surface flows, pressurised
flows, curvilinear transformation, asymptotic analysis.

1 Introduction

The presented work takes place in a more general framework: the modelisation of
unsteady mixed flows in any kind of closed domain taking into account the cavitation
problem and air entrapment. We are interested in flows occuring in closed pipe with
non uniform sections, where some parts of the flow can be free surface (it means
that only a part of the pipe is filled) and other parts are pressurised (it means that
the pipe is full). The transition phenomenon between the two types of flows occurs
in many situations such as storm sewers, waste or supply pipes in hydroelectric
installations. It can be induced by sudden change in the boundary conditions as
failure pumping. During this process, the pressure can reach severe values and
cause damages. The simulation of such a phenomenon is thus a major challenge
and a great amount of works was devoted to it these last years (see [9],[15],[16],[8]
for instance). Recently Fuamba [10] proposed a model for the transition from a free
surface flow to a pressurised one in a way very close to ours.

The classical shallow water equations are commonly used to describe free surface
flows in open channels. They are also used in the study of mixed flows using the
Preissman slot artefact (see for example [8, 16]). However, this technic does not
take into account the depressurisation phenomenon which occurs during a water
hammer. On the other hand the Allievi equations, commonly used to describe
pressurised flows, are written in a non-conservative form which is not well adapted
to a natural coupling with the shallow water equations.
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A model for the unsteady mixed water flows in closed pipes and a finite volume
discretization have been previously studied by two of the authors [3] and a kinetic
formulation has been proposed in [5]. We propose here the PFS-model which tends
to extend naturally the work in [3] in the case of a closed pipe with non uniform
section. For the sake of simplicity, we do not deal with the deformation of the
domain induced by the change of pressure. We will consider only an infinitely rigid
pipe.

The paper is organized as follows. The first section is devoted to the derivation
of the free surface model from the 3D incompressible Euler equations which are
written in a suitable local reference frame in order to take into account the local
effects produced by the changes of section and the slope variation. To this end, we
present two models derived by two techniques inspired from the works in [2] and
[12]. The first one consists in taking the mean value in the Euler equations along
the normal section to the main axis. The obtained model provides a description
taking in account the geometry of the domain, namely the changes of section and
also the inertia strength produced by the slope variation. The second one is a formal
asymptotic analysis. In this approach, we seek for an approximation at the first
order and, by comparison with the previous model, the term related to the inertia
strength vanishes since it is a term of second order. We obtain the FS-model.
However, the system is more convenient for the coupling process done in Section 4.
In Section 3, we follow the derivation of the FS-model and we derive the model for
pressurised flows, called P-model, from the 3D compressible Euler equations by a
formal asymptotic analysis. Writing the source terms into a unified form and using
the same couple of conservative unknowns as in [4], we propose a natural model for
mixed flows, that we call PFS-model, which ensures the continuity of the unknowns
and the source terms.

2 Formal derivation of the FS-model for free sur-

face flow

The classical shallow water equations are commonly used to describe physical sit-
uations like rivers, coastal domains, oceans and sedimentation problems. These
equations are obtained from the incompressible Euler system (see e.g. [1, 13]) or
from the incompressible Navier-Stokes system (see for instance [6, 7, 12, 14]) by
several techniques (e.g. by direct integration or asymptotic analysis). We present
here the derivation of a new unidirectionnal shallow water model from the incom-
pressible Euler equations for non uniform closed pipe using a section-averaging and
a formal asymptotic analysis. We write the Euler equations in the local Serret-
Frenet reference frame in order to take into account the local effects produced by
the changes of section and the slope variation.

The 3D incompressible Euler system writes:

{
div

−→
U = 0

∂t
−→
U +

−→
U .∇−→

U + ∇.P =
−→
F

(1)

where
−→
U (t, x, y, z) denotes the velocity with components (u, v, w),

P = p(t, x, y, z)I3 the isotropic pressure tensor and
−→
F the exterior strenght (includ-

ing gravity).
We define the domain ΩF (t) of the flow at time t as the union of sections

Ω(t, x) (assumed to be simply connected compact sets) orthogonal to some plane
curve with parametrization (x, 0, b(x)) in a convenient cartesian reference frame

(O,
−→
i ,

−→
j ,

−→
k ) where

−→
k follows the vertical direction; b(x) is then the elevation of
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the point ω(x, 0, b(x)) over the plane (O,
−→
i ,

−→
j ). Then, at each point ω(x, 0, b(x)),

Ω(t, x) is defined by the set

{
(y, z) ∈ R

2; z ∈ [−R(x),−R(x) + H(t, x)], y ∈ [a(x, z), b(x, z)]
}

.

R

R−

w(X)

Figure 1: Geometric characteristics of the domain
Mixed flow: free surface and pressurised

We close classically System (1) using a kinematic law for the evolution of the

free surface: any free surface particle is advected by the fluid velocity
−→
U and on

the wet boundary we assume the no-leak condition
−→
U .−→n wp = 0 where −→n wp is

the outward unit normal vector to the wet boundary (see Fig. 2) defined by
1√

1 + b′(x)2
(−b′(x), 0, 1)t = (− sin θ(x), 0, cos θ(x))t. We set the atmospheric pres-

sure P (z = h(t, x)) to 0 at the free surface.
To define the local reference frame and to perform the curvilinear transforma-

tion, let us introduce the curvilinear variable defined by

X =

∫ x

x0

√
1 + (b′(ξ))2dξ

where x0 is an arbitrary abscissa. We set y = Y and we denote by Z the altitude

of any fluid particle M in the Serret-Frenet reference frame (
−→
T ,

−→
N,

−→
B ) at point

ω(x, 0, b(x)):
−→
T is the tangent vector,

−→
N the normal vector and

−→
B the binormal

vector (see Fig. 1). We denote by
−−→
OM the vector position of any fluid particle at

the height Z along the binormal axis
−→
B .
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fs

wp

A

Figure 2: Cross-section of the domain

In the following, we assume that:

(H) the algebraic curvature radius R of the curve x 7→ (x, 0, b(x)) is such that
∀X, |R(X)| > R(X),

2.1 Incompressible Euler model in the curvilinear coordi-

nates

To write Sytem (1) in the Serret-Frenet reference frame (
−→
T ,

−→
N,

−→
B ) at point ω(x, 0, b(x)),

we perform, following [2], the transformation T : (x, y, z) → (X, Y, Z) and we recall
a useful lemma:

Lemma 2.1 Let (x, y, z) 7→ T (x, y, z) be a C1 diffeomorphism and A−1 = D(x,y,z)T
the jacobian matrix of the transformation with determinant J .

Then, for any vector field Φ one has,

JD(X,Y,Z)Φ = D(x,y,z)(JAΦ).

In particular, for any scalar function f , one has

D(X,Y,Z)f = AtD(x,y,z)f.

Let (U, V, W )t be the components of the velocity vector in the (X, Y, Z) coordinates
defined as (U, V, W )t = Θ(u, v, w)t where Θ is the matrix

Θ =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 .

To write the equation div
−→
U = 0 in the curvilinear coordinates, we apply Lemma 2.1

and by a straightforward computation, we obtain the incompressibility condition in
the (X, Y, Z) coordinates as:

J∇.
−→
U = ∂XU + ∂Y (JV ) + ∂Z(JW ) = 0 (2)

where J(X, Y, Z) = 1 − Z
dθ

dX
is the determinant of the transformation.
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Remark 2.1 Notice that κ(X) =
dθ

dX
is the algebric curvature of the axis at point

ω(x) and the function J(X, Y, Z) = 1−Zκ(X) depends only on the variables X, Z.
Morever, we have J > 0 in ΩF which corresponds to the reasonnable geometric
hypothesis (H). Consequently, T defines a diffeomorphism and thus the performed
transformation is admissible.

Now, to perform the curvilinear transformation for the momentum equations,

we can remark that the identity (
−→
U .∇f) = ∇.(f

−→
U ) holds (thanks to div(

−→
U ) = 0).

Then for any scalar field f , the term
(
∂t +

−→
U .∇

)
f can be written as

∇(t,x,y,z).

(
f

f
−→
U

)
.

Applying Lemma 2.1 with A−1 =

(
1 0

0 ∇(X,Y,Z)
−−→
OM

)
, we get for all scalar C1

function f :

J(∂t +
−→
U .∇)f = ∂t(Jf) + ∂X(fU) + ∂Y (JfV ) + ∂Z(JfW ). (3)

Next, to obtain the equation for (U, V, W )t, we multiply the conservation equa-
tion (1) on the left by the matrix JΘ and we get the following incompressible Euler
system in the variables (X, Y, Z):





∂XU + ∂Y (JV ) + ∂Z(JW ) = 0
∂t(JU) + ∂X(U2) + ∂Y (JUV ) + ∂Z(JUW ) + ∂Xp = G1

∂t(JV ) + ∂X(UV ) + ∂Y (JV 2) + ∂Z(JV W ) + ∂Y (Jp) = 0
∂t(JW ) + ∂X(UW ) + ∂Y (JV W ) + ∂Z(JW 2) + J∂Z(p) = G2

(4)

where G1 = UWκ(X) − Jg sin θ and G2 = −U2κ(X) − Jg cos θ.
On the wet boundary, the no-leak condition reads:

(U, V, W )t.−→n wp = 0, (5)

and the condition on the pressure at the free surface reads:

P (Z = h(t, X)) = 0, (6)

where −→n wp = (− sin θ(X), 0, cos θ(X))
t

and .

2.2 Shallow water equations for free surface flows by orthog-

onal averaging

In this section, we derive the shallow water equations by taking the mean value
of the incompressible Euler system (4) along the cross-section Ω(t, X). To this
end, let us introduce the conservative variables A(t, X) and Q(t, X) = A(t, X)U
representing respectively the wet area and the discharge defined as:

A(t, X) =

∫

Ω

dY dZ, Q(t, X) = A(t, X)U(t, X)

where U is the mean value of the speed

U(t, X) =
1

A(t, X)

∫

Ω

U(t, X, Y, Z) dY dZ.
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The shallow water assumption consists in neglecting the binormal and normal
accelerations. Consequently, this hypothesis leads to the classical shallow water
equations with the hydrostatic pressure law ∂zp = −g . Here, due to the source
term −U2κ(X) in System (4), we get a modified hydrostatic pressure.
Indeed, if we write the shallow water assumption in the variables (X, Y, Z) by
applying the identity (3) successively with f = X, Y and Z, the following equalities
hold (for the sake of simplicity, we do not write the dependency of X(t), Y (t), Z(t)
on x, y, z): 




J
d

dt
X = J

(
∂tX + (

−→
U .∇)(X)

)
= U

J
d

dt
Y = J

(
∂tY + (

−→
U .∇)(Y )

)
= JV

J
d

dt
Z = J

(
∂tZ + (

−→
U .∇)(Z)

)
= JW

(7)

This yields 



J
d

dt
V (t, X(t), Y (t), Z(t)) = 0

J
d

dt
W (t, X(t), Y (t), Z(t)) = 0

We have then




∂tV +
d

dt
X(t)∂XV +

d

dt
Y (t)∂Y (JV ) +

d

dt
Z(t)∂ZV = 0

∂t(JW ) +
d

dt
X(t)∂XW +

d

dt
Y (t)∂Y W +

d

dt
Z(t)∂ZW = 0

So we finally obtain:

{
∂t(JV ) + U∂XV + JV ∂Y V + JW∂ZV = 0
∂t(JW ) + U∂XW + JV ∂Y W + JW∂ZW = 0

(8)

Now, according to System (8) and the equations for V and W in System (4), we
obtain: 




∂Y p = 0

∂Zp = −U2

J
κ(X) − g cos θ

Then the modified hydrostatic pressure reads:

p(t, X, Y, Z) = Phs(t, X, Y, Z) + Pc(t, X, Y, Z) (9)

where Phs(t, X, Y, Z) = (h(t, X) − Z)g cos θ denotes the usual hydrostatic pressure

and Pc(t, X, Y, Z) = −
∫ h(t,X)

Z

U(t, X, Y, ξ)2
κ(X)

1 − ξκ(X)
dξ the term due to the iner-

tia effect.

Remark 2.2 We can use the particular form U(t, X, Y, Z) =
u(t, X, Y )

J(X, Z)
(described

in [2]) when Pc derives from a potential. Thus, one obtains:

Pc(t, X, Y, Z) =
u2(t, X, Y )

2

(
1

(1 − h(t, X)κ(X))2
− 1

(1 − Zκ(X))2

)
.
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To close System (4), it remains to define the free surface condition in curvilinear
coordinates. Let us consider the boundary ∂Ω(t, X) as the union of γfs(t, X) and
γwp(t, X) where γfs(t, X) and γwp(t, X) represents the free surface and the wet
perimeter on the OY Z-plane. We assume the no-leak condition (5) on the wet
boundary γwp and the kinematic boundary condition on γfs. Denoting any fluid
particle M(Z = h) by Mfs and from the boundary conditions, we have:

d

dt
A(t, X(t)) = ∂tA(t, X(t)) +

d

dt
X(t) ∂XA(t, X(t)) =

d

dt

∫

Ω

dY dZ.

As System (7) holds, one has:

d

dt
X(t) =

U

J
and

d

dt

∫

Ω

dY dZ =

∫

γfs

∂tM.−→n fsds +

∫

γwp

∂tM.−→n wp ds

where −→n fs denotes the outward unit normal vector to the free surface (see on Fig.
2). Since ∂tM represents the fluid particle velocity (U, V, W )t on the wet boundary,

the integral

∫

γwp

∂tM.−→n wp ds vanishes thanks to the no-leak condition.

Next, we have

∫

γfs

∂tM.−→n fsds = T (X)Wfs . Then, we get the following free

surface boundary condition:

∂tA(t, X) +
Ufs(t, X)

Jfs(t, X)
∂XA(t, X) = T (X)Wfs(t, X) (10)

where we have used the generic notation Ffs to denote F (Z = h).
Now to get the shallow water equations, we integrate Sytem (4) along the normal

section Ω(t, X). Thus,

∫

Ω

∂XU dY dZ +

∫

Ω

divY,Z

(
JV
JW

)
dY dZ = ∂X

∫

Ω

U dY dZ −
∫

∂Ω

U∂XM.−→n ds

+

∫

∂Ω

(
JV
JW

)
.−→n ds

= ∂X(Q) −
∫

γfs

U∂XM.−→n fs ds

+

∫

γfs

(
JV
JW

)
.−→n fs ds

since

∫

γwp

((
JV
JW

)
− U∂XM

)
.−→n wp ds = 0

Morever,

∫

γfs

U∂XM.−→n ds = Ufs∂XA and

∫

γfs

(
JV
JW

)
.−→n fs ds = JfsWfsT.

Next, from the free surface condition (10), we get

JfsWfsT = Jfs∂tA + Ufs∂XA.

Hence the mass conservation equation finally reads:

J(X, Z = h)∂t (A) + ∂XQ = 0 (11)

To get the momentum conservation equation, we integrate System (4) for U
along the cross-section Ω(t, X) with the usual approximation UV ≈ U V and UV 2 ≈

7



U V
2
. Finally, the shallow water equations for free surface flows reads:





J(X, Z = h)∂t (A) + ∂XQ = 0

∂t(JQ) + ∂X

(
Q2

A
+ AP c + gI1(X, A) cos θ

)
= G

(12)

where G = gI2(X, A) cos θ − gA sin θ − gA(h(A) − I1(X, A)/A)
d

dX
cos θ(X),

J(t, X) = J(X, Z = h) + κ(X)
I1(X, A)

A
. The terms I1(X, A) and I2(X, A) are

defined by

I1(X, A) =

∫ h

−R

(h − Z)σ dZ and I2(X, A) =

∫ h

−R

(h − Z)∂Xσ dZ

and represent respectively the classical term of hydrostatic pressure and the pressure
source term induced by the change of geometry. In theses formulas σ(X, Z) is
the width of the cross-section at position X and at height Z. In addition, by a
straightforward computation, we get:

∂AI1(X, A) = A∂Ah(A) =
A

T

where T (X, A) := σ(X, Z = h(A)) is the width of the free surface.

Remark 2.3

• The term (h(A) − I1(X, A)/A) := Z(X, A) is the Z coordinate of the center
of mass.

• Generally, we cannot compute explicitely the term PC(A, Q). Nevertheless,
thanks to Remark 2.2, if U(t, X, Y, Z) = u(t, X, Y )/J(X, Z) then,

Pc(t, X, Y, Z) =
J2(Z)U2(t, X, Y )

2

(
1

(1 − h(A)κ(X))
2 − 1

(1 − Zκ(X))
2

)
,

PC =
J

2
Q2

2A2

(
1

J2
fs

− 1

J
2

)

Then System (12) can be written explicitely as:




∂tA + ∂XQ = G1

∂t(Q) + ∂X

(
Q2

A
+

J
2
Q2

2

(
1

J2
fs

− 1

J
2

)
+ gI1(X, A) cos θ

)
= G2

(13)
where

G1 = h(A)κ(X)∂tA

and

G2 = κ(X)∂t(h(A)Q − I1(X, A)U ) + gI2(X, A) cos θ

−gA sin θ − gAZ(X, A)
d

dX
(cos θ).

• If we neglect κ(X) in System (12) or if we assume θ to be constant then we
get the classical shallow water equations with source terms (see e.g. [3, 11]):




∂tA + ∂XQ = 0

∂t(Q) + ∂X

(
Q2

A
+ gI1(X, A) cos θ

)
= gI2(X, A) cos θ − gA sin θ

(14)

8



Now, omitting the overlined notation for U except Z and P c, let us present some
classical properties of the frictionless System (12).

Theorem 2.1

1. The System (12) is strictly hyperbolic for A(t, X) > 0 under the condition

c2 + 4
Q

A
∂Q(AP c) + (∂Q(APc))

2 + 4∂A(APc) > 0

where c(X, A) =

√
gA cos θ

T (A)
is the sound speed.

2. For smooth solutions, the velocity U satisfies

J(A)∂t(U) + ∂X(
U2

2
+ Ψ(A, Q) + gh(A) cos θ + gb(X)) = 0 (15)

where Ψ is such that ∂AΨ =
P c

A
+ ∂AP c.

3. The still water steady state for U = 0 is given by

h(A) cos θ + b(X) = 0 (16)

4. It admits a mathematical entropy

E(A, Q) =
Q2

2A
+ A(Ψ(A, Q) − Pc) + gAZ(X, A) cos θ + gb

which satisfies the entropy inequality

J(A)∂tE + ∂X

(
(E + APc + gI1(X, A) cos θ)U

)
6 0

We present in the next section another approach to get a simpler model.

2.3 Shallow water-like equations for free surface flow by asymp-

totic analysis

In this section, we perform a formal asymptotic analysis on System (4). According
to the work in [12, 14], the shallow water equations can be obtained from the
incompressible Navier-Stokes equations with particular boundary conditions. Here,
we perform this analysis directly on the incompressible Euler system in order to get
J = 1 + O(ǫ), i.e. it is a way to seek for uniform solution in Y and Z variable.

Let us introduce the usual small parameter ǫ = H/L where H (the height) and L

(the lenght) are two characteristics dimensions along the
−→
k and

−→
i axis respectively.

We assume that the characteristic dimension along the
−→
j axis is the same as

−→
k .

We introduce the others characteristics dimensions T, P, U, V , W for time, pressure
and velocity repectively and the dimensionless quantities as follows:

Ũ = U/U, Ṽ = ǫV/U, W̃ = ǫW/U,

X̃ = X/L, Ỹ = Y/H, Z̃ = Z/H, p̃ = p/P, θ̃ = θ, ρ̃ = ρ.

In the sequel, we set P = U
2

and L = TU (i.e. we consider only laminar flow).
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Under these hypothesis, we have J̃(X̃, Ỹ , Z̃) = 1 − ǫZ̃
dθ̃

dX̃
. Thus, the rescaled

System (4) reads:





∂X̃ Ũ + ∂Ỹ (J̃ Ṽ ) + ∂Z̃(J̃W̃ ) = 0

∂t̃(J̃ Ũ) + ∂X̃(Ũ2) + ∂Ỹ (J̃ Ũ Ṽ ) + ∂Z̃(J̃ ŨW̃ ) + ∂X̃ p̃ = G1

ǫ2
(
∂t̃(J̃ Ṽ ) + ∂X̃(Ũ Ṽ ) + ∂Ỹ (J̃ Ṽ 2) + ∂Z̃(J̃ Ṽ W̃ )

)
+ ∂Ỹ (J̃ p̃) = 0

ǫ2
(
∂t̃(J̃W̃ ) + ∂X̃(ŨW̃ ) + ∂Ỹ (J̃ Ṽ W̃ ) + ∂Z̃(J̃W̃ 2)

)

+J̃∂Z̃(p̃) = G2

(17)

where G1 = ǫŨW̃ κ̃(X̃) − sin θ̃

Fr,L
2 − Z̃

Fr,H
2

d

dX̃
(cos θ̃),

G2 = −ǫŨ2ρ̃(X̃)− cos θ̃

Fr,H
2 + ǫκ(X)

Z̃J̃ cos θ̃

Fr,H
2 , Fr,M =

U√
gM

is the Froude number

along the
−→
i axis and the

−→
k or

−→
j axis where M is any generic variable equal to L

or H .
Formally, when ǫ vanishes, the system reduces to:




∂X̃ Ũ + ∂Ỹ (Ṽ ) + ∂Z̃(W̃ ) = 0

∂t̃(Ũ) + ∂X̃(Ũ2) + ∂Ỹ (Ũ Ṽ ) + ∂Z̃(ŨW̃ ) + ∂X̃ p̃ = − sin θ̃

Fr,L
2

− Z̃

Fr,H
2

d

dX̃
(cos θ̃)

∂Z̃(p̃) = − cos θ̃

Fr,H
2

(18)

Now, integrating the preceding system as in Subsection 2.2, we get the following
free surface model that we call FS-model :





∂tA + ∂XQ = 0

∂tQ + ∂X

(
Q2

A
+ gI1(X, A) cos θ

)
= gI2(X, A) cos θ − gA sin θ

−gAZ(X, A)
d

dX
(cos θ)

(19)

Now, omitting the overlined notation for U except Z, we get some classical
properties of Model (19):

Theorem 2.2

1. The System (19) is strictly hyperbolic for A(t, X) > 0

2. For smooth solutions, the velocity U satisfies

∂t(U) + ∂X

(
U2

2
+ gh(A) cos θ + gb(X)

)
= 0. (20)

3. The still water steady state for U = 0 is given by

h(A) cos θ + b(X) = 0. (21)

4. It admits a mathematical entropy

E(A, Q) =
Q2

2A
+ gAZ(X, A) cos θ + gb

10



which satisfies the entropy inequality

∂tE + ∂X

(
(E + gI1(X, A) cos θ)U

)
6 0.

Remark 2.4

• We have already pointed out (see Remark 2.3) that System (12) is not suit-
able for a numerical computation, since the terms P c and J are not explicitely
expressed. Morever, as we will expose in Section 4, System (12) is not con-
venient for a “natural” coupling with the pressurised model (see Section 3).
Thus, we will preferably use the simple model (19) which takes into account
the domain and the slope effects through the term
AZ(X, A) d

dX (cos θ) which was not present in the model derived in [3].

• Let us also note that we recover the model obtained by two of the authors in
[3] from System (19) if we assume d

dX (cos θ) = o(1).

3 Formal derivation of the P-model for pressurised

flows

In this section, we present a new unidirectionnal shallow water-like equations to
describe pressurised flows in closed non uniform domains to be coupled in natural
way with the obtained FS-model (19). We will derive it from the compressible Euler
equations following the analysis used to obtain the pressurised flow model that we
call P-model.

3.1 The compressible Euler system in curvilinear coordinates

The 3D compressible Euler system in the cartesian coordinates is written as follows

∂tρ + div(ρ
−→
U ) = 0, (22)

∂t(ρ
−→
U ) + div(ρ

−→
U ⊗−→

U ) + ∇p =
−→
F , (23)

where
−→
U (t, x, y, z) and ρ(t, x, y, z)) denotes the velocity with components (u, v, w)

and the density respectively. p(t, x, y, z) is the scalar pressure and
−→
F the exterior

strenght (of gravity).
We define the pressurised domain of the flow as the continuous extension of

ΩF (see Section 2) defined by some plane curve with parametrization (x, 0, b(x)) in

a convenient cartesian reference frame (O,
−→
i ,

−→
j ,

−→
k ) where

−→
k follows the vertical

direction; we recall that b(x) is then the elevation of the point ω(x, 0, b(x)) over the

plane (O,
−→
i ,

−→
j ) (see Fig. 1). The curve may be, for instance, the axis spanned

by the center of mass of each orthogonal section Ω(x) to the main mean flow axis,
particularly in the case of a piecewise cone-shaped pipe. Notice that we consider
only the case of infinitely rigid pipes: the sections are only x-dependent (since the
domain is full-filled).

As previously, to see the local effect induced by the geometry due to the changes
of sections and/or slope, we write the 3D compressible Euler system in the curvi-
linear coordinates. To this end, we perform the same change of variables using
the transformation T : (x, y, z) → (X, Y, Z) where X, Y, Z denote respectively the
curvilinear abscissa, the width variable and the altitude of any fluid particle M in

the Serret-Frenet reference frame (
−→
T ,

−→
N,

−→
B ) at point ω(x, 0, b(x)).

11



Let (U, V, W )t be the components of the velocity vector in the (X, Y, Z) coordi-
nates defined by: 


U
V
W


 = Θ




u
v
w




where Θ is the rotation matrix (see Section 2).
Applying Lemma 2.1 to the mass conservation equation, we get

J(∂tρ + div(ρ
−→
U )) = 0 or also

∂t(Jρ) + ∂X(ρU) + ∂Y (ρJV ) + ∂Z(ρJW ) = 0 (24)

where

J =det




(
1 − Z

dθ

dX

)
cos θ 0 sin θ

0 1 0(
1 − Z

dθ

dX

)
sin θ 0 cos θ




. (25)

To get the unidirectionnal model, we suppose that the mean flow follows the
X-axis. Hence, we neglect the second and third equation for the conservation of the
momentum. Therefore, we only perform the curvilinear transformation for the first
conservation equation. To this end, multiplying the conservation of the momentum

equation of System (23) by J




cos θ
0

sin θ


 and using Lemma 2.1, we get:

J




cos θ
0

sin θ



(
∂t(ρ

−→
U ) + div(ρ

−→
U ⊗−→

U ) + ∇p = −ρ∇(−→g .
−−→
OM)

)
.

It may be rewritten as:

∂t(JρU) + ∂X(ρU2) + ∂Y (ρJUV 2) + ∂Z(ρJUW ) + ∂Xp

= −ρJg sin θ + ρUW
d

dX
(cos θ)

(26)

where
−−→
OM denotes the position of any particule M in the local reference frame

(
−→
T ,

−→
N,

−→
B ) at point ω(x, 0, b(x)).

Finally, in the (X, Y, Z) coordinates the system reads:





∂t(Jρ) + ∂X(ρU) + ∂Y (ρJV ) + ∂Z(ρJW ) = 0

∂t(JρU) + ∂X(ρU2) + ∂Y (ρJUV 2) + ∂Z(ρJUW ) + ∂Xp

= −ρJg sin θ + ρUW
d

dX
(cos θ)

(27)

Remark 3.1 As in Remark 2.1, T defines a diffeomorphism and thus the performed
transformation is admissible.

We recall that the main objective is to obtain a formulation close to the shallow
water equation in order to couple the two models in a natural way (in a close manner
described in [3]). The direct integration of Equations (27) over Ω(x) gives a model
which is not useful (as the model for free surface flow derived in Section 2) due to
the term J , to perform a natural coupling with the FS-model for non uniform pipes.

12



We perform again the same rescaling as for the free surface model and the system
in variables (X, Y, Z) describing the slope variation and the section variation in a
closed pipe reads:





∂t(ρ) + ∂X(ρU) + ∂Y (ρV ) + ∂Z(ρW ) = 0

∂t(Uρ) + ∂X(ρU2) + ∂Y (ρUV ) + ∂Z(ρUW ) + ∂Xp = −ρg sin θ

−gZ
d

dX
(cos θ)

(28)

3.2 Shallow water-like equations for pressurised flows in a

closed pipe

In the following, we use the linearized pressure law p = pa+
ρ − ρ0

βρ0
(see e.g. [16, 17])

in which ρ0 represents the density of the fluid at atmospheric pressure pa and β the
water compressibility coefficient equal to 5.0 10−10 m2.N−1 in practice. The sonic
speed is then given by c = 1/

√
βρ0 and thus c ≈ 1400 m.s−1.

System (28) is integrated over the cross-section Ω. In the following, overlined

letters represents the averaged quantities over Ω. For m ∈ ∂Ω, −→n =
−→m
|−→m| is the

outward unit vector at the point m in the Ω-plane and −→m stands for the vector −→ωm
(as displayed on Fig. 1).

Following the work in [3], using the approximations ρU ≈ ρU, ρU2 ≈ ρU
2

and
Lebesgue integral formulas, the mass conservation equation becomes:

∂t(ρS) + ∂X(ρq) =

∫

∂Ω

ρ
(
U∂X

−→m −−→
V
)

.−→n ds, (29)

where q = SU is the discharge of the flow and the velocity
−→
V = (V, W )t in the

(
−→
N,

−→
B )-plane. We denote by S the area of the cross-section Smax(X) of the pipe

at position X .
The equation of the conservation of the momentum becomes

∂t(ρq) + ∂X(
ρq2

S
+ c2ρS) = −gρS sin θ + c2ρ

dS

dX

− gρSZ
d

dX
(cos θ)

+

∫

∂Ω

ρU
(
U∂X

−→m −−→
V
)

.−→n ds

(30)

The integral terms appearing in (29) and (30) vanish, as the pipe is infinitely rigid,
i.e. Ω = Ω(X) (see [3] for the dilatable case). It follows the non-penetration
condition: 


U
V
W


 .

−→
N = 0.

Finally, omitting the overlined notation except for Z, we obtain the equations for
pressurised flows under the form





∂t(ρS) + ∂X(ρq) = 0

∂t(ρq) + ∂X(
ρq2

S
+ c2ρS) = −gρS sin θ − gρSZ

d

dX
(cos θ) + c2ρ

dS

dX

(31)

where the quantity Z = Z(X, S) is the Z coordinate of the center of mass.
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Remark 3.2 In the case of a circular section pipe, we choose the plane curve
(x, 0, b(x)) as the mean axis and we get obviously Z = 0.

Now, following [3], let us introduce the conservative variables A =
ρS

ρ0
the equiv-

alent wet area and the equivalent discharge Q = AU . Then dividing System (31)
by ρ0 we get:





∂t(A) + ∂X(Q) = 0

∂t(Q) + ∂X(
Q2

A
+ c2A) = −gA sin θ − gAZ(X, S)

d

dX
(cos θ)+

c2A
d

dX
ln(S)

(32)

Remark 3.3 This choice of variables is motivated by the fact that this system is
formally closed to the FS-model (19) where the terms gI1(X, A) cos θ, gI2(X, A) cos θ,
Z(X, A) are respectively the equivalent terms to c2A,

c2A
d

dX
ln(S), Z(X, S) in System (32). Finally, the choice of these unknowns leads

to a “natural” coupling between the pressurised and free surface model as we will
see in Section 4.

To close this section, let us give the classical properties of System (32):

Theorem 3.1

1. The system (32) is stricly hyperbolic for A(t, X) > 0.

2. For smooth solutions, the mean velocity U = Q/A satisfies

∂tU + ∂X

(
U2

2
+ c2 ln(A/S) + gΦθ + gZ

)
= 0 (33)

where Φθ(X) =

∫ X

X0

Z(ξ)
d

dX
cos θ(ξ) dξ for any arbitrary x0 and Z the eleva-

tion term defined by ∂XZ = sinθ.

3. The still water steady states for U = 0 is given by

c2 ln(A/S) + gΦθ + gZ = 0. (34)

4. It admits a mathematical entropy

E(A, Q) =
Q2

2A
+ c2A ln(A/S) + gAΦθ + gAZ

which satisfies the entropy inequality

∂tE + ∂X

(
(E + c2A)U

)
6 0

The quantity
U2

2
+ c2 ln(A/S) + gΦθ + gZ is also called the total head.
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4 The PFS-model for mixed flows

The formulation of the FS-model (19) and P-model (32) are very close to each
other. The main difference comes from the pressure law. In order to build a
coupling between the two types of flows, we have to build a pressure that ensure its
continuity through transition points in the same spirit of [3]. And as pointed out
in Remark 3.3, we will use a common couple of unknows (A, Q) to get a continuous
model for mixed flows.

Let us first introduce in both model the exterior strength of friction −ρgSf
−→
N

given by the Manning Strickler law (see e.g. [16]):

Sf (A) = K(A)U |U |

where K(A) is defined as follows:

K(A) =
1

K2
sRh(A)4/3

.

Ks > 0 is the Strickler coefficient of the roughness and Rh = A/Pm is the hydraulic
radius where Pm is the perimeter of the wet surface area A. We rewrite the FS-
model (19) and P-model (32) (resp.) with the friction term:





∂tA + ∂XQ = 0

∂tQ + ∂X

(
Q2

A
+ gI1(X, A) cos θ

)
= −gA sin θ + gI2(X, A) cos θ

−gAZ(X, A)
d

dX
(cos θ)

−gASf(A)

(35)





∂tA + ∂XQ = 0

∂tQ + ∂X

(
Q2

A
+ c2A

)
= −gA sin θ + c2A∂X ln(S)

−gAZ(X, S)
d

dX
(cos θ)

−gASf(S)

(36)

Let us recall that Smax(X) denotes the area of the cross-section of the pipe at
position X . We denote also Smax(X) by S(X) when we deal with pressurised state
while S(t, X) depend on time when the type of flow is free surface and it is denoted
simply by A. Thus, we call S the physical wet area and A the wet equivalent area.

In order to ensure the continuity of the pressure through the change of state we
define the water height:

H(t, X) = 1{ρ=ρ0}h(t, X) + 1{ρ6=ρ0}R(X). (37)

(also denoted by H(A)). We set

p(X, A) = c2(A − S) + gI1(X, S) cos θ. (38)

and we choose the same plane curve with parametrization (x, 0, sin θ), namely the
main pipe axis. Actually this choice is the more convenient for pressurised flows
while the bottom line is adapted to free surface flows. Thus we must assume small

variations of the section (
d

dX
Smax small) or equivalently small angle ϕ (see Fig.

3).
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Figure 3: Some restriction concerning the geometric domain

This modified pressure law permits to recover both cases. Indeed, if E denotes
the state variable, we have:

p(X, A, E) =

{
gI1(X, A) cos θ if E = FS (i.e. ρ = ρ0)
gI1(X, S) cos θ + c2(A − S) if E = P (i.e. ρ 6= ρ0)

. (39)

Finally, the PFS-model for unsteady mixed flows reads:





∂t(A) + ∂X(Q) = 0

∂t(Q) + ∂X

(
Q2

A
+ p(X, A, E)

)
= −gA

dZ

dX
+ Pr(X, A, E)

−G(X, A, E)

−K(X, S, E)
Q|Q|

A

(40)

where K, Pr, and G denotes respectively the friction, the pressure source and the
geometry source term defined as above:

Pr(X, A, E) =
(
c2(A/S − 1)

) dS

dX
+ gI2(X, S) cos θ,

G(X, A, E) = gAZ(X, S)
d

dX
cos θ

K(X, S, E) =
1

K2
sRh(S)4/3

.

The PFS system (40) satisfies the following properties:

Theorem 4.1

1. The PFS system (40) is stricly hyperbolic for A(t, X) > 0.

2. For smooth solutions, the mean velocity U = Q/A satisfies

∂tU + ∂X

(
U2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ

)

= −gK(X, S, E)U |U |.
(41)
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3. The still water steady states for U = 0 reads:

c2 ln(A/S) + gH(S) cos θ + gZ = 0. (42)

4. It admits a mathematical entropy

E(A, Q) =
Q2

2A
+ c2A ln(A/S + S/A) + gAZ(X, S) cos θ + gAZ

which satisfies the entropy inequality

∂tE + ∂X

(
(E + p(X, A, E))U

)
= −gAK(X, S, E)U2|U | 6 0

The quantity
U2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ is called the total head. Notice

that the total head and the energy are defined continuously through the transition
points.
Proof of Theorem 4.1: The results (41) and (42) are obtained in a classical
way. We compute also the entropy inequality by classical means and we obtain the
following equation:

∂t

(
Q2

2A
+ c2A ln(A/S + S/A) + gAZ(X, S) cos θ + gAZ

)

+∂X

(
(
Q2

2A
+ c2A ln(A/S + S/A) + gAZ(X, S) cos θ + gAZ + p)U

)

+c2

(
∂tS

(
A

S
− 1

))
= −gAK(X, S, E)U2|U |

.

We see that the term c2

(
∂tS

(
A

S
− 1

))
is equal to 0 since we have A = S when

the flow is free surface whereas S = S(X) when the flow is pressurised. Morever,
from the last inequality, when A = S, we have the classical entropy inequality (see
[3, 4]) with the energy E:

E(A, Q) =
Q2

2A
+ gAZ(X, S) cos θ + gAZ

while the energy is:

E(A, Q) =
Q2

2A
+ c2A (ln(A/S) + S/A) + gAZ

for the pressurised case. Finally, the energy for the PFS-model reads:

E(A, Q) =
Q2

2A
+ c2A ln(A/S + S/A) + gAZ(X, S) cos θ + gAZ.

Let us remark that the term c2S makes the energy E continuous through transition
points and it permits also to write the entropy flux under the classical form (E+p)U .

�

5 Conclusion

We have used two different approaches to derive both a free surface flow model and a
pressurised flow model which have been coupled using a common set of variables [3]
and a suitable pressure law. We obtained a mixed model, that we call PFS-model.
This model takes into account the local perturbation of the section and of the slope,
in particular when the domain is a piecewise cone-shaped pipe. Morever it presents
a simple form which is suitable for a numerical treatment as a finite volume method
or a kinetic scheme extending [3, 4, 5].
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