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ABSTRACT. Starting from Sklyanin’s separation of variables for ffg¢ Yangian model, we derive
the separation of variables for the quantsfy Gaudin model. We use the resulting new variables
for rewriting thes/s Knizhnik—Zamolodchikov equations, and comparing thenmhwirtain null-
vector equations in conformal field theories withg-algebra symmetry. The two sets of equations
are remarkably similar, but become identical only in théaal level limit. This is in contrast to the
sty Knizhnik—Zamolodchikov equations, which are known to baiegjent to Belavin—Polyakov—
Zamolodchikov equations for all values of the level.
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1. Introduction and conjecture

Many interesting models of two-dimensional conformal figldlories are based on affine Lie alge-
bras,s/éj\v and their cosets, starting with Wess—Zumino—Witten modedssolve such theories is an
interesting challenge, whose difficulty depends more frioenchoice of the underlying Lie algebra
s, than from the particular coset or real form chosen.

For example, thes/, family includes string theory imdSs and in theSL(2,R)/U(1) 2d
black hole, as well as thé/;" model; the simplest non-rational nontrivial model of thenfly
is however Liouville theory, also known as conformdh, Toda theory. In several of the other
theories in thes/, family, it turns out that arbitrary correlation functionave a simple relation
to certain Liouville theory correlation functions [1, 2]hiE relation entails a relation between the
Knizhnik—Zamolodchikov equations which follow fro:.?@ symmetry, and the Belavin—Polyakov—
Zamolodchikov equations which follow from the conformairsyetry of Liouville theory [3]. The
relation to Liouville theory is helpful in solving certainadels in thesfy family, by disentangling



the particular details of a model from its genesdh-based properties. For example, tHg* -
Liouville relation was very helpful in solving théi’?jr model on a disc [4]. Moreover, playing
with the Liouville side of the relation leads to the discagvef new conformal field theories which
generalize théf;” model [5], and which can be considered as members of an ederigifamily.

The intuitive reason why such a relation exists is té/“fétrepresentations are parametrized by
just one number, their spin. So it is not very surprising thatdynamics of say th&/;~ model,

a theory of three interacting bosons, are in some sensdieffigcone-dimensional. Applied to
a theory with ans*TN?g symmetry algebra, which may involve as manyNa$ — 1 bosons, this
reasoning suggests that it could be related to a theory of dnl- 1 bosons. Such a theory is
present in theséy family: namely, conformak/y Toda theory, which can be described by the
LagrangianL = (¢, d¢) + 32N eb(ei:9) where the fieldp(z, z) and the simple roots; live in
the N — 1-dimensional root space ef . (See for example [6] for details.) It is therefore natural
to investigate whether correlation functions of that tlyebave a simple relation to correlation
functions of other models in the family. Such a relation vaobé a welcome simplification: for
instance, in the/s family, we would trade 8 bosons of ti#&.(3, R) WZW model for the 2 bosons
of s¢3 conformal Toda theory.

The investigation of the/ - families can be motivated both from the appearance of groups
of rank higher than one in many interesting string theorykgemunds, and from the observation
that theories in the/ -~ families are qualitatively more difficult, and more genetitan theories
in the s¢5 family. This is due to features like: infinite fusion muliigties, correlation functions in-
volving degenerate fields without obeying nontrivial diffetial equations, and structures constants
which can probably not be written in terms of known speciattions [6]. These are serious obsta-
cles in the way of solving such theories. Nevertheless, wiendw a strong explicit constraint on
the correlation functions of all models which have the &l symmetry: they obey KZ equations.
The aim of the present article is therefore to determine hérehes/s KZ equations are related to
some null-vector equations in conforma Toda theory, which follow from its symmetry algebra
Ws.

In analogy with thes/s case, we will look for a relation based on Sklyanin’s sepamnadf
variables [7]. As the KZ equations are closely related to@aeidin Hamiltonians, we will use
Sklyanin’s separation of variables for the quantufy Gaudin model. Before using it, we will
actually have to work it out, as this has apparently not bafiy dlone in the existing literature. A
rather close starting point is available though: the sejmeraf variables for the/s Yangian model
[8].

Let us now sketch the correlation functions we are intedestand the relation we are aiming
at. Consider a theory with a@g symmetry algebra at levél. We are interested in correlation
functions of generie@, affine primary fieldsb’(z|z), where the spiry labelss/; representations,
the variablex is a generic isospin coordinate (a triplet of complex nureeandz is a coordinate
on the complex plane where the field lives. We denote-@oint function of such fields as

Q, = <ﬁ @Jﬁ(lezz)> . (1.2)
i=1

We will seek to relate such correlation functions to fairfyrjicular correlation functions in a theory
with a W5 symmetry algebra at parameter (k — 3)‘§, which involve not onlyn genericWs-



primary fieldsV,, (z;) corresponding t@Ji(z;|z;), but also3n — 6 degenerate field8_,-1,, (v,)
with the special value-b—'w; for their W3 momentum:

3n—6
<H V14, (Ya HVai(zl-)> : (1.2)

The number of degenerate fields is of the orde®:af which allows their worldsheet positiong
to (approximately) correspond to tBe components of the isospin variables- - - z,,. This will
also allow(},, to obey some differential equations which may be relatedéoktZ equations for
Q,,. Moreover, the tentative relation betwe@p and(,, will involve a simple twist function

O, H yb’\HH —zZ“H zi — 25)" 1.3)

a<b 1<j

for some constants, i, v to be determined in terms of the levebf ours@, algebra; and the inte-
gral transformatiorkC with integration kernekK ({x; }|{y. }, U|{zi }) which implements Sklyanin’s
separation of variables, and may therefore depend on the ggbut not on the levek. We will
then investigate the validity of the conjectidg ~ K -0,,Q,, = [dUT], dya K -©,Q,, or more
explicitly

Qn({zi}l{zi}) /dUdea ({zi}H{ya}, Ulz}) - ©n({ya} {2 ({ya} {z}) - (1.4)

The meaning of the equivalenee here is that both sides obey the same differential equatibns
true, this equivalence may then be promoted to a relatiomdmt physical correlation function of
specific models, like the relation between tHgL model and Liouville theory [1], but this is not
the focus of the present article. This is why we do not wormgudtsuch details as the dependence
of the correlation functions on antiholomorphic variables

The article will start with a brief review of the KZ equatioasd other Ward identities in
conformal field theories With/&\v symmetries, where we will explain how the Gaudin Hamiltosia
appear in such equations. We will then review the KZ-BPZtiafain the s/, case; the reader is not
advised to skip that section as the KZ-BPZ relation is priegkim a form suitable for generalization
to sf3. Thesls case will then bring extra technical complications but f@maeptual novelties. We
will find that the conjecture (1.4) fails except in the crlicevel limit.

2. Gaudin Hamiltonians in conformal field theory

We will review how the Gaudin Hamiltonians appear in Wardniitees obeyed by correlation
functions in conformal field theories with a@? symmetry algebra. The Ward identities associated
to the stress-energy tensdY (z) lead to the KZ equations, which involve the ordinary Gaudin
Hamiltonians. The Ward identities associated to the culei fiv/(z) involve higher Gaudin
Hamiltonians.



2.1 Knizhnik—Zamolodchikov equations

The affine Lie algebra/&\v is an infinite-dimensional extension of the simple Lie algelf . The
generatorg® of s¢y, its structure constant&, and its metrio:® are defined by the relations

[ ] fabtc , Iiab =Tr tatb , fab cd NHad ’ (21)

where here and in the following the trafe is taken in the fundamental representation, so that our
metric k% coincides with the renormalized Killing form of [9](13.13Fhe affine Lie algebra/y
can be formulated as the algebra of currefft§z) with the operator product expansion

Lk ab
C(z-w)p?

where the parametdris called the level, and the normal-ordered produét/?)(w) is defined by

the present formula. Conformal symmetry follows from thésence of a Virasoro algebra with
2

central charge = k(é\l&l), generated by the Sugawara stress-energy tensor

Jc( )

J4(2) 0" (w) = + [+ () (w) + Oz —w) (2.2)

T'(2) = —W(J“J“)(z) , (2.3)
where.J¢J¢ is a shorthand fok;.J%J°. The identification ofl'/(z) with the generator of confor-
mal transformations will be at the origin of the KZ equatiombfese equations are satisfied by any
correlation function (1.1) of. affine primary fieldsd’ (x;|z;) on the complex-plane, where the
spinsj; label representations ef y, the isospin variables; label the states in a given representa-
tion, and the complex numbets are positions on the Euclidean two-dimensional spacetirhe.
affine primary fields are defined by their operator productesons with the current$®(z),

D®I (z|w)
z—w

JU(2)®I (z|w) = +0(1), (2.4)

where D? provides a realization of the representation of spin terms of differential operators

acting on the isospin variables so tha D, D*] = f2° D¢, We will keep this realization arbitrary,

without committing to any particular choice of isospin adfes. Let us however give an example

of such a choice in thel, case:
0

D™ =— |, D?’::Ua

Dt = xQE —2jx . (2.5)
ox

9r 7 ox

The KZ equations are now obtained by insertifig(z) into the correlation functios,,, and us-
ing the conformal Ward identity fo#/(z) on the one hand, and the affine Ward identities for
(J*J*)(z) on the other hand:

T7(2) H(I)ji(mi]zi) = Lo n L7y @ Q,
i=1 i=1 (Z - Zi)2 zZ— Z

= E (2.6)
zZ— 2 zZ—2z
/=1




where the subscrigt) in Dy indicates that it acts on the isospin variablgsand by definition
L7 ; is thep-th mode of"’(z) acting on®’s (;|2;), according to

. 1 .
J &7 - = _ \p+1lpJ J

Ly, ® (x]z) = 5] jédw (w— 2P T (w)P (z]z) . (2.7)
Calling A’ the eigenvalues aof, such thatLJ( NU A7 Q,, we first deduce from eq. (2.6) the
expression for\; in terms of the quadratic Casimif,(j) = D D* of the s/ representation with
spiny,

Ca(j)

SN (2.8)

J —
Ay =
Now TJ(z) is assumed to generate conformal transformations, and riicyar L7 ()Qn =

. (We define 2 5 = a%- as a derivative at fixed isospin variables.) Together with eq

(2 6) this implies the KZ equatlons [10]

5 D{ D,y
k—N)—Q,=-HQ, , H; = 2.9
(k= N)5- Z P (2.9)

Then commuting differential operatord; are called the Gaudin Hamiltonians. Through its de-
pendence o) andD&), each one of the Hamiltonians involves all of the isospin variables
x;, which makes the problem of their simultaneous diagonédimaifficult. This difficulty will be
solved by Sklyanin’s separation of variables, which repaihe isosping; with new variablesy;,
and combines the Gaudin eigenvalue equations into an edseatuivalent set of equations, each
of which involves only one of the new variables.

2.2 Ward identities for the cubic field

In addition to the quadratic invariant tenset® = Tr t*¢?, it is possible to define the fully symmet-
ric cubic invariant tensor

d¢ = Tr (£4%€ + t2¢0) . (2.10)

This tensor vanishes in the casesdf, but not in the cases offn>3. It can then be used for
constructing the invariant cubic field

1

(k—N)3

W (2) = —p dae(J*(J°T))(2) , p (2.11)

=

This generalizes the Sugawara construction (2.3), withevewtwo substantial differences. First,
while the fieldT”/(z) is interpreted as the generator of conformal transformatithere is no such
geometrical interpretation fdi’/(z). Second, while the field/(z) obeys a Virasoro algebra,
the field W7 (z) does not obey the hlghen/3 algebra [11]. In other words, while the Virasoro
algebra can be realized as either a coseiﬁg)br a subalgebra of the enveloping algebrabtr>2
(albeit with differing central charges), th#’; algebra is a coset Qf@g but not a subalgebra of the
enveloping algebra oa%;,



In analogy with eq. (2.6) we now have

n " w wo w7, .
J (I)Jz P — 0,(4) —1,(4) —2,(i) 0
<W (z)i];[1 (i) Zl o Zi)g + (z — Gt |
Db
) 0
= Qn , 2.12
dabe Z — Zz Z — Zg ( )

where by definitiori/VpJ(i) is thep-th mode ofi¥/(z) acting ond7: (:cl-|zl-), according to
Wp‘]fbj(m\z) = % j{dw (w — 2)PP2W (w) DI (z]2) . (2.13)
a z

Calling ¢’ the eigenvalues d§/, such thaWd’(Z.)Q = ¢/ Q,, we first deduce from eq. (2.12) the
expression for] in terms of the cubic Casimif’s(j) = day.(D*D’D® + D*D°D") of the sl
representation with spipn

1

af =50 Cs0) (2.14)
We further deduce
1
1
Wy o = 0 H' (2.16)

where the differential operatof$; andH/’ are higher Gaudin Hamiltonians, whose explicit expres-
sions in terms OD(“Z.) can easily be derived from eq. (2.12). But, in contrast{q, the operators
W7, andW, are not interpreted as differential operators with respeet The equations (2.15)
and (2.16), which generalize the KZ equations, are thezefiot differential equations, and they
will therefore not help us test our conjecture. Nevertheldisey will naturally appear in certain
formulas.

3. Review of thes/, case

In this section we will review the relation between #g KZ equations and BPZ equations. This
was originally found by Stoyanovsky [3], using Sklyaninsparation of variables for thel,
Gaudin model [7]. However, the original derivation relied a particular choice of the isospin
variables. This choice of isospin variables makes the resalarkably simple, but has no analog
in the s¢3 case, as we will show. We will therefore reanalyze ¢hecase, using whenever possible
objects which do have analogs in thg or evens/ cases. We will present systematic derivations
of their relevant properties, which will help clarify whethand how they can be generalized to the
sf3 case.

3.1 Separation of variables for thes/; Gaudin model

Let us consider a system afrepresentations offy with spinsj; - - - j,,. Consider the associated
quantum varlable.@g) such than( ) (j)] = 6ijfngfi) with DDy = Cs(ji). The system
comes with parameters - - - z,,. Sklyanin’s separation of variables for this system ineslthree
ingredients:



1. A function B(u) of an arbitrary variable. (the spectral parameter), whose zeroes are the
separated variableg, so thatB(y;) = 0;

2. Another functionA(u) such thap; = A(y;) is the conjugate momenta {g;

3. Akinematical identity, called the characteristic edqmumatwhich for any given relatesy; and
Pi-
We now briefly review the construction of these three objetthe s/, case. They are built from
the sf5 Lax matrix

n taDa_
_ (i)
I(u) = — A1
(u) ; gt (3.1)
whose matrix elements; () obey the identity
(u =)L (u), I5(v)] = 0I5 (w) — 6315, (u) — 0515 (v) + 0515 (v) - 3.2)
With the particular choice eq. (2.5) for tké, isospin variabler, the s¢s Lax matrix is explicitly
Iy 1 (0 . n 1o
I(u) — 2n2211uzi 2( aaxi .] > 1 nZzll u—z; 8:va¢ ' (3.3)
Yliml i <5Uz oz 23@'952‘) —2 iml ug (xZaT - Ji)
Now choosing
B(u) = I}(u) , A(u)=I}(u), (3.4)
it is easy to check that
(u—v)[A(u), B(v)] = B(v) — B(u) . (3.6)

These relations ensure that the operatgrdefined as the zeroes &f(u), andp; = A(y;), do
satisfy

lvi-y) =0 [pisyil =05 . [pipj] =0. (3.7)
In particular, [p;, B(v)] = f_(—_”?} agrees withB(v) o HEZ:ZJ)) There is however a problem
3 7 ]

of operator ordering in the expressiorsy;) and B(y;), because the separated variahjgsre
operators. This problem is dealt with in reference [7]. Wiigmore it in the forthcoming heuristic
derivation of the characteristic equation. Let us starhwlitt (A(y;)id — I(y;)) = 0, whereid is
the identity matrix. (The determinant of a matrix whose fiirs¢ vanishes is zero.) This implies
p? — %(151 §)(yi) = 0. This characteristic equation can easily be rewritten as

1 Ca(je) 1

2 2\J¢

p' H—O’ 3-8
’ 2;(%‘—%)2 ;yi_zf ¢ (38)

whereHy is of course a Gaudin Hamiltonian (2.9), afid(j) is the quadratic Casimir of a spjn-
representation.



Functional space interpretation. We now wish to consider the quantum variablég) as dif-
ferential operators acting on functions({z;}) of isospin variables;. (An example of such a
realization was given in eq. (2.5).) Similarly, the sepedatariableg), and their associated mo-
mentap, may act on functionss({y}), in particularp,¥ = 2-W. The separation of variables
{z;} — {y¢}, U (where the extra variablg will be defined shortly) is then intepreted as an integral
transformationC such that

wmmzniamunz/ﬁU/rwwmemmxm@me» (3.9)
l

where the kernek  is characterized as a common eigenvector of the commutiegatpsB (u)

Hz(u - yé))
B(u) - U=————= ) K({x;}|{ye},U) =0. (3.10)
(00~ B =) K. 0)
The simultaneous diagonalization of the Gaudin Hamiltesii&/;, namely the set of equations
(Hy — Ey)¥ = 0, can now be reformulated using the characteristic equé8@), which implies

0% 1 Ca(je) E, -
~ __Z My — | = A1
(3%2 2 zé: (yi — Zé)2 ZZ: Yi — 2 0 (3.11)

The solutions of this equation can be found in factorizednfdr = Hizﬁ(yi). This justifies the
name “separation of variables” attributed to the changeadtblesx; — ;.

Some remarks. Finding the kerneK by the simultaneous diagonalization of the operafgfs)

is easy in thesl, case becausB(u) = I?(u) is a sum ofn commuting operators, so that we have
K({zi}|{ve},U) = [1i-, ki(xi|{ye}, U) where the the equation dq is obtained from eq. (3.10)
in the limitu — z;:

Hz(zz‘ —Yr)
OEDT + ) ki(zil{ye}, U) =0, p = U202 (3.12)
(DG (a7 + i) kil e} U) MG
For example, if the isospin variables are chosen as in e8), (fhen we findk; = e #%i, This
suggests that we could use other isospin variabjesuch thathi) (t*)? = —fi;, then we would

find k; o< 6(1; — uqi), SO that we could explicitly perform the integrals in eq.9§3.This would
lead toW({/1;}) o ¥ ({y},U) with simple proportionality factors, as the change of valga
{:} — ({ye}, U) would now be local and described by the functipn&{y,}, U). More generally,
for any choice of isospin variables, the kerélwill be of the type

n

K({zi}{yeh, Uz 1) = [T ki (@l {5} (3.13)
i=1
wherep;({y}, U|{z;}) is defined in eq. (3.12), and we made thedependence explicit. Thus, in
the s¢s case, the kernek can be determined explicitly, and this is because the opeit.) is a
linear function of the Lax matrix (u).
Let us finally be more precise about the number of varialle¥ hey are defined as the zeroes
of a rational functionB(u) which, barring extra constraints, hagpoles and degree1. Therefore



we must haver — 1 such variables, and theth variableU is the eigenvalue of (1) >, Dgy.-
In conformal field theory applications, we however imposeéktra constraing " , Dgl.) =0, so
that B(u) has degree-2. This yieldsn — 2 variables{y,}¢—1...,—2, andU is the eigenvalue of

—(t")7 i1 ziDfy,.
3.2 Thesls Knizhnik—Zamolodchikov equations in Sklyanin variables

We just saw that Sklyanin’s separation of variables is ugeful for simultaneously diagonalizing
the sfy Gaudin Hamiltonians. This problem is closely related to ph@blem of solving the KZ
equations (2.9), which are obtained by replacing the eigleeg of the Gaudin Hamiltonian3;
with —(k — 2)5%_. This suggests that it may be interesting to rewrite the KiZagigns in terms of
Sklyanin’s variables. To do this, we will use the charatieequation (3.8) which such variables
obey, and apply it tdC~1(2,,, which is a function of{y;}, so thatp;,X~1Q,, = a%lc—lQn. While
itself just a kinematical identity, the characteristic atjon then allows us to reorganize the KZ
equations as

La—2+i L ’C_lilc—i—ii K1'Q,=0 (3.14)
k=20y?  Sy—z du Sy —w)? o '
where we drop the index from;, and we useﬁj = —;gg)) from eq. (2.8). We still have to

perform the change of variables on thederivatives at fixed isospins, i.e. to rewrifeﬂ%lc in

terms ofa% = . This is rather easy because of the particular form of theet¢B.13), where

d

0z,
Ya

the dependences duw,}, U and{z,} are channeled through the particular functigns}. This

implies that the integral transformation (3.9) just addstfarder differential operator% 9 to

U
s, so that
k7
Y 0 oy, 0 ou 0
lL—_K=— 2 = = 3.15
= on T X o o 0w, U (3.15)
Denoting{y.} = {v, {ys}}, we obtain the KZ equations in Sklyanin variables,
1 9 K1 o 0 1 o 0
——ast Y —— (i + 5+ — =
(k—23y2 ;y—zé <9zz 3y> Zb:y—yb <3yb 8y>
n AJ .
+y — 1K 1'Q,=0. (3.16
20 zm) (340

In this equation the variables are no longer separated camtiablegy, appear in addition tg.

3.3 Comparison with Virasoro null-vector equations

In the previous subsection, we have studied the KZ equaiiors CFT with ans/é\g symmetry
algebra at levek. We will now compare them with null-vector equations in a Gkth a Virasoro
symmetry algebra at central charge= 1 + 6(b + b—1)? whereb? = k—EQ This is the Virasoro

algebra which would be obtained from os/f?g algebra by quantum Hamiltonian reduction (see for



instance [11]), although that reduction does not explaénréhation between differential equations
which we are about to review.
The Virasoro algebra can be formulated in terms of the seassgy tensof’(z), which obeys

e 2T (w) 0T (w)
z—w)? (z-w)?2 z—-w

T(z)T(w) =

+0(1). (3.17)

Primary fieldsV,, (w) of momentum and conformal dimentiod\, = a(b+ b~ — ) are defined
by

_ AgVa(w) | Va(w)

T(2)Va(w) 5

+0(1) . (3.18)

(z —w) z—w

This definition does not distinguish the primary fields and V,,,-1_,, which have the same
conformal dimension. These fields are therefore assumeslpodportional, with a proportionality
constant called the reflection coefficient. THis symmetry can be understood as the action of the
Weyl group ofs/s on the space of the momenia

The Virasoro representation generated by the degenerhid/’f_i% is known to have a null-
vector at level two Namely,L_o + b2L§1)V7% = 0, where the modeg,, are defined as in eq.
(2.7). This implies that correlation functions involvingch a degenerate field obey the Belavin—
Polyakov—Zamolodchikov equation [12]

? K10 K A,
o —_- T
Oy? +;y—zi8zi +;(y—zi)2

Curiously, this equation is formally identical to the vdnliexrseparated KZ equation (3.14). The
meaning of this formal similarity is not clear to us. The KZ4iatjons in Sklyanin variables (3.16)
actually involven — 2 variablesy; - - -y, 2, therefore we should rather consider correlation func-
tions of the type

<V21b(y) HVai(zi)> =0. (3.19)

i=1

n—2 n
f%z<Hv$@anmm>. (3.20)
a=1 i=1

We then expect such correlation functions to be relatef),}0o(1.1) as in equation (1.4). That
equation means that the twisted BPZ equations satisfi€d, 0¥, are identical to the KZ equations
in Sklyanin variables (3.16). This can indeed be checkedXpjicit calculation, provided we
correctly specify the functio®,, as well as the relation betweef, spinsj; and Virasoro momenta
«;. Requiring that thex— j relation is compatible with the respective Weyl symmetjies —j—1
anda — b+ b~! — , and that conformal dimensiomsj = —% eq. (2.8) and\,, are related
by a constant shift, determines the relation

C=b )+~ A=A 4 iyl (3.21)

2b T2 42

We still have to specify the values of the parameters, v in the ansatz (1.3) for the functia,,.
We could determine these values by requiring the twisted 8dRiations to agree with eq. (3.16).
There are however simpler and somewhat independent argsimvbith yield the correct values

1 1 1

A=gE o BT e Vg

5 (3.22)
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First, the value of\ is determined by the requirement of continuity @£, aty, = v,. This
requirement plays an important role in the boundH@ model [4]. Second, the value offollows
from checking equation (1.4) in the simplest case 2, when there are ng, variables and no BPZ
equations. Third, knowing the other two parameters, theevaf ;. follows from the assumption
that©®,, can be interpreted as a free-fielepoint function. This interpretation &,, plays a role in
a recent proof of the FZZ conjecture [13], see also [14]. Westiil use the first two arguments in
the s¢3 case, but we will have to drop the third one.

Notice that technically these arguments only determing, v up to ab-independent term.
This is becauseé-independent factors can be indifferently attributediioor to ©,, in eq. (1.4).
This is of course not the case wikdependent factors, as by definition the ketRetannot depend
onb = (k — 2)*%, which is not a parameter of the Gaudin model.

This concludes our reminder of the KZ-BPZ relation in #fe case. In the next section we
will analyze thesf3 KZ equations along the same lines.

4. Thesl; case

4.1 Separation of variables for thes/s Gaudin model

To the best of our knowledge, the full quantum separatioragfbles for thes/s Gaudin model has
not been derived yet. By the full separation of variables veamthe determination of(u), B(u)

and a characteristic equation, like in th& case! Sklyanin did however derive the full separation
of variables for the classicalls Gaudin model [16]. In order to derive the quantum version, we
will use Sklyanin’s separation of variables for models véths/; Yangian symmetry [8], see also
[17] for a generalization t@/x. This Yangian symmetry is present in the Gaudin model, which
will allow us to derive its quantum characteristic equatitom the Yangian’s.

sf3 Yangian symmetry. As in thes/, case, the variables of th& , Gaudin model can be com-
bined into ans/y Lax matrix I(u) (3.1) obeying the relation (3.2). It is however possible to
combine the variables into anothety matrix, which depends on an extra parameter

. n . n . n
d— t* Dy, d— t*Diyy ) -+ | id — t*Di 4.1
(1 u— 2z (1)> (1 U — 2 (2)> (1 U — 2 (”)> @1

1 1
:id+77](u)+§772:IQ:(u)+6n3;I3;(u)+...’ (4.2)

Y (u)

where the definition of the normal ordering:in? : (u) and: I*® : (u) follows from the chosen
ordering of the factors of (). This object can be shown to obey the Yangian algebra

(u = )Y (w)Y5(0) + 0V (u)Yy (v) = (u—0)Y5(0)Y7 (u) + nYg ()Y (u) . (4.3)
Sklyanin’s separated variablgg for the Yangian [8] are defined as the zeroes of a function

BY (u) = Y3 (u)Yy (u)Y5 (u — n) — Y5 () Y3 (u) Y5 (u — n)
+ Y3 (w)Ys (W)Y (u—n) = Y3 (w)Y? (w)Ys (u—1n), (4.4)

LA different approach was proposed in [15], which consistsyiimg to use thes¢» separation of variables in thes
case. This approach requires a particular choice of isaggiables. The results are complicated.
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while the conjugate variables are given Ky = A" (y;) where
AY (u) = Y7 (u) = Y5 (u— n) Y5 (u — )Y (u) (4.5)

Let us point out that interesting structural insight intesa formulas fordY (u) and BY (u) was
proposed in [18], based on general properties of matricéls mon-commuting elements. The
functionsAY (u) and BY (u) obey the commutation relations
(A7 (), A @] =0, [BY () BY ()] =0, = —[4" (@), B (v)
= BY (u)AY (v) Y (u — )7 Y5 (w) Y5 (v = n)Y§ (v) — BY (0)AY (u) , (4.6)

so that
iyl =0 , [Xi,y] =—-nmoi; Xs , [Xi,X;]=0. 4.7)
The quantum characteristic equation is then
X7 — X2ty (i) + Xita(yi —n) — d(yi —2n7) =0, (4.8)

with the invariant operators (u), t2(u) andd(u) defined as [8]

ti(u) =TrY(u) , to(u)=TrY(u) , d(u)d]l = Yaﬁ(u)Yg(u +n), (4.9)
where the matrixty” is constructed by transposing the quantum comatri¥’of For instance,
Yi(u) = =Y(w)Y{ (u + n) + Yo (u)Y2(u + n), where then-shifts are the manifestation of
the quantum character of the comatrix whdsmatrix element we just wrote. Operator ordering
issues in expressions like(y; — n) are resolved by inserting the operatgifrom the left.

From the Yangian to the Gaudin model. We will now construct objectsA(u), B(u) and a
guantum characteristic equation for th& Gaudin model. Such-independent functions of the
matrix I (u) will be obtained by expanding the corresponding objectsHer/s Yangian algebra
in powers ofn. We find
y 2 B
A" (u)=1—nA)+0mn?), Au)=-I; + I—g , (4.10)

BY(u)= 0*B(u)+O(n'), Bu)=LII - BI315 + LI — I 115, (411)

where we omitted the spectral parametén I (), and we point out that our formula fot(u) is
free of ordering ambiguities becauBgu) commutes with bott#?(u) and/i (u). The commutation
relations (4.6) forAY (u) and BY (u) imply the analogous relations

[A(u)v A(U)] =0, [B(u)7 B(U)] =0, (4.12)
I3 (v)I3(v)

(u = v)[A(u), B(v)] = B(v) — B(U)m ;

(4.13)

which may be compared to the corresponding relations inthease eq. (3.6).
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Let us rewrite the characteristic equation (4.8) as:

(Xi —1)° = (Xi = 1)* [t (ws) — 3] + (Xi — 1) [ta(yi — m) — 2t1 (i) + 3]
+[1—t1(ys) +ta(yi —n) —d(y: —2n)] = 0. (4.14)

The leading behaviour of this equation @s— 0 will turn out to be O(n3). To compute this
behaviour, we of course need to compute the behaviouk§ ahdy; asn — 0. It turns out that we
only need the)(n) behaviour ofX; = 1 — np; + O(n?). As fory; we only need need the leading
O(1) behaviour. To this leading order, the zeroes33f(u) coincide with those of3(u), so that
we do not need distinct notations and call themyallThe most complicated part of the calculation
however does not involve such subtleties, but rather deigths w

1 —t1(u) +ta(u —n) — d(u — 2n)

=(1- Y11 (u— 277))(Y3( -n) — I)YQ (u) + (Y11(U -n) — Y11(U - 277))Y22(U)
+(YH(u = 2n) = D)Y& (u — n)Y5 (u) + (Vi (u —n) — )Y (u) + (1 — Vi (u))
+(Y33(U —2n) — L)Y (u — )Yy (u) — Y2(U = 2)YP(u —n)Yy (u)
=Y (u—2n)Y5 (u —n)Y3 (u) + Y7 (u — 20) Y5 (u — ) Y5 (u) — Y7 (u —n) Y3 (u)
=0 |- B+ 11315 + IR + 31305 — 31315 — 112[?}[3 (4.15)
I~ LI = B — (131 — ()] + Ot .
where we omitted the spectral parametén Ig(u), and used tha/s-defining relation[l1 + I§ +
I§’ = 0. We then obtain the following quantum characteristic eignatf the s¢s Gaudin model:

1
TURIEY (W) + ¢ (Iﬁﬂfa FISER) (y) =0.|  (416)

1
p?—pi' 5(151(5)(y2)+ 4( atpty

Notice that the particular cubic invariant which appearthia formula is related to the fully sym-
metric invariant tensod;. €qg. (2.10). Using the definition (3.1) éfu), we indeed have

n DC
(15@13 Iazﬁn) _ —dabcz - _( >Z Z:: ) Z - . Zin . (4.17)

This could further be expressed in terms of the higher Gaddimiltonians of Section 2.2, so that
the characteristic equation could help simultaneouslgatalize these Hamiltonians.

Some remarks. Like in the sfy case, Sklyanin's change of variables can be interpretedchas a
integral transformatioiiC (3.9) acting on a functional space. The kerhebf I now obeys

(B - U ) K@l 0) 0. (4.18)
However, the simultaneous diagonalization of the comngutiperatorsB(u) is now a difficult
problem, asB(u) is now cubic and not linear ii(u), and thus no longer a sum afcommuting
operators. Therefore, the kernilis no longer of the form (3.13). Certainly, no choice of isasp
variables exists such that the keri€has a simple expression. Another difference withsthecase
is the counting of variables: generic functions of #igisospin coordinates; should correspond to
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functions of not onlyy; andU, but also of two extra variables. These extra variables acessary
for the transformatioiC to be invertible. We will neglect this isstigas well as the issue of precisely
defining the relevant functional spaces, and we will asskinie be invertible.

Let us finally determine the number of separated variapjesthat is, the number of zeroes
of B(u). Barring extra constraints, this is of coure — 3. In conformal field theory applications,
we however impose the extra constraihty’ , D?Z.) = 0, so that/(u) has degree-2. This does
not immediately imply that3(u) (eq. (4.11)), which is cubic id(u), has degree-6, because
Yoy Dgl.) = 0 only holds when directly applied to a physical correlatiandtion, and the matrix
elements of (u) generically do not commute with each other. Rather, theedegfB(u) depends
on its precise form and should be evaluated by explicit datmn. We find that each one of the four
terms of B(u) has degree-5, while B(u) itself has degree-6. This means that there ale — 6
separated variables. Therefore, as indhigcase, the number of separated variables vanishes for
n=2.

4.2 Thes/s Knizhnik—Zamolodchikov equations in Sklyanin variables

Let us consider a conformal field theory with g/x@ symmetry algebra. The Ward identities consist
in then KZ differential equations (2.9), plug» extra non-differential relations (2.15) and (2.16),
which expreswfl’(i) andW;’Q’(i) in terms of differential operators acting on isospin vaeablL et

us reorganize all these relations by injecting them intoctheracteristic equation of the quantum
s¢3 Gaudin model (4.16). The result is schematically of the form

[83 0

o+ k=35 1) = (- 30T ) S| K, =0, @9

where the constant was defined in eq. (2.11). Explicitly,

0" 0 < ) A7
o + (k — 3)8y Z(y_Zi/c 57/“7-2

=1

1 n 1 5 2A7
Ak — - -tz S
+ 5 3)Z<(y_2i)2/c 5Zi/c+(y_zi)3>

i=1
K=tw IC K=tw’

“Z Sk KWK g
Y=z (y — 2)? (y—z)?

where(?,, is still ann-point function of the type (1.1).

In this equation, the terms invoIvinIg/fL(i) andezv(l.) refer to correlation functions involv-
ing descendents of the primary fiel@S(u|z). We have little control over such non-differential
terms, and we would like to ignore them in the following. Thizuld be done by considering
appropriate linear combinations of oBin — 6 equations. (Remember that the variablspans
the 3n — 6 separated variable§y,}). We will for simplicity adopt the alternative approach of
working modulo the unwanted terms. Let us make this pregisgefining the spac®g of differ-
ential operators im,, z; (including functions ofy,, z;) which are symmetric under permutations of

K 1Q,=0, (4.20)

2A construction of the extra variables seems to be availablled article [19].
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{y1,y2 - ysn—s}. FOrany choicdy,} = {y, y»} of a distinguished variablg we further define

o 1 1
fg(y) = Z; s Ds + ; 7([9 — Zi)QDS . (4.21)

1=

By a simple counting of variables it can be realized that aiff}amential operator which is sym-

metric under permuations dfy,} does belong toF3(y) = >, = L Dg+ 30 17 ) sDs +
Sy = )3DS But it does not always belong 16, (y), So we can define a nontr|V|aI equivalence

~ as the equality modul@>(y). Thus, equation (4.20) simplifies to

k—3 (k — 3AJ Lo7 +(k 3AJ
et 3 G S DR g,
3 ¢ =1 —Z

3 0 —
TP S

(4.22)

Having thus eliminatedV”, @) and W/, 2,z We are left with operator% which we recall are
zz—derlvatlves at fixed isospin variables. We exp&éc‘[1 0 IC to be a combination of the operators
a(z , ay andaU, although we do not know how to compute it. And it is not clediether 1 5‘2 K

is a first-order differential operator, as happened insthecase (see eq. (3.15)). Nevertheless, we
do know that}C—léiZiIC is independent from the levél, which is a parameter of our conformal
field theory but neither of the Gaudin model nor of its sepanadf variables. Therefore, we will
still be able to extract useful information from eq. (4.22)sum of terms with various power-like

dependences dit — 3), by considering all terms which are not linear(in— 3).

4.3 Wjs null-vector equations

Let us first briefly explain why we try to relate conformal figlteories with ars(; symmetry at
level k to theories with @V; symmetry at central charge= 2 + 24(b + b~ 1)? where

= 4.23
3 (4.23)

A theory with ans/f\g symmetry like thes/s(R) WZW model can be written in terms of eight
quantum fields, as/; is eight-dimensional. However, affing; highest-weight representations
are parametrized by just two numbers, namely the two comysroé thes/s spinj. This suggests
that the non-trivial dynamics of the theory really take plat a two-dimensional space, where
would play the role of the momentum. There exists such/grbased theory which involves just
two interacting quantum fields: the conformd} Toda theory, which has¥/; symmetry algebra.
The correct parametér for this algebra is suggested by the Drinfeld-Sokolov réida¢ which
realizes\s as a kind of coset of thE/ZO, algebra.

Wjs algebra. Referring to the review article [11] for more details, wealkkthat the)Vs algebra

is spanned by the modes of the fiell§z) = 3=, ., Loz " 2 and W (z) = 3, o, Wiz "3
Let us write the defining relations of thé’; algebra in the form of commutation relations for the
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modesL,,, W,, rather than operator product expansions for the fidlds), W (z), as this form
more convenient for finding null vectors in representations

(i, Ln] = (m = 1) L + s5m(m? = Do (4.24)
[Lmv Wn] = (2m - n)Wm-i-n ) (4'25)
(224 5¢) ¢ 9 9
i/ 1) (m2 -4
22 — 1
—|—( 2_856) m15 n(m2 +n?—tmn —4) Ly + g(m —n)Aptn , (4.26)

where we introduce, using the normal ordering,, L,, := Ly, Ly, if m < n,

Top = (1 —i—g)(l — @)

o= 421 —0 &2

1 .
A, = % Lyl —|—gmmLm with {
n

A primary fieldsV,, of the Ws algebra of momentur, conformal dimensiod\, and charge,, is
defined by its operator product expansions Witx) eq. (3.18) andV (z):

W () V() = da¥al®) | WoaValw) | WosVa(w

o). 4.28
(z —w)3 (z —w)? —w (1) (4.28)
The momentax now belong to the two-dimensional root space of the Lie atgeb;. A basis of
this space is provided by the simple roets e, whose scalar products appear in the Cartan matrix
<EZ§3 EZZ;) = (2 5'). We may also use the dual basis = 2e; + tea, wo = 1e1 + Zep
such that(e;,w;) = J;;. We decompose the momenta along this dual basis: oyw; + asws,
and we introduce the vect@ = (b + b=1)(e; + e2). The conformal dimension and charge are

parametrized in terms of the momentum as

Do = 50,20~ a), (4.29)
do = gelon — 03][200 + 02— 30+ b V][on + 200~ 3(b 457 (430

W3 degenerate fields. Let us now justify the choice of the field_,-1,, in the correlator),,
(1.2) which appears in our conjecture. We wigh to obey third-order differential equations,
which would correspond to the&/s KZ equations in Sklyanin variables. This suggests that vee us
the simplest non-trivial degenerate fields, which have weditors at levels 1, 2 and 3. But there
are actually four such degenerate fields, witle {—bw;, —bws, —b~ 1wy, —b~ 1wy}, whereas the
symmetry of the original isospin variables under permategiof the Sklyanin variables suggests
that we use just one of them {h,. By analogy with thes/, case, we focus on the fields ,-1,,
andV_;,-1,,, whose momenta go to zero in the critical level lirhit— 3. They are related to the
other two fields by théVs algebra self-dualitp — b—!, which is however not an invariance of the
5/[3 algebra.

The two degenerate fields ,-.,, andV_,-1,, are related to each other by the Dynkin di-
agram automorphismy; < ws of sf3, which acts on general primary field$, as(A., ¢.) —
(A., —qa)- This symmetry does have a counterpart in the separaticariatles for the/s Gaudin
model. The construction of the separated variables wagthased on the introduction of afy
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Lax matrix I (u) (3.1), so thats/s generators act in the fundamental representation. But wiel co
alternatively have used the antifundamental representatvhich is related to the fundamental by
the Dynkin diagram automorphism. With our conventions,ahaice of the fundamental represen-
tation will turn out to correspond to the choice of the degateefieldV_,-1,,, of the)Vs; algebra.
The three corresponding null-vector equations are [20]

(W4 (34 &) L]V, =0, (4.31)

iW_g— 2L o —bL* | V_p-1, =0, (4.32)
3b 1

[iW_g— (5 + &) Log +bL_1 Lo+ L3 ]V 41, =0. (4.33)

The last null-vector equation implies that any correlafianction with one degenerate field obeys
Ey (V_y14, () [T Vas(2:)) = 0, where

n

SRR S -V
YT 03 T b2 0y = \y— 20z (y — 2;)?
1 1\ ¢ 1 90 20,
(o) .5} (=on o)
260 W) Qo
G Z ( e e LA Zz‘)3> - @39

This may be compared with eq. (4.20), which is formally samibr even identical if the term with
coefficient 14 is absorbed into the other terms by redefinifig; ;) andg,,. Like in the s¢; case,
the meaning of this formal similarity is not clear.

Now the equations obeyed by correlation functions with ssvdegenerate fields like,,
eq. (1.2) are significantly more complicated than because eliminatingl’_,, W_, descendents
of the degenerate fields requires the use of the first twovaaller equations (4.31,4.32). Still
denoting{y.} = {v, 4}, we obtain the equatioR,,, = 0 with

2 190 ( 1 0 Ay >
Ey=F1 + — L. - = 4 w1
2=+ Z y—yp 0y | b2y ; Y=oy (y—u)?
2 1 0 A, 2 1 o Ay, )
+ 52 ——t+—— ) +51 +—"
301 bz (v = vo) (o — 2i) <0zz' Yo — Zi> 3b* Z (v —u) (s — ve) <8yc Up — Ve

2 1 0 0 1
N+t (O 9 s A
3b* £ (y — yp)? <8yb +8y> - <<52 " b4> bt T 3q " 1M> ; (Y —w)®
(4.35)

where

4
Aprr ==1= g5+ Gopte = 27b3 (4 + 36*)(5 + 3b%) . (4.36)

Relating W3 momenta to,_e@ spins. In order to compare the equatidiy(2, = 0 with the KZ
equations in Sklyanin variables (4.22), we should spedaify tve relates/s primary fields®’ (u|z)
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to Ws primary fieldsV,,(z). We are looking for a relation betweenand; which translates into a

simple relation betweef,, ¢.) and(A7, ¢/). We propose

Ay =A7 424072

a=—-bj+ 5_1(61 + 62) = { Jj Tt , (4.37)
qa = qj‘
where we use the following expressions (mj, q}-]) defined in egs. (2.8) and (2.14)
A=t LG ae o 4.38
j——m§(3,3+ e1 + 2e2) , (4.38)
¢ = ——==h -2+ D+ G+ D +1) +202+1)],  (4.39)
(k—3)2 27

where the componen(g;, j2) of the spinj are defined ag = j;w; + jow2. Notice that our relation
betweena andj maps the principal unitary series of; representationg € —e; — ey + iR? to
the W5 representations which appear in the physical spectrum rfbomal s¢3 Toda theory [6]
a € Q + iR2. Such choices of or j lead to real values dofA, q) if & > 3.

However, there does not need to be any relation betweestiweation operatord’/,, W7,
and theirWs counterpartsV_;, W_,. While relatingL?, = £ to L_; = -2, though difficult
in practice, is in principle a simple matter of performing tthange of variables, there is appar-
ently no principle which would determine hoW’,, W7, would behave through the change of
variables. This is why we work modul®,(y), ignoring the non-differential terms which involve
such operators, and being left with differential equatiddew the presence of degenerate fields in
correlation functions ofV; fields does not necessarily lead to differential equatiarfact which
makes conformai/s Toda theory much more complicated than Liouville theory [Bifferential
equations actually appear provided the number of degenéedtls is large enough. We are in-
serting3n — 6 degenerate fields” ,-1,, together with the: generic fields/,,,, which is enough
for eliminating the2n termsW_; ;), W_, (; and being left with at least one differential equation,
providedn > 6.

Twisting Ws null-vector equations. Finally, we should determine the twist fact@y,, which
appears in the conjecture (1.4), so as to be able to compute

Es = @nEg@;l such that E5-0,Q, =0. (4.40)

The power-like ansatz (1.3) f@,,, is motivated by geometrical considerations: it is buitinfr
the solutionlog(z — zg) of the Laplacian equation on the plane, whereas higher geiemann
surfaces would yield more complicated functions, see [2m& constraints on the parameters
\, i, v can be derived as in the, case. Requiring continuity a,,Q,, aty, = v, implies A =
A gp-1y, — 2A 41, = —3%, and requiring that the conjecture (1.4) holds in the case 2
impliesy = 2A3’ —2A, = —b% — 4, see eq. (4.37). Notice however that this only determines
up tob-independent terms, as the unknotvimdependent kerngk may also contribute.

Such considerations do not uniquely determihg and we drop the requirement thaf, be

interpretable as a free field correlation function, as hapjethes/, case, and which would imply
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v=—-3u=9Xinthesls casé€. Instead, we will adopt the values

A=—rs ==, v=—" (4.41)

which are uniquely determined by the requirement that, nwduy(y), the only non-differential
terms inEs are of the type(y_c—;i)g. This is a rather non-trivial requirement as many non-déffeial
terms can potentially appear (cf Appendix A.1).

Still working moduloF;(y) eq. (4.21), and now using the relation (4.37) betwé@rande
representation data, we compute

83 1 AJ 1 AJ

n
q
Ey~ ——+ —=D D B~ 7
3 8y3+b 2+b 1+b2Z —zl28y ; y—z)3

(4.42)

where we introduced two differential operatars and Dy of respective orders and 2, which
depend neither on the field momemtanor on the model parametgr

2
1 9 1 0
Di=-Y ——0 42 —
' Zi:(y—zi)Qaer (;y—zz> dy
9 1 1 o 9
+3 — =] -2 — — — ) (4.43
; —zzzy yb<0yb 8y> Zy—ybyb—yc<3yb 9y>( :

b#c
1 90 9 1 o 9\/[ 9 0
Dy = — | +35- )+ — - == +24
’ ;y—zi8y<azi 3y> ;y—yb<8yb 8y> <8yb 8y>
19
Py 4.44
;(y—yb)wy (449

4.4 Comparing s¢3 Knizhnik—Zamolodchikov equations with W5 null-vector equations

We are now in a position to test the conjecture (1.4) by coingahe KZ equations in Sklyanin
variables (4.22), which apply t&—'€,,, with the twisted/V; null-vector equations (4.42), which
apply t00,,Q2,,.

To start with, the non-differential terms agree. This isially a very non-trivial statement, as
we started with complicated non-differential terms in e§.3%) an then generated more terms by
twisting with ©,,. The freedoms to choose the three parameters v of ©,, and to ignore terms
belonging taF;,(y) is a priori not sufficient to ensure the dozens of requirecceiations, which
nevertheless occur as can be seen in explicit calculatidimese calculations use some helpful
identities which are gathered in Appendix A.1. The existeoica simple twist which simplifies the
differential equations obeyed by correlation functionglaing many identical degenerate fields
might well be a general phenomenon in conformal field theasywe now see that it happens for
the simplest degenerate field in theories with symmetry, in addition to the already known cases
of the two simplest degenerate fields in theories with Virasymmetry [3, 5].

*We indeed consider a free field correlation funct®n = ([1°"° Vis(va) 17, Va(zi)). Momentum conser-
vation implies(3n — 6)8 + na = @ where the momenta;, 5 and the background chargg are assumed to be
n-independent. Hence = —3(3, which leads to the stated relations betweep, v.

—19 —



Let us then examine the ter@aDz in eq. (4.42). Agreement with eq. (4.22) would occur
provided

0 1 10 .2
a_y'zy—zilc 6—ZiIC~D2. (4.45)

It seems technically challenging to check this identity.t Bsmember that our inability to explic-
itly perform Sklyanin’s change of variables f%ﬁ; does not contaminate the other terms in our
equations, as we do know that the change of variables mustdepéndent from the parameter
b= (k—3)2.

Let us now examine the ter@%Dl. We would like this term to vanish modulB,(y), as no
such term is present in eq. (4.22). But we will find tfiat does not vanish, although it has quite a
few remarkable properties.

Study of the differential operator D;. We want to determine whethdp, < 0. To start with,
let us reduce the study of this first-order differential @per to the study of mere functions. The
operatorD1, like all our differential equations, is assumed to act arcfions which are symmetric
under permutations of thén — 6 variables{y,}. The space of such functions is algebraically
generated by thgn functions

piEZbg(ya—zi) ) O'iEZ 1 ) TiEZ% , 1=1---n. (4.46)

. _ 2.2
a Ya Zq a Ya Zz)

Therefore,D; ~ 0 < Dyp; ~ Dyo; ~ Dy71; ~ 0. Direct calculations show

Dip; ~ 0, (4.47)
105 ~ — 3 :
N N R ) e
8 60; 10 1 AT, 202
Dy7i ~ — + + + - L 4.49
e (y—z)® (y—z)t (y—z)t 2 y—z  (y—=2z)? (y—=z)? (4.49)
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60; 1 2 1 4 1
B " - (4.50)
(y — z)° ; y—z  (y—=z)? ; (y—2) (y—z) ; Y=z

So D;o; and Dy7; do not manifestly vanish modul®;(y). Let us however study them further.
They may be considered as values at y of functionsf (¢t) = f (¢, {ya}, {z:}) which are invariant
under permutations dfy, } but depend on the additional varialileLet us consider the space of
such functions, which we in addition assume to be meromorjphi with no singularities besides
t = z;, and to go to zero as — oo. Let us moreover introduce the spaeg_- of polynomials
P(t) of degreen — 7. As we show in Appendix A.2,

& n_ t— Zi 2
fy) € Faly) & VP EPu_r, (P f)= Z; j'{ dt P(t)%f(t) =0. (4.51)
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Then, explicit calculations yields

[Tisi(zi — 2)°

<P, D10'2‘> = 2m P/(ZZ) 5 (452)

[1.(z — va)
. .Hk;éi(zi - Zk)Q " ) 1 (.
<P, DlTi> == 27T2m 4P (ZZ) + 201 + 62 % — 2 P (ZZ) . (453)

ki

This explicitly demonstrates th#&; ¢ F»(y).

However, D, still has remarkable properties with respect to the congtalynomial P = 1,
namely(1, Dyo;) = (1, D17;) = 0. These non-trivial identities sensitively depend on theegal
structure ofD; and on the particular values &f 1, v which determine its coefficients. This implies
that, whereas arbitrary differential operators belongri¢y) for n < 6, D; € Fy(y) forn < 7.
The significance of these properties Bf is not clear. When combined with,p; ~ 0, they
suggest thaD; ~ 0 when applied to a special class of permutation-symmetrictfan ofy, (and
z), and one might wonder whethé,,Q2,, actually belongs to this class. Given the freedom to
choosey € {y.}, this would imply that?,, satisfies: — 6 further differential equations. B@t,, is
not expected to satisfy any further differential equatibasides the global Ward identities, whose
number isn-independent. So the suppositidh - ©,,,, 0 certainly fails forn > 7, and so does
our conjecture (1.4).

On the counting of differential equations. Strictly speaking, we have disproved the conjecture
(1.4) only in the cases of correlation functions with manjdBenamelyn > 8. But this is because
the separation of variables actually take into account ardy 6 combinations of the originab

KZ equations, so that ik < 6 there are no differential equations to be compared. Anywasy,
transition around: = 7 is presumably a property of our arguments rather than of dnelation
functions themselves. Physically, we expect that only Heee = 2 is special, because it does not
involve anyWs; degenerate field.

We might moreover speculate that meaningful informationadde extracted from alin — 6
equations (4.20), without eliminating the Ward identitfes the cubic fieldiW”/(z) as we did.
This would be possible only if we had some control over thatioe operator$¥/,, W7, which
appear in these identities, thus restricting the terms lwban be absorbed in such operators. For
example, fom < 6 any term can in principle be absorbed (as a mere countingriafblas shows),
but it might make more sense to restrict to terms whose atisors possible for all, thereby
eliminating the apparent transition around= 7. Moreover, there could be a limit on the order of
differential operators which can be absorbed into suchtioreaperators of respective levaland
2. All this amounts to assuming that Sklyanin's change ofalalgs relates not onlyy’ ; = % with
L = %, but aIsoW;’l, sz with W_1, W_o, and that this relation can somehow be constrained.

Let us now tentatively perform a counting of equations inghe case. There ar§N (N-1)
isospin variables on the |hs of eq. (1.4), and on the rhs wecebgj\f(N — 1)(n — 2) Sklyanin
variablesy, plus N(N — 1) extra variables, which may be collectively included in tgebol U.
Differential equations for the/,, Toda correlation function which generaliz@s are obtained by
eliminating 3(N — 2)(N + 1)n non-differential terms from thg N(N — 1)(n — 2) null-vector
equations. Thus, we have— N (N — 1) differential equations. When it comes x®©,,12,,, we
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should presumably add an equation for each one of the extrables, reaching: differential
equations. This precisely the number of KZ equations fortiké?,, of eq. (1.4). In addition, we
have the same number of global Ward identities on both sifles|.o(1.4), namelyN? — 1. So
our conjecture is compatible with the expected numbersftdrdntial equations, even if we now
realize that the equations themselves do not preciselymiatties/s caseN = 3.

5. Conclusion

The comparison 0§/3 KZ equations in Sklyanin variables (4.22) wit#¥; null-vector equations
(4.42) does not support the conjecture (1.4) in its generaif It is still possible, but hard to verify,
that theb%Dg terms do agree. But the first-order differential operddpr which should vanish for
the conjecture to hold, does not, although it has remarkadgperties. Overall, the KZ equations
are very similar to the null-vector equations: many termeagontrivially, and the disagreement
is confined to a term which does not depend on the spin$ the fields. This remarkable quasi-
agreement makes it unlikely that a full agreement can bearaatdby modifying the conjecture.

In the critical level limitk — 3 < b — oo, the disagreement disappears and the conjecture
(1.4) is well supported. Holding the spiridixed, we see thag%Aj and b%,qf have finite limits.
The intractable tern@%Dz in eq. (4.42) goes to zetpthe disagreeing terr?}:fDl goes to zero even
faster, and the surviving terms have finite limits which agnéth the KZ equations (4.22). Notice
that in the opposite limit — co < b — 0 itis the disagreeing terrg&Dl which dominates, a fact
which might be useful for understanding its significance.

We are left with the question of explaining why the conjeet(t.4) holds fors{s and not for
sf3, and why in thes/s case it holds only in the critical level limit. As these camibns are based
on tedious calculations rather than deep insights, theagafibn is not clear. The needed insights
might come from the so-called Langlands correspondendeW2iere the critical level limit plays
an important role, or from the study of conformal Toda thefdily where thes/y >3 cases are
understood to be qualitatively different from thé case.

*Actually the expected behavio@;, ~ e~ 5 5U=D 0, ({2}, {x:}) suggests that we should define the limit in

—

a less naive way, so thék — 3)% — 0:;5 # 0. This most probably does not spoil the agreement. See [1] for
detailed discussion of the critical level limit in thé, case.
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A. A few technical results

A.1 Helpful identities

The following identities are used in computing the nonatiintial terms of the operatdry =
0,E,0,! eq. (4.42). Some identites are written modulo termity) (4.21), as indicated by
the relation sign~. All identities are proved by elementary manipulationsngbservations of

1 1 _ 1 1 1 ~ 1
the typem Zb T—zi  (—21)2 <Za Ya—2i yfzi> (y—2)3"

3
1 1 1 1
(Zy—zz> N;y—zi;(y_zj)fvzim, (A.1)

i

1 1 2 1 1

Y—Yp (yb _22)2 (y_zz)

2 2
1 1 _9 1 1
;y_yb (;yb_2i> NZ(y_ZZ.)g +; — (; Z_) , (A.3)

- Y=

2
11 1 )
Zy Y Y — Zj Yo — Zi NZ 2o <ZZ: ) , (A4)

bij y J T

oL Zf (A5)
b b

Y=Yy — 2y — 2  (y—2)(y— z)

1 1 1 1 1 1 1
~— + + (A.6)
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) ~ + 2 ) -S> —— | @8
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1 1
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A.2 A characterization of F(y)

Here we will justify the characterisation (4.51) of the sp#&(y) defined in eq. (4.21).

For pedagogical reasons we will begin with the simpler probbf characterizing the space of
permutation-symmetric functions of variables{y, }. More precisely, given a functiofi(, {y.})
which is permutation-symmetric ifly, }, depends on an additional varialileand is regular at
t = y,, We want to determine wheth¢gi(y, {y,}) is actually permutation-symmetric although it
apparently depends an This amounts to determining whethgfy.’, {y.}) actually depends on
the choice of/'. If it does not, then for any polynomid?(¢) of degreem — 2 we have

>, = O e g =10 f oty 0k

So we have transformed the — 1 conditionsf(y1) = f(y2) = -+ = f(ym) into the condition
Yo fy Ldt T, gf(t)) = 0, which can then be evaluated by moving the integration aosidf the
analytlc propertles of (t) permit.

Letus apply a similar reasoning to the characterizatiafQf)). If f(y) € F2(y), for instance
fly) = — 2f( ) where f(y) is actually permutation-symmetric, then given any polyi@m
P(t) of degreen 7 we have

2:)2 N (= %)
27{ dt P(t ﬁf@):ﬂy)ﬂdw(n%:o. (A.15)

Thus, to know whethef (y) € F2(y), we only need to evaluate the left hand-side of this equality
To do this we can use the assumed analytic propertig$tof namely, that it is meromorphic with
singularities only at = z;, and goes to zero as— oo. This implies

27{ dt P(t t_y 27{ dt P(t )2f(t), (A.16)

t—ya)

which provesf(y) € F2(y) = (P, f) = 0 asin eq. (4.51). The reverse implication follows from a
simple counting of variables: the space of polynomials girden — 7 has dimensiom — 6, which
is precisely the number of constraints which we expect faratterizing the spacg,(y).
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