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ANALYTIC EQUIVALENCE OF NORMAL CROSSING

FUNCTIONS ON A REAL ANALYTIC MANIFOLD

Goulwen Fichou and Masahiro Shiota

Abstract. By Hironaka Desingularization Theorem, any real analytic function has

only normal crossing singularities after a modification. We focus on the analytic

equivalence of such functions with only normal crossing singularities. We prove that
for such functions C∞ right equivalence implies analytic equivalence. We prove

moreover that the cardinality of the set of equivalence classes is zero or countable.

1. Introduction

The classification of real analytic functions is a difficult but fascinating topic in
singularity theory. In this paper, we put our interest on real analytic functions with
only normal crossing singularities. This case is of fundamental importance since
any analytic function becomes one with only normal crossing singularities after a
finite sequence of blowings-up along smooth center by Hironaka Desingularization
Theorem [Hi]. Our goal is to establish the cardinality of the set of equivalence
classes of analytic functions with only normal crossing singularities under analytic
equivalence (theorem 3.2).

Our first main result is theorem 3.1,(1) which asserts that C∞ right equivalent
real analytic functions with only normal crossing singularities are automatically
analytically right equivalent. Its proof consists in a careful use of Cartan Theorems
A and B and Oka Theorem in order to use integration along analytic vector fields
to produce analytic isomorphisms. Theorem 3.1,(1) is a crucial result in order to
deal with cardinality issues, in particular in view to make a reduction to the case
of real analytic functions with semialgebraic graph, called Nash functions.

The second main result (theorem 3.2) establishes the cardinality of the set of
equivalence classes of real analytic (respectively Nash) functions with only normal
crossing singularities on a compact analytic manifold (resp. on a non-necessarily
compact Nash manifold) with respect to the analytic (resp. Nash) equivalence. To
prove that this cardinality is zero or countable, we first reduce the study to the
Nash case by theorem 3.1,(1), then from the non compact to the compact case via
Nash sheaf theory, a Nash version of Hironaka Desingularization Theorem and a
finer analysis of the normal crossing property on a Nash manifold with corners.
Finally Hardt triviality [Ha], Artin-Mazur Theorem (see [S2]) and Nash Approxi-
mation Theorems [S2], [C-R-S1] enable to achieve the proof. Note that along the
way, we establish (as theorem 3.1,(3)) a C2 plus semialgebraic version of theorem
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2 GOULWEN FICHOU AND MASAHIRO SHIOTA

3.1,(1), namely semialgebraically C2 right equivalent Nash functions with only nor-
mal crossing singularities on a Nash manifold are Nash right equivalent (see also
theorem 3.1,(2) for a C2 version).

The paper is organized as follows. In section one, we recall some definitions that
are fundamental in the paper, in particular the notion of normal crossing in the
case of manifolds with corners. We devote the second section to some preliminaries
about real analytic and Nash sheaf theory, that will be crucial tools for the proof
of the main theorems, and also a quick overview on the different topologies we
will consider on spaces of maps. Third section is dedicated to theorem 3.1,(1) and
its proof, and the statement of theorem 3.1,(2) and 3.1,(3), the proof of which we
postpone to section five. Actually, even though the statements are very similar,
we need to prepare in section four some materials for it. We prove in particular
as lemma 4.6 that a normal crossing Nash subset of a non-compact Nash manifold
is trivial at infinity, and we compactify in proposition 4.9 a Nash function with
only normal crossing singularities. We finally prove theorems 3.1,(2) and 3.1,(3)
together with theorem 3.2 in the last section.

In this paper a manifold means a manifold without boundary, analytic manifolds
and maps mean real analytic ones unless otherwise specified, and id stands for the
identity map.

1.1. Analytic functions with only normal crossing singularities.

Definition 1.1. Let M be an analytic manifold. An analytic function with only
normal crossing singularities at a point x of M is a function whose germ at x is
of the form ±xα(= ±

∏n
i=1 x

αi

i ) up to an additive constant, for some local analytic
coordinate system (x1, ..., xn) at x and some α = (α1, ..., αn) 6= 0 ∈ Nn. If the
function has only normal crossing singularities everywhere, we say that the function
has only normal crossing singularities.

An analytic subset of an analytic manifold is called normal crossing if it is
the zero set of an analytic function with only normal crossing singularities. This
analytic function is called defined by the analytic set. It is not unique. However,
the sheaf of O-ideals defined by the analytic set is naturally defined and unique. We
can naturally stratify a normal crossing analytic subset X into analytic manifolds
Xi of dimension i. We call {Xi} the canonical stratification of X .

1.2. Case of Nash manifolds.

Definition 1.2. A semialgebraic set is a subset of a Euclidean space which is
described by finitely many equalities and inequalities of polynomial functions. A
Nash manifold is a Cω submanifold of a Euclidean space which is semialgebraic. A
Nash function on a Nash manifold is a Cω function with semialgebraic graph. A
Nash subset is the zero set of a Nash function on a Nash manifold. (We call a germ
on but not at X in M to distinguish the case where X is a set from the case of a
point.)

We define Nash functions with only normal crossing singularities, normal cross-
ing Nash subsets of a Nash manifold and the canonical stratification of a normal
crossing Nash subset similarly to the analytic case.

For elementary properties of Nash manifolds and Nash functions, we refer to [S2].
As a general flavor, note that Nash functions carry more structure than analytic or
semialgebraic ones, and therefore it is useful to dispose of approximation results.
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In this paper, we will make an intensive use of the two classical approximation
theorems by Nash functions, which are quite different in nature. The first one, that
we will refer to as Nash Approximation Theorem I, concerns the approximation of
semialgebraic Cr maps by Nash maps (see [S2]). The topology we use in that case
is the semialgebraic Cr topology on spaces of semialgebraic Cr maps (see subsection
2.3 for an overview about topologies on spaces of maps). Note for instance that, in
that topology, a semialgebraic C1 map between semialgebraic C1 manifolds close
to a semialgebraic C1 diffeomorphism is a diffeomorphism.

Theorem. (Nash Approximation Theorem I, [S2]) Any semialgebraic Cr map be-
tween Nash manifolds can be approximated in the semialgebraic Cr topology by a
Nash map.

The other one, say Nash Approximation Theorem II, is a global version of Artin
Approximation Theorem on a compact Nash manifold.

Theorem. (Nash Approximation Theorem II, [C-R-S1]) Given a Nash function F
on M1 ×M2 for a compact Nash manifold M1 and a Nash manifold M2, and an
analytic map f : M1 → M2 with F (x, f(x)) = 0 for x ∈ M1, then there exists a

Nash approximation f̃ : M1 →M2 of f in the C∞ topology such that F (x, f̃(x)) = 0
for x ∈M1.

1.3. Manifolds with corners.
Manifolds with corners appear naturally in the study of functions with only

normal crossing singularities. A manifold with corners is locally given by charts
diffeomorphic to [0,∞)k × Rn−k. In this paper we will consider analytic manifold
with corners as well as Nash ones. We refer to [K-S] for basics about manifolds
with corners.

The definition of the canonical stratification for manifolds can be naturally ex-
tended to the boundary of an analytic manifold with corners. However, concerning
the notions of singularity and normal crossings, we really need to adapt the defini-
tions.

Definition 1.3. Let f be an analytic function on analytic manifold with corners
M . We say f is singular at a point x0 of ∂M if the restriction of f to the stratum
of the canonical stratification of ∂M containing x0 is singular at x0.

Note in particular that with such a definition, f is singular at points of the
stratum of dimension 0 of the canonical stratification of ∂M . This remark will be
of importance when dealing with proofs by induction.

To define a function with only normal crossing singularities on a manifold with
corners M , we need to extend M beyond the corners. More precisely, we can
construct an analytic manifold M ′ which contains M and is of the same dimension
by extending a locally finite system of analytic local coordinate neighborhoods of
M . We call M ′ an analytic manifold extension of M . In the same way, shrinking
M ′ if necessary we obtain a normal crossing analytic subset X of M ′ such that
IntM is a union of some connected components of M ′ −X , and f is extended to
an analytic function f ′ on M ′.

Definition 1.4. We say that f has only normal crossing singularities if f |IntM

does so and if the germ of (f − f(x0))φ at each point x0 of X has only normal
crossing singularities, for φ an analytic function on M ′ defined by X .
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Now we can define, similarly to the case without corners, a normal crossing
analytic subset of M and a normal crossing sheaf of O-ideals on M .

In the Nash case, we define analogously a Nash manifold extension of a Nash
manifold with corners, a Nash function with only normal crossing singularities on
a Nash manifold with corners, a normal crossing Nash subset of M and a normal
crossing sheaf of N -ideals on M .

2. Preliminaries

We dedicate this section to some remainder on real analytic sheaf theory, and
prove similar statements in the Nash case that will be of importance in next sections.
We finish with an overview of the different topologies on spaces of functions we will
make use in that paper, in order to explain the major differences between them.

2.1. Real analytic sheaves.
In this subsection, we deal with the real analytic case of Cartan Theorems A

and B, and Oka Theorem.
Let O and N denote, respectively, the sheaves of analytic and Nash function

germs on an analytic and Nash manifold and let N(M) denote the ring of Nash
functions on a Nash manifold M . We write OM and NM when we emphasize the
domain M . Let fx, Xx, vx and Mx denote the germs of f and X at a point x of
M , the tangent vector assigned to x by v and the stalk of M at x for a function f
on an analytic (Nash) manifold M , a subset X of M , a vector field v on M and for
a sheaf of O- (N -) modules M on M , respectively. For a compact semialgebraic
subset X of a Nash manifold M , let N (X) denote the germs of Nash functions on X
in M , with the topology of the inductive limit space of the topological spaces N(U)
endowed with the compact-open C∞ topology, where U runs through the family of
open semialgebraic neighborhoods of X in M . In the same way, we define O(X) for
a compact semianalytic subset X of an analytic manifold M . Here a semianalytic
subset is a subset whose germ at each point of M is described by finitely many
equalities and inequalities of analytic function germs.

Theorem 2.1. (Cartan Theorem A) Let M be a coherent sheaf of O-modules on an
analytic manifold M . Then for any x ∈M , the germ Mx is equal to H0(M,M)Ox.

See [G-R] for Cartan Theorems A and B in the complex case and [Ca] for the
real case. Next corollary will be useful in this paper. It deals with the case where
the number of local generators is uniformly bounded.

Corollary 2.2. In theorem 2.1, assume that Mx is generated by a uniform number
of elements for any x in M . Then H0(M,M) is finitely generated as a H0(M,O)-
module.

The corollary is proved in [Co] in the complex case. The real case follows from
a complexification of M as in [Ca].

Theorem 2.3. (Cartan Theorem B) Let M be a coherent sheaf of O-modules on
an analytic manifold M . Then H1(M,M) is equal to zero.

Corollary 2.4. Let M be an analytic manifold and X ⊂ M be a global analytic
set—the zero set of an analytic function. Let I be a coherent sheaf of O-ideals on
M such that any element of I vanishes on X. Then any f ∈ H0(M,O/I) can be
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extended to some F ∈ Cω(M), i.e., f is the image of F under the natural map
H0(M,O) → H0(M,O/I).

If X is normal crossing, we can choose I to be the function germs vanishing on
X. Then H0(M,O/I) consists of functions on X whose germs at each point of X
are extensible to analytic function germs on M .

Corollary 2.4 follows from theorem 2.3 by considering the exact sequence 0 →
I → O → I/O.

Theorem 2.5. (Oka Theorem) Let M1 and M2 be coherent sheaves of O-modules
on an analytic manifold M , and h : M1 → M2 be an O-homomorphism. Then
Kerh is a coherent sheaf of O-modules.

See [G-R] in the complex case. The real case follows from complexification [Ca]
of M,M1,M2 and h.

2.2. Nash sheaves.

In this subsection M stands for a Nash manifold. A sheaf of N -modules M
on M is called finite if for some finite open semialgebraic covering {Ui} of M and
for each i there exists an exact sequence Nmi |Ui

−→ N ni |Ui
−→ M|Ui

−→ 0 of
N -homomorphisms, with mi, ni ∈ N. Non-finite examples are the sheaf of N -ideals
I on R of germs vanishing on Z and N /I.

Theorem 2.6. (Nash case of Oka Theorem) Let h be an N -homomorphism between
finite sheaves of N -modules on a Nash manifold. Then Ker h is finite.

Proof. Let h : M1 → M2 be such a homomorphism on a Nash manifold M . There
exists a finite open semialgebraic covering {Ui} of M such that Mj |Ui

, forj = 1, 2,
satisfy the condition of exact sequence in the definition of a finite sheaf. Therefore it
suffices to prove the theorem on each Ui. Now we may assume that Mj, for j = 1, 2,
are generated by global cross-sections α1, ..., αn1

and β1, ..., βn2
, respectively, and

there are Nash maps γ1, ..., γn3
∈ N(M)n2 which are generators of the kernel of

the surjective N -homomorphism p : N n2 ⊃ N n2
x ∋ (φ1, ..., φn2

) →
∑n2

i=1 φiβix ∈
M2x ⊂ M2, x ∈M . Let α1, ..., αn1

denote the images of α1, ..., αn1
in H0(M,M2)

under the homomorphism h∗ : H0(M,M1) → H0(M,M2) induced by h.

We prove the theorem by induction on n2. For n2 = 1, there exist α̂1, ..., α̂n1
∈

H0(M,N ) such that p∗(α̂i) = αi, for i = 1, ..., n1 because the application p∗ :
H0(M,N ) → H0(M,M2) is surjective by theorem 2.8 for M1 = N ([C-R-S1] and
[C-S3] ). Let δ1, ..., δn4

∈ N(M)n1 be generators of the kernel of the surjective ho-
momorphism N n1 ⊃ N n1

x ∋ (φ1, ..., φn1
) →

∑n1

i=1 φiαix ∈ M1x ⊂ Mx, x ∈ M
(we choose the above {Ui} so that δ1, ..., δn4

exist). Multiplying αi, αi, α̂i, γi
and δi by a small positive Nash function, we can assume by the  Lojasiewicz in-
equality that the Nash maps α̂i, γi and δi are bounded. Then by Proposition
VI.2.8 in [S2] we can regard M as the interior of a compact Nash manifold possi-

bly with corners M̃ and the maps as the restrictions to M of Nash maps ˜̂αi, γ̃i
and δ̃i on M̃ . Replace M1 and M2 by the sheaves of N -modules on M̃ given by
N n1/(δ̃1, ..., δ̃n4

)N n1 and N /(γ̃1, ..., γ̃n3
)N , respectively, and replace h : M1 → M2

with the N -homomorphism h̃ : M̃1 → M̃2 defined by

h̃(0, ..., 0,
i
1, 0, ..., 0) = ˜̂αi mod (γ̃1, ..., γ̃n3

)N , i = 1, ..., n1.
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Then it suffices to see that Ker h̃ is finite. Hence we assume from the beginning that
M is a compact Nash manifold possibly with corners. Then Kerh is isomorphic to
N ⊗N(M) Ker h∗ by Theorem 5.2 in [C-R-S1]. Hence Ker h is finite.

Let n2 > 1 and assume that the theorem holds for n2 − 1. Let M0 denote the
sheaf of N -ideals with M0x = {0}. Set M3 = M2/p(N × M0 × · · · × M0) and
let h3 : M1 → M3 denote the composite of h with the projection from M2 to
M3. Then M3 is generated by the images β2, ..., βn2

of β2, ..., βn2
, and γ′1, ..., γ

′
n3

∈
N(M)n2−1 are generators of the kernel of the N -homomorphism

N n2−1 ⊃ N n2−1
x ∋ (φ1, ..., φn2−1) →

n2−1∑

i=1

φiβi+1x ∈ M3x ⊂ M3, x ∈M

where γi = (γi,1, ..., γi,n2
) = (γi,1, γ

′
i), for i = 1, ..., n3. Hence M3 is finite, and by

induction hypothesis Kerh3 is finite. Consider h|Kerh3
: Kerh3 → M2. The image

is contained in p(N ×M0 × · · · ×M0) which is isomorphic to (Ker p ∪N ×M0 ×
· · · × M0)/Ker p and then to N × M0 × · · · × M0/(Ker p ∩ N × M0 × · · ·M0).
Hence we can regard h|Kerh3

as an N -homomorphism from Ker h3 to N × M0 ×
· · · ×M0/(Ker p ∩ N ×M0 × · · ·M0). In order to achieve the proof, we need to
prove that Ker p ∩N ×M0 × · · ·M0 is finite. Define a sheaf of N -submodules M
of N n3 on M by

Mx = {(φ1, ..., φn3
) ∈ N n3

x :

n3∑

i=1

φiγi,jx = 0, j = 2, ..., n2}.

Then it suffices to see that M is finite because Ker p ∩ N × M0 × · · · × M0 is
the image of M under the N -homomorphism : N n3 ⊃ N n3

x ∋ (φ1, ..., φn3
) →

(
∑n3

i=1 φiγi,1x, 0, ..., 0) ∈ Nx×{0}×· · ·×{0} ⊂ N ×M0×· · ·×M0, x ∈M . On the
other hand, if we define an N -homomorphism r : N n3 → N n2−1 by r(φ1, ..., φn3

) =
(
∑n3

i=1 φiγi,2x, ...,
∑n3

i=1 φiγi,n2x) for (φ1, ..., φn3
) ∈ N n3

x , x ∈ M , then Ker r = M.
As in the case of n2 = 1 we reduce the problem to the case where γi,j are bounded
and then M is a compact Nash manifold possibly with corners. Then Ker r is finite
by Theorem 5.2 in [C-R-S1].

Thus Ker p∩N ×M0×· · ·×M0 is finite. We can regard it as a sheaf of N -ideals.
Hence by the result in case of n2 = 1, Ker(h|Kerh3

) = Kerh is finite. �

The following two theorems do not hold for general sheaves of N -modules, [Hu],
[B-C-R] and VI.2.10 in [S2]. However, our case is sufficient for the applications we
have in mind in this paper.

Theorem 2.7. (Nash case of Cartan Theorem A) Let M be a finite sheaf of N -
submodules of N n on a Nash manifold M for n > 0 ∈ N. Then M is finitely
generated by its global cross-sections.

Proof. We assume that n > 1 and proceed by induction on n. Let p : N n →
N n−1 denote the projection forgetting the first factor, and set M1 = Ker p|M and

M2 = Im p|M. Then the sequence 0 −→ M1
p1−→ M

p2−→ M2 −→ 0 is exact,
we can regard M1 as a sheaf of N -ideals, which is finite by theorem 2.6, and M2

is clearly a finite sheaf of N -submodules of N n−1. By induction hypothesis we
have global generators h1, ..., hl of M1 and g1, ..., gk of M2. Then it suffices to find
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f1, ..., fk ∈ H0(M,M) such that p2∗(fi) = gi, i = 1, ..., k because f1, ..., fk, h1, ..., hl
are generators of M.

Fix i. Since H0(M,M) ⊂ N(M)n and H0(M,M2) ⊂ N(M)n−1, setting
gi = (gi,2, ..., gi,n) we construct gi,1 ∈ N(M) such that (gi,1, ..., gi,n) ∈ H0(M,M).
For each x ∈ M , the set Φx = {φ ∈ Nx : (φ, gix) ∈ Mx} is a residue class of
Nx modulo M1x, and the correspondence Φ : x → Φx is a global cross-section
of N /M1. Actually, it suffices to check it on each member of a finite open
semialgebraic covering of M , we assume that M is generated by global cross-
sections α1 = (α1,1, ..., α1,n), ..., αk′ = (αk′,1, ..., αk′,n) ∈ N(M)n. Then α′

1 =
(α1,2, ..., α1,n), ..., α′

k′ = (αk′,2, ..., αk′,n) are also generators of M2. Let M3 de-

note the kernel of the N -homomorphism N k′+1 ⊃ N k′+1
x ∋ (φ1, ..., φk′+1) →∑k′

j=1 φjα
′
jx − φk′+1gix ∈ N n−1

x ⊂ N n−1, x ∈ M . Then M3 is finite by theorem

2.6, and each stalk M3x contains a germ of the form (φ1, ..., φk′, 1). Hence refining
the covering if necessary, we assume that M3 is generated by a finite number of

global cross-sections. Then we have β1, ..., βk′ ∈ N(M) such that gi =
∑k′

j=1 βjα
′
j .

It follows Φ =
∑k′

j=1 βjαj,1 mod M1. Thus Φ is a global cross-section.

Apply the next theorem to the projection N → N /M1 and Φ. Then there exists
gi,1 ∈ N(M) such that gi,1x = Φx mod M1x for x ∈ M and hence (gi,1, ..., gi,n) ∈
H0(M,M). �

Theorem 2.8. (Nash case of Cartan Theorem B) Let h : M1 → M2 be a surjective
N -homomorphism between finite sheaves of N -modules on a Nash manifold M .
Assume that M1 is finitely generated by its global cross-sections. Then the induced
map h∗ : H0(M,M1) → H0(M,M2) is surjective.

Proof. We can assume that M1 = N n for some n > 0 ∈ N because there exist
global generators g1, ..., gn of M1 and then we can replace h with the surjective
homomorphism N n ⊃ N n

x ∋ (φ1, ..., φn) → h(
∑n

i=1 φigix) ∈ M2x ⊂ M2, x ∈ M .
Set M = Ker h. Then by theorem 2.6, M is a finite sheaf of N -submodules of N n,
and h : N n → M2 coincides with the projection p : N n → N n/M. Hence we
consider p in place of h. Assume that n > 1 and the theorem holds for smaller n.

Let f ∈ H0(M,N n/M). We need to find g ∈ H0(M,N n) = N(M)n such that
p∗(g) = f . Let M0 denote the sheaf of N -ideals with M0x = {0} for x ∈M . Then
the homomorphism M0 × N n−1 → N n/(M + N ×M0 × · · · ×M0) is surjective
and we can regard it as the projection N n−1 → N n−1/L for some finite sheaf of N -
submodules L of N n−1. Hence by induction hypothesis there exists (0, g2, ..., gn) ∈
H0(M,M0×N n−1) whose image inH0(M,N n/(M+N×M0×· · ·×M0)) coincides
with the image of f there. Replace f with the difference of f and the image of
(0, g2, ..., gn) in H0(M,N n/M). Then we can assume from the beginning that f ∈
H0(M, (M+N ×M0×· · ·×M0)/M). Hence we regard f as a global cross-section
of N×M0×· · ·×M0/(M∩N×M0×· · ·×M0) since (M+N×M0×· · ·×M0)/M
is naturally isomorphic to N ×M0 × · · ·×M0/(M∩N ×M0 × · · ·×M0). It was
shown in the proof of theorem 2.6 that M∩N×M0×· · ·×M0 is finite. Hence f is
the image of some global cross-section g of N ×M0×· · ·×M0 under the projection
H0(M,N×M0×· · ·×M0) → H0(M,N×M0×· · ·×M0/(M∩N×M0×· · ·×M0))
because this is the case of M1 = N in the theorem. Then p∗(g) = f . �

Let X be a Nash subset of Rn and f1, ..., fk be generators of the ideal of N(Rn)
of functions vanishing on X . Let SingX denote the subset of X where the Jacobian
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matrix rank of f1, ..., fk is smaller than codimX . Let a complexification XC of X
in Cn be defined to be the common zero set of some complexifications fC

1 , ..., f
C

k

of f1, ..., fk. Then by Lemma 1.9 and Theorem 1.10 in [C-R-S2] and theorem 2.7,
we obtain the next remark.

Remark. SingX is the smallest Nash subset of X whose complement is a Nash
manifold. But it does not coincide in general with points in X where the germ
of X is not a Nash manifold germ of dimX . Moreover SingX is also equal to
X ∩ SingXC, where SingXC denotes the Cω singular point set of XC.

We deduce from [Hi] a Nash version of Hironaka Desingularization Theorem that
will be useful in our context.

Theorem 2.9. (Nash case of Main Theorem I of [Hi]) Let X be a Nash subset of

Rn. Then there exists a finite sequence of blowings-up Xr
πr−→ · · ·

π1−→ X0 = X
along smooth Nash centers Ci ⊂ Xi, i = 1, ..., r − 1, such that Xr is smooth and
Ci ⊂ SingXi.

Proof. Since N(Rn) is a Noetherian ring ([E] and [Ri]), we have generators f1, ..., fk
of the ideal of N(Rn) of functions vanishing on X . Set F = (f1, ..., fk), which
is a Nash map from Rn to Rk, and Y = graphF . Let Y Z denote the Zariski

closure of Y in Rn × Rk and let Ỹ Z ⊂ Rn × Rk × Rn′

be an algebraic set such

that the restriction p to Ỹ Z of the projection Rn × Rk × Rn′

→ Rn × Rk is the

normalization of Y Z (we simply call Ỹ Z the normalization of Y Z). Then by Artin-
Mazur Theorem (see Theorem I.5.1 in [S2]) there exists a connected component

L of Ỹ Z consisting of only regular points such that p(L) = Y and p|L : L → Y

is a Nash diffeomorphism. Let q1 : Ỹ Z → Rn and q2 : Ỹ Z → Rk denote the

restrictions to Ỹ Z of the projections Rn ×Rk ×Rn′

→ Rn and Rn ×Rk ×Rn′

→
Rk, respectively. Then q1|L is a Nash diffeomorphism onto Rn, the set q−1

2 (0) is
algebraic, the equality (q1|L)−1(X) = (q2|L)−1(0) holds, and (q1|L)−1(SingX) is
equal to the intersection of L with the algebraic singular point set of q−1

2 (0). Indeed,
(q1|L)−1(SingX) is contained in the above intersection because (q1|L)−1(SingX)
is the smallest Nash subset of (q1|L)−1(X) (= (q2|L)−1(0)) whose complement is
a Nash manifold (by the remark before theorem 2.9), and the converse inclusion
follows from the equality q2 = F ◦q1 on L. Hence we can replace X by L∩q−1

2 (0)—
the union of some connected components of q−1

2 (0). By Main Theorem I there exists

a finite sequence of blowings-up X̃r
π̃r−→ · · ·

π̃1−→ X̃0 = q−1
2 (0) along smooth algebraic

centers C̃i ⊂ X̃i, for i = 0, ..., r−1, such that X̃r is smooth and C̃i ⊂ Sing X̃i. Then
X̃r ∩ (π̃1 ◦ · · · ◦ π̃r)−1(L) → · · · → X̃0 ∩ L fulfills the requirements. �

A sheaf of N -(O-)ideals on a Nash (analytic) manifold M is called normal cross-
ing if there exists a local Nash (analytic) coordinate system (x1, ..., xn) of M at
each point such that the stalk of the sheaf is generated by

∏n
i=1 x

αi

i for some
(α1, ..., αn) ∈ Nn.

Theorem 2.10. (Nash case of Main Theorem II of [Hi]) Let M be a Nash manifold
and let I1 and I2 be finite sheaves of non-zero N -ideals on M . Assume that I2

is normal crossing. Then there exists a finite sequence of blowings-up Mr
πr−→

· · ·
π1−→ M0 = M along smooth Nash centers Ci ⊂ Mi, for i = 1, ..., r − 1, such

that (π1 ◦ · · · ◦ πr)−1I1I2NMr
is normal crossing, each Ci is normal crossing with
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(π1 ◦ · · · ◦ πi)−1(suppNM/I2) ∪ ∪ij=1(πj ◦ · · · ◦ πi)−1(Cj−1) and π1 ◦ · · · ◦ πi(Ci) is
contained in the subset of M consisting of x such that even I1x is not generated by
any power of one regular function germ or I1x + I2x 6= Nx.

Note that (π1 ◦ · · · ◦ πi)−1I2NMi
, for i = 1, ..., r, are normal crossing.

Proof. Let f1, ..., fk′ ∈ N(Rn) and fk′+1, ..., fk ∈ N(Rn) be global generators of

I1 and I2 (theorem 2.7), respectively, and define F, Y, Y Z , Ỹ Z , L, q1 : Ỹ Z → Rn

and q2 : Ỹ Z → Rk as in the last proof. Let W be the subset of Ỹ Z consisting
of points where fk′+1 ◦ q1, ..., fk ◦ q1 do not generate a normal crossing sheaf of
N -ideals. Consider the algebraic R-scheme of the topological underlying space

Ỹ Z − Sing Ỹ Z −W , and let J1 and J2 denote the sheaf of ideals of the scheme
generated by f1 ◦ q1, ..., fk′ ◦ q1 and by fk′+1 ◦ q1, ..., fk ◦ q1, respectively. Then we
can replace M, I1 and I2 with the scheme, J1 and J2. Hence the theorem follows
from Main Theorem II. �

Remark. Note that main Theorems I and II of [Hi] state some additional conditions
that are automatically satisfied in the Nash case.

2.3. Topologies on function spaces.
Let M be a C∞ manifold. We use three kinds of topologies on C∞(M) as a

topological linear space.
The first is the classical compact-open Cr topology, r = 0, ...,∞, for which

C∞(M) is a Fréchet space if r = ∞.
The second is the Whitney Cr topology, r = 0, ...,∞. Even if it is well-known, we

recall its definition because we will define the third topology below by comparison
with it. If M = Rn, then a system of open neighborhoods of the zero function in
C∞(M) is given by

Ur′,gα
= {f ∈ C∞(Rn) : |Dαf(x)| < gα(x), α ∈ Nn, |α| ≤ r}

where r′ runs in {m ∈ N : m ≤ r} and gα runs in C∞(Rn) with gα > 0 everywhere
for each α ∈ Nn with |α| ≤ r′. If M is an open subset of Rn, we define the
topology on C∞(M) in the same way. In general, embed M in some Rn and let
p : V → M be the orthogonal projection of a tubular neighborhood of M in Rn.
Then p induces an injective linear map C∞(M) ∋ f → f ◦p ∈ C∞(V ) whose image
is closed in C∞(V ) in the Whitney Cr topology. Hence C∞(M) inherits a topology
as a closed subspace of C∞(V ). We call it the Whitney C∞ topology.

The strong Whitney C∞ topology is the third topology which we will consider.
Assume first that M = Rn, and let gα be a positive-valued C∞ function on Rn

and Kα be a compact subset of Rn for each α ∈ Nn such that {Rn−Kα} is locally
finite. Set g = (gα)α and K = (Kα)α. Then a system of open neighborhoods of
the zero function in C∞(Rn) is given by the family of sets

Ug,α = {f ∈ C∞(Rn) : |Dαf(x)| < gα(x) for x ∈ Rn −Kα for α ∈ Nn}

for all g and K. We define the strong Whitney C∞ topology on a general manifold
M in the same way as in the case of the Whitney C∞ topology. Moreover, we
shall need to consider C∞ functions on an analytic set and the strong Whitney
C∞ topology on the space. To this aim, we use another equivalent definition of the
topology. Let {Ml} be a family of compact C∞ submanifolds of M possibly with
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boundary such that {IntMl} is a locally finite covering of M . Regard C∞(M) as a
subset of

∏
l C

∞(Ml) by the injective map C∞(M) ∋ f →
∏
l f |Ml

∈
∏
l C

∞(Ml).
Then the family of sets C∞(M) ∩

∏
lOl is the system of open sets of C∞(M),

where Ol are open subsets of C∞(Ml) in the C∞ topology. Note that the product
topology of

∏
l C

∞(Ml) induces the compact-open C∞ topology.
For an analytic manifold M , we endow Cω(M) with the three topologies in the

same way, and we extend naturally the definition of the topologies to the spaces of
C∞ or Cω maps between C∞ or Cω manifolds.

Remark 2.11. The first three remarks explain essential differences between the three
topologies.

(1) The compact-open C∞ topology, the Whitney C∞ topology and the strong
Whitney C∞ topology coincide if M is compact.

(2) The strong Whitney C∞ topology is stronger than the Whitney C∞ topology
if M is not compact.

(3) C∞(M) is not a Fréchet space in the Whitney Cr topology nor the strong
Whitney C∞ topology if M is not compact. Indeed, it is even not metrizable.

The following remarks will be useful in the sequel.
(4) Whitney Approximation Theorem—any C∞ function on an analytic manifold

is approximated by a Cω function—holds also in any of these topologies (see [W]).
Finally, an advantage of the strong Whitney C∞ topology is that we can reduce

many global problems to local problems using partition of unity.
(5) Let {φi} be a partition of unity of class C∞ on M . Then for a neighborhood

U of 0 in C∞(M) in the strong Whitney C∞ topology there exists another V such
that if f ∈ V then φif ∈ U for all i and conversely if φif ∈ V for all i then f ∈ U .

Let M be a Nash manifold. We give a topology on N(M), called the semial-
gebraic Cr topology, r = 0, ...,∞, so that a system of open neighborhoods of 0 in
N(M) is given by the family Ur′,gα

defined in the above definition of the Whitney
Cr topology, where gα runs here in N(M) only. If r = ∞, we call it the Nash
topology. For r <∞, let Nr(M) denote the space of semialgebraic Cr functions on

M . We define semialgebraic Cr
′

topology on Nr(M) for r′ ≤ r in the same way.
We do not need the analog on N(M) of the strong Whitney C∞ topology. When
M is not compact, it is the discrete topology by Proposition VI.2.8, [S2] and next
remark. A partition of unity of class semialgebraic Cr, r ∈ N, on M is a finite
family of non-negative semialgebraic Cr functions on M whose sum equals 1.

Remark 2.11,(5)′. Let r′ ≤ r ∈ N, and let {φi} be a partition of unity of class

semialgebraic Cr
′

on M . Then for a neighborhood U of 0 in Nr(M) in the Cr
′

topology there exists a neighborhood V of 0 in Nr(M) such that if f ∈ V then
φif ∈ U for all i and conversely if φif ∈ V for all i then f ∈ U .

The reason is that {φi} is a finite family and the map Nr(M) ∋ f → φif ∈
Nr(M) is continuous for each i by lemma II.1.6, [S2], which states that Nr(M) and

N(M) are topological rings in the semialgebraic Cr
′

topology.

We need also the following lemma many times.

Lemma 2.12. Let M be an analytic manifold and ξ1, ..., ξl be analytic functions

on M . Then the maps Ξ∞ : C∞(M)l ∋ (h1, ..., hl) →
∑l
i=1 ξihi ∈

∑l
i=1 ξiC

∞(M)

and Ξω : Cω(M)l ∋ (h1, ..., hl) →
∑l
i=1 ξihi ∈

∑l
i=1 ξiC

ω(M) are open in both the
compact-open C∞ topology and the strong Whitney C∞ topology.



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 11

Note that in the case l = 1, the lemma is much easier to prove because the
involved maps are injective. Moreover, the lemma does not necessarily hold in the
Whitney C∞ topology. This is one reason why we need to have recourse to the
strong Whitney C∞ topology in the paper.

Proof. Consider Ξ∞ in the compact-open C∞ topology. It is well-known that the
ideal of C∞(M) generated by a finite number of analytic functions is closed in
C∞(M) in any of the C∞ topologies (which follows from Theorems III.4.9 and

VI.1.1′, [Ml]). In particular
∑l

i=1 ξiC
∞(M) is a Fréchet space in the compact-open

C∞ topology, and Ξ∞ is open by the open mapping theorem on Fréchet spaces.
Note that the above proof is still valid in the case of an analytic manifold with
corners.

Consider Ξ∞ in the strong Whitney C∞ topology. Let Mj be compact Cω

submanifolds of M with boundary such that {IntMj} is a locally finite covering of
M . Let {φj} be a partition of unity of class C∞ subordinate to {IntMj}. As shown

above, the map C∞(Mj)
l ∋ (h1, ..., hl) →

∑l
i=1 ξi|Mj

hi ∈
∑l

i=1 ξi|Mj
C∞(Mj) is

open for each j. Hence for each h = (h1, ..., hl) ∈ C∞(M)l and g ∈
∑l
i=1 ξiC

∞(M)

sufficiently close to
∑l

i=1 ξihi in the strong Whitney C∞ topology there exist gj =

(g1,j, ..., gl,j) ∈ C∞(Mj)
l close to h|Mj

such that
∑l
i=1 ξi|Mj

gi,j = g|Mj
for any j.

Then
∑
j φjgj is a well-defined C∞ map from M to Rl and close to h by remark

2.11,(5), and
∑l
i=1 ξi

∑
j φjgi,j =

∑
j φjg = g. Thus Ξ∞ is also open in the strong

Whitney C∞ topology.

We finally consider Ξω only in the strong Whitney C∞ topology (the proof is
similar, and even easier, in the compact-open C∞ topology). Let (h1, ..., hl) ∈

Cω(M)l such that
∑l
i=1 ξihi is small. Then, by openness of Ξ∞, there exists small

(h′1, ..., h
′
l) ∈ C∞(M)l such that

∑l
i=1 ξih

′
i =

∑l
i=1 ξihi and hence (h1 −h′1, ..., hl−

h′l) ∈ Ker Ξ∞. Therefore, it suffices to see that Ker Ξω is dense in Ker Ξ∞. Let
H = (h1, ..., hl) ∈ Ker Ξ∞. We want to approximate H by an element of Ker Ξω.

Let J denote the kernel of the homomorphism : Ol ⊃ Ol
a ∋ (φ1, ..., φl) →∑l

i=1 ξiaφi ∈ Oa ⊂ O, a ∈ M , which is a coherent sheaf of O-submodules of

Ol by theorem 2.5. Let MC and JC be Stein and coherent complexifications of
M and J which are complex conjugation preserving. Let {Ui} be a locally finite
open covering of MC such that each U i is compact. Let Hi,j = (h1,i,j, ..., hl,i,j),
for j = 1, ..., ni, i = 1, 2, ..., be global cross-sections of J such that Hi,j|M are
real valued and Hi,1, ..., Hi,ni

generate JC on Ui (theorem 2.1) for each i. Then
Hi,1|Ui∩M , ..., Hi,ni

|Ui∩M are generators of Ker Ξ∞|Ui∩M . Actually, by Theorem
VI,1.1′ in [Ml] it is equivalent to prove that Ker Ξa = Fa Ker Ξωa , a ∈ Ui, where Fa is
the completion of Oa in the p-adic topology and the homomorphisms Ξωa : Ol

a → Oa

and Ξa : F l
a → Fa are naturally defined. However, this condition is the flatness

of Fa over Oa, which is well-known (see [Ml]). Thus Hi,1|Ui∩M , ..., Hi,ni
|Ui∩M

generate Ker Ξ∞|Ui∩M . Let {ρi} be a partition of unity of class C∞ subordinate
to {Ui ∩M}. Then ρiH ∈ Ker Ξ∞|Ui∩M and we have C∞ functions χi,j on M , for
j = 1, ..., ni, i = 1, 2, ..., such that suppχi,j ⊂ Ui ∩M and ρiH =

∑ni

j=1 χi,jHi,j |M .

By remark 2.11,(4) we can approximate χi,j by analytic functions χ′
i,j . Moreover,

as in [W] we can approximate so that each χ′
i,j can be complexified to a complex

analytic function χ′C
i,j on MC and

∑
i,j |χ

′C
i,jHi,j | is locally uniformly bounded. Then∑

i,j χ
′C
i,jHi,j is a complex analytic map from MC to Cl, and its restriction to M
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is both an approximation of H and an element of Ker Ξω. Thus Ξω is open. �

Lemma 2.12 holds in the Nash case for a compact Nash manifold. However, we
do not know whether lemma 2.12 still holds for a non-compact Nash manifold. Con-
sequently, we have recourse many times in this paper to compactification arguments
that require much care to deal with.

3. Equivalence of normal crossing functions

3.1. On C∞ equivalence of analytic functions with only normal crossing
singularities.

Let us compare Cω and C∞ right equivalences of two analytic functions on an
analytic manifold. The C∞ right equivalence is easier to check. The Cω right
equivalence implies the latter. However the converse is not necessarily true. We
will show that this is the case for analytic functions with only normal crossing
singularities, and apply the fact to the proof of the main theorem 3.2.

The main theorem of this section is

Theorem 3.1. (1) Let M be a Cω manifold and f, g ∈ Cω(M). Assume that f
and g admit only normal crossing singularities. If f is C∞ right equivalent to g,
then f is Cω right equivalent to g.

(2) If C∞ functions f and g on a C∞ manifold M admit only normal cross-
ing singularities and are proper and C2 right equivalent, then they are C∞ right
equivalent.

(3) If f and g are semialgebraically C2 right equivalent Nash functions on a
Nash manifold M with only normal crossing singularities, then they are Nash right
equivalent.

The case where M has corners also holds.

Remark. (i) The germ case is also of interest. Let M, f and g be the same as in
above (1). Let φ be a C∞ diffeomorphism of M such that f = g◦φ. Set X = Sing f
and Y = Sing g, and let {Xi} and {Yi} be the irreducible analytic components of X
and Y , respectively. Let A and B be the unions of some intersections of some Xi and
Yi, respectively. Assume that φ(A) = B. Then we can choose a Cω diffeomorphism
π so that f = g ◦ π and π(A) = B. Consequently, theorem 3.1,(1) holds for the
germs of f on A and g on B. Similar statements for (2) and (3) hold.

(ii) In the Nash case, C∞ right equivalence does not imply Nash right equiv-
alence. Indeed, let N be a compact contractible Nash manifold with non-simply
connected boundary of dimension n > 3 (e.g., see [Mz]). Set M = (IntN) × (0, 1)
and let f : M → (0, 1) denote the projection. Then M and f are of class Nash,
and M is Nash diffeomorphic to Rn+1. Actually, smooth the corners of N × [0, 1].
Then N × [0, 1] is a compact contractible Nash manifold with simply connected
boundary of dimension strictly more than four. Hence by the positive answers to
Poincaré conjecture and Schönflies problem (Brown-Mazur Theorem) N × [0, 1] is
C∞ diffeomorphic to an (n + 1)-ball. Hence by Theorem VI.2.2 in [S2] M is Nash
diffeomorphic to an open (n + 1)-ball. Let g : M → R be a Nash function which
is Nash right equivalent to the projection Rn × (0, 1) → (0, 1). Then f and g are
Cω right equivalent since IntN is Cω diffeomorphic to Rn, but they are not Nash
equivalent because IntN and Rn are not Nash diffeomorphic, by Theorem VI 2.2
in [S2].
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For the proof of part (2) and (3) of the theorem, we need to prepare some material
in next part. Therefore we postpone their proof to the last part of the paper.

Proof of theorem 3.1,(1). In this proof we apply the strong Whitney C∞ topology
unless otherwise specified. The idea of the proof is taken from [S1]. Let us consider
the case without corners. The proof is divided into three steps. Denote by X
and Y the extended critical sets of f and g, that is X = f−1(f(Sing f)) and
Y = g−1(g(Sing g)). Note that X and Y are not necessarily analytic sets. Let
M be analytic and closed in the ambient Euclidean space RN , and consider the
Riemannian metric on M induced from that of RN . Set n = dimM .

Step 1. Assume that X is an analytic set. Let φ denote a C∞ diffeomorphism of
M such that f = g ◦ φ. Then there exists a Cω diffeomorphism π of M arbitrarily
close to φ such that π(X) = Y .

Proof of step 1. Let {Xi : i = 0, ..., n − 1} and {Yi : i = 1, ..., n − 1} be
the canonical stratifications of X and Y respectively, and put Xn = M − X and
Yn = M − Y .

Before beginning the proof, we give some definitions and a remark. Fix Xi. Let
{Ml} be a family of compact C∞ manifolds of dimension i possibly with boundary
such that {IntMl} is a locally finite covering of ∪ij=0Xj. A function on ∪ij=0Xj is

called of class C∞ if its restriction to each Ml is of class C∞. Thus C∞(∪ij=0Xj) is

a subset of
∏
l C

∞(Ml). We give to C∞(∪ij=0Xj) the product topology of the C∞

topology on each C∞(Ml), i.e. the compact-open C∞ topology. We give also the
strong Whitney C∞ topology on C∞(∪ij=0Xj) in the same way. Then lemma 2.12

holds for the map C∞(∪ij=0Xj) ∋ f → h|∪i
j=0Xj

f ∈ C∞(∪ij=0Xj) for an analytic

function h on M , which is proved in the same way. We will use this generalized
version of the lemma below.

Let X ′ be a normal-crossing Cω subset of M contained in X . Assume that the
sheaf of O-ideals on M defined by X ′ is generated by a single Cω function ξ on M .
Let V denote the subspace of C∞(∪ij=0Xj) consisting of functions which vanish on

X ′. Then V = ξC∞(∪ij=0Xj) by Theorem VI,3.10 in [Ml]. We will use this remark
later in this proof.

Now we begin the proof. By induction, for some i ∈ N, assume that we have
constructed a C∞ diffeomorphism πi−1 of M close to φ such that πi−1|∪i−1

j=0Xj
is

of class Cω (in the sense that πi−1|∪i−1
j=0Xj

∈
∏
l C

ω(Ml)) and πi−1(Xj) = Yj for

any j. Let M denote the sheaf of O-ideals on M defined by ∪i−1
j=0Xj , which is

coherent because X is normal-crossing. Then πi−1|∪i−1
j=0Xj

∈ H0(M,O/M)N for

the following reason. As the problem is local, we can assume that M = Rn and
X = {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0} for some n′ ≤ n ∈ N. Moreover, we
suppose that i = n because if for each irreducible analytic component E of ∪ij=0Xj

we can extend πi−1|E∩∪i−1
j=0Xj

to an analytic map on E then the extensions for

all E define an analytic map from ∪ij=0Xj to RN , and hence it suffices to work
on each E in place of Rn. Then what we see is that an analytic function on
X = {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0} is an element of H0(M,O/M), namely,
can be extensible to an analytic function on Rn (corollary 2.4), where M is defined
by X . We proceed by induction on n′. Since the statement is clear if n′ = 0 or
n′ = 1, assume that n′ > 1 and that the restriction of f to {x1 = 0} is extensible

to an analytic function f̃ on Rn. Then f − f̃ |X vanishes on {x1 = 0} and hence is
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divisible by x1. Apply the induction hypothesis to (f − f̃)/x1 and {x2 · · ·xn′ = 0}

and let
˜̃
f be an extension of (f − f̃)/x1. Then f̃ + x1

˜̃
f is the required extension of

f .

Consider any Cω extension α : M → RN of πi−1|∪i−1
j=0Xj

(corollary 2.4). Here we

can choose α to be sufficiently close to πi−1 and so that Imα ⊂M for the following
reason. Let γ1, ..., γk ∈ Cω(M) be generators of M (corollary 2.2). Then there

exist δ1, ..., δk ∈ C∞(M,RN) such that πi−1−α =
∑k
j=1 γjδj by the above remark.

Let δ̃j be Cω approximations of δj . Replace α with the composite of α+
∑
γj δ̃j and

the orthogonal projection of a neighborhood of M in RN to M . Then α satisfies
the requirements. Let pj : Uj → Yj be the orthogonal projection of a tubular
neighborhood of Yj in RN . Here Uj is described as ∪y∈Yj

{x ∈ RN : |x − y| <
ǫ(y), (x−y) ⊥ TyYj} for some positive C0 function ǫ on Yj where TyYj denotes the

tangent space of Yj at y, and we can choose ǫ so large that ǫ(y) ≥ ǫ0 dis(y,∪j−1
k=0Yk)

locally at each point of ∪j−1
k=0Yk for some positive number ǫ0 because Y is normal

crossing. Then α can be so close to πi−1 that α(Xi) ⊂ Ui since α = πi−1 on ∪i−1
j=0Xj

and hence dαxv = dπi−1xv for any x ∈ ∪i−1
j=0Xj and for any tangent vector v at

x tangent to ∪i−1
j=0Xj. Define πi on ∪ij=0Xj to be α on ∪i−1

j=0Xj and pi ◦ α on Xi.

Note that πi is a Cω map from ∪ij=0Xj to ∪ij=0Yj ⊂ RN and close to πi−1|∪i
j=0Xj

.

Actually πi−1|∪i
j=0Xj

= pi ◦ πi−1|∪i
j=0Xj

and moreover since α is close to πi−1, then

pi ◦ α on ∪ij=0Xj (= πi) is close to pi ◦ πi−1 on ∪ij=0Xj , where pi : Ui → ∪ij=0Yj is
the natural extension of pi. We need to extend πi to a C∞ diffeomorphism of M
which is close to πi−1 and carries each Xj to Yj . Compare πi ◦ π

−1
i−1|∪i

j=0Yj
and the

identity map of ∪ij=0Yj . Then they are close each other and what we have to prove

is the following statement: let τ be a C∞ map between ∪ij=0Yj close to id. Then
we can extend τ to a C∞ diffeomorphism of M which is close to id and carries each
Yj to Yj , j = i+ 1, ..., n.

By the second induction, it suffices to extend τ to a C∞ map between ∪i+1
j=0Yj

close to id. We reduce the problem to a trivial case. First it is enough to extend
τ to a C∞ map from ∪i+1

j=0Yj to RN close to id by virtue of pi+1 : Ui+1 → Yi+1 as

above. Secondly, if we replace τ with τ − id |∪i
j=0Yj

then the problem is that for a

C∞ map τ : ∪ij=0Yj → RN close to the zero map we can extend τ to a C∞ map

from ∪i+1
j=0Yj to RN close to 0. Thirdly, we can assume that τ is a function. Hence

we can use a partition of unity of class C∞ and the problem becomes local (remark
2.11,(5)). So we assume that M = Rn, Y is the union of some irreducible analytic
components of {y1 · · ·yn = 0} and τ ∈ C∞(∪ij=0Yj) is close to 0 and vanishes on

{y ∈ ∪ij=0Yj ⊂ Rn : |y| ≥ 1}, where (y1, ..., yn) ∈ Rn. Let ξ be a C∞ function
on M such that ξ = 1 on {y ∈ Rn : |y| ≤ 1} and ξ = 0 on {|y| ≥ 2}. If n = 0
or 1 we have nothing to do. Hence by the third induction on n, assume that we
have a C∞ extension τ1(y2, ..., yn) of τ |{y1=0}∩∪i

j=0Yj
to {y1 = 0} ∩ ∪i+1

j=0Yj close

to 0. Regard τ1(y2, ..., yn) as a C∞ function on ∪i+1
j=0Yj, which is possible because

∪i+1
j=0Yj is contained in the product of R and the image of {y1 = 0}∩∪i+1

j=0Yj under

the projection R × Rn−1 → Rn−1. Replace τ with τ − τ1ξ, which vanishes on
{y1 = 0 or |y| ≥ 2}∩∪ij=0Yj. Next consider (τ−τ1ξ)/y1|{y2=0}∩∪i

j=0Yj
and apply the

generalized lemma 2.12, the above remark and the same arguments as above. Then
we reduce the problem to the case where τ = 0 on {y1y2 = 0 or |y| ≥ 3} ∩ ∪ij=0Yj
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and by the fourth induction to the case where τ = 0 on ∪ij=0Yj . Thus step 1 is
proved.

Step 2. Assume that X = Y , X is an analytic set and there exists a C∞ diffeo-
morphism φ of M such that f = g ◦ φ. Then there exists a Cω diffeomorphism π
of M close to φ such that f = g ◦ π.

Proof of step 2. By step 1 there exists a Cω diffeomorphism φ′ of M arbitrarily
close to φ such that φ′(X) = X . Then f ◦ φ′−1 = g ◦ φ ◦ φ′−1, f ◦ φ′−1 is analytic
and φ ◦ φ′−1 is close to id. Hence we assume in step 2 that g is fixed and f and
φ can be chosen so that φ and f − g are arbitrarily close to id and 0 respectively.
We construct π by integrating along a well-chosen vector field on M . There exist
analytic vector fields w1, ..., wN on M which span the tangent space at each point
of M , e.g., wix = dpx

∂
∂xi

, x ∈M , where (x1, ..., xN) ∈ RN and p is the orthogonal

projection of a tubular neighborhood of M in RN . Consider a vector field v =
∂
∂t

+
∑N
i=1 aiwi on M × [0, 1] where ai ∈ Cω(M × [0, 1]) for i ∈ {1, ..., N}. Put

F (x, t) = (1 − t)f(x) + tg(x) for (x, t) ∈M × [0, 1].

Assume that we have found such ai, i = 1, ..., N , that v(F ) = 0 and |
∑N
i=1 aiwi|

is small. Then F is constant along integral curves of v, therefore, the flow of v
furnishes an analytic diffeomorphism π so that f = g ◦ π.

Therefore, what we have to do is to construct the relevant ai, i ∈ {1, ..., N}.
First look at the local case. We will show that there exist a compact neighborhood
U of each point of M and ai ∈ Cω(U × [0, 1]), i = 1, ..., N , such that v(F ) = 0 on

U × [0, 1] and |
∑N
i=1 aiwi| is small. If the point is in X , we can write U = {x ∈

Rn : |x| ≤ 1}, g(x)− c =
∏n
i=1 x

ni

i and f(x)− c = λ(x)(g(x)− c) for x ∈ U , where
c ∈ R, λ is a Cω function on U and close to 1 by lemma 2.12, and at least one
of ni’s, say n1, is non-zero. Assume that c = 0 without loss of generality. Then
there exists v of the form ∂

∂t
+ b1

∂
∂x1

, b1 ∈ Cω(U × [0, 1]), which satisfies v(F ) = 0.
Actually

(
∂

∂t
+ b1

∂

∂x1
)F (x, t) =

(1 − λ)g(x) + b1(x, t)
(
n1(t+ (1 − t)λ(x))

g(x)

x1
+ (1 − t)g(x)

∂λ

∂x1
(x)

)
= 0,

b1(x, t) =
−(1 − λ(x))x1

n1(t+ (1 − t)λ(x)) + (1 − t)x1
∂λ
∂x1

(x)
,

which is an analytic function in U × [0, 1] and close to 0. Shrink U if necessary.
Then for some 0 < i1 < · · · < in ≤ N , the vector fields wi1 , ..., win span the tangent
space there, and b1

∂
∂x1

is described uniquely by
∑n
j=1 aijwij for some Cω functions

aij . Hence aij , j = 1, ..., n, and ai = 0, i 6∈ {i1, ..., in}, fulfill the requirements.
Next consider the situation at a point outside of X . Note that the values of f

and g at the point may be different, and hence the above arguments do not work.
We can choose its local coordinate system so that U = {x ∈ Rn : |x| ≤ 1} and
∂g
∂x1

= 1 on U . Then

(
∂

∂t
+ b

∂

∂x1
)F (x, t) = −f + g + b1((1 − t)

∂f

∂x1
+ t

∂g

∂x1
) = 0,

b1(x, t) =
f − g

(1 − t) ∂f∂x1
+ t ∂g∂x1

,
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and (1− t) ∂f∂x1
+ t ∂g∂x1

and f −g are close to 1 and 0, respectively. Hence there exist
U and ai as before.

Consequently, using a partition of unity of class C∞ we obtain a C∞ vector field

v′ = ∂
∂t +

∑N
i=1 a

′
iwi on M × [0, 1] such that v(F ) = 0 and |

∑N
i=1 a

′
iwi| is small

(remark 2.11,(5)).
Now, to construct the global analytic vector filed v on M × [0, 1] we use Cartan

Theorems A and B. Consider the sheaf of relations J on M × [0, 1] defined by

J = ∪(x,t)∈M×[0, 1]{(β, α1, . . . , αN) ∈ ON+1
(x,t) :

β(fx − gx) +
N∑

i=1

αi(wi((1 − t)f + tg))(x,t) = 0}.

The sheaf J is a coherent sheaf of O-modules by Oka Theorem 2.5. Later we
will find l ∈ N and global cross-sections (bk, a

k
1 , . . . , a

k
N) ∈ H0(M × [0, 1],J ),

k ∈ {1, . . . , l}, such that for any (x, t) ∈ M × [0, 1], any Cω vector field germ ω

at (x, t) in M × [0, 1] with ω(F(x,t)) = 0 is of the form
∑l
k=1 ξkvk(x,t) for some Cω

function germs ξk at (x, t) in M× [0, 1], where vk = bk
∂
∂t +

∑N
i=1 a

k
iwi. Assume the

existence of such l and (bk, a
k
1 , . . . , a

k
N ). Then by the above method of construction

of v′ and by a partition of unity of class C∞ there exist C∞ functions θk on M such

that v′ =
∑l

k=1 θkvk. Approximate θk by Cω functions θ̃k, and set ṽ =
∑l
k=1 θ̃kvk.

Then ṽ is a Cω vector field close to v′ such that F (ṽ) = 0 and is described by

ã0
∂
∂t +

∑N
i=1 ãiwi, ãi ∈ Cω(M × [0, 1]), for the following reason. Let I denote the

coherent sheaf of O-submodules of the sheaf of O-modules of germs of Cω vector
fields on M × [0, 1] defined by

I(x,t) = {ω : ω(F(x,t)) = 0} for (x, t) ∈M × [0, 1],

and define an O-homomorphism δ : Ol → I by

δ(γ1, ..., γl) =
l∑

k=1

γkvk(x,t) for (γ1, ..., γl) ∈ Ol
(x,t), (x, t) ∈M × [0, 1].

Then δ is surjective, H0(M × [0, 1], I) is the set of all Cω vector fields w on
M × [0, 1] with w(F ) = 0, and hence by Cartan Theorem B the homomorphism

Cω(M × [0, 1])l ∋ (d1, ..., dl) →
∑l

k=1 dkvk ∈ H0(M × [0, 1], I) is surjective, i.e.,

ṽ is of the form
∑l
k=1 dkvi for some Cω functions dk on M × [0, 1]. Therefore,

we have ṽ = ã0
∂
∂t +

∑N
i=1 ãiwi for ã0 =

∑l
k=1 dk and ãi =

∑l
k=1 dka

k
i , i =

1, ..., N . Here ã0 is unique and hence close to 1, and |
∑N
i=1 ãiwi| is small. Thus

v = ∂
∂t

+
∑N

i=1(ãi/ã0)wi is what we wanted.

It remains to find (bk, a
k
1 , ..., a

k
N), k = 1, ..., l. That is equivalent to prove that

H0(M × [0, 1], I) is finitely generated by Cartan Theorem B because the homo-

morphism J(x,t) ∋ (β, α1, ..., αN) → β ∂∂t +
∑N
i=1 αiwi(x,t) ∈ I(x,t) is surjective.

Moreover, it suffices to see that each stalk I(x,t) is generated by a uniform number
of elements by corollary 2.2. Note that F is an analytic function with only nor-
mal crossing singularities. Hence we replace F with f to simplify notation. Let K
denote the sheaf of O-modules of Cω vector field germs on M such that

Kx = {ω : ω(fx) = 0} for x ∈M.
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Then it suffices to choose l ∈ N so that for any x0 ∈ M , Kx0
is generated by l

elements. Since the problem is local we can assume that M = Rn, x0 = 0 and

f(x) =
∏k
i=1 x

ni

i with n1, ..., nk > 0, 0 < k ≤ n. Write ω ∈ K0 as
∑n
i=1 αi

∂
∂xi

, αi ∈

O0, and set h(x) =
∏k
i=1 xi. Then ω(fx0

) = 0 means

k∑

i=1

niαif(x)/xi = 0, hence
k∑

i=1

niαih(x)/xi = 0.

Therefore, each αi is divisible by xi. Hence, setting α′
i = αi/xi we obtain

∑k
i=1 niα

′
i

= 0. It is clear that {(α′
1, ..., α

′
n) ∈ On

0 :
∑k
i=1 α

′
i = 0} is generated by n−1 elements,

which proves step 2.
The proof of step 1 shows that any C∞ diffeomorphism of M carrying Sing f to

Sing g is approximated by an analytic diffeomorphism of M with the same property.
Hence it suffices to prove the next statement.

Step 3. Assume that Sing f = Sing g and there exists a C∞ diffeomorphism φ of
M such that f = g ◦ φ. Then there exists a Cω diffeomorphism π of M such that
f = g ◦ π.

Proof of step 3. As at the beginning of the proof of step 2 we fix g and modify
f and φ so that φ and f − g are sufficiently close to id and 0 respectively. Set
Z = Sing f and let Zi, i = 1, 2, ..., be connected components of Z. Let Ui be
disjoint small open neighborhoods of Zi in M such that if φ(Ui) ∩ Ui′ 6= ∅ then
i = i′. Then by steps 1 and 2 there exist Cω diffeomorphisms πi : Ui → φ(Ui)
close to φ|Ui

: Ui → φ(Ui) such that f = g ◦ πi on Ui. Note that if we define
a map between M to be πi on each Ui and φ elsewhere, then the map is a C∞

diffeomorphism by the definition of the strong Whitney C∞ topology. For x0 ∈M ,
let m(x0) denote the multiplicity of g−g(x0) at x0, i.e., m(x0) = |α| = α1+ · · ·+αn
for α = (α1, ..., αn) ∈ Nn such that g(x) − g(x0) is written as ±xα for some local
coordinate system (x1, ..., xn) at x0. There exists h ∈ Cω(M) such that h−1(0) = Z
and h is m(x)-flat at each x ∈ Z for the following reason. For each i, let {Zi,j}j
be the stratification of Zi by multiplicity number, and for each Zi,j , consider the
smallest analytic set in Ui and hence in M containing each connected component
of Zi,j . Then we have a locally finite decomposition of Zi into irreducible analytic
sets {Wi,j}j in M such that m(x) is constant, say mi,j , on each Wi,j − ∪j′{Wi,j′ :
dimWi,j′ < dimWi,j}. By corollary 2.2 there exists hi,j ∈ Cω(M)—e.g., the mi,jth
power of the square sum of a finite number of global generators of the sheaf of O-
ideals defined by Wi,j—such that h−1

i,j (0) = Wi,j and hi,j is mi,j-flat at Wi,j , and

then considering the sheaf of O-ideals
∏
i,j hi,jO we obtain h in the same way.

We will reduce the problem to the case where πi − id on Ui and f − g are divis-
ible by h. Since suppO/hO = Z, {πi}i defines an element of H0(M, (O/hO)N).
Hence applying Cartan Theorem B to the exact sequence 0 → (hO)N → ON →
(O/hO)N → 0, we obtain π′ ∈ Cω(M)N such that πi − π′ ∈ hCω(Ui)

N for each i.
We need to modify π′ to be a diffeomorphism of M . Let ξ be a C∞ function on
M such that ξ = 0 outside of a small neighborhood of Z and ξ = 1 on a smaller
one. Approximate C∞ maps

∑
i ξ(πi − π′)/h and (1 − ξ)(φ − π′)/h from M to

RN by Cω maps H1 and H2, respectively. Then hH1 + hH2 + π′ is an analytic
approximation of φ : M → RN whose difference with πi on Ui is divisible by h.
Hence its composite π′′ with the orthogonal projection of M in RN is an analytic
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approximation of φ : M → M such that πi − π′′ is divisible by h by the next fact.
Given θ1, θ2 ∈ R〈〈x1, ..., xn〉〉m, η ∈ R〈〈x1, ..., xn〉〉 and ρ ∈ R〈〈y1, ..., ym〉〉 with
θ1(0) = θ2(0) = η(0) = ρ(0) = 0, then ρ ◦ θ1 − ρ ◦ (θ1 + ηθ2) is divisible by η as
an element of ∈ R〈〈x1, ..., xn〉〉. Now replace φ, πi and f with φ ◦ π′′−1, πi ◦ π

′′−1

and f ◦ π′′−1, respectively. Then the equalities f = g ◦φ and f = g ◦ πi continue to
hold, and πi − id and hence f − g are divisible by h and, moreover, by h3+s by the
same way, where s ∈ N is such that αs is contained in the ideal of R〈〈x1, ..., xn〉〉

generated by ∂ψl

∂x1
, ..., ∂ψl

∂xn
for ψl(x) =

∏l
j=1 xj ∈ R〈〈x1, ..., xn〉〉, l ≤ n, and for

α ∈ R〈〈x1, ..., xn〉〉 which vanishes on Singψl (Hilbert Zero Point Theorem). Set
h1 = (f − g)/h3+s ∈ Cω(M), which is close to 0 by lemma 2.12.

As in the proof of step 2, we define Cω vector fields wi, i = 1, ..., N , and a Cω

function F on M × [0, 1], and it suffices to find a Cω vector field v of the form
∂
∂t +

∑N
i=1 aiwi on M × [0, 1] such that v(F ) = 0 and |

∑N
i=1 aiwi| is bounded.

Since f = g + h3+sh1, then F = g + (1 − t)h3+sh1, and the equality v(F ) = 0
becomes

h3+sh1 =

N∑

i=1

ai(wig + (1 − t)h2+sh2,i)

for some Cω functions h2,i on M close to 0. This is solvable locally. Indeed, for
each x0 ∈ M − Z, at least one of wig, say w1g, does not vanish at x0. Hence
a1 = h3+sh1/(w1g + (1 − t)h2+sh2,1), a2 = · · · = aN = 0 is a solution on a
neighborhood of x0. Assume that x0 ∈ Z. Then choose an analytic local coordinate
system (x1, ..., xn) at x0 in M so that g(x) =

∏n
i=1 x

ni

i + const, where
∑n

i=1 ni =
m(x0) > 1. Here we can assume that x0 = 0, const = 0, n1, ..., nl > 0 and
nl+1 = · · · = nn = 0. Note that m(0, ..., 0, xl+1, ..., xn) = m(0) for (xl+1, ..., xn) ∈
Rn−l near 0. What we prove is that for each t0 ∈ [0, 1], the ideal I of O(0,t0)

generated by
∂g(0,t0)

∂xi
+ (1− t(0,t0))h

2+s
(0,t0)

h2,i(0,t0), i = 1, ..., l, contains h3+s
(0,t0)

h1(0,t0).

Let J denote the ideal of O(0,t0) generated by
∂g(0,t0)

∂xi
, i = 1, ..., l. Then it suffices

to see that h1+s
(0,t0)

∈ J because if so, J ⊃ I, J ∋ h3+s
(0,t0)

h1(0,t0), J = I + mJ

and hence by Nakayama lemma J = I, where m is the maximal ideal of O(0,t0).
Moreover, assuming g(x) = x1 · · ·xl we prove that hs(0,t0) ∈ J , which is sufficient

because
∂g(0,t0)

∂xi
= ni

∏l
j=1 x

nj−1
j

∂x1···xl

∂xi
and h(0,t0) is divisible by

∏l
j=1 x

nj−1
j by

the definition of h. However, hs(0,t0) ∈ J is clear by the definition of s. Note that we

can choose local v = ∂
∂t

+
∑N
i=1 aiwi in any case so that |

∑N
i=1 aiwi| is arbitrarily

small.
We continue to proceed in the same way as in the proof of step 2. We obtain

Cω vector fields vk = bk
∂
∂t +

∑N
i=1 a

k
iwi, k = 1, ..., l, by local existence and a C∞

vector field v′ = ∂
∂t +

∑N
i=1 a

′
iwi such that vk(F ) = v′(F ) = 0, |

∑N
i=1 a

′
iwi| is small

and v′ is of the form
∑l
k=1 θkwi. After then we approximate θk by Cω functions

θ̃k, and v =
∑l
k=1 θ̃vk fulfills the requirements. Thus we complete the proof of (1)

in the case of without corners.
The case with corners is proved in the same way. �

3.2. Cardinality of the set of equivalence classes.
Our main theorem establishes the cardinality of analytic (respectively Nash) R-L

equivalence classes of analytic (respectively Nash) functions on M with only normal
crossing singularities.
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Theorem 3.2. Let M be a compact analytic (respectively, Nash) manifold of
strictly positive dimension. Then the cardinality of analytic (resp., Nash) R-L equiv-
alence classes of analytic (resp. Nash) functions on M with only normal crossing
singularities is 0 or countable. In the Nash case, the compactness of M is not
necessary, and if moreover M is non-compact then the cardinality is countable.

The proof of theorem 3.2 runs as follows. We reduce the Cω case to the Nash
case by proposition 4.1 and then the non-compact Nash case to the compact Nash
case by proposition 4.9. Lemmas 4.3 and 4.4 together with Nash Approximation
Theorem II prove the compact Nash case. We postpone the proof of theorem 3.2
to the last part of the paper.

Remark. (i) The case where the cardinality is zero may appear, e.g. M = S2,P(2)
(for the proof, see the arguments in (v) below in case M = R2).

(ii) In the theorem we do not need to fix M , namely, the cardinality of equivalence
classes of analytic or Nash functions on all compact analytic manifolds or Nash
manifolds, respectively, with only normal crossing singularities is also countable.
Indeed, the cardinality is clearly infinite, and there are only a countable number
of compact analytic manifolds and (not necessarily compact) Nash manifolds up to
analytic diffeomorphism and Nash diffeomorphism, respectively, which will be clear
in the proof of lemma 4.4.

(iii) Theorem 3.2 does not hold for analytic functions on a non-compact analytic
manifold. To be precise, for a non-compact analytic manifold M , the cardinality of
analytic R-L equivalence classes of (proper) analytic functions on M with only nor-
mal crossing singularities is of the continuum (0 or of the continuum, respectively).
We prove this fact below.

(iv) On any non-compact connected analytic (Nash, respectively,) manifold M ,
there exists a non-singular analytic (Nash, respectively,) function. We give the
construction below.

(v) An example of non-compact M where there is no proper analytic (Nash)
function with only normal crossing singularities is R2. We see this by reduction
to absurdity. Assume that there exists such an f . Note that each level of f is a
finite union of Jordan curves. Let a1 ∈ R be a point of Im f and X1 ⊂ R2 be a
Jordan curve in f−1(a1) that does not intersect with f−1(a1) inside of U1. Next
choose a2 ∈ f(U1), a Jordan curve X2 in f−1(a2) ∩ U1 and U2 in the same way. If
we continue these arguments, we arrive at a contradiction to the above note.

Proof of (iii) for proper functions. Assume that there exists a proper analytic
function f on a non-compact analytic manifold M with only normal crossing sin-
gularities. Replacing f with π ◦ f for some proper analytic function π on R if
necessary, we can assume that f(Sing f) = N because f(Sing f) has no accumu-
lating points in R. Define a map αf : N → N so that for each n ∈ N, f − n is
αf (n)-flat at any point of f−1(n) ∩ Sing f and not (αf (n) + 1)-flat at some point
of f−1(n) ∩ Sing f . If a proper analytic function g with g(Sing g) = N is Cω R-L
equivalent to f then αf = αg. Consider all proper Cω functions π on R such that
Sing π = N and π = id on N. Then the cardinality of {απ◦f} is of the continuum.
Hence the cardinality of Cω R-L equivalence classes of proper analytic functions on
M with only normal crossing singularities is of the continuum. �

Proof of (iv). Assume that dimM > 1. We use the idea of handle body de-
composition by Morse functions (see [Mi]). Let f be a non-negative proper C∞

function on a non-compact connected Cω manifold M with singularities of Morse
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type. Approximate f and changing R by some Cω diffeomorphism of R, we assume
that f is of class Cω, that f |Sing f is injective and f(Sing f) = 2N. For each k ∈ N,
let Ak be the union of f−1(k)∩Sing f with one point in each connected component
of f−1(k) not containing points of Sing f . Consider the 1-dimensional simplicial
complex K whose 0-skeleton K0 is ∪k∈NAk and whose 1-skeleton K1 consists of
1-simplexes ab, for a, b ∈ K0, such that f({a, b}) = {k, k + 1} for some k ∈ N and
there exists a connected component C of f−1((k, k + 1)) with C ∋ a, b. Note that
such a C is unique because ff−1((2k′, 2k′+2)) : f−1((2k′, 2k′ + 2)) → (2k′, 2k′ + 2) is
a proper submersion for k′ ∈ N and that conversely for each connected component
C of f−1((k, k + 1)) there exist a, b ∈ K0 such that f({a, b}) = {k, k + 1} and
C ∋ a, b. In other words, we can identify K1 with the set of connected compo-
nents of f−1((k, k + 1)) : k ∈ N. Moreover, for ab ∈ K1 there exist an injective
Cω map la,b : [0, 1] → M with la,b(0) = a, la,b(1) = b, f ◦ la,b(t) = f(a) ± t and

Im la,b = Im lb,a. Here for ab 6= a′b′, then Im la,b ∩ Im la′,b′ = {a} if a = a′ or a = b′,
or Im la,b ∩ Im la′,b′ = {b} if b = a′ or b = b′, and Im la,b ∩ Im la′,b′ = ∅ otherwise.
Hence we can identify the underlying polyhedron |K| with the subset ∪ab∈K1 Im la,b
of M , i.e., K is realized in M . Note also that there exists a unique C0 retraction
r : M → ∪ab∈K1 Im la,b such that f ◦ r = f .

We will see that each a ∈ K0 is the end of some half-polygon in |K|, i.e., there
exist distinct a0 = a, a1, a2, ... ∈ K0 such that aiai+1 ∈ K1 for i ∈ N. Note that
ai → ∞ (i.e., f(ai) → ∞) as i→ ∞. Since M is non-compact and connected, there
exists a proper C1 map l : [0, ∞) →M such that l(0) = a. We can move Im l into
|K| by r so that Im l is the underlying polyhedron of some subcomplex of K. If there

is a 1-simplex s in Kl
def
= K|Im l with an end v not equal to l(0) nor equal to another

1-simplex in Kl, then remove s and v from Kl, and repeat this operation as many
times as possible. Then Kl becomes a simplicial subcomplex of K and |Kl| is the
union of a half-polygon and Jordan curves. Remove, moreover, some vertices except
l(0) and 1-simplexes so that |Kl| is a half-polygon. Then we obtain an injective

simplicial map l : Ñ → K with l(0) = a, where Ñ = N∪{[i, i+ 1] : i ∈ N}. Let La
denote all of such l, and let la be such that min f ◦ la = max{min f ◦ l : l ∈ La} and
#(f ◦ la)−1(min f ◦ la) ≤ #(f ◦ l)−1(min f ◦ l) for l ∈ La with min f ◦ l = min f ◦ la.

Next we show that min f ◦ la → ∞ as a → ∞. Otherwise, there would exist
distinct a1, a2, ... in K0 such that min f ◦ lai

remains constant, say equal to m.
Note that ai → ∞ as i → ∞. Since f−1(m) is compact we have a subsequence of
a1, a2, ... where Im lai

contain one point b0 ∈ K0 with f(b0) = m. Next, choose a
subsequence so that Im lai

contain b0b1 ∈ K0 for some b1 ∈ K0 and lai
(ki+ 1) = b0

and lai
(ki) = b1 for some ki ∈ N. Repeating these arguments we obtain sequences

a1, a2, ... and b0, b1, ... in K0 such that lai
(ki + i) = b0, ..., lai

(ki) = bi for some
ki ∈ N, i = 1, 2, ... Then ∪i∈Nbibi+1 is a half-polygon. Fix i so large that f(bj) >

m, j = i, i + 1, ..., and consider a polyhedron lai
([0, ki]) ∪ bibi+1 ∪ bi+1bi+2 ∪ · · · .

Remove vertices and open 1-simplexes from it, as in above construction of l, so that
the polyhedron becomes a half-polygon starting from ai. This half-polygon defines
a new l ∈ Lai

. Clearly min f ◦ l ≥ m = min f ◦ lai
for this l by the definition of l.

However, min f ◦ l = min f ◦ lai
by the definition of la. Then the difference between

this l and lai
is #(f ◦ l)−1(m) < #(f ◦ lai

)−1(m) since f ◦ lai
(ki + 1) = m, the

inclusion f ◦lai
([0, ki]) ⊃ f ◦l([0, ki]) holds and since f(bibi+1∪bi+1bi+2∪· · · ) > m,

which contradicts the definition of lai
. Thus min f ◦ la → ∞ as a→ ∞.

Note that M is C∞ diffeomorphic to M − Im la for any a ∈ K0 and the diffeo-
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morphism can be chosen to be id outside of a small neighborhood of Im la. Hence
if Im la ∩ Im la′ = ∅ for any a 6= a′ ∈ Sing f , there exists a Cω diffeomorphism
π : M → M − ∪a∈Sing f Im la such that f ◦ π is a non-singular analytic function
on M . Consider the case where Im la ∩ Im la′ 6= ∅ for some a 6= a′ ∈ Sing f . Set
{a0, a1, ...} = Sing f , set X0 = Y0 = Im la0

and Z0 = ∅. Let i ∈ N. Assume by in-
duction that we have defined subpolyhedra Xi ⊃ Yi ⊃ Zi of |K|. If Xi∩Im lai+1

= ∅,
set Xi+1 = Xi ∪ Im lai+1

, set Yi+1 = Im lai+1
and Zi+1 = ∅. Otherwise, set

Xi+1 = Xi ∪ Im lai+1
([0, ki+1]), define Zi+1 to be the closure of the unbounded

connected component of the set of difference of the connected component of Xi

containing lai+1
(ki+1)) and of lai+1

(ki+1), and set Yi+1 = Zi+1 ∪ Im lai+1
([0, ki+1]),

where ki+1 = min{k ∈ N : Xi ∩ lai+1
([0, k]) 6= ∅}. Then X = ∪i∈NXi is the

underlying polyhedron of a subcomplex of K, and for each i there exists a C∞

diffeomorphism πi : M − Zi → M − Yi such that πi = id on Xi − Zi and outside
of a small neighborhood of Yi − Zi in M − Zi. Since min f ◦ la → ∞ as a → ∞,
we see that · · · ◦ π1 ◦ π0 : M →M is a well-defined C∞ diffeomorphism to M −X .
Approximate it by a Cω diffeomorphism π : M →M−X . Then f ◦π is the required
non-singular analytic function on M .

Consider the case where M is a non-compact connected Nash manifold. Then
there exists a proper Nash function on M with only singularities of Morse type.
Actually, by Theorem VI.2.1 in [S2], the manifold M is Nash diffeomorphic to
the interior of a compact Nash manifold with boundary M ′, which is called a
compactification of M . Then by using a partition of unity of class semialgebraic C2

we obtain a nonnegative semialgebraic C2 function φ on M ′ with zero set ∂M ′ and
with only singularities of Morse type. Approximating the semialgebraic C2 function
1/φ on M by a Nash function ψ in the semialgebraic C2 topology (Approximation
Theorem I), we obtain the required function. Note that # Singψ < ∞ because
Singψ is semialgebraic. Hence in the same way as in the analytic case, we can find
a Nash function on M without singularities by the following fact.

Let X be a 1-dimensional closed semialgebraic connected subset of M which is
a union of smooth curves X0, ..., Xk such that any Xi is closed in M , any Xi and
Xj intersect transversally and for each a ∈ X there exists one and only one path
from a to ∞ in X . Then M and M −X are Nash diffeomorphic.

We prove this fact as follows. Assume that M = IntM ′ for M ′ as above. Then
the closure X of X in M ′ intersects with ∂M ′ at one point. By moving X by a
semialgebraic C1 diffeomorphism of M and then by a Nash diffeomorphism (Ap-
proximation Theorem I) we assume that X is smooth at X ∩ ∂M ′ and X and ∂M ′

intersect transversally. Let ξ denote the function on M ′ which measures distance
from X . This function being semialgebraic, we approximate ξ|M ′−X by a positive

Nash function ξ̃ on M ′ −X so that ξ̃(x) → 0 as x converges to a point of X. Let

ǫ > 0 be small enough. Then ξ̃|ξ̃−1((0, ǫ]) : ξ̃−1((0, ǫ]) → (0, ǫ] is a proper trivial

Nash submersion by [Ha]. Hence M ′ −X − ξ̃−1((0, ǫ]) and M ′ −X are semialge-
braically C1 diffeomorphic and, moreover, Nash diffeomorphic by Approximation
Theorem I. On the other hand, M ′ −X − ξ̃−1((0, ǫ)) is a compact Nash manifold

with corners, and if we smooth the corners then M ′ −X − ξ̃−1((0, ǫ)) is C∞ and
hence Nash (Theorem VI.2.2 in [S2]) diffeomorphic to M ′ by the assumptions on X ,

which implies that M −X − ξ̃−1((0, ǫ]) and M are Nash diffeomorphic. Therefore,
M −X = Int(M ′ −X) is Nash diffeomorphic to M . �

Proof of (iii) for non-proper functions. As in the situation above, we have a non-
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bounded non-singular non-negative analytic function f on a non-compact connected
analytic manifold M . Let π be a proper analytic function on R such that Sing π =
N and π = id on N. Then π ◦ f(Sing π ◦ f) = N. Hence as in the case of proper
functions, we see that the cardinality of Cω R-L equivalence classes of analytic
functions on M with only normal crossing singularities is of the continuum. �

4. Reductions

In order to prove theorems 3.1,(2) and 3.1,(3) and theorem 3.2, we proceed to
some reductions. Firstly, we reduce the analytic case to the Nash one, secondly we
reduce the non-compact Nash case to the compact one.

4.1. Reduction to the Nash case.
By the following proposition we reduce the Cω case of theorem 3.2 to the Nash

case.

Proposition 4.1. Let M be a compact Nash manifold possibly with corners, and
f a Cω function on M with only normal crossing singularities. Then f is Cω right
equivalent to some Nash function.

Remark. If M is a non-compact Nash manifold, proposition 4.1 does not hold. For
example, consider M = R and f(x) = sinx.

Proof of proposition 4.1. Set X = f−1(f(Sing f)). Let g : X̃ → M be a Cω

immersion of a compact Cω manifold possibly with corners such that Im g = X ,
g|g−1(RegX) is injective and gx(X̃x) is an analytic subset germ of Mg(x) for each

x ∈ X̃. Here we construct X̃ and g locally and then paste them. For a connected
component C of X̃ there are two possible cases to consider: either g(C) ⊂ ∂M or

g(C) 6⊂ ∂M . Assume that g(C) 6⊂ ∂M for any C. Then g(Int X̃) ⊂ IntM and

g(∂X̃) ⊂ ∂M , and moreover X is a normal crossing analytic subset of M . Consider

the family of all C∞ maps g′ : X̃ →M with g′(Int X̃) ⊂ IntM and g′(∂X̃) ⊂ ∂M .
Then

Lemma 4.2. Let r (> 0) ∈ N∪ {∞}. Then g is C∞ stable in family, in the sense

that any such C∞ map g′ : X̃ → M close to g in the Cr topology is C∞ R-L
equivalent to g.

Remark. The proof we produce below shows that lemma 4.2 holds even if M is
a non-compact Nash (C∞) manifold possibly with corners, using the Whitney Cr

(strong Whitney C∞, respectively) topology.

Proof of lemma 4.2. It suffices to find a C∞ diffeomorphism of M which carries Im g
to Im g′. As usual, using a tubular neighborhood of M in its ambient Euclidean
space, the orthogonal projection to M and a partition of unity of class C∞, we
reduce the problem to the following local problem.

Assume that M = Rn × [0, ∞)m and X = {x1 · · ·xl = 0}, for l ≤ n. Let
y1 = y1(x) be a C∞ function on M which is close to the function x1 in the Whitney
Cr topology and coincides with x1 outside of a neighborhood of 0. Then there exists
a C∞ diffeomorphism π of M which is id outside of a neighborhood of 0 and close
to id in the Whitney Cr topology and carries {x2 · · ·xl = 0} ∪ {y1(x) = 0} to X .

This is true since π(x1, ..., xn+m) = (y1(x), x2, ..., xn+m) satisfies the require-
ments. �
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Continued proof of proposition 4.1. Let 0 ≪ r′ ≪ r ∈ N.

Case without corners. Give a Nash manifold structure to X̃ (Theorem of Nash,

see Theorem I.3.6 in [S2]). Let g′ : X̃ →M be a Nash approximation of g in the Cr

topology, e.g., the composite of a polynomial approximation of the map g from X̃
to the ambient Euclidean space of M with the orthogonal projection of a tubular
neighborhood of the space, and set X ′ = Im g′. Then by lemma 4.2 there exists a
C∞ diffeomorphism π of M which carries X to X ′, and by the above proof π can be
arbitrarily close to the identity map in the Cr topology. Let t1, ..., tl be the critical
values of f . We assume that ti > 0. We want to construct a Nash function f ′ on
M such that (f ′)−1(f ′(Sing f ′)) = X ′ and f ′◦π = f on X for some modified π and,
moreover, f ′ ◦ π− ti and f − ti have the same multiplicity at each point of f−1(ti)
for each i. For each ti, let Ii denote the sheaf of N -ideals with zero set π(f−1(ti))
and having the same multiplicity as f ◦ π−1 − ti at each point of π(f−1(ti)). Such
a sheaf exists because a non-singular semialgebraic and analytic set germ is a non-
singular Nash set germ. Then Ii is generated by a finite number of global Nash
functions (theorem 2.7). Let φi denote the square sum of the generators and define
a Nash function ψi on M so that ψ2

i = φi and ψi has the same sign as f ◦ π−1 − ti
everywhere. Note that ψ−1

i (0) = π(f−1(ti)) and ψi and f ◦ π−1 − ti have the same

multiplicity at each point of ψ−1
i (0). Set φ =

∏
φi. We have a global cross-section

of the sheaf of N -modules N /
∏
i I

2
i whose value at each point x of ψ−1

i (0) equals
ψix + ti mod I2

ix. Apply theorem 2.8 to the homomorphism N → N /
∏
i I

2
i and

the global cross-section. Then there exists a Nash function ψ on M such that ψ− ti
and f ◦ π−1 − ti have the same sign at each point of a neighborhood of ψ−1

i (0)

and the same multiplicity at each point of ψ−1
i (0) for each i. We need to modify

ψ so that X ′ = ψ−1(ψ(Singψ)). Let f ′′ be a C∞ function on M , constructed by a
partition of unity of class C∞, such that f ′′ = ψ on a small neighborhood of X ′ and
X ′ = (f ′′)−1(f ′′(Sing f ′′)). Then f ′′ − ψ is of the form φξ for some C∞ function

ξ on M . Let ξ̃ be a strong Nash approximation of ξ in the C∞ topology, and set
f ′ = ψ + φξ̃. Then f ′ is a Nash function, X ′ = (f ′)−1(f ′(Sing f ′)) and f ′ − ti and
f ◦ π−1 − ti have the same multiplicity at each point of π(f−1(ti)) for each i.

By Theorem 3.1,(1) it suffices to see that f is C∞ right equivalent to the function
h defined to be f ′ ◦ π. Note that h−1(h(Sing h)) = X , and f − ti and h − ti have
the same multiplicity at each point of f−1(ti) for each i. Remember that π is close
to id in the Cr topology. We can choose f ′ so that f and h are close each other in
the Cr topology. Indeed, f ◦ π−1 − f ′ is of the form η

∏
i ψi for some C∞ function

η on M . Replace f ′ with f ′ + η̃
∏
i ψi for a strong Nash approximation η̃ of η in

the C∞ topology. Then f and h are close. Hence we can reduce the problem, as
usual, to the following local problem.

Let M = Rn, f(x) = xα1
1 · · ·xαl

l and h(x) = a(x)xα1
1 · · ·xαl

l for some C∞

function a(x) on M close to 1 in the Whitney Cr
′

topology (lemma 2.12). Assume
that α1 > 0. Then f and h are C∞ right equivalent through a C∞ diffeomorphism
close to id in the Whitney Cr

′

topology.

This is true since the C∞ diffeomorphism Rn ∋ (x1, ..., xn) → (a1/α1(x)x1, x2, ...,
xn) ∈ Rn satisfies the requirements. Thus the case without corners is proved.

Case with corners. Let M1 be a Nash manifold extension of M . We can assume
that M is the closure of the union of some connected components of M1 − Y
for a normal crossing Nash subset Y of M1. Let U be an open semialgebraic
neighborhood of M in M1 so small that f is extensible to an analytic function f1
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on U with only normal crossing singularities. Shrinking U if necessary, we replace
X in the above proof with X1 = f−1

1 (f1(Sing f1)), and we define a Cω manifold

X̃1 and a Cω immersion g1 : X̃1 → U in the same way. For each connected
component C of X̃1 there are two possible cases to consider: either g1(C) ⊂ Y
or g1(C) 6⊂ Y . If g1(C) ⊂ Y , then g1(C) is a Nash subset of U with only normal
crossing singularities and C has an abstract Nash manifold structure such that g1|C
is a Nash diffeomorphism to g1(C) (see [S2] for the definition of an abstract Nash
manifold). Apply Artin-Mazur Theorem to g1(C). Then C with this abstract Nash
manifold structure is a Nash manifold. Set g′1 = g1 on C. If g1(C) 6⊂ Y , give a Nash
manifold structure to C, approximate g1|C by a Nash immersion g′1|C : C → M1.

In this way we define a Nash immersion g′1 : X̃1 → M1 and set X ′ = Im g′1 ∩M .
The rest proceeds in the same way as the case without corners. �

The following lemma is the Cω or Nash version of lemma 4.2 and is used to prove
theorems 3.1,(2), 3.1,(3) and lemma 4.4.

Lemma 4.3. Let r (> 0) ∈ N ∪ {∞}. Let M and N be compact Cω manifolds
possibly with corners such that dimM = 1 + dimN . Let φ : N → M be a Cω

immersion such that φ(IntN) ⊂ IntM , φ(∂N) ⊂ ∂M , Imφ is a normal crossing
analytic subset of M and the restriction of φ to φ−1(Reg Imφ) is injective. Then
φ is Cω stable in the family of Cω maps from N to M carrying ∂N to ∂M in the
same sense as in lemma 4.2. If M, N and φ are of class Nash, then φ is Nash
stable in the family of Nash maps with the same property as above.

Remark. In the case of a non-compact M and proper φ, we see easily that the former
half part of lemma 4.3 holds in the Whitney Cr topology, r (> 0) ∈ N ∪ {∞}. We
can prove the latter half in the non-compact case in the semialgebraic Cr topology
by reducing to the compact case by lemmas 4.5 and 4.6.

Proof of lemma 4.3. Let ψ be an analytic approximation of φ in family in the
analytic case. Then by lemma 4.2 ψ is C∞ R-L equivalent to φ, namely, there
exists a C∞ diffeomorphism π of M which carries Imφ to Imψ. Note that we can
choose π to be close to id in the Cr topology by the proof of lemma 4.2. Then by
step 1 in the proof of theorem 3.1,(1) and its proof, we can choose an analytic π
even in the case with corners. The existence of an analytic diffeomorphism τ of N
with ψ ◦ τ = π ◦ φ is clear because τ = ψ−1 ◦ π ◦ φ on φ−1(Reg Imφ). Thus φ and
ψ are Cω R-L equivalent.

Assume that M, N, φ and ψ are of class Nash. It suffices to find a Nash
diffeomorphism of M which carries Imφ to Imψ. Let π be such a diffeomorphism
of M of class Cω.

Case without corners. Let Iφ and Iψ denote the sheaves of N -ideals on M
defined by Imφ and Imψ, respectively, and let {fi} and {gj} be a finite number
of their respective global generators. Then {gj ◦ π} is a set of global generators of
the sheaf of O-ideals IφO on M . Hence in the same way as in step 2 of the proof
of theorem 3.1,(1) we obtain Cω functions αi,j and βi,j on M such that

fi =
∑

j

αi,j · (gj ◦ π) and gj ◦ π =
∑

i

βi,jfi.

Let M ⊂ Rn and let h be a Nash function on Rn with zero set M . Extend gj to Nash
functions on Rn and use the same notation gj (theorem 2.8). Consider the following
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equations of Nash functions in variables (x, y, ai,j, bi,j) ∈M ×Rn ×Rn′

×Rn′

, for
some n′:

h(y) = 0, fi(x) −
∑

j

ai,jgj(y) = 0, gj(y) −
∑

i

bi,jfi(x) = 0.

We have a Cω solution y = π(x), ai,j = αi,j(x) and bi,j = βi,j(x). Hence by Nash
Approximation Theorem II there exists a Nash solution y = π′(x), ai,j = α′

i,j(x)
and bi,j = β′

i,j(x), which are close to π, αi,j and βi,j , respectively. Then

Imπ′ = M, fi =
∑

j

α′
i,j · (gj ◦ π

′), gj ◦ π
′ =

∑

i

βi,jfi.

Hence π′ is a Nash diffeomorphism of M and carries Imφ to Imψ.
Case with corners. We can assume that for Nash manifold extensions M1 and

N1 of M and N , respectively, φ, ψ are extensible to Nash immersion φ1 and ψ1 of
N1 into M1 and π to a Cω embedding π1 of a semialgebraic open neighborhood U
of M in M1 into M1, and moreover there exist normal crossing Nash subsets Y of
M1 and Z of N1 such that M and N are closures of the unions of some connected
components of M1−Y and of N1−Z, respectively, φ1(Z) ⊂ Y and ψ1(Z) ⊂ Y . Let
M1 be contained and closed in an open semialgebraic set O in Rn, and h1 be a Nash
function on O with zero set M1. Take a small open semialgebraic neighborhood
V of M in M1 and shrink M1, N1 and U so that π(U) ⊂ V and U ∩ Imφ1 and
V ∩ Imψ1 are normal crossing Nash subsets of U and V , respectively. Then in
the same way as above, we obtain a finite number of global generators {f1,i} and
{g1,i} of the sheaves of N -ideals on U and V defined by U ∩ Imφ1 and V ∩ Imψ1,
respectively, and analytic functions α1,i,j, β1,i,j on U such that

f1,i =
∑

j

α1,i,j · (g1,j ◦ π1) and g1,j ◦ π1 =
∑

i

β1,i,jf1.i on U.

We need to describe the condition π(∂M) = ∂M , i.e., π1(U ∩ Y ) ⊂ Y . Let ξ′ be
the square sum of a finite number of global generators of the sheaf of N -ideals I
on M1 defined by Y . Then ξ′ is a generator of I2, and since M is a manifold with
corners there exists a unique Nash function ξ on a semialgebraic neighborhood of
M in M1 such that ξ2 = ξ′ and ξ > 0 on IntM . Shrink U once more. Then ξ|U
and ξ ◦π1|U are well-defined generators of I|U and IO|U , respectively, and we have
a positive analytic function γ on U such that ξ ◦ π = γξ on U . We shrink O, and
using the same notation we extend g1,j and ξ to Nash functions on O.

Consider the germs on M × O × Rn′

× Rn′

× R of the following equations of
Nash functions in the variables (x, y, ai,j, bi,j, c) ∈ U ×O×Rn′

×Rn′

×R for some
n′:

h1(y) = 0, f1,i(x)−
∑

j

ai,jg1,j(y) = 0, g1,j(y)−
∑

i

bi,jf1,i(x) = 0, ξ(y)−cξ(x) = 0.

Then, since Nash Approximation Theorem II holds in the case of germs, we have
Nash germ solutions on M of the equations y = π′

1(x), ai,j = α′
i,j(x), bi,j = β′

i,j(x)

and c = γ′(x). The equation ξ ◦ π′
1 = γ′ξ means π′

1(M) = M . Thus π′
1|M is the

required Nash diffeomorphism of M . �

The following lemma shows countable cardinality of the normal crossing Nash
(Cω) subsets of a compact Nash (Cω, respectively,) manifold possibly with corners.
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Lemma 4.4. Let M be a compact Nash manifold possibly with corners of strictly
positive dimension. Consider Nash immersions φ from compact Nash manifolds
possibly with corners of dimension equal to dimM − 1 into M such that Imφ are
normal crossing Nash subsets of M , the restrictions φ|φ−1(Reg Imφ) are injective and
φ carry the interior and the corners into the interior and the corners, respectively.
Then the cardinality of Nash R-L equivalence classes of all the φ’s is countable.

The analytic case also holds.

Proof of lemma 4.4. Note that the cardinality is infinite because for any k ∈ N we
can embed k copies of a sphere of dimension dimM − 1 in M . It suffices to treat
only the Nash case for the following reason.

Let φ : M ′ → M be an analytic immersion as in lemma 4.4 for analytic M ′

and M . Assume that M has no corners. Since a compact analytic manifold is Cω

diffeomorphic to a Nash manifold, we suppose that M ′ and M are Nash manifolds.
Approximate φ by a Nash map. Then φ is Cω R-L equivalent to the approximation
by lemma 4.3. Hence we can replace φ by a Nash map.

Assume that M has corners. Let M1 ⊂ Rn be an analytic manifold extension
of M such that M is the closure of the union of some connected components of
M1 − Y for a normal crossing analytic subset Y of M1. We can assume that M1 is
compact as follows. Let α denote the function on M1 which measures distance from
M . Approximate α|M1−M by a Cω function α′ in the Whitney C∞ topology, and
let ǫ < ǫ′ be positive numbers so small that M ∪ α′−1((0, ǫ′]) is compact and such
that the restrictions of α′ to α′−1((ǫ, ǫ′)) and to its intersections with strata of the
canonical stratification of Y are regular. Then (M1∩α′−1((ǫ, ǫ′)), Y ∩α′−1((ǫ, ǫ′)))
is Cω diffeomorphic to (M1∩α′−1((ǫ+ǫ′)/2)), Y ∩α′−1((ǫ+ǫ′)/2)))×(ǫ, ǫ′). Hence,
replacing M1 with the double of M ∪ α′−1((0, (ǫ + ǫ′)/2]), we assume that M1 is
compact.

Next we reduce the problem to the case where M1 and Y are of class Nash.
Define, as in the proof of proposition 4.1, a Cω immersion g : Ỹ →M1 of a compact
Cω manifold so that Im g = Y , so that g|g−1(Reg Im g) is injective and gy(Ỹy) is an

analytic subset germ of M1g(y) for each y ∈ Ỹ . Give Nash structures on M1 and

Ỹ , and approximate g by a Nash map g′. Then by lemma 4.3 there exists a Cω

diffeomorphism π of M1 which carries Im g to Im g′. Hence we can replace Y with
Im g′ and we assume from the beginning that M1, Y and M are of class Nash. By
the same reason, we suppose that M ′ is a Nash manifold possibly with corners and
the closure of the union of some connected components of M ′

1 − Y ′ for a compact
Nash manifold extension M ′

1 of M ′ and a normal crossing Nash subset Y ′ of M ′
1.

Extend φ to a Cω immersion φ1 of a compact semialgebraic neighborhood U of M ′

in M ′
1 into M1, choose U so small that φ1(U ∩Y ′) ⊂ Y , and approximate, as in the

proof of step 1 in theorem 3.1,(1), φ1 by a Nash map φ̃1 so that φ̃1(U ∩ Y ′) ⊂ Y
(here we use theorems 2.7 and 2.8 in place of corollaries 2.2 and 2.4 in the proof

in theorem 3.1,(1)). Then φ̃1|M ′ is a Nash immersion into M , and Im φ̃1|M ′ is a

normal crossing Nash subset of M , moreover φ̃1|(φ̃1|M′ )−1(Reg Im φ̃1|M′ )
is injective

and φ̃1(∂M ′) ⊂ ∂M , and finally φ̃1|M ′ is Cω R-L equivalent to φ by lemma 4.3.
Thus we reduce the analytic case to the Nash one.

Consider the Nash case. Let M ⊂ Rn and φ : M ′ →M be a Nash immersion as
in lemma 4.4. Let M1, M

′
1, Y and φ1 : M ′

1 →M1 be Nash manifold extensions of M
and M ′, a normal crossing Nash subset of M1 and a Nash immersion, respectively,
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such that M1 ⊂ Rn, φ1 = φ on M ′, M and M ′ are the closures of the unions of
some connected components of M1 − Y and M ′

1 − φ−1
1 (Y ), respectively, U ∩ Imφ1

is a normal crossing Nash subset of an open semialgebraic neighborhood U of M in
M1 and φ1|φ−1

1 (Reg(U∩Imφ1))
is injective. By Artin-Mazur Theorem (see the proof

of theorem 2.9) we can regard M ′
1 as an open semialgebraic subset of the regular

point set of an algebraic variety in Rn ×Rn′

for some n′ and φ1 as the restriction
to M ′

1 of the projection Rn ×Rn′

→ Rn. We will describe all such φ1 : M ′
1 →M1

with fixed complexity as follows. Any algebraic set in Rn × Rn′

, and its subset of
regular points where the projection to Rn is regular, are, respectively, described by
the common zero set of polynomial functions f1, ..., fl on Rn×Rn′

for some l ∈ N
and

⋃

I={i1,...,ik}⊂{1,...,l}
I′={i′1,...,i

′

k+n′}⊂{1,...,l}

{x = (x1, ..., xn+n′) ∈ Rn+n′

:

f1(x) = · · · = fl(x) = 0, |
∂(fi′1 , ..., fi′k+n′

)

∂(xi1, ..., xik , xn+1, ..., xn+n′)
(x)| 6= 0,

gI′,i′′fi′′ =
k+n′∑

j=1

gI′,i′′,jfi′
j
, gI′,i′′(x) 6= 0, i′′ ∈ {1, ..., l} − I ′}

for some polynomial functions gI′,i′′ and gI′,i′′,j on Rn × Rn′

, where k = n + 1 −

dimM , and ∂( )
∂( )

denotes the Jacobian matrix. Moreover, its open semialgebraic

subset is its intersection with

∪lj′=1 ∩
l
i=1 {x ∈ Rn+n′

: hi,j′(x) > 0}

for some polynomial functions hi,j′ on Rn × Rn′

(here we enlarge l if necessary).
Thus φ1 : M ′

1 → Rn is described by the family fi, gI′,i′′ , gI′,i′′,j and hi,j′ and
conversely, any polynomial functions fi, gI′,i′′ , gI′,i′′,j and hi,j′ define in the above

way a Nash manifold M ′
1 in Rn+n′

of dimension dimM−1 such that the projection
φ1 : M ′

1 → Rn is an immersion. If the degree of the polynomials are less than or
equal to d ∈ N, we say that φ1 : M ′

1 → Rn is of complexity l, d, n′.

Furthermore, since a polynomial function on Rn+n′

of degree less than or equal to

d is of the form
∑
α∈N

n+n′

d

aαx
α, aα ∈ R, where Nn+n′

d = {α ∈ Nn+n′

: |α| ≤ d},

we regard the family of fi, .., hi,j′ of degree less than or equal to d as an element
a = (aα) of RN for some N ∈ N. We write φ1 : M ′

1 → Rn as φ1a : M ′
1a → Rn.

Then the set X = ∪a∈RN {a} ×M ′
1a ⊂ RN × Rn × Rn′

is semialgebraic, and we
can identify φ1a : M ′

1a → Rn with p|(q◦p)−1(a) : (q ◦ p)−1(a) → {a} × Rn, where

p : X → RN × Rn and q : RN ×Rn → RN are the projections.
Consider the condition Imφ1a ⊂M1. The subset of RN consisting of a such that

p|(q◦p)−1(a) fails to satisfy this condition is q ◦ p(X ∩ RN × (Rn −M1) × Rn′

) and

hence is semialgebraic. Let A denote its complement in RN . Thus Imφ1a ⊂M1 if
and only if a ∈ A.

Next consider when U ∩ Imφ1a is normal crossing and φ1a|φ−1
1a (Reg(U∩Im φ1a)) is

injective. For that, remember that the tangent space TxM
′
1a of M ′

1a at x ∈ M ′
1a,

for M ′
1a described by fi, gI′,i′′ , ... as above, is given by

TxM
′
1a = {y ∈ Rn+n′

: df1xy = · · · = dflxy = 0},
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and hence the set TX defined to be {(a, x, y) ∈ X × Rn+n′

: y ∈ TxM
′
1a} is

semialgebraic. Assume that a ∈ A. Set

M ′′
1a = {(x, x′) ∈M ′

1a ×M ′
1a : x 6= x′, φ1a(x) = φ1a(x′) ∈ U,

dim(dφ1ax(TxM
′
1a) + dφ1ax′(Tx′M ′

1a)) = dimM − 1}.

Then M ′′
1a and ∪a∈A{a} ×M ′′

1a are semialgebraic, and a ∈ A− q′(∪a∈A{a} ×M ′′
1a)

if and only if for any x 6= x′ ∈ M ′
1a with φ1a(x) ∈ U , the germs of φ1a at x and x′

intersect transversally, where q′ : RN × Rn × Rn′

× Rn × Rn′

→ RN denotes the
projection. Repeating the same arguments on m-tuple of M ′

1a for any m ≤ dimM
we obtain a semialgebraic subset B of A such that for a ∈ A, then a ∈ B if and
only if U ∩ Imφ1a is normal crossing and φ1a|φ−1

1a (Reg(U∩Imφ1a)) is injective.

Let {Bi} be a finite stratification of B into connected Nash manifolds such
that q ◦ p is Nash trivial over each Bi [C-S1], i.e., for each i there exists a Nash
diffeomorphism πi : (q ◦p)−1(Bi) → (q ◦p)−1(bi)×Bi of the form πi = (π′

i, q ◦p) for
some bi ∈ Bi. For a ∈ B, set M ′

a = φ−1
1a (M) and φa = φ1a|M ′

a
. Then {φa : M ′

a →
Rn}a∈B is the family of all φ : M ′ → M as in lemma 4.4 which are extensible to
φ1 : M ′

1 →M1 with fixed U and complexity l, d, n′, and if a and a′ are in the same
Bi, i ∈ I, then φa : M ′

a → M and φa′ : M ′
a′ → M are Nash R-L equivalent by

lemma 4.3 for the following reason. As there exists a C0 curve in Bi joining a and
a′, considering a finite sequence of points on the curve we can assume that a′ is
close to a as elements of RN . We can replace φa and φa′ with φa ◦ (π′

i|{a}×M ′

a
)−1 =

pn ◦ (π′
i|{a}×M ′

a
)−1 : {bi} ×M ′

bi
→ Rn and pn ◦ (π′

i|{a′}×M ′

a′
)−1 : {bi} ×M ′

bi
→ Rn,

where pn denotes the projection RN × Rn × Rn′

→ Rn. Hence in order to apply
lemma 4.3 it suffices to see that (π′

i|{a′}×M ′

a′

)−1 is close (π′
i|{a}×M ′

a
)−1 in the C1

topology. That is true because we can regard (π′
i|{a′}×M ′

a′

)−1 and (π′
i|{a}×M ′

a
)−1

as π−1
i |(q◦p)−1(bi)×{a′} and π−1

i |(q◦p)−1(bi)×{a}, respectively, (q ◦ p)−1(bi) is compact

and because of the following fact. For compact C1 manifolds M2 and M3 and for a
C1 function g : M2×M3 → R if two points u and v in M3 are close each other then
the functions M2 ∋ x→ g(x, u) ∈ R and M2 ∋ x→ g(x, v) ∈ R are close in the C1

topology. Hence the cardinality of equivalence classes of φa : M ′
a → M, a ∈ B, is

finite. Until now we have fixed U . We need argue for all semialgebraic neighborhood
U of M in M1. However, it is sufficient to treat a countable number of U ’s since
M is compact. Thus the cardinality of all equivalence classes is countable. �

4.2. Compactification of a Nash function with only normal crossing
singularities.

The following lemmas 4.5, 4.6, 4.7 and proposition 4.8 are preparations for propo-
sition 4.9 that states the compactification of a Nash function with only normal
crossing singularities. The main tools are Nash sheaf theory and the Nash version
of Hironaka desingularization theorems.

Lemmas 4.5 and 4.6 show that a normal crossing Nash subset of a non-compact
Nash manifold is trivial at infinity.

Lemma 4.5. Let X be a normal crossing Nash subset of a Nash manifold M and
f : M → Rm a proper Nash map whose restrictions to M −X and to strata of the
canonical stratification of X are submersions onto Rm. Then f is Nash trivial, i.e.,
there exists a Nash diffeomorphism π : M → f−1(0) ×Rm of the form π = (π′, f),
and π′ can be chosen so that π′(X) = X ∩ f−1(0) and π′ = id on f−1(0).
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The analytic case also holds.

This is shown in [C-S1,2] in the case of empty X . We prove here the nonempty
case.

Proof of lemma 4.5. Consider the Nash case. Let n = dimM , take k an integer
smaller than n, and let Xk denote the union of strata of the canonical stratification
of X of dimension less than or equal to k. We define π′ on Xk by induction on k,
and then on M . To this aim, we can assume that π′ is already given on X , say
πX = (π′

X , fX), by the following fact, where fA = f |A for a subset A of M .

Fact 1. There exist a Nash manifold X̃k of dimension k and a Nash immersion
pX̃k

: X̃k →M such that Im pX̃k
= Xk and pX̃k

|p−1

X̃k
(Xk−Xk−1)

is injective.

Proof of fact 1. (Artin-Mazur Theorem. See the proof of theorem 2.9.) Let M
be contained and closed in RN , and let XZ

k denote the Zariski closure of Xk in RN .

Then there exist an algebraic variety X̃Z
k (the normalization of XZ

k ) in RN ×RN ′

for some N ′ ∈ N and the union of some connected components X̃k of X̃Z
k such that

X̃Z
k is non-singular at X̃k. Hence X̃k is a Nash manifold and the restriction pX̃k

to

X̃k of the projection p : RN × RN ′

→ RN satisfies the requirements in fact 1.
Let φi be a finite number of global generators of the sheaf of N -ideals I on M

defined by X , and set φ =
∑
φ2
i . Then φ > 0 on M −X and φ is a global generator

of I2. For a subset A of M and x ∈ Rm, set A(x) = A ∩ f−1(x). We will extend
π′
X to π′. For that it suffices to find π′ of class semialgebraic Cl for a large integer
l for the following reason.

Fact 2. Let g be a semialgebraic Cl function on M whose restriction to X is of
class Nash. Then fixing g on X we can approximate g by a Nash function in the
semialgebraic Cl−n topology.

Proof of fact 2. As in the proof of theorem 3.1,(1), step 1, g|X is extensible to
a Nash function G on M by theorem 2.8. Replace g with g − G. Then we can
assume that g = 0 on X and g is of the form

∑
giφi for some semialgebraic Cl−n

functions gi on M for the following reason. Reduce the problem to the case where
(M,X) = (Rn, {x1 · · ·xn′ = 0}) and {φi} = {x1 · · ·xn′} for some n′ ∈ N by a
partition of unity of class semialgebraic Cl (remark 2.11,(5)′). Then g is divisible
by x1 · · ·xn′ as a semialgebraic Cl−n function on M by elementary calculations.
Hence g is of the form g1x1 · · ·xn′ for some semialgebraic Cl−n function g1 on
M . As usual, we approximate gi by Nash functions g̃i in the semialgebraic Cl−n

topology we obtain the required approximation
∑
g̃iφi of g in fact 2.

We will see that there exists a finite semialgebraic Cl stratification {Bi} of
Rm such that for each i, the map πX |X∩f−1(Bi) is extensible to a semialgebraic

Cl diffeomorphism πi = (π′
i, ff−1(Bi)) : f−1(Bi) → M(bi) × Bi for some point

bi ∈ Bi. In the following arguments we need to stratify Rm into {Bi}, each Bi
into {Bi,j : j = 1, 2, ...} and once more. However, we always use notation Rm

for all strata for simplicity of notation, which does not cause problems because we
can choose stratifications so that strata are semialgebraically Cl diffeomorphic to
Euclidean spaces.

We recall the construction of π as in the proof of Theorem II.6.7 in [S3]. Without
loss of generality we assume that π′

X |X(0) = id. First we can modify in order φ

to be a semialgebraic Cl function so that for each x ∈ Rm, φ|M(x)−X has only
singularities of Morse type (Claim 2, ibid.) (here we need to stratify Rm and
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consider the restriction of φ to each stratum in place of φ, and the main method
of proof is a semialgebraic version of Thom’s transversality theorem), φ is constant

on each connected component of Z
def
= ∪x∈Rm Sing(φ|M(x)−X ) and the values are

distinct from each other (Claim 4, ibid.) after the second stratification. Next, let

Y be a connected component of Z and set Ỹ = φ−1(φ(Y )). Then there exist an

open semialgebraic neighborhood U of Ỹ in M and a semialgebraic Cl embedding
u = (u′, fU) : U → U(0) × Rm such that u′|U(0) = id and φ ◦ u′ = φ|U (Claim
5, ibid.) after the third stratification. Thirdly, applying lemma 4.5 without X
to the semialgebraic Cl map (f, φ)|φ−1(I) : φ−1(I) → Rm × I for each connected

component I of (0, ∞) − φ(Z), we obtain a semialgebraic Cl diffeomorphism λ =
(λ′, fφ−1(I), φ|φ−1(I)) : φ−1(I) → φ−1(I)(0, 0)×Rm×I such that λ′|φ−1(I)(0,0) = id,

where φ−1(I)(0, 0) = φ−1(t0) ∩M(0) for some t0 ∈ I (Claim 7, ibid.). Fourthly,
we paste u and λ for all I and construct a semialgebraic Cl diffeomorphism v =
(v′, fM−X) : M −X → (M(0) −X) × Rm such that v′|M(0)−X = id and φ ◦ v′ =
φ|M−X , ibid. Hence it suffices to prove the following fact by the same idea of
pasting.

Fact 3. There exist an open semialgebraic neighborhood W of X in M and a
semialgebraic Cl embedding w = (w′, fW ) : W → M(0) × Rm such that w′ = π′

X

on X , so that w′|W (0) = id and φ ◦ w′ = φ|W .

Proof of fact 3. Here the condition φ ◦w′ = φ|W is not necessary. If there exists
a semialgebraic Cl embedding w without this condition, we replace φ on W with
φ◦w′, extend it to a semialgebraic Cl function on M positive on M−X , and repeat
the above arguments from the beginning. Then fact 3 is satisfied by this w′.

If X is smooth, the problem becomes easier. Hence we reduce to the smooth
case. Let X̃ ⊂ RN ×RN ′

and pX̃ : X̃ →M be a Nash manifold and the restriction

to X̃ of the projection p : RN × RN ′

→ RN defined in the proof of fact 1 for
k = n− 1. For a small positive semialgebraic C0 function ǫ on X̃, let Q̃ denote the
ǫ-neighborhood of X̃ in M × RN ′

, i.e.,

Q̃ =
⋃

z∈X̃

{z′ ∈M × RN ′

: dis(z, z′) < ǫ(z)},

and let q̃ : Q̃ → X̃ denote the orthogonal projection, which is a Nash submersion.
Set

M̃ = {(x, y) ∈ Q̃ ⊂M × RN ′

: q̃(x, y) = (x′, y) for some x′ ∈ X}.

Then M̃ is a Nash manifold of dimension n containing X̃ , and pM̃ : M̃ → M is
a (not necessarily proper) Nash immersion, where pA denotes p|A for a subset A

of M × RN ′

. Set A(0) = A ∩M(0) × RN ′

, set fA = f ◦ pA for the same A, and
˜̃X = p−1

M̃
(X). Then ˜̃X is a normal crossing Nash subset of M̃ , and p ˜̃

X
: ˜̃X → X is

a (not necessarily proper) local Nash diffeomorphism at each point of ˜̃X. Moreover

πX = (π′
X , fX) is lifted to π ˜̃X

= (π′
˜̃X
, f ˜̃X

) : ˜̃X → ˜̃X(0) × Rm, and there exists a

Nash function φ̃ on M̃ with zero set X̃ which is, locally at each point of X̃, the
square of a regular function and such that

(1) φ̃ = φ̃ ◦ π′
˜̃X

on ˜̃X.
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To be precise, we construct φ̃ first on M̃(0), and extend it to ˜̃X so that (1) is

satisfied and then to M̃ as usual. Moreover π′
˜̃X

= id on ˜̃X(0).

Note that Xm−1 = ∅ since fXk−Xk−1
is a submersion onto Rm if Xk 6= ∅.

Let m ≤ k < n. Then by the definition of X̃, the map pX̃∩p−1(Xk−Xk−1)
:

X̃ ∩ p−1(Xk − Xk−1) → Xk − Xk−1 is a Nash (n − k)-fold covering. Hence con-
sidering a semialgebraic triangulation of Xk(0) compatible with Xk−1—a semial-
gebraic homeomorphism from the underlying polyhedron of some simplicial com-
plex to Xk(0) such that Xk−1(0) is the image of the union of some simplexes—
and small open semialgebraic neighborhoods of inverse image of open simplexes
by π′−1

X in M − Xk−1, we obtain finite open semialgebraic coverings {Qk,i : i} of

Xk −Xk−1 in M −Xk−1 and {Q̃k,i,j : i, 1 ≤ j ≤ n− k} of X̃ ∩ p−1(Xk −Xk−1) in

M̃−X̃∩p−1(Xk−1) such that π′−1
X (X(0)∩Qk,i) = X∩Qk,i, (Qk,i, Xk∩Qk,i) are Nash

diffeomorphic to (Rn, {0}×Rk), such that pQ̃k,i,j
: (Q̃k,i,j, X̃∩p−1(Xk)∩Q̃k,i,j) →

(Qk,i, Xk ∩ Qk,i) are Nash diffeomorphisms, and Q̃k,i,j ∩ Q̃k,i,j′ = ∅ if j 6= j′.

Define Nash functions φk,i,j on Qk,i by φ̃ ◦ p−1

Q̃k,i,j

. Then φk,i,j are the squares

of Nash functions, say φ
1/2
k,i,j , and we can choose Qk,i so small that the maps

(f, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k) : Qk,i → Rm+n−k are submersions, that if Qk,i ∩ Qk,i′ 6= ∅

then

(2) {φk,i,j |Qk,i∩Qk,i′
: j = 1, ..., n− k} = {φk,i′,j |Qk,i∩Qk,i′

: j = 1, ..., n− k},

and that if Qk,i ∩Qk′,i′ 6= ∅ for k < k′ then

(3) {φk,i,j |Qk,i∩Qk′,i′
: j = 1, ..., n− k} ⊃ {φk′,i′,j|Qk,i∩Qk′,i′

: j = 1, ..., n− k′}.

Let Φk,k′,i,i′ denote the k′ − k Nash functions on Qk,i ∩ Qk′,i′ in the complement
in (3). Note that (1) implies

(1)′ φ
1/2
k,i,j ◦ π

′
X = φ

1/2
k,i,j on X ∩Qk,i.

We work from now in the semialgebraic Cl category. Shrink again Qk,i (fix-
ing always Xk ∩ Qk,i), and set Qk = ∪iQk,i. Then there exist semialgebraic Cl

submersive retractions qk : Qk → Xk −Xk−1 such that

f ◦ qk = f on Qk,(4)

qk ◦ π
′
X = π′

X ◦ qk on X ∩Qk,(5)

and the maps (qk|Qk,i
, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k) : Qk,i → (Xk −Xk−1)×Rn−k are semial-

gebraic Cl embeddings as follows.
For a while, assume that qk on Qk(0) are already given so that the following con-
trolled conditions are satisfied.

qk ◦ qk′ = qk on Qk(0) ∩Qk′(0) for k < k′,(6)0

φ
1/2
k,i,j ◦qk′ = φ

1/2
k,i,j on Qk,i(0) ∩Qk′,i′(0) for k < k′ and φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ .

(7)0
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Extend each qk to qk : X ∩ Qk → Xk − Xk−1 so that (4) and (5) are satisfied
as follows, which is uniquely determined, though we need to choose Qk so that
π′
X(X ∩ Qk) ⊂ Qk(0). For (x, y) ∈ Q2

k with small dis(x, y), let r(x, y) denote the
orthogonal projection image of x to Xk(f(y)) −Xk−1. Let q′k : Qk → Xk −Xk−1

be any semialgebraic Cl extension of qk, shrink Qk and define qk(x) for x ∈ Qk
to be r(q′k(x), x). Then qk is a semialgebraic Cl submersive retraction of Qk to
Xk −Xk−1 and satisfies (4) and (5).

Hence (φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k) is a local coordinate system of q−1

k (x) ∩ Qk,i at x, for

each x ∈ Xk −Xk−1. Therefore, by (3), for each Qk,i and Qk′,i′ with k < k′ there
exists a unique semialgebraic Cl submersion qk,k′,i,i′ : Qk,i ∩ Qk′,i′ → Xk′ ∩ Qk,i
such that

qk ◦ qk,k′,i,i′ = qk on Qk,i ∩Qk′,i′ and(8)

φ
1/2
k,i,j ◦ qk,k′,i,i′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ .(9)

To be precise, the domain of definition of qk,k′,i,i′ is q−1
k′ (Qk,i)∩Qk,i ∩Qk′,i′ . How-

ever, we omit q−1
k′ (Qk,i) for simplicity of notation. In the following arguments also

we simplify the domains of definition of many maps. By the above equalities we
have the following equalities (4)′, (5)′ and (10).

f ◦ qk,k′,i,i′
(4)
= f ◦ qk ◦ qk,k′,i,i′

(8)
= f ◦ qk

(4)
= f on Qk,i ∩Qk′,i′ .(4)′

qk ◦ qk,k′,i,i′ ◦ π
′
X

(8)
= qk ◦ π

′
X

(5)
= π′

X ◦ qk
(8)
= π′

X ◦ qk ◦ qk,k′i,i′
(5)
= qk ◦ π

′
X ◦ qk,k′,i,i′

on X ∩Qk,i ∩Qk′,i′ ,

φ
1/2
k,i,j◦qk,k′,i,i′ ◦π

′
X

(9)
= φ

1/2
k,i,j ◦π

′
X

(1)′

= φ
1/2
k,i,j

(9)
= φ

1/2
k,i,j ◦qk,k′i,i′

(1)′

= φ
1/2
k,i,j ◦π

′
X ◦ qk,k′,i,i′

on X ∩Qk,i ∩Qk′,i′ for φk,i,j|Qk,i∩Qk′,i′
∈ Φk,k′i,i′ ,

hence by embeddingness of (qk|Qk,i
, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)

(5)′ qk,k′,i,i′ ◦ π
′
X = π′

X ◦ qk,k′,i,i′ on X ∩Qk,i ∩Qk′,i′ .

By assumption, (6)0 and (7)0 hold. Then by (4) and (5)

qk ◦ qk′ = qk on X ∩Qk ∩Qk′ for k < k′,(6)X

φ
1/2
k,i,j ◦ qk′ = φ

1/2
k,i,j on X ∩Qk,i ∩Qk′,i′ for k < k′ and φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ .

(7)X

Hence by the same embeddingness as above

(10) qk,k′,i,i′ = qk′ on X ∩Qk,i ∩Qk′,i′ .

Compare qk,k′,i1,i′1 and qk,k′,i2,i′2 . By (2) and (3)

qk,k′,i1,i′1 = qk,k′,i1,i′2 on Qk,i1 ∩Qk′,i′1 ∩Qk′,i′2 ,

qk,k′,i1,i′2 = qk,k′,i2,i′2 on Qk,i1 ∩Qk,i2 ∩Qk′,i′2 ,

qk,k′,i1,i′1 = qk,k′,i2,i′2 on Qk,i1 ∩Qk,i2 ∩Qk′,i′1 ∩Qk′,i′2 .hence
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Therefore, we have semialgebraic Cl submersions qk,k′ : Qk ∩Qk′ → Xk′ −Xk′−1,
k < k′, such that

f ◦ qk,k′ = f on Qk ∩Qk′ ,(4)′

qk ◦ qk,k′ = qk on Qk ∩Qk′ ,(8)

φ
1/2
k,i,j ◦ qk,k′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ ,(9)

qk,k′ = qk′ on X ∩Qk ∩Qk′ .(10)

We want to shrink the Qk’s and modify the qk’s keeping (4) and (5) so that

(11) qk,k′ = qk′ on Qk ∩Qk′ for k < k′.

We proceed by double induction. Let m ≤ k1 < k2 < n ∈ N, and assume that
(11) holds for k < k′ < k2 and for k1 < k < k′ = k2. Fix qk and k < k2.
Then we need to modify qk2 so that (11) holds for k = k1 and k′ = k2. Let ξ
be a semialgebraic Cl function on M − Xk1−1 such that 0 ≤ ξ ≤ 1, and ξ = 1
outside of a small open semialgebraic neighborhood Q′

k1
(⊂ Qk1) of Xk1 − Xk1−1

in M −Xk1−1 and moreover ξ = 0 on a smaller one Q′′
k1

. Shrink Qk2 and define a

semialgebraic Cl submersive retraction q′k2 : Qk2 → Xk2 −Xk2−1 by q′k2 = qk2 on
Qk2 − Q′

k1
and for x ∈ Qk2 ∩ Q′

k1
, let q′k2(x) be the orthogonal projection image

of ξ(x)qk2(x) + (1− ξ(x))qk1,k2(x) ∈ RN to the Nash manifold Xk2(f(x))−Xk2−1.
Then q′k2 satisfies (4) and (11) for k = k1, k′ = k2 and for Qk replaced by Q′′

k1
, the

map (q′k2 |Qk2,i
, φ

1/2
k2,i,1

, ..., φ
1/2
k2,i,n−k2

) : Qk2,i → (Xk2−Xk2−1
)×Rn−k2 continues to be

a semialgebraic Cl embedding if we shrink Qk2,i (of course, fixing Qk2,i∩Xk2), q′k2 =
qk2 on X ∩Qk2 by (10), hence (5) for q′k2 holds, and q′k2 = qk2 on Qk2 ∩∪k1<k<k2Qk
for the following reason. Let k1 < k3 < k2. It suffices to see that qk1,k2 = qk2 on
Qk1 ∩Qk2 ∩Qk3 , which is equivalent, by uniqueness of qk1,k2 , to

qk1 ◦ qk2 = qk1 on Qk1 ∩Qk2 ∩Qk3 ,(12)

φ
1/2
k1,i1,j

◦ qk2 = φ
1/2
k1,i1,j

on Qk1,i1 ∩Qk2,i2 ∩Qk3(13)

for φk1,i1,j |Qk1,i1
∩Qk2,i2

∈ Φk1,k2,i1,i2 .

By (8) for k = k1 and k′ = k3 and for k = k3 and k′ = k2

qk1 ◦ qk1,k3 = qk1 on Qk1 ∩Qk3 ,

qk3 ◦ qk3,k2 = qk3 on Qk2 ∩Qk3 .

By (11) for k = k1 and k′ = k3 and for k = k3 and k′ = k2

qk1,k3 = qk3 on Qk1 ∩Qk3 ,

qk3,k2 = qk2 on Qk2 ∩Qk3 .

Hence

qk1 ◦ qk3 = qk1 on Qk1 ∩Qk3 ,(14)

qk3 ◦ qk2 = qk3 on Qk2 ∩Qk3 .(15)
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Therefore,

(12) qk1 ◦ qk2
(14)
= qk1 ◦ qk3 ◦ qk2

(15)
= qk1 ◦ qk3

(14)
= qk1 on Qk1 ∩Qk2 ∩Qk3 .

We can prove (13) in the same way because if Qk1,i1 ∩ Qk2,i2 ∩ Qk3,i3 6= ∅ then
Φk1,k2,i1,i2 |Qk1,i1

∩Qk2,i2
∩Qk3,i3

is the disjoint union of Φk1,k3,i1,i3 |Qk1,i1
∩Qk2,i2

∩Qk3,i3

and Φk3,k2,i3,i2 |Qk1,i1
∩Qk2,i2

∩Qk3,i3
. Thus the induction process works, and we as-

sume that (11) is satisfied. Consequently, the following controlledness conditions
are satisfied by (8), (9) and (11).

qk ◦ qk′ = qk on Qk ∩Qk′ for k < k′,(6)

φ
1/2
k,i,j ◦ qk′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for k < k′ and φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ .

(7)

It remains to construct qk on Qk(0). First define r as above, i.e., for (x, y) ∈
Q2
k(0) with small dis(x, y), let r(x, y) denote the orthogonal projection image of x to

Xk(0)−Xk−1. Set qk(x) = r(x, x) for x ∈ Qk(0). Then qk : Qk(0) → Xk(0)−Xk−1

are Nash submersive retractions. We need to modify them so that (6)0 and (7)0
are satisfied. This is clearly possible by the above arguments.

Now we define W and w as in fact 3. Set W = ∪n−1
k=mQk and consider each Qk,i.

Shrink Qk,i so that

(π′
X ◦ qk, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)(Qk,i) ⊂ (qk, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)(Qk,i(0)).

Then for each x ∈ Qk,i there exists a unique y ∈ Qk,i(0) such that

(qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(y) = (π′

X ◦ qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(x).

The correspondence w′
k,i from x to y is a semialgebraic Cl map such that wk,i =

(w′
k,i, fQk,i

) : Qk,i → Qk,i(0) ×Rm is a semialgebraic Cl embedding by (4), w′
k,i =

π′
X on X ∩Qk,i because

(qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)◦π

′
X(x)

(1)′,(5)
= (π′

X ◦ qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(x) for x ∈X∩Qk,i,

and w′
k,i|Qk,i(0) = id by (4) and by the equality π′

X = id on X(0). Hence it

suffices to see that w′
k,i = w′

k′,i′ on Qk,i ∩Qk′,i,. This is clear by (2) if k = k′ and

Qk,i∩Qk′,i′ 6= ∅. Assume that k < k′ and Qk,i∩Qk′,i′ 6= ∅. By (3) we suppose that

φ
1/2
k′,i′,j = φ

1/2
k,i,j+k′−k on Qk,i ∩Qk′,i′ , j = 1, ..., n− k′.

Then by the definition of w′
k,i and w′

k′,i′ we only need to show that

qk′ ◦ w
′
k,i = π′

X ◦ qk′ on Qk,i ∩Qk′,i′ ,

which is equivalent to

qk ◦ qk′ ◦ w
′
k,i = qk ◦ π

′
X ◦ qk′ on Qk,i ∩Qk′,i′ and

φ
1/2
k,i,j ◦ qk′ ◦ w

′
k,i = φ

1/2
k,i,j ◦ π

′
X ◦ qk′ on Qk,i ∩Qk′,i′ , j = 1, ..., k′ − k.
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We have

qk ◦ qk′ ◦ w
′
k,i

(6)
= qk ◦ w

′
k,i = π′

X ◦ qk
(6)
= π′

X ◦ qk ◦ qk′
(5)
= qk ◦ π

′
X ◦ qk′ ,

φ
1/2
k,i,j ◦ qk′ ◦w

′
k,i

(7)
= φ

1/2
k,i,j ◦ w

′
k,i = φ

1/2
k,i,j

(7)
= φ

1/2
k,i,j ◦ qk′

(1)′

= φ
1/2
k,i,j ◦ π

′
X ◦ qk′ ,

j = 1, ..., k′ − k.

Thus we have completed the proof of fact 3 and hence of the construction of πi=
(π′, ff−1(Bi)) : f−1(Bi) →M(bi) ×Bi.

Next we will extend πi to a neighborhood of f−1(Bi) in M . Let ηi : Ui → Bi be a
semialgebraic submersive Cl retraction of a small semialgebraic open neighborhood
of Bi in Rn. Then we only need to lift ηi to a semialgebraic submersive Cl retraction
η̃i : f−1(Ui) → f−1(Bi) so that η̃−1

i (Xk) = Xk∩f−1(Ui) for each k and π′
X◦η̃i = π′

X

on X ∩ f−1(Ui) because if η̃i exists, the map f−1(Ui) ∋ x → (π′
i ◦ η̃i(x), f(x)) ∈

M(bi)×Ui is the required extension of πi. We proceed by two steps. First we define
η̃i on X ∩ f−1(Ui) and then extend it to f−1(Ui).

The first step. We can assume bi = 0. Then π′
i = π′

X on X ∩ f−1(Bi). Hence
there exists a unique semialgebraic Cl diffeomorphism η̃i,y from X ∩ f−1(y) to
X ∩ f−1(ηi(y)) for each y ∈ Ui such that π′

i ◦ η̃i,y = π′
X on X ∩ f−1(y). Define

η̃ : X ∩ f−1(Ui) → X ∩ f−1(Bi) by η̃i(x) = η̃i,f(x)(x). Then η̃i satisfies the
requirements.

The second step. Since Bi is Nash diffeomorphic to a Euclidean space we can
regard Ui as Bi × Rm′

and ηi as the projection ηi : Bi × Rm′

→ Bi, where
m′ = m − dimBi. Then we define η̃i on f−1(Bi × Rk × {0}) by induction on
k = 0, ..., m′. For that it suffices to consider the case m′ = 1. Moreover we replace
R of Bi × R with the circle S1 = {x ∈ R2 : |x| = 1} as follows. Let ωi : S1 → R
be a Nash function such that 0 is a regular value. Let η̌i : Bi × R → R be the
projection, M̂ be the fiber product of η̌i ◦ f : f−1(Ui) → R and ωi : S1 → R, X̂ be

the inverse image of X ∪ f−1(Bi × {0}) under the induced map ω̂i : M̂ → M and

f̂ : M̂ → Bi be the naturally defined projection. Then M̂ is a Nash manifold, f̂ is
a proper Nash map, X̂ is a normal crossing Nash subset of M̂ , and the conditions

in the lemma are satisfied for X̂, M̂ and f̂ . Define a map π̂i,X̂ = (π̂′
i,X̂
, f̂) : X̂ →

(X̂ ∩ f̂−1(0)) × Bi so that π′
X ◦ ω̂i ◦ π̂′

i,X̂
= π′

X ◦ ω̂i. Then π̂i,X̂ is a uniquely

determined Nash diffeomorphism, π̂′
i,X̂

= id on X̂ ∩ f̂−1(0), and by fact 3 the map

π̂i,X̂ is extended to a semialgebraic Cl embedding π̂i = (π̂′
i, f̂) : Ŵi → f̂−1(0) ×Bi

for some open neighborhood Ŵi of X̂ in M̂ . We can shrink Ui and Ŵi so that

f̂−1(Ui) = Ŵi since f̂ is proper. Hence it remains to consider the problem of lifting
ηi only on ηi|η−1(0) : η−1(0) → {0}. Namely the problem is reduced to the case

where Bi = {0}. This case also follows from fact 3. Thus πi is extended to f−1(Ui).
We keep the notation πi for the extension.

For the construction of π we need to modify and paste πi together. This is what
[C-S2] proved. To be precise, [C-S1] proved local Nash triviality and [C-S2] proved
that the local Nash triviality implies the global Nash triviality. They treat the case
without X . However, the proof in [C-S2] works in the case with X (see also the
proof of Theorem II.6.3, [S3]). Thus we obtain π and complete the proof of lemma
4.5 in the Nash case.

The analytic case follows in the same way. �
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Note that the above proof shows that the lemma still holds if M is a Nash mani-
fold with corners and if the restrictions of f to strata of the canonical stratification
{Mk} of ∂M compatible with X are also submersions onto Rm. Here the canonical
stratification {Mk} compatible with X is defined as follows. For a semialgebraic
set S, let RegS denote the subset of X consisting of points x such that Sx is a
Nash manifold germ of dimension dimS. Then Mn−1 = Reg(∂M −X), Mn−2 =
Reg(∂M −Mn−1), Mn−3 = Reg(∂M −Mn−1 −Mn−2), ... Note that {Mk} is a
stratification of ∂M into Nash manifolds of dimension k, that X ∩∂M is the union
of some connected components of M0, ...,Mn−1, and the method of construction of
{Mk} is canonical.

Lemma 4.6. Let M be a non-compact Nash manifold contained and closed in RN

and X a normal crossing Nash subset of M . Let B(r) denote the closed ball in
RN with center 0 and radius r ∈ R. Then there exists a Nash diffeomorphism
τ : M →M ∩ IntB(r), for some large r, such that τ(X) = X ∩ IntB(r).

This does not necessarily hold in the analytic case.

Proof of lemma 4.6. Assume that M is of dimension n. Set Xn = M −X . Choose
r so large that the p|Xi−B(r/2) are submersions onto (r/2, ∞), where {Xi : i =
0, ..., n − 1} denotes the canonical stratification of X and p(x) = |x| for x ∈ M .
Then by lemma 4.5 there exists a Nash diffeomorphism ρ : M − B(r/2) → (B ∩
p−1(r))× (r/2, ∞) of the form ρ = (ρ′, p) such that ρ′(X −B(r/2)) = X ∩ p−1(r).
Let α : (−∞, r) → R be a semialgebraic Cl diffeomorphism such that α = id on
(−∞, r/2), where l is a sufficiently large integer. Set

τ0(x) =

{
x for x ∈M ∩B(r/2)

ρ−1(ρ′(x), α−1 ◦ p(x)) for x ∈M −B(r/2).

Then τ0 is a semialgebraic Cl diffeomorphism from M to M ∩ IntB(r) such that
τ0(X) = X ∩ IntB(r). We only need to approximate τ0 by a Nash diffeomorphism
keeping the last property. Let π : M → M ∩ IntB(r) be a Nash approximation of
τ0 in the semialgebraic Cl topology. Replace τ0 with π ◦ τ−1

0 . Then what we prove
is the following statement.

Let M̃ be a compact Nash manifold with boundary in RN , let X̃ be a normal
crossing Nash subset of M̃ with ∂M̃ 6⊂ X̃ , and let τ̃0 be a semialgebraic Cl diffeo-
morphism of Int M̃ arbitrarily close to id in the semialgebraic Cl topology such that
τ̃0(X̃∩Int M̃) is a normal crossing Nash subset of Int M̃ . Then we can approximate

τ̃0 by a Nash diffeomorphism τ̃ of Int M̃ in the semialgebraic C1 topology so that
τ̃(X̃ ∩ Int M̃) = τ̃0(X̃ ∩ Int M̃).

We proceed as in the proof of step 1, theorem 3.1,(1). Let {X̃j : j = 0, ..., n− 1}

denote the canonical stratification of X̃ and set X̃n = M̃ −X . By induction, for
some i ∈ N, assume that τ̃0|∪i−1

j=0X̃j∩Int M̃ is of class Nash. Let l′ ∈ N. Then

it suffices to choose l large enough and to approximate τ̃0 by a semialgebraic Cl

diffeomorphism τ̃ of Int M̃ in the semialgebraic Cl
′

topology so that τ̃(X̃∩Int M̃) =

τ̃0(X̃ ∩ Int M̃) and τ̃ |∪i
j=0X̃j∩Int M̃ is of class Nash. Let I denote the sheaf of N -

ideals on Int M̃ defined by ∪i−1
j=0X̃j∩Int M̃ . By theorem 2.7, the sheaf I is generated

by a finite number of global cross-sections ξ1, ..., ξk of I. Then τ̃0|∪i−1
j=0X̃j∩Int M̃ is

an element of H0(Int M̃,N /I)N by the same reason as in the proof in step 1.
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Hence by theorem 2.8 we have a Nash map h : Int M̃ → RN such that h = τ̃0
on ∪i−1

j=0X̃j ∩ Int M̃ . Here we can choose h to be sufficiently close to τ̃0 in the

semialgebraic Cl
′

topology for the following reason. It suffices to see that τ̃0 − h is

of the form
∑k
j=1 ξjβj for some semialgebraic Cl

′

maps βj : Int M̃ → RN because

h +
∑k
j=1 ξj β̃j fulfills the requirements, where β̃j denote Nash approximations of

βj in the semialgebraic Cl
′

topology. Hence we will prove the following statement.

Let β be a semialgebraic Cl function on Int M̃ vanishing on ∪i−1
j=0X̃j ∩ Int M̃ .

Then β is of the form
∑k

j=1 βjξj for some semialgebraic Cl
′

functions βj on Int M̃ .

By the second induction, assume that the statement holds for manifolds of di-
mension strictly less than n. The problem is reduced to the Euclidean case as
follows. There exists a finite open semialgebraic covering {Os} of Int M̃ such that

each (Os, Os∩X̃) is Nash diffeomorphic to (Rn, {(x1, ..., xn) ∈ Rn : x1 · · ·xns
= 0})

for some ns ∈ N. Let {ηs} and {η′s} be a partition of unity of class semialgebraic

Cl subordinate to {Os}, and semialgebraic Cl functions on Int M̃ , respectively,
such that η′s = 1 on supp ηs and supp η′s ⊂ Os. If each (βηs)|Os

is described

to be of the form
∑
j βj,sξj |Os

for some semialgebraic Cl
′

functions βj,s on Os
then the naturally defined functions

∑
s βj,sη

′
s, for j = 1, ..., k, are semialgebraic

Cl
′

functions on Int M̃ and β =
∑
j(

∑
s βj,sη

′
s)ξj. Hence we can assume that

(Int M̃, Int M̃ ∩ X) = (Rn, {x1 · · ·xn′ = 0}) for some n′ ∈ N, and then n′ > 0.
Apply the induction hypothesis to β|{x1=0}. Then there exist semialgebraic Cl1

functions β′
j on Rn−1 such that

β(0, x2, ..., xn) =

k∑

j=1

β′
j(x2, ..., xn)ξj(0, x2, ..., xn)

because I|{x1=0} is the sheaf of N -ideals on {x1 = 0} defined by ∪i−1
j=0X̃j ∩{x1 = 0}

(here l1 > 0 is arbitrarily given and l depends on l1). Regard naturally β′
j as

semialgebraic Cl1 functions on Rn and replace β with β −
∑
β′
jξj . Then we can

suppose that β = 0 on {x1 = 0} from the beginning. Under this assumption β/x1

is a well-defined semialgebraic Cl1−1 function. Consider β/x1 and {x2 · · ·xn′ = 0}
in place of β and {x1 · · ·xn′ = 0}, and repeat the same arguments for {x2 = 0} and

so on. Then we finally arrive at the case X̃ = ∅. Thus the statement is proved, and
h is chosen to be close to τ̃0 in the semialgebraic Cl

′

topology.

Set Y = τ̃0(X̃ ∩ Int M̃) and Yj = τ̃0(X̃j ∩ Int M̃). Then Y is a normal crossing

Nash subset of Int M̃ , the set {Yj : j = 0, ..., n− 1} is its canonical stratification,

and Y is a normal crossing semialgebraic Cl subset of M̃ in the sense that M̃ has
a semialgebraic Cl local coordinate system (x1, ..., xn) at each point of ∂M̃ with
Y = {x1 ≥ 0, x2 · · ·xn′ = 0} for some n′ > 0 ∈ N by the definition of semialgebraic
Cl topology. Hence there exists a tubular neighborhood Ui of Yi in RN such that
for some ǫ > 0 ∈ R

Ui = ∪y∈Yi
{x ∈ RN : |x− y| < ǫdis(y,∪i−1

j=0Yj), (x− y) ⊥ TyYi}.

Let qi : Ui → Yi denote the orthogonal projection. Choose h so close to τ̃0 that
h(X̃i ∩ Int M̃) ⊂ Ui. Then qi ◦ h|∪i

j=0X̃j∩Int M̃ is a Nash map to ∪ij=0Yj close to



38 GOULWEN FICHOU AND MASAHIRO SHIOTA

τ̃0|∪i
j=0X̃j∩Int M̃ in the semialgebraic Cl

′

topology. Note that the map is a diffeomor-

phism by Lemma II.1.7 in [S2]. Hence it remains only to extend it to a semialgebraic

Cl approximation τ̃ : Int M̃ → Int M̃ of τ̃0 in the semialgebraic Cl
′

topology so that
τ̃(X̃ ∩ Int M̃) = Y . However, we have already proved it without the last condition.
Moreover, the proof shows also that the condition is furnished inductively. Thus
we complete the construction of τ . �

Lemma 4.7. Let f and g be Nash functions on a Nash manifold M which have
the same sign at each point of M , only normal crossing singularities at the common
zero set X and the same multiplicity at each point of X. Let l ∈ N. Then there
exists a Nash diffeomorphism π of M such that π(X) = X and f − g ◦ π is l-flat at
X.

If f is fixed and g is chosen such that the Nash function on M , defined to be g/f
on M −X, is close to 1 in the Nash topology, then π is chosen to be close to id in
the Nash topology.

Proof of lemma 4.7. Let M ⊂ RN , set n = dimM and let l be sufficiently large.
For each k (< n) ∈ N, let Xk denote the union of the strata of the canonical
stratification of X of dimension less than or equal to k. By induction, assume that
f−g is l-flat at Xk−1 for some k. Then we need only to find a Nash diffeomorphism
π of M such that π− id is l-flat at Xk−1, such that π(X) = X and f −g ◦π is l-flat
at Xk (to be precise, we will construct π so that π − id and f − g ◦ π are l(4)-flat
at Xk−1 and Xk, respectively, for some 0 ≪ l(4) ≪ ·· ≪ l′ ≪ l).

We proceed as in the proof of lemma 4.5. Let (M̃, X̃) and (M̃k, X̃k) be pairs

of Nash manifolds and Nash submanifolds, let p : M̃ → M and pk : M̃k → M
be Nash immersions and let qk : M̃k → X̃k be a Nash submersive retraction such
that dim M̃ = dim M̃k = n, the equalities p(X̃) = X and pk(X̃k) = Xk hold,

and moreover p|X̃−p−1(Xn−2)
and pk|X̃k−p

−1
k

(Xk−1)
are injective, and pk(q−1

k (X̃k ∩

p−1
k (Xk−1))) ⊂ X . Shrink M̃k if necessary. Then we have an open semialgebraic

neighborhood U of X̃∩p−1(Xk) in M̃ and a Nash (n−k)-fold covering map r : U →

M̃k such that pk◦r = p on U . Let φ̃ be a Nash function on M̃ with zero set X̃ which
is, locally at each point of X̃, the square of a regular function. Then φ̃(r−1(x))

is a family of (n − k)-numbers possibly with multiplicity, for each x ∈ M̃k, and

there exist Nash functions φ̃k,1, ..., φ̃k,n−k on an open semialgebraic neighborhood

of each point of M̃k such that φ̃(r−1(x)) = {φ̃k,1(x), ..., φ̃k,n−k(x)} for x in the given

neighborhood. For simplicity of notation, we assume that φ̃k,1(x), ..., φ̃k,n−k(x) are
defined globally, which causes no problem because the following arguments are
done locally and do not depend on the order of φ̃k,1(x), ..., φ̃k,n−k(x). Moreover,

we suppose that each φ̃k,i is the square of a regular Nash function, say φ̃
1/2
k,i , by the

same reason as above. Set f̃k = f ◦ pk and g̃k = g ◦ pk.

We want to construct a Nash diffeomorphism π̃k between semialgebraic neigh-
borhoods of X̃k in M̃k such that π̃k(p−1

k (X)) ⊂ p−1
k (X), such that π̃k−id is l′′-flat at

q−1
k (X̃k∩p

−1
k (Xk−1)) and f̃k− g̃k ◦ π̃k is l′′-flat at X̃k. Assume that X̃k is connected

without loss of generality. Since f̃k and g̃k have only normal crossing singularities at
p−1
k (X), the same sign at each point of M̃k and the same multiplicity at each point

of p−1
k (X), and since f̃−1

k (0) = g̃−1
k (0) = ∪n−ki=1 (φ̃

1/2
k,i )−1(0) ∪ q−1

k (X̃k ∩ p
−1
k (Xk−1)),

we have Nash functions F and G on M̃k and α = (α1, ..., αn−k) ∈ (N − {0})n−k



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 39

such that the equalities f̃k = Fφ̃
1/2α
k and g̃k = Gφ̃

1/2α
k hold, such that FG ≥ 0

on M̃k and FG > 0 on M̃k − q−1
k (X̃k ∩ p

−1
k (Xk−1)), where φ̃

1/2α
k =

∏n−k
i=1 φ̃

1/2αi

k,i .

Assume that F ≥ 0 and hence G ≥ 0 (the other cases can be proved in the same

way). Note that F and G have zero set q−1
k (X̃k ∩ p−1

k (Xk−1)), which has only
normal crossing singularities and has the same multiplicity at each point. Shrink

M̃k so that the map (qk, φ̃
1/2
k,1 , ..., φ̃

1/2
k,n−k) : M̃k → X̃k ×Rn−k is a Nash embedding

and let V denote its image. Identify M̃k and X̃k with V and X̃k×{0} through this

embedding, set p̃k = pk|X̃k
, regard pk as an immersion of V into M and f̃k and g̃k

as functions on V , and let (z, y) = (z, y1, ..., yn−k) ∈ V ⊂ X̃k × Rn−k. Then

f̃k(z, y) = F (z, y)yα and g̃k(z, y) = G(z, y)yα.

Set

F ′ =
∑

β∈N
n−k

l

∂|β|F

∂yβ
(z, 0)yβ/β!, G′ =

∑

β∈N
n−k

l

∂|β|G

∂yβ
(z, 0)yβ/β!,

f̃ ′
k = F ′yα and g̃′k = G′yα,

where Nn−k
l = {β ∈ Nn−k : |β| ≤ l} and β! =

∏n−k
i=1 βi!. Then f̃ ′

k and g̃′k are

Nash functions on V , moreover f̃k − f̃ ′
k and g̃k − g̃′k are l-flat at X̃k × {0}, and F ′

and G′ have the same properties as F and G. Hence for the construction of π̃k,
we can replace f̃k and g̃k with f̃ ′

k and g̃′k. An advantage of f̃ ′
k and g̃′k is the fact

that (∗) F ′ −G′ is l′-flat at V ∩ p̃−1
k (Xk−1)×Rn−k, though F −G is l′-flat only at

p̃−1
k (Xk−1) × {0}. Write

f̃ ′
k =

n−k∏

i=1

(F ′1/|α|yi)
αi and g̃′k =

n−k∏

i=1

(G′1/|α|yi)
αi .

Then there exists a unique Nash diffeomorphism π̃k between semialgebraic neigh-
borhoods of X̃k × {0} in V of the form π̃k(z, y) = (z, π̃′

k(z, y)y), for some positive

Nash function π̃′
k on the neighborhood of source, such that f̃ ′

k = g̃′k ◦ π̃k on that
neighborhood. Actually, we can reduce the problem to the case where g̃′k = zβyα

for some β ∈ Nk and some local Nash coordinate system z = (z1, ..., zk) of X̃k such

that p̃−1
k (Xk−1) = {zβ = 0} (by considering two pairs (f̃ ′

k, z
βyα) and (g̃′k, z

βyα))

and then π̃′
k(z, y) = (F ′/zβ)1/|α| is the unique solution. Such a π̃k fulfills the re-

quirements. Indeed, π̃k(p−1
k (X)) ⊂ p−1

k (X) by the form of π̃k because p−1
k (X) in V

is of the form X̃k×{y1 · · ·yn−k = 0}∪ p̃−1
k (Xk−1)×Rn−k, because π̃k− id is l′′-flat

at V ∩ p̃−1
k (Xk−1) × Rn−k because of (∗), and f̃k − g̃k ◦ π̃k is l′′-flat at X̃k × {0}

because

f̃k − g̃k ◦ π̃k = (f̃k − f̃ ′
k) + (f̃ ′

k − g̃′k ◦ π̃k) + (g̃′k ◦ π̃k − g̃k ◦ π̃k).

Let W be an open semialgebraic neighborhood of Xk−Xk−1 in M so small that

there exists an open semialgebraic neighborhood of (X̃k − p̃−1
k (Xk−1))×{0} in the

intersection of the domain of definition of π̃k and the range of values to which the
restriction of pk is a diffeomorphism onto W . Then π̃k induces a Nash embedding
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πk : W → M ⊂ Rn such that πk(X ∩W ) ⊂ X , such that πk = id on Xk −Xk−1

and f − g ◦ πk is l′′-flat at Xk −Xk−1. Though πk is not necessarily extensible to
a neighborhood of Xk, there exists a Nash map η : M → RN such that η − id is
l′′-flat at Xk−1, and η−πk is l′′-flat at Xk−Xk−1, hence f−g◦η is l′′-flat at Xk for
the following reason. Let I denote the sheaf of N -ideals on M defined by Xk. Then
by theorem 2.8, it suffices to find an element η in H0(M,N /Il

′′

)N such that ηx is

the image of πkx under the natural map N n
x → (Nx/Il

′′

x )N for x ∈W and ηx = id
for x ∈ Xk−1. This is possible because π̃k − id is l′′-flat at V ∩ p̃−1

k (Xk) ×Rn−k.
We modify π̃k to show that η can be a diffeomorphism of M . Assume that

(∗∗) π̃′
k ≤ 1 for simplicity of notation, which is possible if we consider a third

function h on M with the same properties as f and g, with h/f ≥ 1 on M −X and

h/g ≥ 1 on M −X . Let ψ be a non-negative small Nash function on X̃k with zero
set p̃−1

k (Xk−1) such that

Z
def
= {(z, y) ∈ X̃k ×Rn−k : |y| ≤ ψ(z)} ⊂ domain of π̃k,

π̃′
k(z, sy) > |

∂π̃′
k(z, sy)

∂s
s|(3∗)

for (z, y, s) ∈ X̃k ×Rn−k × R with (z, sy) ∈ Z and |y| = 1

and pk|Z is injective, which exists by the  Lojasiewicz inequality. Let ρ(t) be a

semialgebraic Cl
′′

function on R such that (4∗) 0 ≤ ρ ≤ 1, such that (5∗) dρ
dt

≤ 0,
and moreover ρ = 1 on (−∞, 1/2] and ρ = 0 on [1, ∞). Set

τ̃ ′k =

{
1 for (z, y) ∈ Z ∩ p−1

k (Xk−1)

ρ(|y|/ψ(z))π̃′
k(z, y) + 1 − ρ(|y|/ψ(z)) for (z, y) ∈ Z − p−1

k (Xk−1),

τ̃k(z, y) = (z, τ̃ ′k(z, y)y) for (z, y) ∈ Z.

Then τ̃ ′k and hence τ̃k are of class semialgebraic Cl
(3)

and τ̃k − id is l(3)-flat at

Z∩p−1
k (Xk−1) = p̃−1

k (Xk−1)×{0} since π̃′
k(z, y)−1 is (l′′−1)-flat at Z∩p−1

k (Xk−1).

Clearly τ̃k = id on a semialgebraic neighborhood of ∂Z−p−1
k (Xk−1) in Z. Moreover,

τ̃k is a diffeomorphism of Z. Actually, we can assume that n−k = 1 because τ̃k = π̃k
on a neighborhood of (X̃k − p̃−1

k (Xk−1)) × {0} in Z and because π̃k and hence τ̃k
carry each segment {z} × {Ry} ∩ Z for (z, y) ∈ (X̃k − p̃−1

k (Xk−1)) × Rn−k with
|y| = 1 to itself. Then

∂τ̃ ′k(z, y)y

∂y
= τ̃ ′k(z, y) +

∂τ̃ ′k
∂y

(z, y)y,

τ̃ ′k(z, y) = ρ(|y|/ψ(z))π̃′
k(z, y) + 1 − ρ(|y|/ψ(z))

(∗∗),(4∗)

≥ π̃′
k(z, y),

∂τ̃ ′k
∂y

(z, y)y =
dρ

dt
(|y|/ψ(z))(π̃′

k(z, y) − 1)|y|/ψ(z) + ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y

(∗∗),(5∗)

≥

ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y, hence

∂τ̃ ′k(z, y)y

∂y
≥ π̃′

k(z, y) + ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y

(3∗),(4∗)
> 0 for (z, y) ∈ Z.
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Define a semialgebraic Cl
(3)

diffeomorphism τk of M so that τk ◦ pk = pk ◦ τ̃k on
Z and τk = id on M − pk(Z). Then τk = πk on Z if we shrink Z, hence τk − η is
l(3)-flat at Xk and τk(X) = X and moreover f − g ◦ τk is l(3)-flat at Xk. Let ω be
a non-negative-valued global generator of the square of I—the sheaf of N -ideals

defined by Xk. Then there exists a semialgebraic Cl
(4)

map ξ : M → RN such that

τk − η = ωξ. Approximate ξ by a Nash map ξ′ in the semialgebraic Cl
(4)

topology,
and set π = (η + ωξ′) ◦ o, where o denotes the orthogonal projection to M of its
semialgebraic tubular neighborhood in RN . Then π is a Nash diffeomorphism of
M such that π − id is l(4)-flat at Xk−1 and f − g ◦ π is l(4)-flat at Xk. We can
modify π so that π(X) = X in the same way as in step 1 of the proof of theorem
3.1,(1) and lemma 4.6, because π is an approximation of τk and τk(X) = X . Thus
we complete the proof of the former half of lemma 4.7.

The latter half automatically follows from the above proof (though (∗∗) does
not necessarily hold, π′

k is close to 1 in the Nash topology, which is sufficient to
proceed). �

Note that our proof of lemma 4.7 also works when M, f and g are of class Cω

and the multiplicities of f and g are bounded.
The following lemma is also a globalization of Chapter II, Proposition 2 in [T]

and shows sufficient conditions for two functions to be right equivalent.

Proposition 4.8. (i) Let f be a Cω function on a Cω manifold M . Let vi, for
i = 1, ..., k, be Cω vector fields on M , and I denote the ideal of C∞(M) or Cω(M)
generated by vif , for i = 1, ..., k. Let φ be a small C∞ or Cω function on M
contained in I2 in the strong Whitney C∞ topology. Then f and f + φ are C∞

or Cω right equivalent, respectively, and the diffeomorphism of equivalence can be
chosen to be close to id in the same topology.

(ii) If f, M and vi are of class Nash or C∞ or Cω, and φ is of the form∑k
i,j=1 φi,jvif · vjf for some small Nash or C∞ or Cω functions φi,j in the Nash

or (strong) Whitney C∞ topology, then f and f + φ are Nash or C∞ or Cω right
equivalent, respectively, by a Nash or C∞ or Cω diffeomorphism close to id in the
same topology.

(iii) Assume that M is a Nash manifold and f is a Nash function on M with only
normal crossing singularities. Set X = f−1(f(Sing f)). Let φ be a Nash function
on M r-flat at X for some large r ∈ N. Then there exists a Nash diffeomorphism
π : V1 → V2 between closed semialgebraic neighborhoods of X in M close to id in
the semialgebraic Cr

′

topology, for 0 < r′ (≪ r) ∈ N, such that f ◦ π = f + φ
on V1, such that π − id is r′-flat at X, and π is extensible to a semialgebraic Cr

diffeomorphism of M .

Proof of proposition 4.8. Consider the analytic case. We want to reduce (i) to
(ii). For a while we proceed in the strong Whitney C∞ topology. By lemma
1.12 for φ in (i), there exist small φi,j ∈ Cω(M), for i, j = 1, ..., k, such that

φ =
∑k

i,j=1 φi,jvif · vjf . Consequently, (i) is reduced to (ii). From now on, we

work in the Whitney Cr topology for any r > 0 ∈ N (though we can do in the
strong Whitney C∞ topology). We can assume that M is open in its ambient

Euclidean. Actually, let p : M̃ →M denote the orthogonal projection of a tubular
neighborhood of M in its ambient Euclidean space. Assume that proposition 4.8,(ii)

in the analytic case holds for M̃ . The map Cω(M̃) ∋ Ψ → Ψ|M ∈ Cω(M) is
obviously continuous, surjective by corollary 2.4 and open as follows. Let ξ ∈
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C∞(M̃) with ξ = 1 on M and ξ = 0 outside of a small neighborhood of M in M̃ .

Then the map ξCω(M̃) ∋ ξΨ → ξΨ|M ∈ Cω(M) is open because for ψ ∈ Cω(M)

and for Ψ0 ∈ C∞(M̃), we have ψ ◦ p ∈ Cω(M̃) and (ξ · ψ ◦ p)|M = ψ and the map

Cω(M) ∋ ψ → ξ · ψ ◦ p + ξΨ0 − ξ · Ψ0|M ◦ p ∈ ξCω(M̃) is continuous and carries

Ψ0|M to ξΨ0. Hence for small ψ ∈ Cω(M), there exists small ξΨ ∈ ξCω(M̃) such

that Ψ|M = ψ. Approximate ξ by an analytic function ξ′ on M̃ so that ξ′ = 1

on M . Then ξ′Ψ is analytic on M̃ , close to ξΨ and hence small since the map
C∞(M̃)2 ∋ (α, β) → αβ ∈ C∞(M̃) is continuous, and ξ′Ψ|M = ψ. Consequently,
the above restriction map Ψ → Ψ|M is open by linearity. Let ṽi, for i = 1, ..., k, be

Cω vector field extensions of vi to M̃ , and φ̃i,j C
ω extensions of φi,j to M̃ so small

that f ◦ p and f ◦ p+
∑k
i,j φ̃i,j ṽi(f ◦ p) · ṽj(f ◦ p) satisfy the condition in proposition

4.8,(ii) and hence are Cω right equivalent by a Cω diffeomorphism π̃ close to id,
i.e.,

f ◦ p ◦ π̃ = f ◦ p+

k∑

i,j=1

φ̃i,j ṽi(f ◦ p) · ṽj(f ◦ p) on M̃.

Set π = p ◦ π̃|M . Then π is a Cω diffeomorphism of M close to id, and

f ◦ π = f +
k∑

i,j=1

φi,jvif · vjf.

Thus proposition 4.8,(ii) is proved for M . Hence we assume that M is open in Rn.
Next we can suppose that k = n and vi = ∂

∂xj
, for i = 1, ..., n, because each vi

is written as
∑n

j=1 αi,j
∂
∂xj

for some Cω functions αi,j on M .

Let η denote the function on M which measures distance from ∂M
def
= M−M (if

∂M = ∅ then set η ≡ +∞). Set V = {(x, y) ∈ M × Rn : |y| < η(x)} and consider
the Cω function

g(x, y) = f(x+ y) − f(x) −
n∑

i=1

yi
∂f

∂xi
(x) for (x, y) = (x1, ..., xn, y1, ..., yn) ∈ V.

Then g is a global cross-section of the sheaf of O-ideals I on V generated by yiyj ,
for i, j = 1, ..., n. Hence applying theorem 2.3 to the surjective homomorphism

On2

∋ (αi,j) →
∑n
i,j=1 αi,jyiyj ∈ I we obtain Cω functions gi,j on V, i, j = 1, ..., n,

such that g(x, y) =
∑n
i,j=1 yiyjgi,j(x, y). Then

(∗) f(x+ y) = f(x) +
n∑

i=1

yi
∂f

∂xi
(x) +

n∑

i,j=1

yiyjgi,j(x, y).

Let α = (αi,j)i,j=1,...,n be new variables in Rn2

, set

〈α, ∂f〉 = (
n∑

i=1

αi,1
∂f

∂xi
(x), ...,

n∑

i=1

αi,n
∂f

∂xi
(x)),

and let W be a small open neighborhood of M × {0} in M ×Rn2

such that

(x, 〈α, ∂f〉) ∈ V for (x, α) ∈W.
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Take y to be 〈α, ∂f〉 in (∗). Then

f(x+ 〈α, ∂f〉) =

f(x) +
n∑

i,j

αi,j
∂f

∂xi
(x)

∂f

∂xj
(x) +

n∑

i,i′,j,j′=1

αi,i′αj,j′
∂f

∂xi
(x)

∂f

∂xj
(x)Gi′,j′(x, α)

for Cω functions Gi′,j′(x, α) = gi′,j′(x, 〈α, ∂f〉) on W . Consider the map

B : W ∋ (x, α) → (x, αi,j +

n∑

i′,j′=1

αi,i′αj,j′Gi′,j′(x, α)) ∈M × Rn2

.

Then B is id and regular at M × {0}. Hence, shrinking W , we assume that B

is a diffeomorphism onto an open neighborhood O of M × {0} in M × Rn2

. Set
B(x, α) = (x,Bi,j(x, α)), and B−1(x, β) = (x,A′(x, β)) for (x, β) ∈ O. Then A′ is

a Cω map from O to Rn2

,

f(x+ 〈α, ∂f〉) = f(x) +

n∑

i,j

Bi,j(x, α)
∂f

∂xi
(x)

∂f

∂xj
(x) for (x, α) ∈W,

f(x+ 〈A′(x, β), ∂f〉) = f(x) +
n∑

i,j

βi,j
∂f

∂xi
(x)

∂f

∂xj
(x) for (x, β) ∈ O.

Choose Φ = (φi,j) so small that its graph is contained in O. Then π(x) =
x + 〈A′(x,Φ(x)), ∂f〉 fulfills the requirements in (ii). Here if φi,j are small in the
Whitney Cr or the strong Whitney C∞ topology, π is close to id in the respective
topology.

If f, M and vi are of class Cω and if φ is of class C∞, the same arguments as
above work and the diffeomorphism of equivalence is of class C∞. Thus we complete
the proof of (ii) in the analytic case. Point (ii) in the C∞ or Nash case follows also
from the same proof. The difference is only that the existence of C∞ or Nash gi,j
follows from a partition of unity of class C∞ or theorem 2.8, respectively.

Consider (iii). Assume that M is not compact. Let M be embedded in a Eu-
clidean space so that its closure is a compact Nash manifold with boundary. Now,
we consider an open semialgebraic tubular neighborhood of M and extend f to the
neighborhood as before. Then we can assume that M is open in Rn and M is a
compact Nash manifold with corners, and for the construction of π it suffices to
see that φ is of the form

∑n
i,j φi,j

∂f
∂xi

∂f
∂xj

for some Nash functions φi,j on M r′-flat

at X , where 0 ≪ r′ ≪ r ∈ N. Actually, assume that there exist such φi,j . Then

by the above proof, we only need to find small semialgebraic Cr
′′

functions φ′i,j on

M in the semialgebraic Cr
′′

topology such that φ′i,j = φi,j on some semialgebraic
neighborhood of X for 0 < r′′ ≪ r′ ∈ N.

Consider only the case r′′ = 1 because the general case can be proved in the same
way. Set g(x) =

∏
a∈f(X)(f(x)−a)2, and let h be a Nash function on M extensible

to a Nash function h on M such that 0 < h ≤ 1/2, such that (1) | ∂h
∂xk

| ≤ 1, for

k = 1, ..., n, and h
−1

(0) = M−M , which exists since M is a compact Nash manifold
with corners. Let ψ(t) be a semialgebraic C1 function on R such that 0 ≤ ψ ≤ 1
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and ψ = 1 on (−∞, 1] whereas ψ = 0 on [2, ∞). Then φ′i,j = φi,jψ(g/hm) fulfill
the requirements for some m ∈ N. Actually, Clearly φ′i,j = φi,j on a semialgebraic

neighborhood {x ∈ M : g(x) ≤ hm(x)} of X in M , and φ′i,j = 0 on {g(x) ≥

2hm(x)}. Hence we prove that each φ′i,j is small on V
def
= {g(x) ≤ 2hm(x)} in the

semialgebraic C1 topology. Let ǫ > 0 ∈ R. Let ξ denote the Nash function on M

defined to be φi,j/g
2 on M −X and 0 on X . Then ξ, ∂g∂xk

and
∂φi,j

∂xk
, k = 1, ..., n,

vanish at X . Hence there exists a semialgebraic neighborhood W of X in M where

(2) |φi,j | ≤ ǫg2, (3) |
∂g

∂xk
| ≤ 1, (4) |

∂φi,j
∂xk

| ≤ ǫ.

By the  Lojasiewicz inequality, we have V ⊂ W for large m. Note that (5) g ≤

1/2m−1 on V since h ≤ 1/2. Set c = max |dψdt |. Then on V

|φ′i,j | = |φi,jψ(
g

hm
)|

(2)

≤ ǫg2
(5)
< ǫ,

|
∂φ′i,j
∂xk

| ≤ |
∂φi,j
∂xk

ψ(
g

hm
)| + |φi,j

dψ

dt
(
g

hm
)|(|

∂g

∂xk
|/hm +m|g

∂h

∂xk
|/hm+1),

|
∂φi,j
∂xk

ψ(
g

hm
)|

(4)

≤ ǫ,

|φi,j
dψ

dt
(
g

hm
)
∂g

∂xk
|/hm

(3)

≤
c|φi,j |

hm

by def. of V

≤
2c|φi,j |

g

(2),(5)

≤ cǫ,

m|φi,j
dψ

dt
(
g

hm
)g
∂h

∂xk
|/hm+1

(1)

≤
mc|φi,j |g

hm+1

(2)

≤ 2
m+1

m mcǫg2− 1
m

(5)

≤ 24+ 1
m

−2mmcǫ.

Hence φ′i,j is small on V for large m.
It remains to find φi,j . Let K denote the sheaf of N -ideals on M defined by

X . Then φ is a cross-section of Kr since φ is r-flat at X and since X is normal
crossing. On the other hand,

∑n
i=1

∂f
∂xi

N ⊃ Kr
′

since f has only normal crossing

singularities. Hence φ is a cross-section of
∑n
i,j=1

∂f
∂xi

∂f
∂xj

Kr
′

because of r′ ≪ r. Let

gl, for l = 1, ..., k′, be global generators of Kr
′

(theorem 2.7). Apply theorem 2.8

to the surjective N -homomorphism that assigns to (αi,j,l) ∈ N n2k′

a ⊂ N n2k′ , for
a ∈M , the value

∑
αi,j,lgla(

∂f

∂xi
)a(

∂f

∂xj
)a ∈

n∑

i,j=1

(
∂f

∂xi
)a(

∂f

∂xj
)aK

r′

a ⊂
n∑

i,j=1

∂f

∂xi

∂f

∂xj
Kr

′

.

Then there exist Nash functions φi,j , for i, j = 1, ..., n, in H0(M,Kr
′

) such that

φ =
∑n
i,j=1 φi,j

∂f
∂xi

∂f
∂xj

. It follows that φi,j are r′-flat at X .

The case of compact M is clear by the above arguments. �

Proposition 4.9. (Compactification of a Nash function with only normal crossing
singularities) Let f be a bounded Nash function on a non-compact Nash manifold M
with only normal crossing singularities. Then there exist a compact Nash manifold
with corners M ′ and a Nash diffeomorphism π : M → IntM ′ such that f ◦ π−1 is
extensible to a Nash function on M ′ with only normal crossing singularities.
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The analytic case does not necessarily hold.
We cannot necessarily choose M ′ with smooth boundary. For example any com-

pact Nash manifold with boundary whose interior is Nash diffeomorphic to M = R3

is Nash diffeomorphic to a closed ball in R3 (Theorem VI.2.2 in [S2]). But there
does not exist Nash function on a 2-sphere with only normal crossing singularities
(see remark (v) after theorem 3.2).

Extensibility of a Nash function to a compact Nash manifold with corners is
shown in Proposition VI.2.8 in [S2]. Hence the problem is to impose to the extension
to have only normal crossing singularities.

Proof of proposition 4.9. Set n = dimM , and X = f−1(f(Sing f)), set BN =
{x ∈ RN : |x| ≤ 1} for a positive integer N and SN−1 = ∂BN . Since there
exists a Nash embedding of M into RN such that the image is closed in RN , we
can assume by lemma 4.6 that M ⊂ IntBN , that M −M ⊂ SN−1, that M is a
compact Nash manifold with boundary, and moreover M intersects transversally
with SN−1 in the sense that some Nash manifold extension M̃ of M intersects
transversally with SN−1, that X is a normal crossing Nash subset of M , and there
exists a Nash function g on M̃ with only normal crossing singularities such that
g(Sing g) = f(Sing f), the equality g−1(g(Sing g)) ∩M = X holds, and such that
g = f on X , for each a ∈ X , g(x) − g(a) has the same multiplicity as f(x) − f(a)
at a and g(b) > g(a) if and only if f(b) > f(a) for b ∈M . We do not know whether
g|M is Nash right equivalent to f . We will modify M and g so that this is indeed
the case and so that g|M has only normal crossing singularities.

Let φ be a polynomial function on R such that φ−1(0) = f(Sing f) and φ is
regular at φ−1(0). Let r ∈ N be large enough. Apply lemma 4.7 to φ ◦ f and
φ ◦ g|M . Then we have a Nash diffeomorphism τ1 of M such that τ1(X) = X and
f ◦τ1−g|M is r-flat at X . Hence replacing f with f ◦τ1, we assume that f−g is r-flat
at X . Next, by proposition 4.8,(iii) there exists a semialgebraic Cr diffeomorphism
τ2 of M such that g = f ◦τ2 on a semialgebraic neighborhood V of X in M and τ2 is
of class Nash on V . We can choose V of the form {x ∈M : φ2 ◦ g(x) ≤ c(x)ξm(x)}
by the  Lojasiewicz inequality, where ξ(x) = (1 − |x|2)/2 for x ∈ M̃ , where c is a

positive Nash function on M̃ such that c depends on only |x| and m is a large odd

integer. Shrink M̃ so that ξ < 0 on M̃ − M . We can choose, moreover, c and
m so that φ2 ◦ g − cξm is regular at A − SN−1, where A denotes the zero set of
φ2 ◦ g − cξm, and hence V is a Nash manifold with boundary {x ∈M : φ2 ◦ g(x) =
c(x)ξm(x)}. Actually, let 0 < ǫ0 ∈ R be small. Then for any 0 < ǫ ∈ R with

ǫ < ǫ0, ξ−1(ǫ) ∪ (φ ◦ g)−1(0) is normal crossing in M̃ , and hence for small c and
large m, the function φ2 ◦ g on {x ∈ ξ−1(ǫ) : 0 < φ2 ◦ g(x) < 2c(x)ξm} is regular.
We can choose c and m independently of ǫ. Therefore, φ2 ◦ g − cξm is regular at
A ∩ ξ−1((0, ǫ0)). Moreover, if we choose c and m so that cξm is close to a small
constant on M − ξ−1((0, ǫ0/2]), then φ2 ◦ g − cξm is regular at A− ξ−1((0, ǫ0/2]).
Hence φ2 ◦ g− cξm can be regular at A− SN−1. However, we omit c for simplicity
of notation. We want first to modify M so that V is a neighborhood of X in M .

Apply theorem 2.10 to the two sheaves of N -ideals on M̃ defined by (φ◦ g)−1(0)
and generated by ξ · (φ2 ◦ g − ξm). Note that the former sheaf is normal crossing,
the stalk of the latter is not generated by one regular function germ at a point of
X−X only, and at least one of the two stalks of both sheaves at each x 6∈ X−X is
Nx. Then we have a composition of a finite sequence of blowings-up τ3 : M̂ → M̃
along smooth Nash centers such that τ3|τ−1

3 (M̃−(X−X)) : τ−1
3 (M̃ − (X − X)) →
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M̃ − (X −X) is a Nash diffeomorphism and (φ ◦ g · ξ · (φ2 ◦ g − ξm)) ◦ τ3 has only

normal crossing singularities at its zero set, say Y . It follows that (M̂, Y, τ−1
3 (M))

is Nash diffeomorphic to (Rn, {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0}, B) locally at each

point of τ−1
3 (M) for some n′ (≤ n) ∈ N, where B denotes the closure of the union

of some connected components of {x1 · · ·xn′ 6= 0}), and τ−1
3 (M) − τ−1

3 (X −X) is

a Nash manifold with boundary. However, τ−1
3 (M) is not necessarily a manifold

with corners. It may happens that τ−1
3 (M) is locally diffeomorphic to the union

of more than one connected components of {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ 6= 0} at
some point of τ−1

3 (X −X), for 0 < n′ (≤ n) ∈ N. Then we need to separate these
connected components. That is possible as shown in the proof of Theorem VI.2.1
in [S2]. Namely, there exist a compact Nash manifold L with corners and a Nash

immersion τ4 : L→ τ−1
3 (M) such that τ4|L−Sing ∂L is a Nash diffeomorphism to its

image and the image contains τ−1
3 (M) − τ−1

3 (X −X) (⊃ τ−1
3 (M)).

Clearly (φ◦g ·ξ ·(φ2◦g−ξm))◦τ3◦τ4 has only normal crossing singularities at its
zero set τ−1

4 (Y ) since τ4 is an immersion. Set τ = τ2 ◦τ3 ◦τ4|IntL and h = g ◦τ3 ◦τ4.

Define W = (τ3 ◦ τ4)−1(V ) and W ′ = W − ∂W and set Z = (τ3 ◦ τ4)−1(X).
Then W is a non-compact Nash manifold with boundary; τ is a semialgebraic Cr

diffeomorphism from IntL to M and of class Nash on W ; h is a Nash function on
L; h = f ◦ τ on W ; h is regular on IntL− Z; h|IntL∪W ′ has only normal crossing
singularities at Z though h is not necessarily so globally; W is a neighborhood of
Z in L because if it were not, Z ∩ (τ3 ◦ τ4)−1({x ∈M : φ2 ◦ g(x) = ξm(x)}) could
be not empty and of dimension n − 2 but contained in (τ3 ◦ τ4)−1(ξ−1(0)), which
contradicts the normal crossing property of (φ ◦ g · ξ · (φ2 ◦ g − ξm)) ◦ τ3 ◦ τ4. Note
that W ′ and W are Nash manifolds with corners by the next fact and the normal
crossing property of (ξ · (φ2 ◦ g − ξm)) ◦ τ3 ◦ τ4. Thus V is changed to W—a
neighborhood of Z in L. We consider h on L in place of g on M .

We replace τ by a Nash diffeomorphism. Let 0 ≪ r ∈ N, set ψ = (φr◦h·ξr)◦τ3◦τ4
on L and ψ = ψ|IntL, and let I denote the sheaf of N -ideals on IntL generated by
ψ. Then we regard τ as an element of H0(IntL,N /I)N because suppN /I = Z
and τ is of class Nash near there. Hence by theorem 2.8 there exists a Nash
map τ ′ : IntL → RN such that τ − τ ′ = ψθ for some semialgebraic Cr map
θ : IntL→ RN of class Nash on W . Approximate θ by a Nash map θ′ : IntL→ RN

in the semialgebraic Cr topology, and set τ ′′ = p ◦ (τ ′ + ψθ′), where p denotes the
orthogonal projection of a semialgebraic tubular neighborhood of M in RN . Then
τ ′′ is a well-defined Nash diffeomorphism from IntL to M and close to τ in the
semialgebraic Cr topology; f ◦ τ ′′−h|IntL = ψδ for some semialgebraic Cr function
δ on IntL though f ◦ τ ′′ − h|IntL does not necessarily vanish on W ; moreover, δ

is extensible to a semialgebraic Cr
′

function δ on IntL ∪W ′ for 0 ≪ r′ (≪ r) ∈

N by the definition of the semialgebraic Cr
′

topology, by the fact that a small
semialgebraic Cr function on IntL is extensible to a semialgebraic Cr function on
L and by

f ◦ τ ′′ − h|IntL = f ◦ p ◦ (τ + ψ · (θ′ − θ)) − f ◦ p ◦ τ on W.

The last equality implies also that δ is of class Nash on W , and hence on IntL since
f ◦ τ ′′ and h are Nash functions and ψ−1(0) ⊂W .

Next we modify h. Let δ
′

be a Nash approximation on IntL ∪W ′ of δ in the

semialgebraic Cr
′

topology, and set δ′ = δ
′
|IntL and h′ = h+ψδ

′
on IntL∪W ′. Then
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h′ is a Nash function on IntL∪W ′ and has only normal crossing singularities at Z
by the same property of h|IntL∪W ′ and by the definition of h′, and f ◦τ ′′−h′|IntL is
of the form ψ · (δ− δ′). Hence f and h′ ◦ τ ′′−1 satisfy the conditions in proposition

4.8,(ii) because φr◦h◦τ ′′−1 is of the form
∑k

i,j=1 ψi,jvf ·vjf for some Nash functions
ψi,j on M and Nash vector fields vi, for i = 1, ..., k, on M which span the tangent
space of M at each point of M and because ξr|M · (δ − δ′) ◦ τ ′′−1 is small as a

semialgebraic Cr
′

function on M . Consequently, f and h′ ◦ τ ′′−1 are Nash right
equivalent, and we can replace f with h′|IntL.

We can assume that W ′ ∩ ∂L is the union of some connected components σ of
strata of the canonical stratification {Li} of ∂L such that σ ∩ Z 6= ∅. Actually,
let ψL be a non-negative Nash function on L with zero set Z, and let ǫ > 0 ∈ R
be such that the restriction of ψL to ψ−1

L ((0, 2ǫ)) is regular. Then ψ−1
L (ǫ) is a

compact Nash manifold with corners equal to ∂L ∩ ψ−1
L (ǫ). Let {Lǫ,i} denote the

canonical stratification of ∂L∩ψ−1
L (ǫ). We blow up Lǫ,i as follows. Let L′ and L̃′ be

a compact Nash submanifold possibly with corners of L and some Nash manifold
extension of L′ respectively. If L̃′ ∩ L = L′ and (L, L̃′) is locally diffeomorphic
to ({(x1, ..., xn) ∈ Rn : x1 ≥ 0, ..., xn′ ≥ 0}, {xn1

= · · · = xnk
= 0}) for some

n′ (≤ n), 1 ≤ n1 < · · · < nk ≤ n ∈ N, then we say L′ has the property (∗). For
L′ with (∗), consider γ : Γ → L—the restriction of the blowing-up of a small Nash

manifold extension L̃ of L along center L̃∩L̃′ to the closure of inverse image of L−L′,
modify γ : Γ → L so that Γ is a compact Nash manifold with corners by the idea in
the proof of Theorem VI.2.1 in [S2] as before, use the same notation γ : Γ → L, and
call it the (∗)-blowing-up of L along center L′. Note that γ−1(L′) is the closure of the
union of some connected components of Reg ∂Γ. Set Γ−1 = L and let 0 ≤ k ≤ n−2.
Inductively we define (∗)-blowing-up γk : Γk → Γk−1 of Γk−1 along center Lǫ,0 if

k = 0 and along center (γ0 ◦ · · · ◦ γk−1)−1(Lǫ,k) if k > 0, which is possible because

Lǫ,0 and (γ0 ◦ · · · ◦ γk)−1(Lǫ,k+1) for 0 ≤ k ≤ n−3 are compact Nash submanifolds
with corners of Γ−1 and Γk with (∗), respectively. Thus we assume that the above
condition on W holds considering (Γn−2, (ψL ◦ γ0 ◦ · · ·γn−2)−1([0, ǫ]) − ∂Γn−2)
in place of (L,W ). Here we choose ǫ so small that (∗∗) h′ is extensible to a Nash
function on an open semialgebraic neighborhood of IntL∪W in L with only normal
crossing singularities.

Moreover, we can assume that the closure of each connected component of Reg ∂L
is a Nash manifold possibly with corners. Indeed, we obtain this situation if we
repeat the same arguments as above to the canonical stratification of ∂L compatible
with {x ∈ ∂L : dis(x, Lk) = ǫk, dis(x, Li) ≥ ǫi, i = 0, ..., k− 1}, for k = 0, ..., n− 2.
Here we naturally define the canonical stratification of ∂L compatible with the
above family in the same way as in the remark after the proof of lemma 4.5. After
this modification of L, the property (∗∗) continues to hold.

Let Mj, for j ∈ J, be the set of closures of the connected components of Reg ∂L,

and let J0 denote the subset of J consisting of j such that Mj ∩ Z = ∅. Let L̃ and

M̃j be Nash manifold extensions of L and Mj, respectively, which are contained and
closed in a small open semialgebraic neighborhood U of L in the ambient Euclidean
space such that ∪j∈JM̃j is normal crossing in L̃ and for each j ∈ J there is one

and only one connected component of L̃−M̃j which does not intersect with L. Let

Z̃ denote the smallest Nash subset of L̃ containing Z. Then Z̃ is normal crossing
in L̃, and there exist Nash functions χj on L̃ with zero set M̃j , regular there and



48 GOULWEN FICHOU AND MASAHIRO SHIOTA

with χj > 0 on IntL.

By (∗∗) we can choose a sufficiently small U so that h′ can be extended to a Nash

function h′+ on L+
def
= {x ∈ L̃ : χj(x) > 0, j ∈ J0}, such that h′+(Singh′+) = h′(Z)

and h′+ has only normal crossing singularities. Now we smooth h′+ at L+−L+ as in

the proof of Proposition VI.2.8 in [S2]. Let L̃ ⊂ RN , set G = graphh′+ ⊂ L+ × R,

and let GZ be the Zariski closure of G in RN × R and Q be the normalization of
GZ in RN ×R×RN ′

for some N ′ ∈ N, and let r : Q→ RN ×R and q : Q→ RN

denote the restrictions to Q of the projections RN × R × RN ′

→ RN × R and
RN × R × RN ′

→ RN , respectively. Then it is known that r is a proper map to
GZ , and by Artin-Mazur Theorem there exists a union of connected components
R of Q− r−1(G−G) such that R ⊂ RegQ and r|R is a Nash diffeomorphism onto
G. Here we can replace r−1(G − G) with a Nash subset q−1((

∏
j∈J0

χj)
−1(0)) of

Q because r−1(G−G) ⊂ q−1((
∏
j∈J0

χj)
−1(0)) and R∩ q−1((

∏
j∈J0

χj)
−1(0)) = ∅;

q|R is a Nash diffeomorphism onto L+; the map h′+ ◦ q|R is the restriction of the

projection RN ×R×RN ′

→ R and hence extensible to a smooth rational function
on Q; the set R ∩ q−1(L) is compact because r is proper and because G ∩ L× R
is compact by boundedness of f ; the function h′+ ◦ q|R has only normal crossing
singularities because the same is true for h′+. However, χj◦q are now not necessarily

regular at their zero sets. By theorem 2.8, R ∩ q−1(Z̃) is a Nash subset of RegQ

and there exists a Nash function α on RegQ whose zero set is R∩q−1(Z̃) and which

has only normal crossing singularities there since R∩ q−1(Z̃) is a Nash subset of R
and since its closure in RegQ does not intersect with R −R.

Thus replacing L̃, L+, h
′
+, χj and Z̃ with RegQ, R, h′+ ◦ q|R, χj ◦ q|RegQ

and R ∩ q−1(Z̃) we assume from the beginning that M and f satisfy moreover the
following conditions.

(i) f̃ and χj , for j ∈ J, are a finite number of Nash functions on a Nash manifold

M̃ , and X̃ is a normal crossing Nash subset of M̃ .
(ii) M is the union of some connected components of M̃ − (

∏
j∈J χj)

−1(0), the set

M is compact, the equalities f = f̃ |M and X = X̃ ∩M hold (we do not assume
that M is a manifold with corners).

We make
∏
j∈J χj normal crossing at its zero set. Apply theorem 2.10 to the

sheaf of N -ideals on M̃ defined by X̃ and the sheaf of N -ideals
∏
j∈J χjN . Then

via blowings-up,
∏
j∈J χj becomes to have only normal crossing singularities at its

zero set, and the conditions (i) and (ii) do not change because the subset of M̃
where we modify by blowings-up is contained in (

∏
j∈J χj)

−1(0).

It remains to make f̃ together with (
∏
j∈J χj)

−1(0) normal crossing. Let {M̃i}

denote the canonical stratification of (
∏
j∈J χj)

−1(0), set M̃n=M̃−(
∏
j∈J χj)

−1(0),

and let φ̃ be a polynomial function on R such that φ̃−1(0) = ∪ni=0f̃(Sing f̃ |M̃i
) and

φ̃ is regular at φ̃−1(0). Once more, apply theorem 2.10 to the sheaf of N -ideals on

M̃ defined by X̃ ∪ (
∏
j∈J χj)

−1(0) and the sheaf of N -ideals [φ̃ ◦ f̃N : ∩iI
αi

i ]
def
=

∪x∈M̃{ρ ∈ Nx : ρ∩iI
αi

ix ⊂ φ̃◦ f̃Nx}, where ∩iIi is the decomposition of the sheaf of

N -ideals on M̃ defined by X̃ to irreducible finite sheaves of N -ideals and each αi is
the maximal integer such that φ̃◦ f̃N is divisible by Iαi

i . Then (f̃− f̃(x0))
∏
j∈J χj

becomes to have only normal crossing singularities at its zero set for each x0 ∈ M̃
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and the subset of M̃ where we modify now by blowings-up does not intersect with
M because the stalk of the latter sheaf at each point of M is generated by a regular
function germ and because

(X̃ ∪ (
∏

j∈J

χj)
−1(0)) ∩ suppN /[φ̃ ◦ f̃N : ∩iI

αi

i ] ∩M = ∅.

Finally, we separate as beforeM at the points ofM whereM is not locally connected
so that M is a compact Nash manifold with corners. Then f̃ |M has only normal
crossing singularities, and we complete the proof. �

5. Proofs of theorem 3.2 and theorems 3.1,(2) and 3.1,(3)

5.1. Proof of theorem 3.2.
By proposition 4.1 it suffices to prove the Nash case and, moreover, that the

cardinality of Nash R-L equivalence classes of Nash functions with only normal
crossing singularities on a compact Nash manifold possibly with corners is zero or
countable. The reasons are that first we can restrict functions to being bounded by
the fact that R is Nash diffeomorphic to (0, 1) and secondly by proposition 4.9 we
can regard a non-compact Nash manifold M and a bounded Nash function f with
only normal crossing singularities on M as the interior of a compact Nash manifold
with corners M ′ and the restriction to M of a Nash function on M ′ with only
normal crossing singularities. Assume that there is at least one Nash function f on
M with only normal crossing singularities. Then the cardinality is infinite because
we can increase arbitrarily the cardinality of the critical value set, which is finite,
by replacing f with π ◦ f for some Nash function π on R. Let {Xα}α∈A denote all
normal crossing Nash subsets of M . We define α and α′ in A to be equivalent if
there exists a Nash diffeomorphism of M which carries Xα to Xα′ . Then by lemma
4.4 the cardinality of equivalence classes of A is countable. Hence it suffices to see
that for each Xα there exist at most a countable number of Nash R-L equivalence
classes of Nash functions f on M with only normal crossing singularities such that
f−1(f(Sing f)) = Xα. Let Fα denote all such Nash functions. Clearly there are
a finite number of equivalence classes of {f |Xα

: Xα → R : f ∈ Fα} under the
Nash left equivalence relation since the value sets are finite. Moreover, there are
at most a countable number of choices of multiplicity of f − f(a) at a for f ∈ Fα
and a ∈ Xα. Hence we reduce the problem to the following one. Fix f ∈ Fα, and
let Ff denote the family of g ∈ Fα such that g = f on Xα and g − g(a) has the
same multiplicity as f − f(a) at each point a of Xα. Then the cardinality of Nash
right equivalence classes of functions in Ff is finite. Moreover, it suffices to prove
that each element of Ff , say f , is stable in Ff in the sense that any g ∈ Ff near
f in the C∞ topology is Nash right equivalent to f because there are only a finite
number of connected components in Ff .

Set n = dimM , embed M in RN , and let {Mi} denote the canonical stratification
of M . There exist Nash vector fields v1, ..., vk on M such that v1x, ..., vkx span the
tangent space TxMi of Mi at each x ∈ Mi. If we regard M as {(x1, ..., xn) ∈
Rn : x1 ≥ 0, ..., xn′ ≥ 0} by its local coordinate system, then xi

∂
∂xi

is contained

in the linear space over N(M) spanned by v1, ..., vk for each 1 ≤ i ≤ n′. Actually,

set Li = ∪ij=0Mj, for i = 0, ..., n − 1, and choose a Nash manifold extension M̃

of M and Nash subset extensions L̃i of Li in M̃ so that L̃n−1 is normal crossing
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in M̃ and {L̃i − L̃i−1} is the canonical stratification of L̃n−1. Set Ln = M and

L̃n = M̃ also. Then when we describe (M̃, L̃n−1) by a local coordinate system as
(∗) (Rn, {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0}),

L̃i =
⋃

1≤j1<···<jn−i≤n′

{(x1, ..., xn) ∈ Rn : xj1 = · · · = xjn−i
= 0}, n− n′ ≤ i ≤ n.

We consider the situation on M̃ rather than on M because the existence of v1, ..., vk
follows from the existence of Nash vector fields on M̃ with the same properties.

First, let wn,1, ..., wn,kn
be Nash vector fields on M̃ which span the tangent

space of M̃ at each point, and αn a global generator of the sheaf of N -ideals on
M̃ defined by L̃n−1—we can choose M̃ so that αn exists because M is a manifold
with corners. Then vn,1 = αnwn,1, ..., vn,kn

= αnwn,kn
are Nash vector fields on

M̃ , span the tangent space of M̃ at each point of M̃ − L̃n−1 and vanish at L̃n−1,
and in the case (∗), for each 1 ≤ i ≤ n′, xi

∂
∂xi

on {(x1, ..., xn) ∈ Rn : xj 6= 0 for

1 ≤ j ≤ n′ with j 6= i} is contained in the linear space over the Nash function ring
on the set spanned by vn,1, ..., vn,kn

.

Next fix i < n and consider on L̃i. Then it suffices to prove the following two
statements.

(i) There exist Nash vector fields vi,1, ..., vi,ki
on L̃i—Nash cross-sections of the

restrictions to L̃i of the tangent bundle of RN , i.e. the restrictions to L̃i of Nash
vector fields on RN by theorem 2.8—which span the tangent space of L̃i− L̃i−1 at

its each point and vanish at L̃i−1 and such that in the case of (∗) the condition on
each irreducible component {(x1, ..., xn) ∈ Rn : xj1 = · · · = xjn−i

= 0}, same as on

M̃ , is satisfied for 1 ≤ j1 < · · · < jn−i ≤ n′; to be precise, for any 1 ≤ j ≤ n′ other
than j1, ..., jn−i, then xj

∂
∂xj

on

{(x1, ..., xn) ∈ Rn : xj1 = · · · = xjn−i
= 0, xl 6= 0 if l ∈ {1, ..., n′} \ {j1, ..., jn−i, j}}

is contained in the linear space over the Nash function ring on the set spanned by
vi,1, ..., vi,ki

.

(ii) Any Nash vector field on L̃i tangent to L̃j − L̃j−1 at its each point for j ≤ i

is extensible to a Nash vector field on L̃i+1 tangent to L̃i+1 − L̃i at each its point.

Proof of (i). By considering the Zariski closure of L̃i and its normalization and by
Artin-Mazur Theorem, we have a Nash manifold Pi and a Nash immersion ξi : Pi →
L̃i such that ξi|Pi−ξ

−1
i

(L̃i−1)
is a Nash diffeomorphism onto L̃i − L̃i−1. Note that

ξ−1
i (L̃i−1) is normal crossing in Pi. Apply the same arguments to (Pi, ξ

−1
i (L̃i−1))

as on (M̃, L̃n−1). Here the difference is only that we need a finite number of global

generators αi,1, αi,2, ... of the sheaf of N -ideals on Pi defined by ξ−1
i (L̃i−1). Then

there exist Nash vector fields wi,1, ..., wi,ki
on Pi with the corresponding properties,

and they induce semialgebraic C0 vector fields vi,1, ..., vi,ki
on L̃i through ξi because

wi,1, ..., wi,ki
vanish on ξ−1

i (L̃i−1). Such vi,1, ..., vi,ki
are of class Nash by the normal

crossing property of L̃n−1 in M̃ and satisfy the conditions in (i).

Proof of (ii). Let v be a Nash vector field on L̃i in (ii), and ξi+1 : Pi+1 → L̃i+1

the same as above. Then since ξi+1 is an immersion, v pulls back a Nash cross-

section w of the restriction to ξ−1
i+1(L̃i) of the tangent bundle of the Nash manifold

Pi+1, and by theorem 2.8 we obtain a Nash vector field on Pi+1 whose restriction
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to ξ−1
i+1(L̃i) is w. This vector field induces a Nash vector field of L̃i+1 through ξi+1,

which is an extension of v, by the same reason as in the proof of (i).
Let g ∈ Ff near f . It suffices to see that f and g are Cω right equivalent.

Actually, assume that there exists a Cω diffeomorphism π of M such that f = g ◦π.
Let M̃ and L̃n−1 be the same as above and so small that f and g are extensible

to Nash functions f̃ and g̃ on M̃ , respectively. Extend π to a Cω diffeomorphism
π̃ : U1 → U2 between open neighborhoods of M in M̃ so that π̃(U1 ∩ L̃n−1) ⊂ L̃n−1

and f̃ = g̃ ◦ π. As above, let αn be a global generator of the sheaf of N -ideals on
M̃ defined by L̃n−1. Then αn ◦ π̃ = βαn on U1 for some positive Cω function β on

U1. Consider the following equations in variables (x, y, z) ∈ M̃2 ×R.

f(x) − g(y) = 0 and αn(y) − zαn(x) = 0

Here the second equation means that if x ∈ L̃n−1 then y ∈ L̃n−1. Then y =
π̃(x) and z = β(x) are Cω solutions. Hence by Nash Approximation Theorem
II, there exist Nash germ M y = π′(x) and z = β′(x) solutions on M , which are
approximations of the germs of π̃ and β on M . Thus π′|M is a Nash diffeomorphism
of M and f = g ◦ π′ on M .

Now we show the Cω right equivalence of f and g. Set G(x, t) = (1−t)f(x)+tg(x)
for (x, t) ∈M× [0, 1]. Then G(x, 0) = f(x) and G(x, 1) = g(x). Hence by the same
reason as in the proof of theorem 3.1,(1) it suffices to find a Cω vector field v on

M × [0, 1] of the form ∂
∂t +

∑k
i=1 aivi for some Cω functions ai on M × [0, 1] such

that vG = 0 on M × [0, 1], i.e.,

(**) f − g =
k∑

i=1

ai(vif + tvi(g − f)).

Moreover, as shown there, we only need to solve this equations locally at each point
(x0, t0) of M × [0, 1] since M is compact.

If x0 6∈ Xα, then (vif)(x0) 6= 0 for some i and hence we have solutions of (∗∗)
aj = 0 for j 6= i and ai = (f − g)/(vif + tvi(g − f)) around (x0, t0) because g − f
and hence tvi(g − f) are small in the C∞ topology.

Let x0 ∈ Xα. Then we can assume that M = {x = (x1, ..., xn) ∈ Rn : |x| ≤
1, x1 ≥ 0, ..., xn′ ≥ 0} for some n′ (≤ n) ∈ N, that x0 = 0 and f(x) = xβ for
some β = (β1, ..., βn) ∈ Nn with |β| > 0, that k = n and v1 = x1

∂
∂x1

, ..., vn′ =

xn′
∂

∂xn′

, vn′+1 = ∂
∂xn′+1

, ..., vn = ∂
∂xn

and that f − g = bxβ for some small Cω

function b on M by lemma 2.12. Let i be such that βi 6= 0. Then vif = βix
β/xi

and vi(f − g) = bβix
β/xi + ∂b

∂xi
xβ if i > n′, and vif = βix

β and vi(f − g) =

bβix
β + xi

∂b
∂xi

xβ if i ≤ n′. In any case (∗∗) is solved as before. Thus theorem 3.2
is proved.

5.2. Proof of theorems 3.1,(2) and 3.1,(3).
Let us consider the case where M is a manifold without corners.
Proof of (2). Set X = f−1(f(Sing f)) and Y = g−1(g(Sing g)), and let π be a

C2 diffeomorphism of M such that f ◦ π = g. Then X and Y are normal crossing,
π(Y ) = X , and we assume that π is close to id in the Whitney C2 topology by
replacing f and π with f ◦ π′ and π′−1 ◦ π for a C∞ approximation π′ of π in
the Whitney C2 topology. Hence by lemma 4.2 and properness of f and g, there
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exists a C∞ diffeomorphism π′′ of M close to id in the Whitney C2 topology such
that π′′(Y ) = X . Replace f and π, once more, by f ◦ π′′ and π′′−1 ◦ π. Then we
can assume that, moreover, X = Y . We want to modify π to be of class C∞ on
a neighborhood of X . Set B(ǫ) = {x ∈ Rn : |x| ≤ ǫ} for ǫ > 0 ∈ R. Let {Ui}
and {U ′

i} be locally finite open coverings of X in M such that U ′
i ⊂ Ui, such that

π(U ′
i) ⊂ Ui, each f |Ui

is C∞ right equivalent to the function
∏n
j=1 x

αj

j + constant,

for x = (x1, ..., xn) ∈ IntB(ǫi) and for some ǫi > 0 ∈ R and some α = (α1, ..., αn) ∈
Nn depending on i with α1 > 0, ..., αn′ > 0, αn′+1 = · · ·αn = 0 and that Ui ∩X
and U ′

i are carried to IntB(ǫi)∩{x1 · · ·xn′ = 0} and B(ǫi/2) by the diffeomorphism
of equivalence. Then by induction on i it suffices to prove the following statement
(for simplicity of notation we assume that ǫi = 3 and U ′

i is carried to B(1)).
Let C be a closed subset of B(3). Let f and g be C∞ functions on Rn such

that f is of the form xα =
∏n
j=1 x

αj

j for the above α and g is of the form xαg′

for some positive C∞ function g′ on Rn. Let π be a C2 embedding of B(3) into
Rn such that f ◦ π = g on B(3) and π(X ∩ B(3)) ⊂ X where X = {xα = 0}.
Let τ : B(3) → Rn be a C2 approximation of π in the C1 topology such that
τ(X ∩B(3)) ⊂ X , such that f ◦ τ = g on a neighborhood of C in B(3) and τ is of
class C∞ there. Then, fixing on (B(3)−B(2))∪C, we can approximate τ by a C2

embedding τ̃ : B(3) → Rn in the C1 topology so that τ̃(X ∩ B(3)) ⊂ X , so that
f ◦ τ̃ = g on B(1) and τ̃ is of class C∞ on B(1).

We prove the statement. Set τ(x) = (τ1(x), ..., τn(x)). Then τj(x) for each 1 ≤
j ≤ n′ is divisible by xj , to be precise, there exists a positive C1 function Fj on B(3)

such that τj(x) = xjFj(x) since π(X∩B(3)) ⊂ X andX = {0}×Rn−1∪· · ·∪Rn′−1×

{0} × Rn−n′

and π is close to id. The required approximation τ̃ = (τ̃1, ..., τ̃n) also

has to have the form (x1F̃1, ..., xn′F̃n′ , τ̃n′+1, ..., τ̃n) for some positive C1 functions

F̃j and C2 functions τ̃n′+1, ..., τ̃n. Set F = (F1, ..., Fn′) and F̃ = (F̃1, ..., F̃n′). Then
F is of class C∞ on a neighborhood of C, the condition f ◦ τ̃ = g on B(1) coincides

with the one F̃α = g′ on B(1), and the other conditions which F̃ , τ̃n′+1, ..., τ̃n satisfy

are that F̃ = F on (B(3)−B(2))∪C, that (F̃ , τ̃n′+1, ..., τ̃n) is an approximation of
(F, τn′+1, ..., τn) in the C1 topology and that τ̃ is of class C2 on B(3) and of class
C∞ on B(1).

Set Z = {(x, y) ∈ B(3) × Rn′

: yα = g′(x)}, which is a C∞ submanifold with

boundary of B(3)×Rn′

by the implicit function theorem since g′ is positive. Note

that F̃α = g′ on B(1) if and only if graph F̃ |B(1) ⊂ Z and that graphF |C ⊂ Z.
We can construct a C∞ projection p : W → Z of a tubular neighborhood of Z in
B(3) × Rn′

such that p(x, y) for (x, y) ∈ W is of the form (x, p2(x, y)) as follows.

Since g′ is positive, Z ∩ {x} × Rn′

for each x ∈ B(3) is smooth and, moreover,

the restriction to Z of the projection B(3) × Rn′

→ B(3) is submersive. Hence

if we define p(x, y) for each (x, y) ∈ B(3) × Rn′

near Z to be the orthogonal

projection image of (x, y) to Z ∩ {x} × Rn′

, then p satisfies the requirements. Let

(F̂ , τ̂n′+1, ..., τ̂n) be a C∞ approximation of (F, τn′+1, ..., τn) in the C1 topology,
fixed on a neighborhood of C, and φ a C∞ function on B(3) such that 0 ≤ φ ≤ 1,

φ = 1 on B(1) and φ = 0 on B(3) − B(2). Define a C2 map F̃ = (F̃1, ..., F̃n′) :

B(3) → Rn′

by

F̃ (x) = φ(x)p2(x, F̂ (x)) + (1 − φ(x))F (x) for x ∈ B(3),

and set τ̃ = (x1F̃1, ..., xn′F̃n′ , τ̂n′+1, ..., τ̂n) on B(3). Then graph F̃ |B(1) is included
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in Z because F̃ |B(1) coincides with the map : B(1) ∋ x → p2(x, F̃ (x)) ∈ Rn′

whose graph is contained in Z; then F̃ = F on B(3) − B(2) since φ = 0 there;

then F̃ = F on C since F̂ = F there and since p(x, F (x)) = (x, F (x)) there;

then (F̃ , τ̂n′+1, ..., τ̂n) is an approximation of (F, τn′+1, ..., τn) in the C1 topology

since so is (F̂ , , τ̂n′+1, ..., τ̂n); then τ̃ is of class C2 because if we set p2(x, y) =
(p2,1(x, y), ..., p2,n′(x, y)) then

τ̃j(x) = φ(x)xjp2,j(x, F̂ (x)) + (1 − φ(x))τj(x), 1 ≤ j ≤ n′;

finally τ̃ is of class C∞ on B(1) since F̃ (x) = p2(x, F̂ (x)) on B(1). Thus the
statement is proved.

In conclusion, for some closed neighborhood V of f(Sing f) in R each of whose
connected components contains one point of f(Sing f), there exists a C2 diffeomor-
phism τ of M sufficiently close to π in the Whitney C1 topology such that τ is of
class C∞ on f−1(V ) and f ◦ τ = g on f−1(V ). Then the restrictions of f and g to
f−1(R − V ) are proper and locally trivial maps onto R − V , moreover f ◦π = g on
f−1(R − V ) and τ |f−1(R−V ) is an approximation of π|f−1(R−V ) in the Whitney C1

topology. Hence we can modify τ so that f ◦ τ = g and τ is of class C∞ everywhere
fixing on f−1(V ). Therefore, f and g are C∞ right equivalent, which proves (2).

Proof of (3). Let 0 ≪ l ∈ N. We prove first that f and g are semialgebraically
Cl right equivalent and later that semialgebraic Cl right equivalence implies Nash
right equivalence. We proceed with the former step as in the above proof of (2).
Let π be a semialgebraic C2 diffeomorphism of M such that f ◦ π = g, and set
X = f−1(f(Sing f)) and g−1(g(Sing g)). Let π′ be a Nash approximation of π
in the semialgebraic C2 topology (Approximation Theorem I). Then π′ is a dif-
feomorphism of M and π′−1 ◦ π is a semialgebraic C2 approximation of id in the
semialgebraic C2 topology. Hence by replacing f and π with f ◦π′ and π′−1 ◦π, we
assume that π is close to id in the semialgebraic C2 topology. Moreover, we suppose
that X = Y as in the proof of (2) by using lemma 4.3 and its remark in place of
lemma 4.2. Furthermore, by using lemma 4.6 we can reduce the problem to the
case where M is the interior of a compact Nash manifold possibly with boundary
M1 and for each x ∈ ∂M1, the germ (M1x, Xx) is Nash diffeomorphic to the germ
at 0 of (Rn−1 × [0, ∞), {(x1, ..., xn−1) ∈ Rn−1 : x1 · · ·xn′ = 0} × (0, ∞)) for some
n′ (< n) ∈ N.

We modify π on a semialgebraic neighborhood of X . By lemma 4.7 and proposi-
tion 4.8,(iii) there exist finite open semialgebraic coverings {Ui} and {U ′

i} of X in

M such that the closure U ′
i in M is contained in Ui, such that π(U ′

i) is contained
in Ui, such that f |Ui

is Nash right equivalent to xα+ constant on IntBξi
(ǫi) where

α = (α1, ..., αn) ∈ Nn depending on i with α1 > 0, ..., αn′ > 0, αn′+1 = · · ·αn = 0,
for n′ (< n) ∈ N − {0} and Bξi

(ǫi) = {x = (x1, ..., xn) ∈ Rn : xn > 0, |xα| ≤
ξi(xn), |x| ≤ ǫi} for some ǫi > 0 ∈ R and some positive Nash function ξi on
(0, ∞) and that Ui ∩ X and U ′

i are carried to IntBξi
(ǫi) ∩ {x1 · · ·xn′ = 0} and

IntBξi/2(ǫi/2) by the diffeomorphism of equivalence. For modification of π on a
semialgebraic neighborhood of X we need the following statement. Let l′ ∈ N such
that l ≤ l′ ≤ l + #{i}.

Let ξ be a small positive Nash function on (0, ∞), and C a closed semialgebraic
subset of B3ξ(3). Let f and g be Nash functions on B4ξ(4) such that f is of the form
xα for the above α and g is of the form xαg′ for some positive Nash function g′ on
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B4ξ(4). Let π be a semialgebraic C2 embedding of B3ξ(3) into B4ξ(4) close to id in
the semialgebraic C2 topology such that f ◦π = g on B3ξ(3) and π(X∩B3ξ(3)) ⊂ X
where X = {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0}. Let τ : B3ξ(3) → B4ξ(4) be a
semialgebraic C2 approximation of π in the semialgebraic C1 topology such that
τ(X ∩B3ξ(3)) ⊂ X , such that f ◦ τ = g on a closed semialgebraic neighborhood V

of C in B3ξ(3) and τ is of class Cl
′

there. Then, fixing on (B3ξ(3) − B2ξ(2)) ∪ C
we can approximate τ by a semialgebraic C2 embedding τ̃ : B3ξ(3) → B4ξ(4) in
the semialgebraic C1 topology so that τ̃(X ∩B3ξ(3)) ⊂ X , such that f ◦ τ̃ = g on

Bξ(1) and τ̃ is of class Cl
′−1 on Bξ(1).

We prove the statement. As before, set τ = (τ1, ..., τn), τ̃ = (τ̃1, ..., τ̃n), let

Fj and F̃j , 1 ≤ j ≤ n′, be positive semialgebraic C1 functions on B3ξ(3) such

that τj = xjFj(x) and τ̃j = xjF̃j(x) on B3ξ(3), and set F = (F1, ..., Fn′) and

F̃ = (F̃1, ..., F̃n′). Note that Fj are of class Cl
′−1 on a semialgebraic neighborhood

of C in B3ξ(3), which is different to Fj in the proof of (2) where they are of class

C∞. Then the required conditions are that F̃α = g′ on Bξ(1), that F̃ = F on

(B3ξ(3) − B2ξ(2)) ∪ C, that (F̃ , τ̃n′+1, ..., τ̃n) is a semialgebraic C1 approximation
of (F, τn′+1, ..., τn) in the semialgebraic C1 topology, and τ̃ is of class C2 on B3ξ(3)

and of class Cl
′−1 on Bξ(1).

Set Z = {(x, y) ∈ B3ξ(3)×Rn′

: yα = g′(x)}, which is a Nash submanifold with

boundary of B3ξ(3) × Rn′

, and let p : W → Z be a Nash projection of a semialge-

braic tubular neighborhood of Z in B3ξ(3) × Rn′

such that p(x, y) for (x, y) ∈ W

is of the form (x, p2(x, y)), which is constructed as before. Let (F̂ , τ̂n′+1, ..., τ̂n) be
a Nash approximation of (F, τn′+1, ..., τn) in the semialgebraic C1 topology, and

φ and ψ semialgebraic Cl
′

functions on B3ξ(3) such that 0 ≤ φ ≤ 1, such that
φ = 1 on Bξ(1) and φ = 0 on B3ξ(3) −B2ξ(2), such that 0 ≤ ψ ≤ 1 and ψ = 1 on
B3ξ(3)− V whereas ψ = 0 on a semialgebraic neighborhood of C in B3ξ(3) smaller
than IntV . Set

F̃ (x) = φ(x)p2

(
x, ψ(x)F̂ (x) + (1 − ψ(x))F (x)

)
+ (1 − φ(x))F (x) for x ∈ B3ξ(3),

τ̃ = (x1F̃1, ..., xn′F̃n′ , τ̂n′+1, ..., τ̂n) on B3ξ(3).and

Then we see as before that the required conditions are satisfied. Hence the state-
ment is proved.

By the statement, a partition of unity of class semialgebraic Cl and by remark
2.11,(5)′ we obtain an open semialgebraic neighborhood U of X and a semialgebraic
C2 diffeomorphism τ of M close to π in the semialgebraic C1 topology such that
τ is of class Cl on U and f ◦ τ = g on U (the point is that after fixing U we can
choose τ so as to be arbitrarily close to id). Then we modify τ so that τ is of
class semialgebraic Cl and f ◦ τ = g, i.e., f and g are semialgebraically Cl right
equivalent as follows.

Let η be a semialgebraic Cl function on M such that 0 ≤ η ≤ 1, such that
η = 0 outside of U and η = 1 on a smaller semialgebraic neighborhood of X ,
and set A = {(x, y) ∈ (M − X)2 : f(y) = g(x)}. Then A is a Nash manifold
and there exists a Nash projection q : Q → A of a small semialgebraic tubular
neighborhood of A in the square of the ambient Euclidean space of M of the form
q(x, y) = (x, q2(x, y)) for x ∈ M −X . Let τ̌ be a Nash approximation of τ in the
semialgebraic C1 topology, and set

ˇ̌τ = q2
(
x, η(x)τ(x) + (1 − η(x))τ̌(x)

)
for x ∈M.
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Then ˇ̌τ is well-defined because the graph of the map from M to the ambient Eu-
clidean space of M : x→ η(x)τ(x) + (1 − η(x))τ̌(x) is contained in Q, hence ˇ̌τ is a
semialgebraic Cl diffeomorphism of M and f ◦ ˇ̌τ = g. Thus the former step of the
proof is achieved.

Let 0 ≪ l(3) ≪ ·· ≪ l ∈ N. For the latter step also we can assume that X = Y
and that there exists a semialgebraic Cl diffeomorphism π of M close to id in the
semialgebraic Cl topology such that f ◦ π = g. Let µ be a Nash function on R
such that µ−1(0) = f(Sing f) and µ is regular at µ−1(0). Consider µ ◦ f and µ ◦ g.
Their zero sets are X , they have only normal crossing singularities at X , the same
sign at each point of M and the same multiplicity at each point of X , and we see
easily that the Nash function on M , defined to be µ ◦ g/µ◦ f on M −X , is close to
1 in the semialgebraic Cl topology. Hence the conditions in lemma 4.7 are satisfied
and there exists a Nash diffeomorphism π′ of M close to id in the semialgebraic Cl

′

topology such that π′(X) = X and f ◦ π′ − g is l′-flat at X . Thus, replacing f and
π with f ◦ π′ and π′−1 ◦ π, we assume that f − g is l′-flat at X and π is close to id
in the semialgebraic Cl

′

topology.

By proposition 4.9 we can assume that M is the interior of a compact Nash
manifold possibly with corners M1 and f is the restriction to M of a Nash function
f1 on M1 with only normal crossing singularities. Then by the definition of semial-
gebraic Cl topology, π is extensible to a semialgebraic Cl

′

diffeomorphism π1 of M1

such that π1 − id is l′-flat at ∂M1. Hence g also is extensible to a semialgebraic Cl
′

function g1 on M1, and f1 − g1 is close to 0 in the Cl
′

topology and l′-flat at ∂M1.
Let vi, for i = 1, ..., N , be Nash vector fields on M1 spanning the tangent space of
M1 at each point, ν1 a non-negative Nash function on M1 with zero set ∂M1 and

regular there, and set ν2 =
∑N
i=1(vif1)2 and ν = νl

′′

1 ν2. Then the radical of ν2N
is the sheaf of N -ideals defined by X ∪ ∂M1, and f1 − g1 is divisible by ν; to be
precise, there exists a semialgebraic Cl

′′

function β on M1 such that f1 − g1 = νβ.

Moreover, β is close to 0 in the Cl
(3)

topology. Actually, by lemma 2.12 the map
C∞(M1) ∋ h → νh ∈ νC∞(M1) is open. Hence for h ∈ C∞(M1), if νh is close

to 0 in the Cl
′′

topology then h is close to 0 in the Cl
(3)

topology. This holds for
h ∈ Cl

′′

(M1) also because h of class Cl
′′

is approximated by a C∞ function h′ in

the Cl
′′

topology and ν · (h− h′) and hence νh′ are close to 0 in the Cl
′′

topology.

Therefore, β is close to 0 in the Cl
(3)

topology.

It follows from the definition of semialgebraic Cl topology that νl
′′

1 β|M is close

to 0 in the semialgebraic Cl
(3)

topology. Then the conditions in proposition 4.8,(ii)

for f and g (= f −νl
′′

1 β
∑N
i=1(vif1)2|M ) are satisfied. Hence f and g are Nash right

equivalent.

We can prove the case with corners in the same way. �
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