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Abstract

In the present work we introduce a new family of cell-centered Finite Volume schemes for
anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very
general framework for the convergence study of finite volume methods is provided and then
used to establish the convergence of the new method. Fairly general meshes are covered and a
computable coercivity criterion is provided. In order to guarantee consistency in the presence
of heterogeneous diffusivity, we introduce a non-standard test space in Hg(€2) and prove its
density. Thorough assessment on a set of anisotropic heterogeneous problems as well as a
comparison with classical multi-point Finite Volume methods is provided.

Keywords Finite volume, heterogeneous anisotropic diffusion, MPFA convergence analysis

1 Introduction

One of the key ingredients for the numerical solution of Darcy equations is the discretization of
anisotropic heterogeneous elliptic terms [8]. In the oil industry, the need to improve accuracy
in near wellbore regions has prompted the introduction of general unstructured meshes and full
permeability tensors. Significant mathematical effort has therefore been devoted to find consis-
tent and robust Finite Volume (FV) discretizations of anisotropic heterogeneous elliptic terms on
general meshes. Ideally, a method should (i) be consistent and coercive on general polyhedral
meshes as well as robust with respect to the anisotropy and heterogeneity of the permeability
tensor; (ii) yield well-conditioned linear systems for which optimal preconditioning strategies can
be devised; (iii) have a narrow stencil, both to improve matrix sparsity and to reduce the commu-
nication in parallel implementations. The last requirement would speak in favour of cell-centered
methods. However, at present time, no unconditionally coercive and consistent compact stencil
cell-centered method has been found. Indeed, although several symmetric methods display un-
conditional coercivity, they either entail severe mesh restrictions, as in [3], or exhibit very large
stencils, as in [23,6].

The so-called Multi Point Flux Approximation (MPFA) methods have been introduced in the
middle of the 90s (see, e.g., [2,21]). The key idea is to obtain consistency on general meshes
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at the expense of a larger stencil while preserving the second order convergence of the classical
two-point method. As mentioned, however, coercivity holds only under suitable conditions on
both the mesh and the permeability tensor. The compact stencil MPFA L method has been
proposed in [5,4] as an improvement of the MPFA O method of [1] both in terms of stencil size
and monotonicity properties. The convergence of the MPFA O method has been theoretically
proved in [3] on two-dimensional quadrilateral grids and in [10,9] on general two- and three-
dimensional polyhedral meshes. In [26], the equivalence of multi-point methods with the lowest-
order Mixed Finite Element method on matching triangular grids has been pointed out, and local
coercivity conditions have been proposed. Other relatively inexpensive methods that deserve being
mentioned are those developed in the Mimetic Finite Difference framework of [16,14,15], as well
as the Hybrid Finite Volume scheme of [24] or the Mixed Finite Volume scheme of [19]. The
analogies among the three classes of methods have been recently pointed out in [20]. Finally, a
unified framework covering both FV and discontinuous Galerkin methods expressed in weak form
has recently been introduced in [7] relying on the discrete functional analysis results of [25,17].

In this work we propose a family of cell-centered schemes generalizing the MPFA L method.
The idea is to write the flux through a face as the weighted average of several L-type fluxes
corresponding to different stencils. A proper choice of the weights allows to enhance the coercivity
of the method, thereby improving robustness with respect to the skewdness of the mesh and to the
anisotropy and heterogeneity of the permeability tensor. The provided convergence proof covers
more general FV schemes expressed in terms of numerical fluxes and it is inspired by [22,23].
The relevant requirements are weak flux consistency and coercivity. Convergence is then obtained
using the discrete Sobolev embeddings and Rellich theorem proved in [25, §5]. Unlike in [7],
where methods in weak formulation are considered, we focus here on the more classical FV flux
formulation. The interest of flux formulation is that (i) it provides a natural means to implement
new methods in traditional two-point FV codes; (ii) it is more natural for a number of multi-
points methods and (iii) it allows to further reduce the set of requirements for convergence (flux
continuity, e.g., is not needed).

From a practical viewpoint, the proposed method is a good compromise between accuracy, ro-
bustness and computational cost. Indeed, the methods of [16,14,15,24,20] require the introduction
of additional face unknowns whose local elimination in terms of cell unknowns is, in general, not
possible. While the resulting stability properties are highly appreciable, the increase in computa-
tional cost is not affordable in large industrial simulations. Unconditionally coercive cell-centered
methods like the ones of [24, §2.2] or of [6] have stencils extending to neighbours of neighbours,
which results in denser matrices and stronger memory requirements. Also, in parallel implementa-
tions, two layers of ghost cells are needed to ensure communications among subdomains, resulting
in heavily penalized scalability (message passing is still considered a bottle-neck when it comes
to large industrial cases). More compact methods like the MPFA L method have up to now been
based on (sophisticated) euristics rather than on a extensive mathematical analysis. To the best
of our knowledge, the present work contains the first convergence proof for the MPFA L method
for general meshes and arbitrary heterogeneous anisotropic diffusion tensors. The aim of this pa-
per is also to identify a minimal set of requirements for convergence and investigate the benefits
of a deeper mathematical comprehension. As a matter of fact, the resulting MPFA G method
outperforms the original version of [5,4] on a number of representative test cases modeling some
of the difficulties encountered in industrial simulations.

In order to avoid artificial regularity assumptions on the permeability tensor in the consistency
proof, we have introduced a permeability dependent test space Q composed of continuous functions
with possibly discontinuous gradients but continuous fluxes. This space is proved to be dense in
H}(Q) following the ideas of [18]. To the best of our knowledge, the idea of selecting a problem-
taylored test space as well as the density proof are new.

The work is organized as follows: in §2 we present a general convergence study based on a
minimal set of requirements; the analysis applies to fairly general FV methods expressed in terms
of numerical fluxes. A forthcoming work will be devoted to showing the extents of such analysis
framework. In §3 we present the G method, a generalization of the MPFA L scheme, and show
that it fits in the analysis framework of §2; §4 is devoted to numerical tests. The performances of



the proposed method are evaluated against anisotropic and heterogeneous benchmarks on general
meshes. A comparison with the MPFA O and L methods as well as with the Success scheme
of [24, §2.2] is provided.

2 Abstract framework

2.1 Model problem

Let  C R* d € N*, be an open bounded connected polygonal domain with boundary 9
and let Py def {Q}i=1...Nn, denote a finite partition of Q into open connected disjoint polygonal
subsets. Let A be a symmetric tensor-valued function such that (s.t.) (i) A, € [C?(€2;)]?*? for
alli=1...Ng and (ii) there exists 0 < ag < fp s.t., for almost every (a.e.) z € Q, the spectrum
of A(z) is contained in [, Bo]. Consider the following problem:

V- (-AVw)=f inQ, 1)
u=0 on 01,
where f € L"(Q) withr > 1ifd=2and r = d2—J"_12 if d > 2. The existence and uniqueness of a

weak solution @ € Hj () to (1) is a classical result.

Remark 1. Other standard types of boundary conditions can be considered. However, for easiness
of presentation, we have preferred to stick to the simpler homogeneous Dirichlet case.

In what follows, we shall provide the definition of a FV discretization of problem (1) as well
as an analysis framework covering fairly general (possibly nonconforming) polygonal meshes.

Definition 1 (Admissible family of discretizations). An admissible family of finite volume
discretizations {Dp, }nen is a triplet Dy, = (Tn, En, Pr), where

(i) Tn is a finite family of non-empty connected open disjoint subsets of Q (the cells or control
volumes) s.t. Q@ = Ugc7. K and T, is compatible with Pq (each cell is contained in one element of

the partition Pg). For all K € T, we denote by mg > 0 its d-dimensional measure (the volume)

and let OK < K\ K;

(ii) En is a finite family of subsets of Q (the faces) s.t., for all 0 € E,, o is a non-empty
closed subset of a hyperplane of R? with (d — 1)-dimensional measure m, > 0 (the area), and s.t.
the intersection of two different faces has zero (d — 1)-dimensional measure. We assume that,

for all K € Ty, there exists a subset Ex of &, such that 0K = Ugcg 0. For all o € &, either

T, & {K € T, |o € Ex} has exactly one element and then o C 9Q (boundary face) or T, has

ezactly two elements (inner face); the sets of inner and boundary faces are denoted by Epiny and
Enext Tespectively;

(i3i) Pn = (zx)keT, is o family of points of Q indexed by T, (the cell centers) s.t. tx € K
and K is star-shaped with respect to xx. For all K € T, and for all 0 € Ex we denote by dk »
the Euclidean distance between xx and the hyperplane supporting o, and suppose that there exist
0<p1 <40 and 0 < g3 < +00 independent of n s.t.

min(dk,q,dr,0)

dx )
7 min > 9.
0€En int, To={K,L} max(dK,U; dL,a')

i — 2
KeTwoctx diam(K) @)

2917

We notice that, by items (ii) and (iii), and since % is the measure of the convex hull Ak ,
of zx and o (see Figure 1),

VK €T, Y medg,=dmg. (3)

o€k

The size of the discretization is defined by hp, def supge, diam(K). For all K € 7, and
o € &€k, we denote by nk , the unit vector normal to ¢ outward to K. For all K € T,, we set



Figure 1: The pyramid convex hull of zx and o for d = 2.

f  AM(z)dz. For all vectors z € R*, n € N*, the Euclidean norm will be denoted by
|$| \/a: z; for all matrices A € R* x R", n € N*, we shall denote by |A| the norm induced by

Ax
the vector scalar product, i.e., |A| def SUD,crd T [Az]

|
x|
from E to F will be denoted by L(E; F).
In what follows, when referring to a generic element D,, of an admissible family of discretizations
{Dn}nen, the subscript n will be dropped for easiness of reading if no ambiguity arises. The space
of piecewise constant functions on 7 is defined as

The vector space of bounded linear operators

Hr(Q) € {ve L*(Q) vk € vx € P(K), YK € T}

For all o € &, let I, € L(H7(2);P°(0)) denote a trace reconstruction operator s.t., for all v €
Hr(Q), I,v =0 if 0 € Eext- The space Hr () is endowed with the following norm:

1/2
f me
loll7,r = (Z > 2 |Iv—vK|2) :

KETUESK

Remark 2. Let v, € L(H7(Q);P%(0)) be s.t.

Yv € HT(Q)’ {’Yodvk :K + ’Yade :L =0 ifo € gint with T = {K,L},

Yov =10 if 0 € Eext.

Then, for all I, € L(H7(Q);P°(0)) s.t., for all v € H7(Q), v = 0if 0 € Eexe,

Vo e Hr (), |vllry < lloll7 5 (4)

Setting, for o € &ipy with T, = {K, L}, 9,(y) = dK .
by noticing that 7, v minimizes g, and that ||v||7—ﬁ Yovcein, 9o (% V) + Y b To= (K ;%,WKP'

In view of Remark 2 and of the special nature of v,, the abridged notation || - ||7 will be used
for ||- || 7,4 whenever possible. For all K € T and for all o € &k, let Fik , € L(H7(22);P°(0)) be a
numerical flux function meant to approximate the diffusive flux flowing out K through o¢. For all
(u,v) € [H7(Q)]2, define the bilinear form

uvdEfZ ZFK‘T YI,v — vK).

KeT oe€k

ly— vK|2+dL |y —wvr|?, Equation (4) is trivial

In what follows, we shall consider discretizations of (1) of the form

Find u € Hr(Q) s.t. ar(u,v) = / fv for allv e Hr(Q) . (5)
Q



2.2 Convergence analysis

We introduce the discrete gradient reconstruction Vp € £(H7(Q); [Hr(Q)]9) s.t., for all K € T
and all v € Hr (Q),

- of 1
(Vpv)x € Vpujx = p— > my(I,v - vk)nk,,. (6)

oK

Equation (3) together with Cauchy-Schwarz inequality yield
IVpolliz2aye < Vil VYo € Hr(Q). (7)
The following result has been proved in [23, §5]:

Lemma 1 (Discrete Sobolev embeddings). Let D be an element of a family of discretizations
matching Definition 1. Let q € [1,+00) if d = 2, and q € [1,2d/(d —2)] if d > 2. Then, there
ezists a constant C1 > 0, depending only on Q, q, g1 and g2 s.t.

lullpaey < CillullT  Yu € Hr(€).

Owing to Remark 2, the following theorem can easily be deduced from (7) and the technique
of proof of [23, Lemmata 5.6-5.7]:

Lemma 2 (Discrete Rellich theorem). Let {D, }nen be a sequence of admissible discretizations
matching Definition 1 and s.t. hp, — 0 as n — oo, and let {vp}nen be a sequence of Hr, () s.t.
there exists C > 0 with ||vy||7,,1 < C for all n € N. Then, there exist a subsequence of {vn}nen
and a function v € HE(Q) s.t., asn — oo, (i) vy, = ¥ in LI(Q) for all q € [1,2d/(d — 2)) (and
weakly in L2V (@=2(Q) if d > 2); (i) {Vp, vn}nen weakly converges to Vv in [L2(Q)].

The assumptions yielding convergence of the finite volume scheme are gathered in the following

Hypothesis 1. Let {D, }nen be a family of discretizations matching Definition 1 and s.t. hp, — 0
as n — 00. We suppose that

(P1) ® is a dense subspace of Hi(Q) s.t. ® C Co(Q) N C?(), i =1...Nq, Co(Q) being the
space of continuous functions which vanish on 0. For all ¢ € ®, we denote by ¢, the element
of Ht, () defined as follows: For all K € Tp, o7, |k = ¢(TK);

(P2) a7, is uniformly coercive, i.e., there is 0 < y1 < +o00 independent of n s.t.

Vv € Hr, (), ar,(v,0) >l 1
(P3) the numerical fluxes are weakly consistent on ®, i.e., for all p € D,

ep, (¥) « ( Z Z d:r?a

KeT, c€EK

A(x)Vo(z)dz
Fr o (p7,) —m, Jic A@)Ve(@) NK,o
mg

2\ 2
) — 0 as n — oo.

The non standard choice for D proposed in §3 allows to weaken the regularity assumptions on
A with respect to the classical choice ® = C°(0).

Remark 3. Owing to (3), Property (P3) holds for strongly consistent numerical fluxes, i.e. fluxes
s.t., for all ¢ € ®, there is 0 < C» < 400 independent of n s.t.

A(z)V d
VK€ oy Vo€ S, [Fiolor) —mo BTN
K

< Comg hp,. (8)

Remark 4. Finite Volume methods are usually conservative, i.e., for all v € Hr, () and all
o € Ening with 7, = {K,L}, Fk,(v) + F,(v) =0. This property is not required to prove
Theorem 1 below. However, it is usually needed in the proof of (P2) or even in the definition of



the numerical fluxes. When conservativity holds, problem (5) is equivalent to the (more classical)
FV formulation:

Find u € H7 () s.t. —ZFIQ7 /f Ydz for all K € T,
€K

and the bilinear form a1 does not depend on the choice of the trace operators {I,},c¢-

Proposition 1 (Asymptotic stability of the interpolator). Under Hypothesis 1, for all
peD,

1
lerllr: < - (6D(<P) +ﬂ0\/t_1|90|H1(9)) .

Proof. Owing to (6), for all v € HT(Q) the following integration by parts formula holds:

> Y m =) Velz)dz g, (I;v — vK)

KeTn 0€€x K
1
= Z / Ax)Vp(x (E Z mo'nK,a'(Io'U_vK)> (9)
KeT, oc€lk
=Z/A YWeo(z diDvK—/A \Weo(z va()d
KeT,

The above result together with (P2), Cauchy-Schwarz inequality and (7) yield

llerlrr < arler,er)

Z Z [dK,o |:FK0' o7) afKA(wr)nVKw(a:) dx‘nK,a:| dH;a (Lor — oK)

KeT €€k

+/ A(z)Vp(x) '6'))@7‘(.7]) dx
Q

< ep(@) o771 + Bolelm oI Vorllmaiaye < (6D(<P) +ﬂo\/3|90|H1(9)) lerllrr. O

Lemma 3 (Uniform a priori estimate). Assume that Hypothesis 1 holds. Then, problem (5)
is well-posed for each n € N, and the solutions u, € Hp_(Q) satisfy the following uniform a priori
estimate:

Ci
llunll 7.1 < ;Ilfllm(m- (10)

Proof. The well-posedness follows from (P2), which guarantees the inversibility of the linear system
corresponding to (5). Using (P2), Holder’s inequality, Lemma 1 and Remark 2, it is inferred that

(with 7/ % 1)

Nllunll, r < a7, (un, un) = /Q fudz < |Ifller@llunll e @) < Cillfllr@lluallr,r O

Theorem 1 (Convergence). Let {Dy}nen be a family of discretizations satisfying Hypothesis 1
and s.t. hp, — 0 as n — 0o. Then, as n — oo, the sequence of discrete solutions of problem (5),
say {un}nen, converges to the solution u of (1) in LI1(Q) for all g € [1,2d/(d —2)) (and weakly
in L24/(1-2)(Q) if d > 2).

Proof. Owing to the a priori estimate (10) together with Lemma 2, there is @ € H}(Q) s.t., up
to a subsequence, (i) {un}nen converges to u in L1(2) for all ¢ € [1,2d/(d — 2)) (and weakly in
L29/(d=2)(Q) if d > 2) and (i) {Vp, un}nen weakly converges to Va in [L2(€)]%. It only remains
to prove that & = u. Let ¢ € ®. Owing to (7) together with (P2),

=~ d d
IVD, (un — o) Ifp2(@yye < dllun — o717, 1 < 0T (n = o7 un —¢7) = (T + 1), (11)



where T; % fQ — o1.)(z) dz and Ts def at, (Y7, 0T, — un). Clearly, by the integrability
assumptlon on f and the weak convergence of {uy }nen to @in LI(Q) for all ¢ < 400 if d = 2 and
forg= 7% if d > 2,

T — / f@)(@—p)(x)dx as n — oo. (12)
Q
Owing to (9),
Az)Vo(z)dz
ar, (p7,,un) = Y > [FKa ©T.) IK ( 3n ) NK,o | (YolUn = Un,K)
KeT, 0€€k K

+ / A@)Vo(z)-Vp, uy(z) dz def Toq +To.
Q

Using Cauchy-Schwarz inequality as in the proof of Proposition 1, we have T 1 < ep, (¢)||unl| 7, ,1-
Thanks to Lemma 3, ||up]||7,,r is bounded uniformly with respect to n. Thus, by property (P3),
T, — 0 as n — oco. Also, using the weak convergence of {VDp, tn}nen, we conclude that
Tr2 = [o A(@)Ve(z)-Vi(z)dz as n — oo. By Proposition 1, [|¢7, ||7,,r is uniformly bounded
with respect to n; since ¢7;, obviously converges to ¢, it is then easy, using Lemma 2, to see that
Vo, o7, weakly converges to ch Proceeding in a similar way as for a7, (¢, ,uy), we can thus
prove that a7, (¢7,,97.) = [Jo A)Ve(z)-Vo(z) dz as n — co. Therefore,

Ty — / A(z)Vo(z)-V(p —u)(z) dz as n — oc. (13)
Q

Plugging (12) and (13) into the right hand side of (11) and using the weak convergence of
Vo, (un — T, ), we conclude that, for all p € D,

V@ = Dl < 2 ([ @@ - @)@ dz+ [ A@Tol) Vo - D) ).

By virtue of (P1), we can apply this inequality to a sequence {@m }men € ® which tends to @ in
H{ () and let m — oo; since U solves problem (1), we obtain

~ d
IV = DIy < = | [ 10)(at0) = @) do - [ A@)Vala) (@ - w)a)da] =0,
i.e., 4 = u. Due to the uniqueness of the solution of (1), we deduce that the entire sequence
{tn }nen converges to @ in LI(R) for all ¢ € [1,2d/(d — 2)) (and weakly in L2¢/(1=2)(Q) if d > 2).
Observe that the order in which the limits for n — oo and m — oo are taken cannot be exchanged,
the sequence {||(¢¥m )7 |71} men being possibly unbounded. This concludes the proof. O

2.3 A strongly convergent gradient reconstruction

In practical applications, it is often desirable to dispose of a gradient reconstruction which strongly
converges to the gradient of the continuous solution (whereas Vp only provides a weakly convergent
approximation of this gradient). Such a reconstruction can be obtained using the same formula
as in the Mixed Finite Volume method [19], which is based on the numerical fluxes.

Let o € £ be a mesh face, and denote by z, its barycenter. For all v € Hy(Q), define

Vou(z) x = (Vov)x & —A‘ 3 Fro)(@s —ox) VK€ET. (14)
my c€EEK
The following geometrical relation holds:
VEER, VK €T, > my&-ngq(z, —zx)=mgé. (15)

0€EK

Equation (15) in fact justifies that (Vpwv)g is expected to approximate Vv on K provided
{FKk,s(v)}segx are consistent approximations of the fluxes of AVw.



Lemma 4 (Consistency). Let {Dy}nen denote a family of discretizations satisfying Hypothesis
1 and s.t. hp, = 0 as n — 0o. Then, for all p €D,

. ~ _ 2 —
Jim [[Vp, o7, = Vollizzg)e =0

Proof. Foralln € N, for all K € T,, and for ally € K, formula (15) applied to £ = ﬁ S Mz)Vo(z)dz
yields

—A A@)Ve(z)dz = éA;{l Z (E—L/KA(Q:)VSO(J') dw) ‘Ng,,(Te — Tk)-

meg K

Let TK’O—(QOT) = FK o loT) — ( Jxe A dm) ‘ng ;. Using Cauchy-Schwarz inequality we
get

|(Vo, <PTn)K = Vo(y)|

(@0 — k) + A ( /K A(x)(W(x)—W(y))dw)

mg

o€EK

d o g
p— lz \/ LS |TKO' OTn ||$\/ﬁ(|\/ o + Cs3fo mg diam(K )]

1 dk,o : |To — Tk |? : C3Bo .
< E E 0o Al g
T agmg ( |TKU(S0T )l > ( Mo + Q) dlam(K)’

d
€€k Mo oc€€K Ko

IA

def .
where C3 = sup;—; . n,, " (z)|- As a consequence, using (3),

— 2 2 dKo’
V —V d T o n X— a'd o
/K|< o) = Vol dy < s 30 SR Mca (o )P x s 3 o
2 (03&)) mg diam(K)?
Qo

2d dK o 9 Csfo 2
< 2
= (a01)? §e£: m, — Tk, (p7.)|" + ( o mg hp,

Finally, summing over K € T,

2d

— CsBo\>
Vo, o7, = Velltiaye < WG%" (o) +2 ( ;00> mg hp,

Use (P3) to conclude. O
The convergence of the gradient reconstruction (14) requires the following

Hypothesis 2. Assume that there is Cy independent of n s.t.

dk,o
VneN, Ve Hr,(Q), > Z X, |FK,,( )2 < Culwll% - (16)

KeT, c€€k

Remark 5. Hypothesis 2 is readily verified on A-orthogonal meshes and two point fluxes. A mesh
is said to be A-orthogonal if, for all o € &, there exists z, € o s.t., for all K € T, AR (z, — 2k ) is
orthogonal to o. For A- orthogonal meshes, we can define two-points consistent fluxes in the sense

of (8) as Fk,,(v) = m, t, (7";;(7”") where the reals {t,},cs are given by
AKni’f;‘TnK,, + g = Wetlle if 5 € &, with T, = {K, L}
ty = AKnK,a ‘DK, if 0 € Eext with T, = {K}

Since for all 0 € €, t, < By, (16) holds with Cy = 82.



Proposition 2 (Stability of the gradient reconstruction). Let {Dy}nen denote a family of
discretizations matching Definition 1. Let Hypothesis 2 hold. Then,

dCy
Qo 01

Vo € Hr(Q), [[Voollpaye < lloll7r-

Proof. Let v € Hy(Q). Cauchy-Schwarz inequality yields
2

_ 1 _
IVpvliaape = D ma | oA D Fico (0)(@o —2x)

KeT o€k
1 drk,» m, diam(K)?
P (Z Ty e @Fx >, ==
0 KeT \ocex seex oK
Owing to (3) together with (2), 3° .. %”I‘éff < Edg'. Conclude using Hypothesis 2. O
s 1

Theorem 2 (Strong convergence of the discrete gradient reconstruction). Let @ be the
solution to (1). Let {Dp}nen be a family of meshes matching Definition 1 and s.t. hp, — 0 as
n — oo, and denote by u, the solution of problem (5) on D,. Finally, let Hypotheses 1 and 2
hold. Then, the sequence {Vp,uys}nen converges to Vu in [L2(Q)]%.

Proof. Thanks to Theorem 1 together with Lemma 2, (i) the sequence of weak solutions {uy, }nen
converges to @ in LI(Q), for all ¢ € [1,2d/(d — 2)) (and weakly in L?%/(4=2)(Q) if d > 2) and
(ii) the sequence {Vop, un }nen weakly converges to Va in [L2(Q)]4. Let ¢ € . For all n € N,

[ o, - vap <3 ( | Fo.i=Touonl + [ [V,0m — Vol + [ [Vola) - vm?) -
Q Q Q Q

Let T;, ¢ = 1,...,3 denote the addends in the right hand side. Owing to Proposition 2 together
with (P2) we have
Tl S L‘; a
(@001)’11
Using the same arguments as in the proof of Theorem 1, we infer that

T (Un — OT,, Un — ©T,)-

: dCy _ _
limsupTi < oo™ (/Q f@—) +/QAV90-(ch—Vu)> .

n—o0

Moreover, owing to Lemma 4, lim,,_,, 7> = 0 and thus

limsup/ [Vp,u— Val* <
Q

o 3% (/Qf(ﬂ—(p)%—/QAch-(ch—Vﬂ)) +3</Q|W‘W|2)-

Finally, since D is dense in H}(2), we conclude by letting ¢ tend to @ in Hg (). O

3 The G method

In the present section we introduce a family of FV methods generalizing the MPFA L method
of [5,4] and show that it fits in the abstract analysis framework of §2.



3.1 Construction of group gradients
We need the following additional

Definition 2. Let {D,}nen be a family of meshes matching Definition 1. We further suppose that
(i) Vy is a family of points (the vertices or nodes), s.t., for all K € Ty, for all Ux C &k
satisfying card(Uk) > d, we have (\,cy, 0 =0 or (,cpy, @ =8 € V. For all s € V,, we let

£ {cef|sea}and T, def {K € T |s € K}, and we assume that each o contains at least one

vertex (this could be false in dimension d = 3 if, for example, o is only a piece of a “true face” of
a cell);
(i3) the number of faces sharing one node remains bounded as the mesh is refined, i.e., there
exists p3 € N* s.t.
sup max card(&;) < p3;
nEN $€Vn
(i) G is the finite family of face groups defined as follows:

G IGCexknE, KeT, s€V,, card(G)=d}.

For each G € G, we let Tg = {K eT, GNEk # 0}. We also arbitrarily select a cell, which we
denote by Kg, s.t. G C Ek,.

Remark 6. In many cases, a given group G is contained in a unique £x but, in some cases
(especially if the discretization has non-convex cells), there can be multiple possible choices for
Kg.

Our idea is, for all v € Hy (), all group G € G,all 0 € G and all K € T,, to build a “group
gradient” (va)g’” € R? and use it to define the flux F ,(u); this gradient could be understood
as a piece of a full gradient of u on the pyramid Ak ., the full gradient (and resulting flux) being
obtained as a convex combination of these group gradients corresponding to all the groups G
containing o (see (22)).

First, for all o € £, T, = {K, L}, we require that, if 7, = {K, L}, the values vk, vy, and the

gradient reconstruction (Vpv)5?, (Vpv)$7 yield the same value of v on o, that is to say

vk + (Vpu)37 - (& — 2x) = vr + (Vpu)§7 - (z —z1) Vreo.

For boundary faces, we ask that the value obtained at © = z,, barycenter of o be zero. Second,
we would like the resulting fluxes to be conservative, i.e.,

Ax(Vpo) 57 - nge + AL(Vpv)§7 -ng, = 0.

These two sets of equations are not sufficient to define uniquely the group gradients (and thus to
estimate them, which is fundamental in the study of the numerical method). We therefore add
another constraint, giving a particular role to the cell Kg selected for the group G: we ask that
(va)f(’g does not depend on ¢ € G, and we denote by (Vpv)%,, the common value of this group

gradient for all o € G. The discrete gradients are thus defined, as in [5,4], by: For all G € G and
all o0 € G N &, with T, = {Kg, L},

vk + (Vou)%, (¢ —2ks) =vr + (Vo) (z —x1) Vz € o, (17)
Ak (Vov)§, NKg.o + AL(VD0)§ mp,, =0,
and for all o0 € G N Eexg,
vk + (Vpo)%g - (8s — TKg) = 0. (18)

Lemma 5. The gradient reconstruction (Vpv)% , defined by (17) and (18) can be obtained solving

a linear system of the form
.A(;XG = B(;(U), (19)

10



where the rows of Ag € R¥? are built from the following family of vectors of R?

ALnL oL o
{7{1’ — (2L —2ky) ARG DK ,0 FALNL & )
L,o 0 €GNEint

]
4 ]
dKg.,o TEGNEext

and Bg(v) € R? is obtained from the family of vectors

Arng . np Ak Nk, oMK o
Aunbotie () ) Ao (~vke) .
L,o cE€GNEint Ka,o TEGNE ext

Proof. Letv € Hr(Q2), G € G, 0 € G N &y with T, = {Kg, L}. Observe that, if v (Vpo)E_ — (Vpu)T7 #0,

the first equation of (17) is the equation of an hyperplane of R? orthogonal to v; satisfying this
equation for all = € o is equivalent to imposing that ¢ is contained in this hyperplane, and thus
that v and ng, , are colinear (this is of course also true if v. = 0). As a consequence, taking
Y, € o, the first equation in (17) is equivalent to the following linear system (in which A\S € R is
an additional unknown):

(Vpo)§, — (Voo) 77 = Ainkq o,
VKe — UL + (va)f’a-xL — (VDU)%G Try = —ASNK, 0 Yo

Since (y, — ¥1) MKy .0 = —dL o, solving for A& we obtain

G _ _Rr.(v)
{)\U - ;L,av ’

(Vo) = (Vo) - “5ns,,

with Ry, (v) o — VKg — (VDU)?(G-(;EL — Tk, ). Using these expressions, the second equation
of (17) can be rewritten as

Arn oL & Arn oL o
[AKGHKG,U +Arng . + %(% - ch)] (Vpv)§, = %(UL — VKg)-
L,o L,o
Finally, the linear system (17)—(18) is equivalent to:

. . R

(Vor)§ = (o), — 2 W, Vo€ G b, Ty = (Ka, L),

L,o

Arpng ,np

[%@L —Trg) + Akonkg o + ALnL,a] (Vpv)%,
< L,o (20)

A " o
= SEBLoBLe (k) Yo € GNEm, Ty = {Ka, L},

dL o
Arx.n ‘n 7 Akg.n ‘n
Ko “Keg.o K. (Vou)§ (#s — 2Ks) = Ko Ke,0 K0 (_yp.), Vo €GN Eoxt.
\ dKG’o' dK(;,a'
The assert follows. O

In order to construct the gradient, we therefore need to consider the set of groups s.t. the
matrix Ag is invertible, that is to say

def

g:

We shall also need a symbol for the family of groups containing a give face o € £. We thus let

{G € G| Ag is invertible}.

Voe&, G, Y¥{GeG|oeG),

and we assume throughout the rest of the present section that all the G, are non-empty.

11



NKg, 02 DK oo
29
- | L Kg,
NKg, .01
Ka, ' NKg,,01
(a) G1 € G (b) G2 ¢ G

Figure 2: Two examples of face groups of G respectively belonging and not belonging to G, .

Remark 7. Figure 2 shows two examples of groups respectively belonging and not belonging to G
(in the case where A is constant). Indeed, since Ake, = Ar, the terms Ak, nkg, 0, and Apng ,,
cancel out each other in each line of Ag, and, since the cell L on the other side of o1 and o5 is
the same, both lines of Ag, are colinear to x;, — Tk, (this matrix is therefore singular). The
non-convexity of cells can be a cause to the singularity of some Ag (but this does not block the
use of the G method since, even in this case, the non-emptiness of all G, often holds).

Finally, we define in the following two lemmata the space playing the role of ® in Hypothesis
1 and state its density, and we establish the consistency on this space of the group gradients (this
will give (P3)).

Lemma 6 (Density of a space of test-functions). Let Q be the space of functions ¢ : Q — R
s.t.

(i) (¢ is continuous and piecewise regular) ¢ € Co(Q) and, for alli =1,...,Nq, ¢ € C?(Q;),

(i) (the tangential derivatives of ¢ are continuous through the interfaces of Pg) for all
i, =1,...,Na, for all vector t parallel to 9Q; N 9Q;, (Vo)m; -t = (Vo) - t, where (Vo) g;
refers to the value of Vo on 0€Q; computed from the values on €,

(iii) (the flux of Vo directed by An is continuous through the interfaces of Pqo) for all
i,j =1,...,Nq s.t. 0;N0R; has dimension d—1, (AVgo)lQ—i-ni+(AVgo)‘Q—j-nj =0 on 0;NOQ;,
where n; is the outer normal to ;.

Then, Q is dense in H ().

Proof. See Appendix A. O

Lemma 7 (Consistency of the group gradients). Let D be an element of a family of dis-
cretizations satisfying Hypothesis 1. For all ¢ € Q, there exists a real Cs > 0 which only depends
on 01, 02, A and ¢ s.t., for all GE€ G, allo € G and all K € T,,

[(Voor)%” — V()| < Cs (1+|Ag"]) max diam(K).
KeTg
Proof. See Appendix B. O

3.2 Numerical fluxes
We choose {69} ,ce.Geg, a set of weights s.t.
Forallo € £, forall G € G,,0< 0 <1land, forallo €&, » 69 =1. (21)

GeGs

12



The numerical fluxes are then defined as follows: For all K € T, for all o € &k,

e (u) Z 09FE ,(u), FZ,(u ) ' m, Ak (Vou)$7 nk . (22)
GEG,

Remark 8. Notice that the subfluxes FI((;’(7 are conservative (second equation in (17)), and thus
the whole fluxes Fx , themselves are also conservative.

Specific methods are obtained from (22) by defining a suitable criterion to compute the family
of weights {69} ,ce.ceg, -
Ezample 1 (MPFA L method). The MPFA L method can be obtained as follows: For all o € £, let
G € G, be the group satisfying the criterion proposed in [5] and set 8¢ = 1/card({s € V,s € o})
and 9 =0 for G # G € G,.
Ezxample 2. The alternative choice used in the numerical examples of §4 is designed so as to enhance

the coercivity of the method. For each group G € G, define the space Hr, def {uk €R, K €Tg}
endowed with the semi-norm

lulff, >0 Y = (eu—ur)”

KeTa UEEKQG
For all u, v € Hr, set ar, (u,v) =X ket Dseenna Fg’g(u)(%v — vk ). For each G € G define

w it g (uu)
{uetrg, lullrg=1} "7
The computation of the parameter v, requires to evaluate the eigenvalues of a local matrix of
R¥*4 agsociated with the bilinear form ar,, and its cost is negligible. Indeed, by conservativity of
the subfluxes,

aro (1) = 3 5 )~ ur)

ceG KEeT,
G G
= Z Fg, -(w)(ur —ukg) + Z Fg, - (W) (vou — ukg)
0€GNEint, To={Ka,L} 0EGNEexs, To={Ka}
Since for all o € &y with T, = {Kg, L}, we have up, — ug, = 7dK‘;;+(jL"’ (You — uKy), if we let

dy =drg,e +dL, forall o € Emt with 7, = {Kg, L} and d, = dk,, for all 0 € Eex, then we
can deduce that

dy
aTs (uau) = E Fgg,a-(u)(%fu_ul(c)'
c€EG Ka,o

Now, by (19), Fgcia(u) depends linearly on {ur — uks }reTe\{ko) (and ukg if 0 € Eext), and it
can therefore be written as

KG, § aa’a d 'Ya’u_qu)

o'ed Ka,o!

where {a$ ;1 }5.07caxa is a family of reals. We obtain that

dy dy
arg (u,u) = Z d d ; aaG,a’(’yU’u_uKG)(’YUu_ch)'
(o,0") EGXG Ko “Ka,o

We denote by X% (u) the vector of size d defined by the family { oMo (ry 4y — KG)}JEG and by

dKg,o

A% the matrix of size d defined by the family of reals { < Then, we can

! -
Mo Mgr =00 }O',G'EGXG
write a7, (u,u) under the form

a7e (u,u) = (A9XE (w)) - X (u)

13



or again,

A 4 (AC)
om0 = (5 x0w) - x%w) (23)
where (A%)? is the transpose matrix of A%. From (23), we deduce that s is the smallest eigenvalue

. AG—‘,-(AG)t . bel .
of the matrix 5 because the Euclidean norm of the vector X (u) is exactly equal to ||u|| 7.

For a given € > 0, let

ge(2) = = ifz <0,
ge(r) =z + € otherwise,
and, for all G € G, define % = g.(72). The weights are defined as
HG — BG
7 ZG'eg, IBG

Therefore, for a given G € G, the larger -, the more the subfluxes {Fgﬂ} KeTy, ceexng Will
contribute to the global fluxes {Fk s }keT, reexng. In the numerical tests of §4 we have taken
e=0.1.

VG €G, Vo €G.

3.3 Convergence

Property (P2) is only conditionally verified by non symmetric methods. We propose a computable
criterion issued from the stronger assumption that coercivity holds locally around each vertex
s € V. For a given discretization and diffusion tensor, this assumption can be checked numerically
by computing the eigenvalues of a small linear system of size card(;) < g3 for each vertex s € V.

Let s € V, and set Hr, def {ug € R, K € T;}. The space Hr, is endowed with the semi-norm

=2 D gl u).

KeTs 0€€s 051(

Denote by a7, the bilinear form defined as follows: For all u, v € H,,
def
at, (u,v) = Z Z Z GGFK(, )Y (Yov — VK).
GeG,GCEs KETg 0€EKNG

Lemma 8. Let there be a positive constant 3 s.t.

min inf V,0) > 3. 24
00 ettr, gy 2y O 0) 278 24)

Then, for all u € Hr, ar(u,u) > v3|lul|3.

Proof. For all u € Hy and s € V, let u, def (uk)keT, € H7,. Since any given group G only
belongs to one particular &, it is easy to see that ar(u,u) = ) .y, ar,(us,us), and thus that
ar(u,u) > ¥3 Y,y ||us|[3-. The assert then follows from

D llusliz > i,

sey
which is straightforward since, for all K € T and for all 0 € €k, card({s € V|o € &}) > 1. O
Theorem 3 (Convergence). Let {Dp}nen be a family of meshes matching Definitions 1 and

2 and s.t. hp, — 0 as n — co. Suppose, furthermore, that (24) holds with 3 not depending on
n € N and that there exists v4 < +00 s.t.

VneN, Vo €&,, > 091A5" <. (25)
Geg,

Then, as n — oo, the sequence {uy}nen of discrete solutions of problem (5) with numerical fluzes
defined by (22) converges to the solution w of (1) in LY(N) for all q € [1,2d/(d — 2)) (and weakly
in L2 @=2)(Q) if d > 2).

14



Proof. Tt suffices to verify the requirements listed in Hypothesis 1. According to Lemma 6, the
choice ® = Q meets (P1). The property (P2) holds (with I, = 7,) under (24), by Lemma 8.
Finally, the consistency of the fluxes (P3) can be obtained by proving the strong consistency (see
Remark 3). Indeed, for alln € N, K € T, and o € &k, (22), (21), Lemma 7 and (25) yield

1
Fralor) = o [ A@Te(@) monxe

< |Fk,o(p7,) = Ak Vo(2K) M K 6 |

MEE /KA(w)(VSO(w) —Veo(zk)) ms nk,q

Mg
<m,fo I 09 |(Vo,0m)5 - Vilar)|
G€EGo
+mofo sup [Vip(z) = Vip(ax)|
TE

< (Csvs + C3)m, Bohp,,,

where C3 = sup,¢p, |¢" ()] O

3.4 Convergence of the gradient reconstruction

In order to prove the convergence of the gradient reconstruction (14), Hypothesis 2 must be
verified; this can be achieved by adding a rather benign assumption on the mesh families.

Hypothesis 3. {D,}nen is a mesh family matching Definition 1 and there exists a non-negative
constant g4 independent of n s.t.
di K d—1
max max & < 04.-
KeTn 0€EEK mg,
This assumption and (2) allow to uniformly bound the cardinals of G,. Indeed, since each cell

K is star-shaped with respect to zx we have, for all 0 € €k and all z € 0, (z — zK) - DK, =
dk,; > o1diam(K) and thus, by Stokes’ formula,

de—/dIV.’E—.’L'K Ydz = Z/az—xK ‘DK,

o€fk

> ordiam(K Z m, > —dlam(K)dcard(SK).
o€EK

As mg < wgdiam(K)?, wyg being the volume of the unit ball in R?, this shows that card(£x) <
d“%g“ but, if 7, = {K, L}, G, is contained in the set of families of d faces chosen in £k or &,
and there thus exists Cg only depending on g4, 01 s.t.

max card(G,) < Cs. (26)

g€EE,

Lemma 9. Let {Dp}nen be a family of discretizations matching Definition 1 and 2 and assume
that Hypothesis 3 holds. We also assume that (25) is satisfied. Then, (16) holds.

Proof. For simplicity of notation, the subscript n will be suppressed throughout the proof, which
holds for a generic element of the mesh family {D,}nen. Let v € Hy(Q)

(i) For G € G, we estimate |(Vpv)%,|. Since (Vpv)% , solves (19), and recalling that v,v = 0
for all o € Eext,

_ v, — v oV — VK )2
|(‘7DU)§C|2 < L4G1|2ﬂg j{: ( = KC + :E: QZ__a__JESZ_

0€GNEins, To={Kg,L} L,o 0EGNEexs Ka,o
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Observe that, for all o € &y, denoting 7, = {K, L} we have de +1()11£ - = 7";;:". As a conse-

quence, by (2),

_ 2 _ 2 2
dL,a dK,a' 02
and )
1 m
i [(Vo0)%, < 1AG P83 (14 ) 3 25 (00— vy ) (28)
02 ceG Ka,o
(ii) For G € G, 0 € G N &ny with T, = {Kg, L}, we estimate |(Vpv)$*7|. Owing to (20),
G2 G 2 lor — ara|\? | |vr — v |?
|(VDU)L |* <2 |(VD'U)K(;| 1+ T + ? - (29)

Using (2) and observing that |z — k| < diam(L) + diam(Kg), we have that
L — 2Kol| ( )
= 1+ 30
dr,s - 01 02 (30)

Then, from (29) together with (28), (30) and (27), we deduce that there exists C7 > 0 which solely
depends on Sy, 01 and g5 s.t.

L|(Vou)§7

< Or(1+ 4G ) 3 S (0 — i) (31)

Kg oecq Ka,o!

(iii) Stability. The fact that K is star-shaped with respect to xx and the definition of dk
show that K contains the ball centered at zx and with radius inf,egy di,»; we deduce from (2)
that Cgdiam(K)? < mg < Codiam(K)? (with Cg and Cy only depending on g;) and thus that,
if K and L are two neighborhing grid cells, there exists C1¢9 > 0 only depending on g5 and o; s.t.
L < Cio. Hence, thanks to (28) and (31), there exists a real C1; > 0 solely depending on gy, g2
and [ s.t.

o _ m
Vo € G, VK €T,, mk|(Vov)Z'I? <Cu(l+ 4517 Y. 52 (1ov —vie)?. (32)
o eG Kqg,o!

Furthermore, observe that, for all ¢’ € G, Kg belongs to 7,, so that

mg mg
7 € (Y0 — VKg)? < Z ———(Yorv — vk ). (33)
Kg,o' KeT, K,o'

We infer from (3) and the definition (22) of the fluxes that

def Z Z delFKa Z Z dKzr

m, Ak Y 69 (Vp)37 nk .

KeT €€k KeT o€k GeGo
2
G
<dfg Y Yo mi| Y 65 (VDo) k.,
KeT o€€k Gegs

Equation (25) gives in particular §5|A5"| < 74 and thus, by Cauchy-Schwarz inequality, (26) and
(32), we deduce

T<dR Y Y me Y 057 |(Vou)Ee|

KeT o€k G€EGo

< dB5CsCii (1 +77) Z Z Z Z TG (v — vig)?.

KeT €€k GeG, 0'€G KG"”

x card(Gy)
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We then permute some sums and use the fact that each 7, has one or two elements to obtain Cis
only depending on g1, g2, Bo and 4 s.t.

T<Y S (z > e a:v—vKGf)

0€€ KeT, \GEG, 0’ €G Kcvd’

<201 ) Y Z TG (v — vkg)? = 2012 S Y Z G (v — vy ).

c€E GEG, o' € KG’ GeGoeG o' e KG’

But each group G has cardinal d and thus, by (33),

T <2C12d Z Z MKq ’YJ"U 'UKG = 2C12d Z Z

GeGo'eG Kcv o' €€ GEG, KG7

'VG’U - UKG)2

<201d Y | 2 S (v - 0k)? x card(Go)

o'e€ \KeT, Ko

Hypothesis 3, Equation (2) and mg < Cydiam(K)? %d[:—i, and we thus
infer

S 3 B 0 < 26000, 22 o,

KeTocex
which concludes the proof. O

The following result is a direct consequence of Theorem 2 together with Lemma 9.

Theorem 4. Letu be the solution to (1). Let {Dy, }nen be a family of meshes matching Definitions
1 and 2 and s.t. hp, — 0 as n — oo and denote by u,, the solution of (5) with numerical fluzes
defined by (22) on D,,. Then, if (25) and Hypothesis 3 hold, the sequence {Vp, un}nen converges
to Vu in [L2(Q)]4.

4 Numerical tests

The objective of this section is to assess the performance of the method described in Example 2 on
challenging diffusion problems combining mild or strong anisotropy, heterogeneity and distorted
or skewed meshes. For the sake of completeness, a comparison is provided against (i) the method
of [24, §2.2] refered to as Success; (ii) the MPFA O method of [1] and (iii) the MPFA L method
of [5,4], also described in Example 1. In the first test case, we consider the Dirichlet problem
associated with the following exact solution featuring anisotropic permeability:

4 = sin(wz) sin(wy), A = diag(0.1,1).

In the second test case, we consider the Dirichlet problem associated with the following exact
solution featuring heterogeneous anisotropic permeability:

B sin(brrzx) sin(cmry) if z <9,
v= sin(bmd) sin(cmy) + wa—l cos(bmd) sin(cmy)(x — 0) otherwise
2

and

_ diag(al, bl) if x < (5,
| diag(az,bs) otherwise,

where b = 117, ¢c=19,a; =1,b =10, a2 = 5,by = 1,6 = 0.5. Both tests have been run on (i) a
family of Corner Point Geometry basin meshes with erosion (see Figure 3(a)) and (ii) a family of

randomly distorted quadrangular meshes of (0,10) x (0,1) (see Figure 3(b)).
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Figure 3: Mesh families.

The following indicators have been considered: 12err, the L? error; ergrad, the L? error on
the gradient; nit, the number of preconditioned GMRes iterations; nzmat, the number of nonzero
matrix entries; umin, the mininum of the discrete solution; umax, the maximum of the discrete so-
lution. The number of degrees of freedom is denoted by nunkw. Blown up methods with respect to
one indicator are not plotted to keep the scale readable. The linear systems have been solved with
a direct solver for the indicators 12err, umin, umax and ergrad, whereas the GMRes algorithm
from PETSc [13,12,11] with Hypre Boomer AMG preconditioner (see www.llnl.gov/CASC/hypre)
has been used for nit. The stopping criterion required the preconditioned residual norm to be
smaller than 10~7. As expected, while sometimes displaying better accuracy, the Success scheme
of [24, §2.2] has much denser matrices.

A  Proof of Lemma 6

The proof is trivial if A € C'(Q) since, in this case, C°(Q) is contained in Q. The difficulty comes
from the possible discontinuities of A through the interfaces of Pq, in which case item (iii) of
Lemma 6 is not easy to obtain and might impose discontinuity of Vi through these interfaces.
The proof is made in several steps, following the idea of [18]: we first eliminate the singularities
(vertices if d = 2, vertices and edges if d = 3, etc.) of the boundaries of the open sets {€;}1<i<ng
by showing that we only need approximate functions which vanish around these singularities; then
we reason on each ();, approximating a given function by functions having the same value on the
boundary and vanishing derivatives in the direction An; gluing these approximations together, we
obtain a function in Q which is close to the initial given function.

(i) Elimination of the singularities of {€;}1<i<n,-. First of all we notice that, since C2°(Q) is

dense in H}(Q), the result of the lemma follows if we prove that functions in Q approximate, in
HA(9), any ¢ € C(Q).
Let S be the set of singularities of UY% d9; (i.e. affine parts of dimension d—2 or less: the vertices
in dimension d = 2, the vertices and edges if d = 3, etc.); it is known that S has a 2-capacity
equal to 0 and we can therefore find a sequence of functions v, € C®(R?;[0,1]) s.t. 7, — 0 in
HY(R") as n — oo and, for all n € N, v, = 1 on a neighborhood of S. If ¢ € C°(Q) and
Y = (1 = yp)0 € CX(Q), then ¥, — v in H}(Q) and, for all n, ¥, = 0 on a neighborhood of
S. Hence, denoting by CZ%(Q2) the set of functions in C'2°(£2) which vanish on neighborhoods of
S, the proof of the lemma is complete if we can approximate, in H}(2), elements of gfs(ﬂ) by
elements of Q.

18



0.1
...
Eé
0.01 UScheme \,
O Scheme - g ;1
G Scheme %
Success o]
0.001 .
10 100 1000 10000
nunkw
(a) 12err
10000 .
L Scheme —+—
O Scheme - /
1000 } G Scheme %
Success ] /
100
B o
10 o :
1
10 100 1000 10000
nunkw
(c) nit
-0.5
oo
06 /%Q._H
-0.7 - .
-0.8
-0.9
-1
-1.1
-1.2 |- L Scheme —+— |
-1.3 }-O Scheme - L
G Scheme % Y
1.4 F
Success B %
-1.5
0 100 1000 10000

nunkw

(e) umin=-0.6349341

10
1
L SchemeB—+—
O Scheme - B
G Scheme - —_—
Success B ~
0.1 :
10 100 1000 10000
nunkw
(b) ergrad
100000 . -
L Scheme —+—
O Scheme -
G Scheme %
10000 Success B
1000 u .
100
10 100 1000 10000
nunkw
(d) nzmat
1.8 .
L Scheme —+—
1.6 }-O Scheme - x
G Scheme % ;
14 | Success -
1.2
1
0.8 o
0.6 %’
0.4
1 100 1000 10000

nunkw

(f) umax=0.6687703

Figure 4: Numerical results for test case 1 on the basin mesh family.
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Figure 5: Numerical results for test case 1 on the randomly perturbed mesh family.
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(ii) Reduction to a Q;. Let ¢ € é’f’S(Q) and assume that, for all 1 < ¢ < Ngq, there exists a
sequence ! € C?(€);) which converges to ¢ in H'(Q;) as n — oo and s.t., for all n € N, ¢}, = 1
and (Achib)lg—i-n,- = 0 on 89;. Define then ¢, : & — R as the function equal to ¢! on Q; for
all i = 1,..., Ng; since ¢, = I = 1) on 9Q; N 9Ny, ¢, is well defined and continuous on €, it
is C? on each ), it vanishes on 8 (on which 1) = 0) and the tangential derivatives of ¢,, are
continuous through the interfaces of P, (for all t parallel to 9Q; N 0Q;, the values of (V(pn)m—i-t
and (Vgon)lgfj-t on 99;NON; can be computed using only the values of i, = ¢J, = 9 on 0Q; NN,
and are therefore equal). The continuity of ¢, accross the boundary of §; for each i moreover
ensures that V,, has no singularity on these boundaries and it is therefore simply the function
equal to Vi on §; for all i; hence, ¢, — 9 in H(f2). Finally, the fluxes AV, n are clearly
continuous through the interfaces of P, since they vanish on either side of each such interface
o; N 8Qj.

To conclude the proof, it remains to find the convenient approximations {¢f,}n>1 of ¢ € CZ%(9)
on ;.

(iii) Approximation on Q;. Let ¢ € o%(€2) and let O be an open set containing S s.t. 1) =0
on a neighborhood of 0. Let (F7)1<i<r be the faces of ; (i.e. the affine parts of 0€2; of dimension
d—1); for all 1 <7 < r, we denote by n; the unit normal to F; pointing inside ; and we define
the C? function f; : R x F; = R? by

VteR, Vy e Fy, filt,y) =y +tA(y)n;. (34)

If (t,y) € R x F; and (t',y") € R x Fj are s.t. fi(t,y) = fi(t',y") then, since (y — y')-n; = 0, one
has tA(y)n;-n; = t'A(y")n;-n; and thus
Ay )y Aly)m

y—y' =tA(y)n;n (A(yl)nl'nl - A(y)nz-nz> ' *

Letting £ > 0 be smaller than the inverse of the Lipschitz constant of y — [y Al(‘y()ylz:"n ’ (which is
well-defined since A(y)n;-n; > ag for all y), (35) can happen with y # y' only if |¢| > . Hence, f;
is one-to-one on (—¢, ) x F;. We also notice that A(y)n; is uniformly transverse to the hyperplane
H; containing F; (this is again A(y)n; - n; > ag) and thus that, upon reducing e, the Jacobian
matrix of f; at any (t,y) € (—e,e) X Fj is invertible.

Let V; be an open neighborhood of F;\O in Fj s.t. dist(V;,S) > 0; the preceding reasoning shows
that f; is a C2-diffeomorphism from (—¢,e) x V; to fi((—¢,€) x V), an open set in R? containing in
particular f;({0} x F;\O) = F;\O. Since A(y)n; points inside §2; (one more time, A(y)n;-n; > 0)

and dist();,S) > 0, upon reducing again ¢ if needed, we also see that U of f1([0,e[x V) is
contained in €); and is a neighborhood of F;\O in Q; (see Figure 7 for a representation of some
sets appearing in this proof). Moreover, for all z € U, if z = fi(t,y) for (¢,y) € [0,e[xV; then

dist(z, Hy) = (z — y)-n; = tA(y)n;n; and thus 0 < ¢ < aiodist(a:,Hl). This shows that

Vo € Uy, if (t,y) = (figfo,erxw) ™ (z) then |z —y| < a—zdist(w,Hz)- (36)

Let us define v¢; on U s.t.

Yi(fult,y)) =(y) for all (¢,y) € [0,e[xV. (37)
Y belongs to C2(U;) and +; = 1 on V; (because fi(0,y) = y); derivating (37) with respect to t,
taking ¢ = 0 and using (34) we also have

0= %(¢l(fl(t7 Y=o = Vi (y)-A(y)m = A(y)Vihi(y)my  for ally € V. (38)

As 1) vanishes on a neighborhood of O, there exists a neighborhood N of V;NO in V; s.t. ¢» = 0 on
N; (37) then implies ¢ = 0 on f;([0,[xN)) which is, f; being a diffeomorphism, a neighborhood
in U of fi({0} x VN O)) =V, N O; to sum up,

1; = 0 on a neighborhood of V; N O in Y. (39)
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Lines t € [0,e[— y + tA(y)ny

Figure 7: Various sets appearing in the proof of Lemma, 6.

For 1 <1 < r, we take a sequence 7, € C°(R%;[0,1]) s.t., for all n € N, 4% = 1 on a neighborhood
of F;\O and

L' =0on {z € R¢, dist(z, F;\O) > 1/n} and ||V7£L||Lm(Rd) < Cisn, (40)

with Ci3 not depending on n. If n is large, supp('y,ll) NQ;is a compact subset of U and W’iﬂﬁl
can therefore be extended to €; by 0 outside U; without loosing smoothness; we then define
on =Y+ =Y )¢ € C*(Q;). Since ¥ = 1 on V; and, for n large enough, v},
vanishes on 9Q; outside V;, we have ¢, = 1 on 99Q; for such n. Still considering large n, on
a neighborhood of Fj\O in Q; we have 74, = 1 and v* = 0 if k¥ # [ and therefore, on such a
neighborhood, ¢, = ;; (38) thus shows that AVy,n = 0 on U]_,; F;\O = 99;\0; since all
the 7.4, and ¢ vanish on a neighborhood of 99; N O in €; (see (39)), we obviously also have
AV, n =0on 0Q;NO, and thus on the whole boundary of ;. It remains to prove that ¢,, — 9
in H'(£;) as n — oo; in order to achieve this, we write ¢, — 1 = Y",_, 74 (41 — ¢) and use (36),
(37) and the smoothness of ¢ to see that, if dist(z, F;\O) < 1/n, then |¢;(z) — ¢(z)| < Cia/n
with Ci4 not depending on n or z (because = fi(t,y) with y € V; s.t. |z — y| < fo/(con)); we
infer from (40) that

C
InE (b = )|z < %ﬂﬂeaﬁ(ﬂi)l/2

and

IV (4 (1 = )|l £2(0) < C13C1ameas(Q; Nsupp(v4))'? + ||V (%1 — )| 2(0insupp(rt ) -

Since meas(€; N supp(,)) — 0 as n — oo, this concludes the proof that ¢, — v in H(€;).

Remark 9. The proof shows that A need not be C? on the whole of each Q;, only on the affine
parts of 0€2; (and the reader can check that the rest of the paper only requires the C! regularity
of A on each ;).

B Proof of Lemma 7

Proposition 3. Let D be a generic element of a family of discretizations satisfying Hypothesis 1.
Let p € Q, 0 € &y with T, ={K,L} and y, € 0. Then Vy(zk) —Vo(xr) can be decomposed as
follows:

Vo(zk) = Vo(zL) = ponk,e + Totos, (41)
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where |t,| =1, to-ng, = 0 and the reals pi,, 7, verify

|7, < C15 [diam(L) + diam(K)], (42)
_ Wk(xr) to (Yo —z1) | Wk(Ys) = Wi(ys)
o =" dL,a' + e dL,o’ * dL,o’ ’ (43)
with der
Wk (z) = ¢(z) — p(zk) — Vo(rk)-(¢ — 2K) (44)

and Ci5 = max(|¢" | (), 0" 1o (1))

Proof. The vector t, is obviously the normed orthogonal projection of Vy(xx) — Vo(xr,) on the
hyperplane parallel to o, and the reals u,, 7, are given by the formulae

pe = (Vo(zkx) = Vo(zr))nks, 7, =(Ve(rkx)— Ve(zr))ts.
Since

~Wk(zr) + Wk (Yo) —Wi(ys) = —¢ zx) + Vo(zk)(z1 — oK)
rr) — Vo(rk) (Yo — TK)
zr) +Vo(zr) (Yo — zr)
= Vo(zk)(zr —Ys) + Vo(zr) (Yo — z1)

= (Ve(zx) = Vo(zr))-(zL — ¥s),
we can use (41) and the fact that (z — y,) - ng,, = dp; to re-write p, under the form

_WK(J:L) + ta'(ya - mL) + WK(ya) - WL(ya) )

dL,a' dL,a'

_|_
A/\E/\
L&
I+

fo = dL,a

The face o is completely contained either in one element of the partition Pq or in an interface
of this partition; using then either the regularity of ¢ inside each element of the partition or the
continuity of its tangential derivatives through the interfaces of P, we can re-write 7, under the
form

7o = (Vo(zk) = Ve(ys))te + (Vo(ys) — Vio(zL))-ts

and the proof is complete since ¢ is C? on K and L. O

Proposition 4 (Flux “quasi-continuity”). Let D be a generic element of a family of discretiza-
tions satisfying Hypothesis 1 and ¢ € Q. For all G € G, Vy(x Kk, ) is the solution of a linear system
of equations of the form

AcYa = Ba (1) + Cale),

where o7 € H7(Q) is defined by the family {p(zx)}keT, Ac and Ba(p1) are the matrices defined
in Lemma 5 and the vector Cg(p) verifies

[Calp)] < C1 max diam(K) (45)

with Cy > 0 which only depends on o1, o2, A and .

Proof. For a cell K, let Wi be the function defined by (44). Since ¢ is C? regular on the closure
of each element of Py and since each cell is completely contained in one of these elements, there
exists C1g > 0 only depending on ¢ s.t., for all K € T,

[Wk(z)| < Cigdiam(K)? for all z € K. (46)

For all o € &ipy with 7, = {K, L} and y, € o, we apply Proposition 3 to decompose Vp(zg) —
Vo(zr) (note that the Wi (x1) appearing in (43) s in general not of order 2 with respect to the
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size of the mesh, since 7 € K and ¢ is not regular accross the boundary of some cells). Since
@ € Q, we can also write

mid / (AV9) g (2)ni0 dz + mi / (AV() z(2)n, dz = 0 (47)

and, Vi and A being C! on the closure of each control volume, we deduce from (47) that the real
Co () = AkVo(zr)nk,e + ALVe(zr)-ng , verifies

6o ()] < Cr7(diam(K) + diam(L)), (48)

where C17 > 0 depends only on ¢, A.

Let us now consider G € G, 0 € GN &g and use these preliminary remarks with K = K¢ and
Lst. T, = {Kg, L}. By definition of {,(p) and (41),

(Apng s + Axengg o) Vo(rr,) = Apng-Vo(rg,) — Arng -Vo(zr) + (@)
= —Apngp.npope + 1 ALng o te + (o (9).

Equation (43) and the definition of Wk, (z1,) then show

(ALnL,a + AKG nKG,G')'V(p('TKG)

Arng . nr

= T(W@?L) —p(TKs)) — dL..

Arnyg . np ,
+C<7(<p) - %(Tata'(ya - -TL) + WKG (ya) - WL(ya)) + TUALnL,U'ta

Arng . ny,
#W(wm)-(u — Tk,)

and therefore

Arng ,mp, .

(o1 xKG)) Vplax,) =

Arng ,np

(ALnL,a + Ak, o +
dL,a'

. (p(zr) — p(TKs)) + o ()

with ¢ (¢) = (o (p) — M(Toto'(ya —2r) + Wke (o) = Wi(ys)) + Anpoters. If o €

dr,s

G N Eext, using the definition of Wk, (z,), we have

AKGnKG,U'nKG, _ AKGnKG,U'nKG,U(

“Vo(rre)(To — TK6) = drco s —p(zKs)) + ¢ (#)

ng,o’

with ¢, (p) = — ~EG “;{I?G,:“KG =Wk (o)

We deduce that Vp(zk,) is the solution of the linear system of equations

AcYe = Ba(pT) +Calyp),

where Cg(yp) is the vector of R? defined by {c,(¢)}secq- Thanks to (48), (42) and (46), there
exists C1g > 0 which only depends on g;, g2, A and ¢ s.t., for all ¢ € G with 7, = {Kg, L},
leo(p)] < Cyg(diam(L) + diam(K¢)). The proof is complete. O

We are now in a position to prove Lemma 7. Let Wik the function defined by (44) and recall
that (46) holds. Since (Vp<p7—)f(c is the solution of the linear system (19) with v = @7, we
can deduce from Proposition 4 that Vo(zks) — (VpeT)%,, is the solution of the linear system
AcZa = Ca(p) where the vector Ca(yp) satisfies (45). We obtain

IVo(era) = (VoeT)%s| < CLIAG! nax diam(K). (49)
G
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For all ¢ € G N &y, with T, = {K¢, L}, thanks to (20) with v = ¢7, we have

RL,U(‘PT)

(Vpor)§7 = (Voor) %, — s

0

where Ry . (¢7) = ¢(x1) — ¢(zks) — (VooT)% (L — TK ). Thanks to Proposition 3, we can
deduce that

Vo(ar) — (Voer)s " = Ve(zrs) + tetir,e — Tote — (Vo) %, +

R0 (p1)
dL,o'
Rr o (p1) — Wk, ($L)n
dL . L,o

)

to'(ya - mL) + WKG (ya) - WL(ya)
dL,o’ dL,o’

nrg.s

=Vo(zks) — (Voor) %, +

+ | 7o

nre,— Tata

(#L —eKe)
dL,a'

i Tata'(ya - xL) + Wk (yo) — WL(yJ) Ny, —7yt,.
dL,g' dL,a' '

<

p(exs) = (Vo1& + (Vo(rka) — (VDoT)R,s)-

Using then (49), (46) and (2), we can deduce that there exists a real C19 > 0 which only depends
on g1, g2, A and ¢ s.t.

IVo(z1) — (Vo) 77| < Cio(1 + |AG"]) max diam(K),
KeTg

and the proof is complete.
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