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ANALYTIC EQUIVALENCE OF NORMAL CROSSING
FUNCTIONS ON A REAL ANALYTIC MANIFOLD

GOULWEN FICHOU AND MASAHIRO SHIOTA

ABSTRACT. By Hironaka Desingularization Theorem, any real analytic function has
only normal crossing singularities after a modification. We focus on the analytic
equivalence of such functions with only normal crossing singularities. We prove that
for such functions C°° right equivalence implies analytic equivalence. We prove
moreover that the cardinality of the set of equivalence classes is zero or countable.

1. INTRODUCTION

The classification of real analytic functions is a difficult but fascinating topic in
singularity theory. In this paper, we put our interest on real analytic functions with
only normal crossing singularities. This case is of fundamental importance since
any analytic function becomes one with only normal crossing singularities after a
finite sequence of blowings-up along smooth center by Hironaka Desingularization
Theorem [Hi]. Our goal is to establish the cardinality of the set of equivalence
classes of analytic functions with only normal crossing singularities under analytic
equivalence (theorem 3.2).

Our first main result is theorem 3.1,(1) which asserts that C'*° right equivalent
real analytic functions with only normal crossing singularities are automatically
analytically right equivalent. Its proof consists in a careful use of Cartan Theorems
A and B and Oka Theorem in order to use integration along analytic vector fields
to produce analytic isomorphisms. Theorem 3.1,(1) is a crucial result in order to
deal with cardinality issues, in particular in view to make a reduction to the case
of real analytic functions with semialgebraic graph, called Nash functions.

The second main result (theorem 3.2) establishes the cardinality of the set of
equivalence classes of real analytic (respectively Nash) functions with only normal
crossing singularities on a compact analytic manifold (resp. on a non-necessarily
compact Nash manifold) with respect to the analytic (resp. Nash) equivalence. To
prove that this cardinality is zero or countable, we first reduce the study to the
Nash case by theorem 3.1,(1), then from the non compact to the compact case via
Nash sheaf theory, a Nash version of Hironaka Desingularization Theorem and a
finer analysis of the normal crossing property on a Nash manifold with corners.
Finally Hardt triviality [Ha|, Artin-Mazur Theorem (see [Sz]) and Nash Approxi-
mation Theorems [S3], [C-R-S1] enable to achieve the proof. Note that along the
way, we establish (as theorem 3.1,(3)) a C? plus semialgebraic version of theorem
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3.1,(1), namely semialgebraically C? right equivalent Nash functions with only nor-
mal crossing singularities on a Nash manifold are Nash right equivalent (see also
theorem 3.1,(2) for a C? version).

The paper is organized as follows. In section one, we recall some definitions that
are fundamental in the paper, in particular the notion of normal crossing in the
case of manifolds with corners. We devote the second section to some preliminaries
about real analytic and Nash sheaf theory, that will be crucial tools for the proof
of the main theorems, and also a quick overview on the different topologies we
will consider on spaces of maps. Third section is dedicated to theorem 3.1,(1) and
its proof, and the statement of theorem 3.1,(2) and 3.1,(3), the proof of which we
postpone to section five. Actually, even though the statements are very similar,
we need to prepare in section four some materials for it. We prove in particular
as lemma 4.6 that a normal crossing Nash subset of a non-compact Nash manifold
is trivial at infinity, and we compactify in proposition 4.9 a Nash function with
only normal crossing singularities. We finally prove theorems 3.1,(2) and 3.1,(3)
together with theorem 3.2 in the last section.

In this paper a manifold means a manifold without boundary, analytic manifolds
and maps mean real analytic ones unless otherwise specified, and id stands for the
identity map.

1.1. Analytic functions with only normal crossing singularities.

Definition 1.1. Let M be an analytic manifold. An analytic function with only
normal crossing singularities at a point x of M is a function whose germ at x is
of the form +2(= £ ][, ") up to an additive constant, for some local analytic
coordinate system (x1,...,Z,) at * and some o = (aq,...,a,) # 0 € N™. If the
function has only normal crossing singularities everywhere, we say that the function
has only normal crossing singularities.

An analytic subset of an analytic manifold is called normal crossing if it is
the zero set of an analytic function with only normal crossing singularities. This
analytic function is called defined by the analytic set. It is not unique. However,
the sheaf of O-ideals defined by the analytic set is naturally defined and unique. We
can naturally stratify a normal crossing analytic subset X into analytic manifolds
X; of dimension 7. We call {X;} the canonical stratification of X.

1.2. Case of Nash manifolds.

Definition 1.2. A semialgebraic set is a subset of a Euclidean space which is
described by finitely many equalities and inequalities of polynomial functions. A
Nash manifold is a C* submanifold of a Euclidean space which is semialgebraic. A
Nash function on a Nash manifold is a C“ function with semialgebraic graph. A
Nash subset is the zero set of a Nash function on a Nash manifold. (We call a germ
on but not at X in M to distinguish the case where X is a set from the case of a
point.)

We define Nash functions with only normal crossing singularities, normal cross-
ing Nash subsets of a Nash manifold and the canonical stratification of a normal
crossing Nash subset similarly to the analytic case.

For elementary properties of Nash manifolds and Nash functions, we refer to [Ss].
As a general flavor, note that Nash functions carry more structure than analytic or
semialgebraic ones, and therefore it is useful to dispose of approximation results.
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In this paper, we will make an intensive use of the two classical approximation
theorems by Nash functions, which are quite different in nature. The first one, that
we will refer to as Nash Approximation Theorem I, concerns the approximation of
semialgebraic C” maps by Nash maps (see [S2]). The topology we use in that case
is the semialgebraic C™ topology on spaces of semialgebraic C™ maps (see subsection
2.3 for an overview about topologies on spaces of maps). Note for instance that, in
that topology, a semialgebraic C' map between semialgebraic C' manifolds close
to a semialgebraic C! diffeomorphism is a diffeomorphism.

Theorem. (Nash Approximation Theorem I, [Sa]) Any semialgebraic C™ map be-
tween Nash manifolds can be approximated in the semialgebraic C™ topology by a
Nash map.

The other one, say Nash Approximation Theorem II, is a global version of Artin
Approximation Theorem on a compact Nash manifold.

Theorem. (Nash Approzimation Theorem II, [C-R-S1]) Given a Nash function F
on My x Ms for a compact Nash manifold My and a Nash manifold My, and an
analytic map f : My — My with F(z, f(z)) = 0 for @ € M, then there exists a

Nash approximation f : My — My of f in the C* topology such that F(x, f(x)) =0
for x € M.

1.3. Manifolds with corners.

Manifolds with corners appear naturally in the study of functions with only
normal crossing singularities. A manifold with corners is locally given by charts
diffeomorphic to [0,00)* x R"®~*. In this paper we will consider analytic manifold
with corners as well as Nash ones. We refer to [K-S] for basics about manifolds
with corners.

The definition of the canonical stratification for manifolds can be naturally ex-
tended to the boundary of an analytic manifold with corners. However, concerning
the notions of singularity and normal crossings, we really need to adapt the defini-
tions.

Definition 1.3. Let f be an analytic function on analytic manifold with corners
M. We say f is singular at a point xg of M if the restriction of f to the stratum
of the canonical stratification of M containing x is singular at xg.

Note in particular that with such a definition, f is singular at points of the
stratum of dimension 0 of the canonical stratification of M. This remark will be
of importance when dealing with proofs by induction.

To define a function with only normal crossing singularities on a manifold with
corners M, we need to extend M beyond the corners. More precisely, we can
construct an analytic manifold M’ which contains M and is of the same dimension
by extending a locally finite system of analytic local coordinate neighborhoods of
M. We call M’ an analytic manifold extension of M. In the same way, shrinking
M’ if necessary we obtain a normal crossing analytic subset X of M’ such that
Int M is a union of some connected components of M’ — X, and f is extended to
an analytic function f/ on M’.

Definition 1.4. We say that f has only normal crossing singularities if f|mar
does so and if the germ of (f — f(xg))¢ at each point xg of X has only normal
crossing singularities, for ¢ an analytic function on M’ defined by X.
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Now we can define, similarly to the case without corners, a normal crossing
analytic subset of M and a normal crossing sheaf of O-ideals on M.

In the Nash case, we define analogously a Nash manifold extension of a Nash
manifold with corners, a Nash function with only normal crossing singularities on
a Nash manifold with corners, a normal crossing Nash subset of M and a normal
crossing sheaf of N-ideals on M.

2. PRELIMINARIES

We dedicate this section to some remainder on real analytic sheaf theory, and
prove similar statements in the Nash case that will be of importance in next sections.
We finish with an overview of the different topologies on spaces of functions we will
make use in that paper, in order to explain the major differences between them.

2.1. Real analytic sheaves.

In this subsection, we deal with the real analytic case of Cartan Theorems A
and B, and Oka Theorem.

Let O and N denote, respectively, the sheaves of analytic and Nash function
germs on an analytic and Nash manifold and let N(M) denote the ring of Nash
functions on a Nash manifold M. We write Oy; and Ny when we emphasize the
domain M. Let f,, X, v, and M, denote the germs of f and X at a point = of
M, the tangent vector assigned to x by v and the stalk of M at x for a function f
on an analytic (Nash) manifold M, a subset X of M, a vector field v on M and for
a sheaf of O- (N-) modules M on M, respectively. For a compact semialgebraic
subset X of a Nash manifold M, let N'(X) denote the germs of Nash functions on X
in M, with the topology of the inductive limit space of the topological spaces N (U)
endowed with the compact-open C'*° topology, where U runs through the family of
open semialgebraic neighborhoods of X in M. In the same way, we define O(X) for
a compact semianalytic subset X of an analytic manifold M. Here a semianalytic
subset is a subset whose germ at each point of M is described by finitely many
equalities and inequalities of analytic function germs.

Theorem 2.1. (Cartan Theorem A) Let M be a coherent sheaf of O-modules on an
analytic manifold M. Then for any x € M, the germ M, is equal to H°(M, M)O,.

See [G-R] for Cartan Theorems A and B in the complex case and [Ca] for the
real case. Next corollary will be useful in this paper. It deals with the case where
the number of local generators is uniformly bounded.

Corollary 2.2. In theorem 2.1, assume that M, is generated by a uniform number
of elements for any x in M. Then H°(M, M) is finitely generated as a H*(M, O)-
module.

The corollary is proved in [Co] in the complex case. The real case follows from
a complexification of M as in [Ca].

Theorem 2.3. (Cartan Theorem B) Let M be a coherent sheaf of O-modules on
an analytic manifold M. Then HY(M, M) is equal to zero.

Corollary 2.4. Let M be an analytic manifold and X C M be a global analytic

set—the zero set of an analytic function. Let T be a coherent sheaf of O-ideals on
M such that any element of T vanishes on X. Then any f € H°(M,O/T) can be
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extended to some F € C¥(M), i.e., f is the image of F under the natural map
HO(M,0) — H°(M,0/T).

If X is normal crossing, we can choose I to be the function germs vanishing on
X. Then H°(M,O/I) consists of functions on X whose germs at each point of X
are extensible to analytic function germs on M.

Corollary 2.4 follows from theorem 2.3 by considering the exact sequence 0 —
I—-0—-7I)/0.

Theorem 2.5. (Oka Theorem) Let My and Ms be coherent sheaves of O-modules
on an analytic manifold M, and h : My — My be an O-homomorphism. Then
Ker h is a coherent sheaf of O-modules.

See [G-R] in the complex case. The real case follows from complexification [Ca]
of M, M1, M5 and h.

2.2. Nash sheaves.

In this subsection M stands for a Nash manifold. A sheaf of N-modules M
on M is called finite if for some finite open semialgebraic covering {U;} of M and
for each i there exists an exact sequence N™i|y, — N™|y, — M|y, — 0 of
N-homomorphisms, with m;, n; € N. Non-finite examples are the sheaf of N-ideals
7 on R of germs vanishing on Z and N /Z.

Theorem 2.6. (Nash case of Oka Theorem) Let h be an N -homomorphism between
finite sheaves of N'-modules on a Nash manifold. Then Ker h is finite.

Proof. Let h: M; — M5 be such a homomorphism on a Nash manifold M. There
exists a finite open semialgebraic covering {U;} u,, forj =1,2,
satisfy the condition of exact sequence in the definition of a finite sheaf. Therefore it
suffices to prove the theorem on each U;. Now we may assume that M, for j =1, 2,
are generated by global cross-sections aj, ..., ay,, and (i, ..., Bp,, respectively, and
there are Nash maps 1, ...,7n, € N(M)"* which are generators of the kernel of
the surjective N-homomorphism p : N2 D N2 5 (¢1, ..., ny) — Doi2y $iBin €
Mo, C My, x € M. Let @y, ..., @, denote the images of ay, ..., a,, in H(M, My)
under the homomorphism h, : H(M, M;) — H°(M, Ms) induced by h.

We prove the theorem by induction on ng. For ny = 1, there exist &y, ..., &y, €
H°(M,N) such that p.(&;) = @;, for i = 1,...,n; because the application p, :
HOY(M,N) — H(M, Ms) is surjective by theorem 2.8 for M; = N (|C-R-S;] and
[C-S3] ). Let d1,...,0,, € N(M)™ be generators of the kernel of the surjective ho-
momorphism N D N 3 (¢1, .., ny) — Doty Gittipz € M1z C My, x € M
(we choose the above {U;} so that 01, ...,0,, exist). Multiplying o, @;, &;, v
and §; by a small positive Nash function, we can assume by the Lojasiewicz in-
equality that the Nash maps &;, 7; and d; are bounded. Then by Proposition
V1.2.8 in [Sz] we can regard M as the interior of a compact Nash manifold possi-

bly with corners M and the maps as the restrictions to M of Nash maps &, Y
and &; on M. Replace M; and My by the sheaves of A-modules on M given by
N/ (61, ey 0 JN™ and N/ (A1, ..., Ans )N, respectively, and replace b : My — My
with the A-homomorphism & : M; — M, defined by

h(0,...,0,1,0,...,0) = &; mod (31, ..., 3, )N, i =1,...,n1.
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Then it suffices to see that Ker h is finite. Hence we assume from the beginning that
M is a compact Nash manifold possibly with corners. Then Ker h is isomorphic to
N @n () Ker h, by Theorem 5.2 in [C-R-S;]. Hence Ker h is finite.

Let no > 1 and assume that the theorem holds for ny — 1. Let Mg denote the
sheaf of N-ideals with Mg, = {0}. Set M3 = My /p(N x My x -+ x My) and
let hy : M; — M3z denote the composite of h with the projection from My to
M3. Then M3 is generated by the images 35, ...,an of B2, ..., By, and 1, ..., 7y, €
N(M)"2~1 are generators of the kernel of the N'-homomorphism

na—1

NS NP2 S (@1, 0 Png—1) — Z $iBis1s € M3s CMs, x €M

=1

where v; = (Vi1y - Vi) = (Vi1,74), for i = 1, ...,n3. Hence M3 is finite, and by
induction hypothesis Ker hg is finite. Consider h|kern, : Ker hs — Ms. The image
is contained in p(N x Mg X - - X My) which is isomorphic to (Kerp UN x Mg x
-+ X Mg)/Kerp and then to N x Mg x -+ x Mg/(Kerp NN x Mg x -+ My).
Hence we can regard h|kern, as an A-homomorphism from Ker hg to N/ x M X
X Mo/(Kerp NN x Mg x -+ Mp). In order to achieve the proof, we need to
prove that Ker p N A x Mg x --- My is finite. Define a sheaf of N-submodules M
of N™ on M by

M‘r = {((bl? ---;¢n3) < ang : Z(ZS’L,YZ,]JJ = 07 J = 27 '“7”2}.
i=1

Then it suffices to see that M is finite because Kerp N N x Mg x --- x M is
the image of M under the N-homomorphism : N™ D> N 3 (¢q,...,¢p,) —
(o, ivinw: 0,...,0) € Ny x {0} x---x{0} CN xMyx---xMp, x € M. On the
other hand, if we define an A/-homomorphism r : N — N"™271 by r(¢y, ..., ¢p,) =
(Z:ﬁl ¢i’7i,2xa . 2?231 iﬁyi,nzm) for (qbl, ceny ¢n3> € ./\/;13, xr € M, then Kerr = M.
As in the case of ny = 1 we reduce the problem to the case where v; ; are bounded
and then M is a compact Nash manifold possibly with corners. Then Ker r is finite
by Theorem 5.2 in [C-R-S4].

Thus Ker pN N x Mg x - - - x My is finite. We can regard it as a sheaf of N-ideals.
Hence by the result in case of ny = 1, Ker(h|kerny) = Ker h is finite. [

The following two theorems do not hold for general sheaves of N-modules, [Hu],
[B-C-R] and VI.2.10 in [Sz]. However, our case is sufficient for the applications we
have in mind in this paper.

Theorem 2.7. (Nash case of Cartan Theorem A) Let M be a finite sheaf of N -
submodules of N™ on a Nash manifold M for n > 0 € N. Then M is finitely
generated by its global cross-sections.

Proof. We assume that n > 1 and proceed by induction on n. Let p : N" —
N7~ denote the projection forgetting the first factor, and set M; = Ker p|r, and
My = Imp|r. Then the sequence 0 — M; 25 22, My — 0 is exact,
we can regard M as a sheaf of N-ideals, which is finite by theorem 2.6, and M
is clearly a finite sheaf of AM-submodules of N"~!. By induction hypothesis we
have global generators hq, ..., h; of M7 and g1, ..., gx of Ms. Then it suffices to find
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f1s s fr € HO(M, M) such that pa.(f;) = gi, i = 1, ..., k because fi, ..., fu, hi, ..., by
are generators of M.

Fix i. Since H'(M, M) C N(M)™ and H°(M, Ms3) C N(M)" 1, setting
gi = (9i2, - gi.n) We construct g; 1 € N(M) such that (g;1,...,gin) € H' (M, M).
For each x € M, the set ®, = {¢ € N, : (¢,gix) € M.} is a residue class of
N, modulo M1,, and the correspondence ® : x — ®, is a global cross-section
of N/M;i. Actually, it suffices to check it on each member of a finite open
semialgebraic covering of M, we assume that M is generated by global cross-
sections a1 = (1,1, ., Q1 )5 ooy Ay = (Qhr 1, e, Qpr ) € N(M)". Then of =
(01,25 000y Q1 )y ooy Qs = (7 2, ..., gy ) are also generators of My. Let Mg de-
note the kernel of the A-homomorphism N* 41 > NF+L 5 (61, ... 1) —
Zf;l Gj0s, — Ok i19ix € Nt c Nn=1 2 € M. Then Msj is finite by theorem
2.6, and each stalk M3, contains a germ of the form (¢, ..., ¢x/, 1). Hence refining
the covering if necessary, we assume that Ms is generated by a finite number of

global cross-sections. Then we have f31, ..., Bxr € N(M) such that g; = Zflzl Bjal;.

It follows & = Zf;l Bjo;1 mod M. Thus @ is a global cross-section.

Apply the next theorem to the projection N' — N /M; and ®. Then there exists
gi1 € N(M) such that g; 1, = ¢, mod M, for x € M and hence (g; 1,...,9in) €
HY(M, M). O

Theorem 2.8. (Nash case of Cartan Theorem B) Let h : My — M be a surjective
N -homomorphism between finite sheaves of N -modules on a Nash manifold M.

Assume that M is finitely generated by its global cross-sections. Then the induced
map hy : HO(M, M) — H°(M, Ms) is surjective.

Proof. We can assume that M; = N™ for some n > 0 € N because there exist
global generators g1, ..., g, of M; and then we can replace h with the surjective
homomorphism N D N 3 (¢1, ..., ¢n) — (Y 1| $igiz) € Moy C Ma, z € M.
Set M = Ker h. Then by theorem 2.6, M is a finite sheaf of N'-submodules of N,
and h : N™ — M,y coincides with the projection p : N — N™/M. Hence we
consider p in place of h. Assume that n > 1 and the theorem holds for smaller n.

Let f € H'(M,N"/M). We need to find g € H°(M,N™) = N(M)™ such that
p«(g) = f. Let Mg denote the sheaf of N-ideals with Mo, = {0} for € M. Then
the homomorphism Mg x N1 — N /(M + N x My x --+ X M) is surjective
and we can regard it as the projection N"~1 — N"~1/L for some finite sheaf of N-
submodules £ of N1, Hence by induction hypothesis there exists (0, g2, ..., gn) €
HO(M, Myx N~ 1) whose image in HO(M,N™/(M+NxMqgx---xMy)) coincides
with the image of f there. Replace f with the difference of f and the image of
(0,92, -y gn) in HO(M,N™/M). Then we can assume from the beginning that f €
HO (M, (M+N x Mgx---x Mgy)/M). Hence we regard f as a global cross-section
of N x Mgy x---x Mo/(MNN x Mgyx---x M) since (M+NxMgyx---xMgy)/ M
is naturally isomorphic to NV x Mg X -+ x Mg/(MNN x Mg x -+ x Mg). It was
shown in the proof of theorem 2.6 that M NN x Mg x - - - x My is finite. Hence f is
the image of some global cross-section g of N'x Mg x - - - x M under the projection
HO (M N xMgx---xMqg) — HO(M,NxMgx---x Mqo/(MNN X Mgx---xMy))
because this is the case of M; = N in the theorem. Then p.(g) = f. O

Let X be a Nash subset of R™ and fi, ..., fx be generators of the ideal of N(R"™)
of functions vanishing on X. Let Sing X denote the subset of X where the Jacobian
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matrix rank of fi,..., fi is smaller than codim X. Let a complexification X€ of X
in C™ be defined to be the common zero set of some complexifications fC, ..., fC
of f1,..., fx. Then by Lemma 1.9 and Theorem 1.10 in [C-R-Ss] and theorem 2.7,
we obtain the next remark.

Remark. Sing X is the smallest Nash subset of X whose complement is a Nash
manifold. But it does not coincide in general with points in X where the germ
of X is not a Nash manifold germ of dim X. Moreover Sing X is also equal to
X N Sing X©, where Sing X€ denotes the C¥ singular point set of X©.

We deduce from [Hi] a Nash version of Hironaka Desingularization Theorem that
will be useful in our context.

Theorem 2.9. (Nash case of Main Theorem I of [Hi]) Let X be a Nash subset of
R". Then there exists a finite sequence of blowings-up X, —= --- =5 Xy = X
along smooth Nash centers C; C X;, i = 1,...,7 — 1, such that X, is smooth and
C; C Sing X;.

Proof. Since N(R™) is a Noetherian ring ([E] and [Ri]), we have generators fi, ..., f
of the ideal of N(R™) of functions vanishing on X. Set F' = (fy,..., fx), which
is a Nash map from R” to R”, a/\ngi Y = graph F. Let YZ denote the Zariski
closure of Y in R" x R” “and let YZ c R" x R* x R" be an algebraic set such
that the restriction p to Y4 of the projection R™ x R* x R” — R" x R¥ is the
normalization of Y# (we simply call YZ the normalization of Y#). Then by Artin-
Mazur Theorem (see Theorem I.5.1 in [Ss]) there exists a connected component
L of YZ consisting of only regular points such that p(L) =Y and p|p : L — Y
is a Nash diffeomorphism. Let ¢ : YZ — R" and ¢z : Y7 — R” denote the
restrictions to Y'Z of the projections R” x RF x R™ — R"™ and R" x RF x R" —
R”, respectively. Then ¢;| is a Nash diffeomorphism onto R, the set g5 '(0) is
algebraic, the equality (q1]1) '(X) = (g2/r)"*(0) holds, and (g1|r) *(Sing X) is
equal to the intersection of L with the algebraic singular point set of g5 ! (0). Indeed,
(q1]z)~1(Sing X) is contained in the above intersection because (gi|r)~*(Sing X)
is the smallest Nash subset of (g1|r) " 1(X) (= (g2|)71(0)) whose complement is
a Nash manifold (by the remark before theorem 2.9), and the converse inclusion
follows from the equality g2 = F'og; on L. Hence we can replace X by LNgy 1(0)—
the union of some connected components of g 1(0). By Main Theorem I there exists
a finite sequence of blowings-up X, — - - — X, = qs 1(0) along smooth algebraic
centers C’l - Xi, for i =0, ...,7—1, such that X'r is smooth and C’l C Sing X'Z-. Then
X, N(7F10---07,) (L) — --- — XoN L fulfills the requirements. [

A sheaf of N-(O-)ideals on a Nash (analytic) manifold M is called normal cross-
ing if there exists a local Nash (analytic) coordinate system (x1,...,x,) of M at
each point such that the stalk of the sheaf is generated by [[;_,z{ for some
(Oél, ceey Oén) e N”.

Theorem 2.10. (Nash case of Main Theorem II of [Hi]) Let M be a Nash manifold
and let T and Iy be finite sheaves of non-zero N -ideals on M. Assume that I
is normal crossing. Then there exists a finite sequence of blowings-up M, —=

- I8 My = M along smooth Nash centers C; C M;, for i = 1,...,r — 1, such
that (myo---o0 WT)_lflngMT is mormal crossing, each C; is normal crossing with
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(mpo---om) Y (suppNas/Zo) U U;zl(wj o--om) HCj_1) and w0 ---om(Cy) is
contained in the subset of M consisting of x such that even Iy, is not generated by
any power of one reqular function germ or Ii, + Loy # No.

Note that (m o ---om;) 1 ZoNyy,, for i = 1,...,7, are normal crossing.

Proof. Let f1,..., frr € N(R™) and frr41,..., f € N(R"™) be global generators of
7; and T, (theorem 2.7), respectively, and define F,Y,Y? Y% L,q; : YZ — R"

and g2 : YZ — RF as in the last proof. Let W be the subset of YZ consisting
of points where fr/41 0 qq,..., fr © @1 do not generate a normal crossing sheaf of
N-ideals. Consider the algebraic R-scheme of the topological underlying space

YZ — SingY% — W, and let J; and J> denote the sheaf of ideals of the scheme
generated by f10qi,..., frroqi and by firy10q, ..., fr 0 q1, respectively. Then we
can replace M, 7, and Z, with the scheme, J; and [J5. Hence the theorem follows
from Main Theorem II. [

Remark. Note that main Theorems I and II of [Hi] state some additional conditions
that are automatically satisfied in the Nash case.

2.3. Topologies on function spaces.

Let M be a C* manifold. We use three kinds of topologies on C*°(M) as a
topological linear space.

The first is the classical compact-open C” topology, r = 0,...,00, for which
C>(M) is a Fréchet space if r = occ.

The second is the Whitney C" topology, r = 0, ..., co. Even if it is well-known, we
recall its definition because we will define the third topology below by comparison
with it. If M = R"”, then a system of open neighborhoods of the zero function in
C>°(M) is given by

Ur go = {f € CF(R") 1 [D*f(2)] < ga(2), « € N", |af <7}

where 7’/ runs in {m € N : m <r} and g, runs in C*°(R") with g, > 0 everywhere
for each « € N™ with || < 7/. If M is an open subset of R™, we define the
topology on C°°(M) in the same way. In general, embed M in some R" and let
p: V. — M be the orthogonal projection of a tubular neighborhood of M in R".
Then p induces an injective linear map C*°(M) > f — fop € C°°(V) whose image
is closed in C°°(V') in the Whitney C” topology. Hence C'°° (M) inherits a topology
as a closed subspace of C*°(V'). We call it the Whitney C*° topology.

The strong Whitney C°° topology is the third topology which we will consider.
Assume first that M = R"™, and let g, be a positive-valued C*° function on R"
and K, be a compact subset of R™ for each & € N™ such that {R"™ — K, } is locally
finite. Set g = (ga)a and K = (K,)o. Then a system of open neighborhoods of
the zero function in C*°(R") is given by the family of sets

Uga ={f € C(R") : |IDf(x)| < ga(z) for x € R" — K, for o € N"}

for all g and K. We define the strong Whitney C'*° topology on a general manifold
M in the same way as in the case of the Whitney C*° topology. Moreover, we
shall need to consider C°° functions on an analytic set and the strong Whitney
C*° topology on the space. To this aim, we use another equivalent definition of the
topology. Let {M;} be a family of compact C°° submanifolds of M possibly with
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boundary such that {Int M;} is a locally finite covering of M. Regard C*°(M) as a
subset of [[, C°°(M;) by the injective map C*°(M) > f — [, flam, € [[,C>(M;).
Then the family of sets C°°(M) N [[,O; is the system of open sets of C*°(M),
where O; are open subsets of C°*°(M;) in the C'*° topology. Note that the product
topology of [[, C>°(M;) induces the compact-open C> topology.

For an analytic manifold M, we endow C* (M) with the three topologies in the
same way, and we extend naturally the definition of the topologies to the spaces of
C*° or C* maps between C'*° or C' manifolds.

Remark 2.11. The first three remarks explain essential differences between the three
topologies.

(1) The compact-open C*° topology, the Whitney C'* topology and the strong
Whitney C°° topology coincide if M is compact.

(2) The strong Whitney C'* topology is stronger than the Whitney C'*° topology
if M is not compact.

(3) C*°(M) is not a Fréchet space in the Whitney C” topology nor the strong
Whitney C° topology if M is not compact. Indeed, it is even not metrizable.

The following remarks will be useful in the sequel.

(4) Whitney Approximation Theorem—any C* function on an analytic manifold
is approximated by a C* function—holds also in any of these topologies (see [W]).

Finally, an advantage of the strong Whitney C°*° topology is that we can reduce
many global problems to local problems using partition of unity.

(5) Let {¢;} be a partition of unity of class C*° on M. Then for a neighborhood
U of 0 in C*° (M) in the strong Whitney C*° topology there exists another V' such
that if f € V then ¢, f € U for all ¢ and conversely if ¢, f € V for all ¢ then f € U.

Let M be a Nash manifold. We give a topology on N (M), called the semial-
gebraic C™ topology, r = 0, ...,00, so that a system of open neighborhoods of 0 in
N(M) is given by the family U, 4, defined in the above definition of the Whitney
C" topology, where g, runs here in N(M) only. If r = co, we call it the Nash
topology. For r < 0o, let N" (M) denote the space of semialgebraic C” functions on
M. We define semialgebraic C"" topology on N (M) for ' < r in the same way.
We do not need the analog on N (M) of the strong Whitney C'*° topology. When
M is not compact, it is the discrete topology by Proposition VI.2.8, [So] and next
remark. A partition of unity of class semialgebraic C", r € N, on M is a finite
family of non-negative semialgebraic C" functions on M whose sum equals 1.

Remark 2.11,(5). Let " < r € N, and let {¢;} be a partition of unity of class
semialgebraic C™ on M. Then for a neighborhood U of 0 in N”(M) in the C"’
topology there exists a neighborhood V of 0 in N"(M) such that if f € V then
¢;f € U for all ¢ and conversely if ¢, f € V for all ¢ then f € U.

The reason is that {¢;} is a finite family and the map N"(M) > f — ¢;f €
N7 (M) is continuous for each i by lemma I1.1.6, [Sq], which states that N" (M) and
N (M) are topological rings in the semialgebraic cr topology.

We need also the following lemma many times.

Lemma 2.12. Let M be an analytic manifold and &1, ...,& be analytic functions
on M. Then the maps = : C®*(M)' > (hy,...,hy) — 2221 &h; € Zé:l &C>® (M)
and Z¢ : C¥ (M) > (hy, ..., hy) — 22:1 &ihi € 22:1 &C¥(M) are open in both the
compact-open C*> topology and the strong Whitney C'*° topology.
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Note that in the case [ = 1, the lemma is much easier to prove because the
involved maps are injective. Moreover, the lemma does not necessarily hold in the
Whitney C* topology. This is one reason why we need to have recourse to the
strong Whitney C'*° topology in the paper.

Proof. Consider =*° in the compact-open C'* topology. It is well-known that the
ideal of C*°(M) generated by a finite number of analytic functions is closed in
C*°(M) in any of the C* topologies (which follows from Theorems I11.4.9 and
VI.1.1', [M]]). In particular 2221 £ C°°(M) is a Fréchet space in the compact-open
C* topology, and Z*° is open by the open mapping theorem on Fréchet spaces.
Note that the above proof is still valid in the case of an analytic manifold with
corners.

Consider Z*° in the strong Whitney C°° topology. Let M; be compact C¥
submanifolds of M with boundary such that {Int M} is a locally finite covering of
M. Let {¢;} be a partition of unity of class C*° subordinate to {Int M;}. As shown

above, the map C*(M;)! 3 (hy,...,h;) — 2221 il hi € 2221 §ilag, O (M) is
open for each j. Hence for each h = (hq,...,h;) € C°(M)! and g € 22:1 &C® (M)
sufficiently close to Zl 1 &ih; in the strong Whitney C°° topology there exist g; =

(91,555 01,5) € C(M. ) close to h|ys; such that ZZ 1 &iln; 965 = gl for any j.
Then ;9395 is a well- defined C* map from M to R! and close to h by remark

2.11,(5), and Zé:l > 9395 = 2. $i9 = g. Thus E* is also open in the strong
Whitney C°° topology.

We finally consider ¢ only in the strong Whitney C* topology (the proof is
similar, and even easier, in the compact-open C*° topology). Let (hq,...,h;) €
C*(M)! such that 2221 &;h; is small. Then, by openness of =°°, there exists small
(W, ..., b)) € C= (M) such that 320, &h! = S>'_ &h; and hence (hy — R, ..., hy —
h;) € Ker=°. Therefore, it suffices to see that Ker =¥ is dense in Ker H‘X’. Let
H = (hy,..., hj) € Ker 2°. We want to approximate H by an element of Ker =%.

Let J denote the kernel of the homomorphism : O' > O > (¢1,...,¢;) —
22:1 &ai € O, C O, a € M, which is a coherent sheaf of O-submodules of
O! by theorem 2.5. Let M€ and J€ be Stein and coherent complexifications of
M and J which are complex conjugation preserving. Let {U;} be a locally finite
open covering of MC such that each U, is compact. Let H;;j = (h1ij,-hiij),
for j = 1,...,n;, 9 = 1,2,..., be global cross-sections of J such that H; ;| are
real valued and H; 1, ..., H; 5, generate JC on U; (theorem 2.1) for each i. Then
H; o H; n.lu,nm are generators of Ker 2°° by Theorem
VI 1. 1’ in [Ml] it is equivalent to prove that Ker 2, = ]—" Ker =Y a€ Ul, where F, is
the completion of O, in the p-adic topology and the homomorphlsms Z¢: 0L — O,
and =, fé — F, are naturally defined. However, this condition is the ﬂatness
of F, over O,, which is well-known (see [Ml]). Thus H; oy Hi nylu,nme
generate Ker 2|y, nar. Let {p;} be a partition of unity of class C*° subordinate
to {U; N M}. Then p;H € Ker Z*°|y,nn and we have C*° functions x; ; on M, for
j=1,...,n 1 =1,2,..., such that supp x;; C U;N M and p;H = Z] 1 X Hi gl
By remark 2.11,(4) we can approximate x; ; by analytic functions x; ;. Moreover,
as in [W] we can approximate so that each x| j can be complexified to a complex

analytic function x; ConMCand ), y IXi CH, ;| is locally uniformly bounded. Then

Z% ; X; JH ij is a Complex analytic map from M€ to C!, and its restriction to M
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w

is both an approximation of H and an element of Ker =“. Thus Z% is open. [

Lemma 2.12 holds in the Nash case for a compact Nash manifold. However, we
do not know whether lemma 2.12 still holds for a non-compact Nash manifold. Con-
sequently, we have recourse many times in this paper to compactification arguments
that require much care to deal with.

3. EQUIVALENCE OF NORMAL CROSSING FUNCTIONS

3.1. On C*° equivalence of analytic functions with only normal crossing
singularities.

Let us compare C* and C* right equivalences of two analytic functions on an
analytic manifold. The C* right equivalence is easier to check. The C“ right
equivalence implies the latter. However the converse is not necessarily true. We
will show that this is the case for analytic functions with only normal crossing
singularities, and apply the fact to the proof of the main theorem 3.2.

The main theorem of this section is

Theorem 3.1. (1) Let M be a C¥ manifold and f,g € C¥(M). Assume that f
and g admit only normal crossing singularities. If f is C'°° right equivalent to g,
then f is C¥ right equivalent to g.

(2) If C*° functions f and g on a C*° manifold M admit only normal cross-
ing singularities and are proper and C? right equivalent, then they are C> right
equivalent.

(3) If f and g are semialgebraically C? right equivalent Nash functions on a
Nash manifold M with only normal crossing singularities, then they are Nash right
equivalent.

The case where M has corners also holds.

Remark. (i) The germ case is also of interest. Let M, f and g be the same as in
above (1). Let ¢ be a C* diffeomorphism of M such that f = go¢. Set X = Sing f
and Y = Sing g, and let {X;} and {Y;} be the irreducible analytic components of X
and Y, respectively. Let A and B be the unions of some intersections of some X; and
Y;, respectively. Assume that ¢(A) = B. Then we can choose a C* diffeomorphism
7w so that f = gom and w(A) = B. Consequently, theorem 3.1,(1) holds for the
germs of f on A and g on B. Similar statements for (2) and (3) hold.

(ii) In the Nash case, C*° right equivalence does not imply Nash right equiv-
alence. Indeed, let N be a compact contractible Nash manifold with non-simply
connected boundary of dimension n > 3 (e.g., see [Mz]). Set M = (Int N) x (0, 1)
and let f: M — (0, 1) denote the projection. Then M and f are of class Nash,
and M is Nash diffeomorphic to R"*!. Actually, smooth the corners of N x [0, 1].
Then N x [0, 1] is a compact contractible Nash manifold with simply connected
boundary of dimension strictly more than four. Hence by the positive answers to
Poincaré conjecture and Schonflies problem (Brown-Mazur Theorem) N x [0, 1] is
C*° diffeomorphic to an (n + 1)-ball. Hence by Theorem VI.2.2 in [Se] M is Nash
diffeomorphic to an open (n + 1)-ball. Let g : M — R be a Nash function which
is Nash right equivalent to the projection R™ x (0, 1) — (0, 1). Then f and g are
C* right equivalent since Int N is C* diffeomorphic to R™, but they are not Nash
equivalent because Int N and R™ are not Nash diffeomorphic, by Theorem VI 2.2
in [SQ]
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For the proof of part (2) and (3) of the theorem, we need to prepare some material
in next part. Therefore we postpone their proof to the last part of the paper.

Proof of theorem 3.1,(1). In this proof we apply the strong Whitney C*° topology
unless otherwise specified. The idea of the proof is taken from [S;]. Let us consider
the case without corners. The proof is divided into three steps. Denote by X
and Y the extended critical sets of f and g, that is X = f~!(f(Singf)) and
Y = g~ '(g(Singg)). Note that X and Y are not necessarily analytic sets. Let
M be analytic and closed in the ambient Euclidean space R, and consider the
Riemannian metric on M induced from that of RY. Set n = dim M.

Step 1. Assume that X is an analytic set. Let ¢ denote a C*° diffeomorphism of
M such that f = g o ¢. Then there exists a C¥ diffeomorphism 7 of M arbitrarily
close to ¢ such that 7(X) =Y.

Proof of step 1. Let {X; : i = 0,....,n— 1} and {Y; : ¢ = 1,...,n — 1} be
the canonical stratifications of X and Y respectively, and put X,, = M — X and
Y,=M-Y.

Before beginning the proof, we give some definitions and a remark. Fix X;. Let
{M;} be a family of compact C'* manifolds of dimension ¢ possibly with boundary
such that {Int M;} is a locally finite covering of UézoX ;. A function on U}ZOX j is
called of class C*° if its restriction to each M; is of class C*°. Thus C'>°( ;ZOXj) is
a subset of [], C>°(M;). We give to C*>°(U%_,X;) the product topology of the C>
topology on each C*°(M;), i.e. the compact-open C*° topology. We give also the
strong Whitney C'*° topology on C°°( ;ZOXj) in the same way. Then lemma 2.12
holds for the map C>°( ;:oXﬂ >5f—h
function h on M, which is proved in the same way. We will use this generalized
version of the lemma below.

Let X’ be a normal-crossing C* subset of M contained in X. Assume that the
sheaf of O-ideals on M defined by X’ is generated by a single C* function £ on M.
Let V' denote the subspace of C°( ;-:oX ;) consisting of functions which vanish on
X’'. Then V = £C( §:oXj) by Theorem VI,3.10 in [Ml]. We will use this remark
later in this proof.

Now we begin the proof. By induction, for some i € N, assume that we have
constructed a C'*° diffeomorphism 7; 1 of M close to ¢ such that m;_1

u;'.:OXjf e C( §:oXj) for an analytic

Uizix, 18
of class C* (in the sense that m;_; uizlx, € [, C¥(M;)) and m;—1(X;) 2 Y; for
j= J

any j. Let M denote the sheaf of O-ideals on M defined by U;;%)Xj, which is
coherent because X is normal-crossing. Then 7”—1|u?:(1)Xj € HO(M,0/M)N for

the following reason. As the problem is local, we can assume that M = R" and
X = {(z1,..,zn) € R" : 21-- 2,y = 0} for some n’ < n € N. Moreover, we
suppose that ¢ = n because if for each irreducible analytic component E of Ué':oX j
we can extend 7;_1| ENUIZLX; to an analytic map on E then the extensions for

all E define an analytic map from U;ZOX ; to RY, and hence it suffices to work
on each E in place of R™. Then what we see is that an analytic function on
X = {(z1,...,7p) € R" : x1-+ 1,y = 0} is an element of HY(M, O/M), namely,
can be extensible to an analytic function on R™ (corollary 2.4), where M is defined
by X. We proceed by induction on n’. Since the statement is clear if n’ = 0 or
n' = 1, assume that n’ > 1 and that the restriction of f to {x; = 0} is extensible
to an analytic function f on R™. Then f — f|x vanishes on {z; = 0} and hence is
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divisible by x1. Apply the induction hypothesis to (f — f)/z1 and {22 - - 2, = 0}

and let f be an extension of (f — f)/x1. Then f + x1 f is the required extension of
f-

Consider any C“ extension o : M — RY UimlX, (corollary 2.4). Here we
can choose «a to be sufficiently close to 7;_1 and so that Im o C M for the following
reason. Let v1,...,v, € CY(M) be generators of M (corollary 2.2). Then there
exist 01, ..., 0 € C°(M,RY) such that m;_; —a = 2?21 7v,6; by the above remark.
Let Sj be C* approximations of §;. Replace o with the composite of a+3 v, 5]- and
the orthogonal projection of a neighborhood of M in RN to M. Then « satisfies
the requirements. Let p; : U; — Y, be the orthogonal projection of a tubular
neighborhood of Y; in RN. Here U; is described as Uyey,{z € RV : |z —y| <
e(y), (x—y) L T,Y;} for some positive C° function € on Y; where T}Y; denotes the
tangent space of Y at y, and we can choose € so large that e(y) > ¢ dis(y, U{;%)Yk)
locally at each point of U‘,Z;%)Yk for some positive number ¢y because Y is normal
crossing. Then « can be so close to m;_; that a(X;) C U; since a = m;_1 on UZ ¢
and hence daxfu = dm;_1,v for any z € U;;})X ; and for any tangent vector v at
x tangent to U X Define m; on U _oX; to be a on Ué;%)Xj and p; o a on Xj.
Note that m; is a C"" map from UJZOX to U;ZOYJ C R¥ and close to 77i—1|uj.:OXj-
Actually 7r¢_1|U;-_ x; =Diomi— 1|Ui ,x; and moreover since « is close to w1, then
Di © @ on U;":()Xj (= m;) is close to p; o m;_1 on U’ —oX where p; : U; — U;:on is
the natural extension of p;. We need to extend m; to a C'*° diffeomorphism of M
which is close to m;—; and carries each X; to Y;. Compare m; o 7r2-__11 |U§:OYJ- and the
identity map of U;ZOYJ. Then they are close each other and what we have to prove
is the following statement: let 7 be a C°° map between Ui_oY; close to id. Then
we can extend 7 to a C’OO diffeomorphism of M which is close to id and carries each
YtoY;, j=i+1,.

By the second 1nduct10n it suffices to extend 7 to a C'*° map between U’HYJ
close to id. We reduce the problem to a trivial case. First it is enough to extend
7 to a C* map from U;J;%)Y] to RY close to id by virtue of Pi+1 : U1 — Yiq1 as
above. Secondly, if we replace 7 with 7 —id |U§-:0Yj then the problem is that for a
C* map 7 : Uézolg — RY close to the zero map we can extend 7 to a C* map
from U;J;%)Y] to R close to 0. Thirdly, we can assume that 7 is a function. Hence
we can use a partition of unity of class C°° and the problem becomes local (remark
2.11,(5)). So we assume that M = R", Y is the union of some irreducible analytic
components of {y; -y, = 0} and 7 € C*>°(U)_Y;) is close to 0 and vanishes on
{y e U_yY; CR": |y| > 1}, where (y1,...,yn) € R™. Let £ be a C™ function
on M such that { =1lon{y € R": |yl <1}and £ =0on {|ly| >2}. fn=20
or 1 we have nothing to do. Hence by the third induction on n, assume that we
have a C* extension 7 (ya, ..., Yn) of T‘{ylzo}muz‘_:oyj to {y1 =0} N U;i%)YJ close
to 0. Regard 71(y2, ..., yn) as a C* function on Uit%)Yj, which is possible because

1+1 0Y; is contained in the product of R and the image of {y13 = 0} N U;Jr%)Y under
the projection R x R"! — R""!. Replace 7 with 7 — 71&, which vanishes on
{y1 =0 or |y| > 2}NU%_,Y;. Next consider (T—Tﬁ)/gl\{w:o}m%:oyj and apply the
generalized lemma 2.12, the above remark and the same arguments as above. Then
we reduce the problem to the case where 7 =0 on {y1y2 = 0 or |y| > 3} NU)_,Y;
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and by the fourth induction to the case where 7 = 0 on Ug':on- Thus step 1 is
proved.

Step 2. Assume that X =Y, X is an analytic set and there exists a C'*° diffeo-
morphism ¢ of M such that f = g o ¢. Then there exists a C* diffeomorphism 7
of M close to ¢ such that f = go .

Proof of step 2. By step 1 there exists a C* diffeomorphism ¢’ of M arbitrarily
close to ¢ such that ¢'(X) = X. Then fo¢' "' =gogpo¢~! fog¢'~!is analytic
and ¢ o ¢! is close to id. Hence we assume in step 2 that g is fixed and f and
¢ can be chosen so that ¢ and f — g are arbitrarily close to id and 0 respectively.
We construct m by integrating along a well-chosen vector field on M. There exist
analytic vector fields wq, ..., wny on M which span the tangent space at each point
of M, e.g., wy = dpxg—mi, x € M, where (z1,...,7x5) € RY and p is the orthogonal
projection of a tubular neighborhood of M in RY™. Consider a vector field v =
g+ vazl a;w; on M x [0, 1] where a; € C¥(M x [0, 1]) for i € {1,..., N}. Put
F(z,t)=(1—1t)f(z) +tg(x) for (x,t) € M x [0, 1].

Assume that we have found such a;, i = 1, ..., N, that v(F) = 0 and | Zf\il a;w|
is small. Then F' is constant along integral curves of v, therefore, the flow of v
furnishes an analytic diffeomorphism 7 so that f = go .

Therefore, what we have to do is to construct the relevant a;, ¢ € {1,..., N}.
First look at the local case. We will show that there exist a compact neighborhood
U of each point of M and a; € C¥(U x [0, 1]), i = 1, ..., N, such that v(F) = 0 on
U x [0, 1] and |Zf\]:1 a;w;| is small. If the point is in X, we can write U = {z €
R": |z| <1}, g(x) —c=[[i—, 2} and f(z) —c = A(z)(g9(z) —¢) for x € U, where
c € R, \is a C% function on U and close to 1 by lemma 2.12, and at least one
of n;’s, say ni, is non-zero. Assume that ¢ = 0 without loss of generality. Then
there exists v of the form % + blg_xl’ by € C¥(U % [0, 1]), which satisfies v(F") = 0.
Actually

(5 + b1 F(w.0) =
g(z) oA
(1= N)gl) + b1 (o) a0+ (1= M) D+ (1= ()5 @) =0,
(1~ A(@)as

o) = T A h @) + (L= Dy Dz’
which is an analytic function in U X [0, 1] and close to 0. Shrink U if necessary.
Then for some 0 < 4y < --- <, < N, the vector fields w;, , ..., w;, span the tangent
space there, and blg—ml is described uniquely by 2?21 a;; w;; for some C* functions
a;;. Hence a;,, j=1,...,n,and a; =0, i & {i1,...,1,}, fulfill the requirements.
Next consider the situation at a point outside of X. Note that the values of f
and ¢ at the point may be different, and hence the above arguments do not work.
We can choose its local coordinate system so that U = {x € R" : |z| < 1} and

8x =1 on U. Then
o 0 B of  0g .
(& +b6—xl)F($’t> =—f+g+0b((1 t)&vl +t6a:1) =0,
bi(z,t) = f—9 :

(1-1t)oL +tam1
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and (1— t)g—g:l —i—tg—fc’l and f — g are close to 1 and 0, respectively. Hence there exist
U and a; as before.

Consequently, using a partition of unity of class C'*° we obtain a C°° vector field
v =2 + vazl atw; on M x [0, 1] such that v(F) = 0 and \Zi\]zl ajw;| is small
(remark 2.11,(5)).

Now, to construct the global analytic vector filed v on M x [0, 1] we use Cartan

Theorems A and B. Consider the sheaf of relations J on M x [0, 1] defined by

J = Uz, t)eM x]o, 1]{(57 ag,...,aN) € Ofi*;)l :
N
B(fe = ga) + Y ci(wi(1 = 1) f +t9)) @) = 0}
i=1

The sheaf J is a coherent sheaf of O-modules by Oka Theorem 2.5. Later we
will find I € N and global cross-sections (bg,a%,...,a%) € H°(M x [0, 1],7),
k € {1,...,1l}, such that for any (z,t) € M x [0, 1], any C* vector field germ w
at (z,t) in M x [0, 1] with w(F{,+)) = 0 is of the form ka:l EkVk(a,e) for some C¥

function germs & at (z,t) in M x [0, 1], where vy, = b, % —1—2?]:1 afw;. Assume the
existence of such [ and (by,a¥, ..., a%;). Then by the above method of construction

of v" and by a partition of unity of class C*° there exist C'*™ functions 0y on M such
that v/ = 22:1 Orvr. Approximate 8, by C* functions 0, and set © = 22:1 Oy
Then ¢ is a C¥ vector field close to v’ such that F(9) = 0 and is described by
aod; + vazl a;w;, a; € C¥(M x [0, 1]), for the following reason. Let Z denote the
coherent sheaf of O-submodules of the sheaf of O-modules of germs of C* vector
fields on M x [0, 1] defined by

Tizty = {w: w(Fgy) =0} for (z,t) € M x [0, 1],

and define an O-homomorphism 6 : O' — T by

l

01y ) = D WVk(aty  fOr (Y1, m) € Oy py, (w,1) € M x [0, 1].
k=1

Then § is surjective, H(M x [0, 1],Z) is the set of all C* vector fields w on
M x [0, 1] with w(F) = 0, and hence by Cartan Theorem B the homomorphism
C¥(M x [0, 1))} > (d1,...,d;) — 22:1 drvr, € HO(M x [0, 1],7) is surjective, i.e.,
v is of the form 22:1 div; for some C¥ functions di on M x [0, 1]. Therefore,
we have ¥ = do% + Zivzl a;w; for ag = 22:1 dr and a; = 22:1 dpak, i =
1,...,N. Here ag is unique and hence close to 1, and \vazl a;w;| is small. Thus
v="2 + Zfil(di/do)wi is what we wanted.

It remains to find (by,a}, ...,a%;), k = 1,...,1. That is equivalent to prove that
HO(M x [0, 1],Z) is finitely generated by Cartan Theorem B because the homo-
morphism J(, ;) 3 (B,aq,....,an) — ﬁ% + Zivzl QjWiz,1) € L(z,p) 18 surjective.
Moreover, it suffices to see that each stalk Z, ;) is generated by a uniform number
of elements by corollary 2.2. Note that F' is an analytic function with only nor-

mal crossing singularities. Hence we replace F' with f to simplify notation. Let IC
denote the sheaf of O-modules of C* vector field germs on M such that

Ky ={w:w(fy) =0} forxze M.
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Then it suffices to choose | € N so that for any z¢o € M, K, is generated by [
elements. Since the problem is local we can assume that M = R", zog = 0 and

f(x) = Hle zy withng,...,np >0, 0 < k <n. Writew € Kpas Y ., 041%71_, a; €

Oy, and set h(z) = Hle x;. Then w(fz,) = 0 means

k k
Z nio; f(x)/x; =0, hence Z nio;h(zx)/xz; = 0.
i=1

i=1

Therefore, each «; is divisible by z;. Hence, setting o, = a; /x; we obtain Zle n;
= 0. It is clear that {(o}, ...,al,) € OF : Zle o), = 0} is generated by n—1 elements,
which proves step 2.

The proof of step 1 shows that any C'°*° diffeomorphism of M carrying Sing f to
Sing g is approximated by an analytic diffeomorphism of M with the same property.
Hence it suffices to prove the next statement.

Step 3. Assume that Sing f = Sing g and there exists a C*° diffeomorphism ¢ of
M such that f = g o ¢. Then there exists a C* diffeomorphism 7 of M such that

f=gom.

Proof of step 3. As at the beginning of the proof of step 2 we fix g and modify
f and ¢ so that ¢ and f — g are sufficiently close to id and 0 respectively. Set
Z = Sing f and let Z;, + = 1,2,..., be connected components of Z. Let U; be
disjoint small open neighborhoods of Z; in M such that if ¢(U;) N Uy # O then
i = i'. Then by steps 1 and 2 there exist C* diffeomorphisms 7; : U; — ¢(U;)
close to ¢|y, : U; — ¢(U;) such that f = gom; on U;. Note that if we define
a map between M to be m; on each U; and ¢ elsewhere, then the map is a C*
diffeomorphism by the definition of the strong Whitney C'*° topology. For zg € M,
let m(xg) denote the multiplicity of g—g(xg) at xg, i.e., m(zp) = |a| = a1+ -+,
for a = (a1, ..., ) € N™ such that g(x) — g(z¢) is written as £z® for some local
coordinate system (z1, ..., Z,,) at zg. There exists h € C* (M) such that h=1(0) = Z
and h is m(x)-flat at each z € Z for the following reason. For each i, let {Z; ;};
be the stratification of Z; by multiplicity number, and for each Z; ;, consider the
smallest analytic set in U; and hence in M containing each connected component
of Z; j. Then we have a locally finite decomposition of Z; into irreducible analytic
sets {W; ;}; in M such that m(x) is constant, say m; ;, on each W; ; — Uj {W; ;: :
dim W; j» < dim W; ;}. By corollary 2.2 there exists h; ; € C“(M)—e.g., the m; jth
power of the square sum of a finite number of global generators of the sheaf of O-
ideals defined by W; ;—such that hZ_Jl(O) = W, ; and h; ; is m; ;-flat at W; ;, and
then considering the sheaf of O-ideals Hl ; hi, ;O we obtain h in the same way.

We will reduce the problem to the case where m; —id on U; and f — g are divis-
ible by h. Since supp O/hO = Z, {m;}; defines an element of H°(M, (O/hO)N).
Hence applying Cartan Theorem B to the exact sequence 0 — (RO)N — ON —
(O/hO)N — 0, we obtain 7’ € C*(M)" such that m; — 7’ € hC*(U;)Y for each i.
We need to modify 7’ to be a diffeomorphism of M. Let £ be a C'*° function on
M such that & = 0 outside of a small neighborhood of Z and £ = 1 on a smaller
one. Approximate C* maps y . &(m; — @')/h and (1 — §)(¢ — n’)/h from M to
RY by C¥ maps H; and H,, respectively. Then hH; + hHy + 7’ is an analytic
approximation of ¢ : M — RY whose difference with m; on U; is divisible by h.
Hence its composite 7’/ with the orthogonal projection of M in R” is an analytic
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approximation of ¢ : M — M such that m; — 7" is divisible by h by the next fact.
Given 01,0, € R{{z1,...,z,))™, n € R{{z1,...,2,)) and p € R{(y1, ..., Ym)) with
01(0) = 62(0) = n(0) = p(0) = 0, then po Oy — po (01 + nbs) is divisible by 7 as
an element of € R{(z1,...,z,)). Now replace ¢, m; and f with pon” !, mon”~!
and fon”~!, respectively. Then the equalities f = go ¢ and f = gom; continue to
hold, and 7; — id and hence f — g are divisible by h and, moreover, by h3+* by the
same way, where s € N is such that a® is contained in the ideal of R{(x1, ..., z,))
generated by gTwll,. ,g;/” for ¢y(z) = Hé’:1 z; € R{{(z1,...,2,)), | < n, and for
a € R((x1,...,x,)) which vanishes on Sing; (Hilbert Zero Point Theorem). Set
hy = (f —g)/h3Ts € C¥(M), which is close to 0 by lemma 2.12.

As in the proof of step 2, we define C* vector fields w;, i = 1, ..., N, and a C¥
function F' on M x [0, 1], and it suffices to find a C“ vector field v of the form
% + vazl a;w; on M x [0, 1] such that v(F) = 0 and |Z£V:1 a;w;| is bounded.
Since f = g + h3*5hy, then F = g + (1 — t)h3T*hy, and the equality v(F) = 0

becomes
N

h3+sh1 = Zaz(wlg —+ (1 — t)hz—l_shg’i)
i=1

for some C* functions hy; on M close to 0. This is solvable locally. Indeed, for
each xp € M — Z, at least one of w;g, say wig, does not vanish at xy. Hence

1 = h3Thy/(w1g + (1 — t)h*T*ha1), az = -+ = anx = 0 is a solution on a
neighborhood of xy. Assume that x¢y € Z. Then choose an analytic local coordinate
system (x1,...,2,) at o in M so that g(z) = []_, zI'" + const, where Y . n; =
m(zg) > 1. Here we can assume that xqg = 0, const = 0, ny,...,n; > 0 and
nit1 = +-- = n, = 0. Note that m(0,...,0, 2141, ..., xn) = m(0) for (zi41,...,2,) €
R"! near 0. What we prove is that for each ty € [O, 1], the ideal I of O 4,

0 t S . s S
generated by - g(o’ 00) 4 (] — t(o, to))h?g_to)hQ i(0,t0), @ = 1,...,1, contains h?gfto)hl(O,to)-

Let J denote the ideal of Og,) generated by ag(o o) - j =1,...,1. Then it suffices

to see that h%;fo) € J because if so, J D I, J > h(JtSO)hl(o,to), J=14+mJ
and hence by Nakayama lemma J = I, where m is the maximal ideal of O(g -

Moreover, assuming g(z) = xy ---x; we prove that hso to) € J, which is sufficient

89(0 to) l nj_l oxy---xy ’I’Lj—l
because 5= = n; [[;_, z;7 52 and h(g 4, is divisible by H LT by

j
the definition of h. However h € J is clear by the definition of s. Note that we

(0 to)
can choose local v = E + Zi:l a;w; in any case so that | Zi:l a;w;| is arbitrarily
small.

We continue to proceed in the Same way as in the proof of step 2. We obtain
C*¥ vector fields vk = b2 at + Zi\] 1 a w;, k=1,...,1, by local existence and a C*®
vector field v’ at +Z _ 1 a;w; such that v, (F) ='(F) =0, | vazl a’w;| is small
and v’ is of the form 21::1 Orw;. After then we approximate 6, by C* functions

0, and v = 22:1 fuy, fulfills the requirements. Thus we complete the proof of (1)
in the case of without corners.
The case with corners is proved in the same way. [

3.2. Cardinality of the set of equivalence classes.

Our main theorem establishes the cardinality of analytic (respectively Nash) R-L
equivalence classes of analytic (respectively Nash) functions on M with only normal
crossing singularities.
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Theorem 3.2. Let M be a compact analytic (respectively, Nash) manifold of
strictly positive dimension. Then the cardinality of analytic (resp., Nash) R-L equiv-
alence classes of analytic (resp. Nash) functions on M with only normal crossing
singularities is 0 or countable. In the Nash case, the compactness of M 1is not
necessary, and if moreover M is non-compact then the cardinality is countable.

The proof of theorem 3.2 runs as follows. We reduce the C* case to the Nash
case by proposition 4.1 and then the non-compact Nash case to the compact Nash
case by proposition 4.9. Lemmas 4.3 and 4.4 together with Nash Approximation
Theorem II prove the compact Nash case. We postpone the proof of theorem 3.2
to the last part of the paper.

Remark. (i) The case where the cardinality is zero may appear, e.g. M = S? P(2)
(for the proof, see the arguments in (v) below in case M = R?).

(ii) In the theorem we do not need to fix M, namely, the cardinality of equivalence
classes of analytic or Nash functions on all compact analytic manifolds or Nash
manifolds, respectively, with only normal crossing singularities is also countable.
Indeed, the cardinality is clearly infinite, and there are only a countable number
of compact analytic manifolds and (not necessarily compact) Nash manifolds up to
analytic diffeomorphism and Nash diffeomorphism, respectively, which will be clear
in the proof of lemma 4.4.

(iii) Theorem 3.2 does not hold for analytic functions on a non-compact analytic
manifold. To be precise, for a non-compact analytic manifold M, the cardinality of
analytic R-L equivalence classes of (proper) analytic functions on M with only nor-
mal crossing singularities is of the continuum (0 or of the continuum, respectively).
We prove this fact below.

(iv) On any non-compact connected analytic (Nash, respectively,) manifold M,
there exists a non-singular analytic (Nash, respectively,) function. We give the
construction below.

(v) An example of non-compact M where there is no proper analytic (Nash)
function with only normal crossing singularities is R?. We see this by reduction
to absurdity. Assume that there exists such an f. Note that each level of f is a
finite union of Jordan curves. Let a; € R be a point of Im f and X; C R? be a
Jordan curve in f~!(a;) that does not intersect with f~!(a;) inside of U;. Next
choose as € f(Uy), a Jordan curve Xo in f~!(az) NU; and Us in the same way. If
we continue these arguments, we arrive at a contradiction to the above note.

Proof of (iii) for proper functions. Assume that there exists a proper analytic
function f on a non-compact analytic manifold M with only normal crossing sin-
gularities. Replacing f with 7 o f for some proper analytic function 7 on R if
necessary, we can assume that f(Sing f) = N because f(Sing f) has no accumu-
lating points in R. Define a map oy : N — N so that for each n € N, f —n is
ag(n)-flat at any point of f~!(n) N Sing f and not (af(n) + 1)-flat at some point
of f=(n) N Sing f. If a proper analytic function g with ¢g(Singg) = N is C* R-L
equivalent to f then ay = a,. Consider all proper C“ functions 7 on R such that
Singm = N and 7 = id on N. Then the cardinality of {c;or} is of the continuum.
Hence the cardinality of C* R-L equivalence classes of proper analytic functions on
M with only normal crossing singularities is of the continuum. [

Proof of (iv). Assume that dim M > 1. We use the idea of handle body de-
composition by Morse functions (see [Mi]). Let f be a non-negative proper C*°
function on a non-compact connected C“ manifold M with singularities of Morse
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type. Approximate f and changing R by some C* diffeomorphism of R, we assume
that f is of class C¥, that f|sing s is injective and f(Sing f) = 2N. For each k € N,
let Ay be the union of f~!(k)NSing f with one point in each connected component
of f~1(k) not containing points of Sing f. Consider the 1-dimensional simplicial
complex K whose 0-skeleton K is UpenAy and whose 1-skeleton K' consists of
I-simplexes ab, for a,b € K°, such that f({a,b}) = {k,k + 1} for some k € N and
there exists a connected component C of f~!((k, k+ 1)) with C > a,b. Note that
such a C'is unique because fp-1(p 2r42)) : f (2K, 2K +2)) — (2K, 2k’ +2) is
a proper submersion for &' € N and that conversely for each connected component
C of f=Y((k, k 4+ 1)) there exist a,b € K° such that f({a,b}) = {k,k + 1} and
C > a,b. In other words, we can identify K' with the set of connected compo-
nents of f~1((k, k +1)) : k € N. Moreover, for ab € K' there exist an injective
C® map lgp : [0, 1] = M with [, ,(0) = a, lap(1) = b, folup(t) = f(a) £t and
Imlgp =1Iml, ,. Here for ab # o'V, then Im lapNImly py ={a}ifa=a" ora="¥,
or Iml,p NImly py = {b}ifb=0a"or b =", and Iml,;, N Imi, iy = 0 otherwise.
Hence we can identify the underlying polyhedron |K| with the subset U_;_ ;-1 Im {45

of M, i.e., K is realized in M. Note also that there exists a unique C° retraction
7 M — Ugpc g Imlgp such that for = f.

We will see that each a € K is the end of some half-polygon in |K], i.e., there
exist distinct ag = a, a1, as,... € K9 such that ;011 € K for i € N. Note that
a; — oo (i.e., f(a;) — 00) as i — oco. Since M is non-compact and connected, there
exists a proper C! map [ : [0, oo) — M such that [(0) = a. We can move Im1 into

| K| by r so that Im [ is the underlying polyhedron of some subcomplex of K. If there

is a 1-simplex s in K] def K|y, with an end v not equal to [(0) nor equal to another

1-simplex in K, then remove s and v from K, and repeat this operation as many
times as possible. Then K; becomes a simplicial subcomplex of K and |K;| is the
union of a half-polygon and Jordan curves. Remove, moreover, some vertices except
[(0) and 1-simplexes so that |K;| is a half-polygon. Then we obtain an injective
simplicial map | : N — K with [(0) = a, where N = NU{[i, i+ 1] : i € N}. Let L,
denote all of such [, and let [, be such that min fol, = max{min fol:[ € L,} and
#(foly) H(min fol,) < #(fol)™!(min fol) for | € L, with min f ol = min fol,.

Next we show that min f ol, — 00 as a — o0o. Otherwise, there would exist
distinct ag, ag,... in K° such that min f o [,, remains constant, say equal to m.
Note that a; — 0o as i — oo. Since f~!(m) is compact we have a subsequence of
ai,as, ... where Iml,, contain one point by € K° with f(by) = m. Next, choose a
subsequence so that Im,, contain byb; € K° for some b; € K° and l,, (k; +1) = by
and [,, (k;) = by for some k; € N. Repeating these arguments we obtain sequences
ai,as, ... and bg, by, ... in K° such that l,, (k; + 1) = bo,...,la,(k;) = b; for some
ki € N,i=1,2,... Then Ujenb;b;i11 is a half-polygon. Fix i so large that f(b;) >
m, j =1i,i+ 1,..., and consider a polyhedron I, ([0, k;]) U b;ib;j+1 U bjy1b;q40 U -+ -.
Remove vertices and open 1-simplexes from it, as in above construction of [, so that
the polyhedron becomes a half-polygon starting from a;. This half-polygon defines
anew ! € L,,. Clearly min f ol > m = min f o [l,, for this [ by the definition of [.
However, min f ol = min f ol,, by the definition of /,. Then the difference between
this [ and I, is #(f o )7t (m) < #(f oly,) " (m) since f ol,,(k; +1) = m, the
inclusion fol,, ([0, k;]) D fol([0, k;]) holds and since f(b;b;j+1Ub;y1b;iy2U--) > m,
which contradicts the definition of [,,. Thus min f ol, — 0o as a — oc.

Note that M is C* diffeomorphic to M — Iml, for any a € K° and the diffeo-
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morphism can be chosen to be id outside of a small neighborhood of Im{,. Hence
if Iml, NIml, = () for any a # o’ € Sing f, there exists a C¥ diffeomorphism
T M — M — Ugesing f Iml, such that f o is a non-singular analytic function
on M. Consider the case where Iml, N Iml, # () for some a # a’ € Sing f. Set
{ao,a1,...} = Sing f, set Xg =Yy = Iml,, and Zy = (). Let i € N. Assume by in-
duction that we have defined subpolyhedra X; DY; D Z; of |[K|. If X;nIml,,,, =0,
set Xop1 = Xy UIml,,, ,, set Vi1 = Iml,,,, and Z;y; = 0. Otherwise, set
Xiy1 = X; Ulml,,, ([0, kit1]), define Z; 1 to be the closure of the unbounded
connected component of the set of difference of the connected component of X,
containing lq,,, (ki4+1)) and of I, (ki+1), and set Y1 = Z; 1 UIml,, ([0, kiy1]),
where ki1 = min{k € N : X; N, ([0, k]) # 0}. Then X = UjenX; is the
underlying polyhedron of a subcomplex of K, and for each ¢ there exists a C'™
diffeomorphism 7; : M — Z;, — M — Y, such that m; = id on X; — Z; and outside
of a small neighborhood of Y; — Z; in M — Z;. Since min f ol, — 0o as a — 00,
we see that ---om oy : M — M is a well-defined C*° diffeomorphism to M — X.
Approximate it by a C* diffeomorphism 7 : M — M — X. Then for is the required
non-singular analytic function on M.

Consider the case where M is a non-compact connected Nash manifold. Then
there exists a proper Nash function on M with only singularities of Morse type.
Actually, by Theorem VI.2.1 in [S3], the manifold M is Nash diffeomorphic to
the interior of a compact Nash manifold with boundary M’, which is called a
compactification of M. Then by using a partition of unity of class semialgebraic C?
we obtain a nonnegative semialgebraic C? function ¢ on M’ with zero set M’ and
with only singularities of Morse type. Approximating the semialgebraic C? function
1/¢ on M by a Nash function v in the semialgebraic C? topology (Approximation
Theorem I), we obtain the required function. Note that # Sing1 < oo because
Sing v is semialgebraic. Hence in the same way as in the analytic case, we can find
a Nash function on M without singularities by the following fact.

Let X be a 1-dimensional closed semialgebraic connected subset of M which is
a union of smooth curves Xy, ..., Xy such that any X; is closed in M, any X; and
X intersect transversally and for each a € X there exists one and only one path
from a to oo in X. Then M and M — X are Nash diffeomorphic.

We prove this fact as follows. Assume that M = Int M’ for M’ as above. Then
the closure X of X in M’ intersects with M’ at one point. By moving X by a
semialgebraic C! diffeomorphism of M and then by a Nash diffeomorphism (Ap-
proximation Theorem I) we assume that X is smooth at X NOM’ and X and O M’
intersect transversally. Let & denote the function on M’ which measures distance
from X. This function being semialgebraic, we approximate | v by a positive
Nash function £ on M’ — X so that () — 0 as & converges to a point of X. Let
€ > 0 be small enough. Then §|€~_1((0’ q) - £71((0, €]) — (0, € is a proper trivial
Nash submersion by [Ha]. Hence M’ — X — 5_1((0, €]) and M’ — X are semialge-
braically C' diffeomorphic and, moreover, Nash diffeomorphic by Approximation
Theorem I. On the other hand, M’ — X — £-1((0, €)) is a compact Nash manifold
with corners, and if we smooth the corners then M’ — X — £-1((0, €)) is C* and
hence Nash (Theorem VI.2.2 in [S;]) diffeomorphic to M’ by the assumptions on X,
which implies that M — X —£~1((0, €]) and M are Nash diffeomorphic. Therefore,
M — X = Int(M' — X) is Nash diffeomorphic to M. O

Proof of (iii) for non-proper functions. As in the situation above, we have a non-
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bounded non-singular non-negative analytic function f on a non-compact connected
analytic manifold M. Let m be a proper analytic function on R such that Singm =
N and 7 = id on N. Then 7o f(Singm o f) = N. Hence as in the case of proper
functions, we see that the cardinality of C“ R-L equivalence classes of analytic
functions on M with only normal crossing singularities is of the continuum. [

4. REDUCTIONS

In order to prove theorems 3.1,(2) and 3.1,(3) and theorem 3.2, we proceed to
some reductions. Firstly, we reduce the analytic case to the Nash one, secondly we
reduce the non-compact Nash case to the compact one.

4.1. Reduction to the Nash case.
By the following proposition we reduce the C* case of theorem 3.2 to the Nash
case.

Proposition 4.1. Let M be a compact Nash manifold possibly with corners, and
f a C% function on M with only normal crossing singularities. Then f is C¥ right
equivalent to some Nash function.

Remark. If M is a non-compact Nash manifold, proposition 4.1 does not hold. For
example, consider M = R and f(x) = sinx.

Proof of proposition 4.1. Set X = f~'(f(Singf)). Let g : X — M be a C¥
immersion of a compact C“ manifold possibly with corners such that Img = X,
9lg—1(Reg x) 18 injective and gm()z'm) is an analytic subset germ of Mg, for each
x € X. Here we construct X and ¢ locally and then paste them. For a connected
component C' of X there are two possible cases to consider: either g(C) C OM or
g(C) ¢ OM. Assume that g(C) ¢ OM for any C. Then g(Int X) C Int M and
g(@)z' ) C OM, and moreover X is a normal crossing analytic subset of M. Consider
the family of all C™ maps ¢’ : X — M with ¢/(Int X) C Int M and ¢/(X) C M.
Then

Lemma 4.2. Letr(>0) € NU {oc}. Then g is C*° stable in family, in the sense
that any such C* map g : X — M close to g in the C" topology is C*>° R-L
equivalent to g.

Remark. The proof we produce below shows that lemma 4.2 holds even if M is
a non-compact Nash (C*°) manifold possibly with corners, using the Whitney C”
(strong Whitney C'*°, respectively) topology.

Proof of lemma 4.2. 1t suffices to find a C'*° diffeomorphism of M which carries Im g
to Img’. As usual, using a tubular neighborhood of M in its ambient Euclidean
space, the orthogonal projection to M and a partition of unity of class C°°, we
reduce the problem to the following local problem.

Assume that M = R™ x [0, 00)™ and X = {x1---2; = 0}, for | < n. Let
y1 = y1(x) be a C*° function on M which is close to the function x; in the Whitney
C" topology and coincides with x; outside of a neighborhood of 0. Then there exists
a C'* diffeomorphism 7 of M which is id outside of a neighborhood of 0 and close
to id in the Whitney C” topology and carries {xs---2; = 0} U {y1(x) = 0} to X.

This is true since w(x1,..., Tnim) = (y1(x), T2, ..., Tnim) satisfies the require-
ments. [



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 23

Continued proof of proposition 4.1. Let 0 < r’ < r € N.

Case without corners. Give a Nash manifold structure to X (Theorem of Nash,
see Theorem 1.3.6 in [Sy]). Let g’ : X — M be a Nash approximation of g in the C"
topology, e.g., the composite of a polynomial approximation of the map ¢ from X
to the ambient Euclidean space of M with the orthogonal projection of a tubular
neighborhood of the space, and set X’ = Im¢’. Then by lemma 4.2 there exists a
C* diffeomorphism 7 of M which carries X to X', and by the above proof 7w can be
arbitrarily close to the identity map in the C" topology. Let tq,...,t; be the critical
values of f. We assume that ¢; > 0. We want to construct a Nash function f’ on
M such that (f/)~1(f/(Sing f')) = X’ and f'or = f on X for some modified 7 and,
moreover, f' om —t; and f —t; have the same multiplicity at each point of f~1(;)
for each i. For each t;, let Z; denote the sheaf of N-ideals with zero set m(f~1(¢;))
and having the same multiplicity as f o 7~! —t; at each point of w(f~1(¢;)). Such
a sheaf exists because a non-singular semialgebraic and analytic set germ is a non-
singular Nash set germ. Then Z; is generated by a finite number of global Nash
functions (theorem 2.7). Let ¢; denote the square sum of the generators and define
a Nash function 1; on M so that ¥? = ¢; and 1; has the same sign as for~! —¢;
everywhere. Note that 1, *(0) = 7(f~'(t;)) and ¢; and f o' —¢; have the same
multiplicity at each point of 1, 1(0). Set ¢ =[] #;. We have a global cross-section
of the sheaf of N-modules N/ ], Z? whose value at each point z of ¢; ' (0) equals
Yiz + t; mod ZZ,. Apply theorem 2.8 to the homomorphism N — N/ T], Z? and
the global cross-section. Then there exists a Nash function 1) on M such that 1 —t;
and fonm~! —t; have the same sign at each point of a neighborhood of ;- 1(0)
and the same multiplicity at each point of ;" 1(0) for each i. We need to modify
1 so that X’ = ¢~ (2)(Sing1)). Let f” be a C* function on M, constructed by a
partition of unity of class C'°°, such that f”/ = 1 on a small neighborhood of X’ and
X" = (f"~Yf"(Sing f")). Then f” — 1) is of the form ¢¢ for some C° function
§on M. Let € be a strong Nash approximation of ¢ in the C™ topology, and set
f' =1+ ¢€. Then f’is a Nash function, X’ = (f")~1(f/(Sing f’)) and f’ —t; and
for~! —t; have the same multiplicity at each point of 7(f~1(¢;)) for each i.

By Theorem 3.1,(1) it suffices to see that f is C*° right equivalent to the function
h defined to be f’om. Note that h=!(h(Singh)) = X, and f —t; and h — t; have
the same multiplicity at each point of f~1(¢;) for each i. Remember that 7 is close
to id in the C" topology. We can choose f’ so that f and h are close each other in
the C" topology. Indeed, fon™ — f’ is of the form n[]; v; for some C* function
n on M. Replace f’ with f' + f[], ¢; for a strong Nash approximation 7 of 7 in
the C°° topology. Then f and h are close. Hence we can reduce the problem, as
usual, to the following local problem.

Let M = R", f(z) = 27" ---2;" and h(z) = a(x)z]*---z;" for some C*>
function a(z) on M close to 1 in the Whitney C"" topology (lemma 2.12). Assume
that a; > 0. Then f and h are C'*° right equivalent through a C*° diffeomorphism
close to id in the Whitney cr topology.

This is true since the C*° diffeomorphism R” 3 (x4, ..., z,) — (a*/* (z)zy1, 22, ...,
x,) € R™ satisfies the requirements. Thus the case without corners is proved.

Case with corners. Let M; be a Nash manifold extension of M. We can assume
that M is the closure of the union of some connected components of M; — Y
for a normal crossing Nash subset Y of M;. Let U be an open semialgebraic
neighborhood of M in M; so small that f is extensible to an analytic function f;
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on U with only normal crossing singularities. Shrinking U if necessary, we replace
X in the above proof with X; = f; *(f1(Sing 1)), and we define a C* manifold
X'l and a C* immersion ¢; : Xl — U in the same way. For each connected
component C' of X; there are two possible cases to consider: either g;(C) C Y
or g1(C) ¢ Y. If g1(C) C Y, then ¢1(C) is a Nash subset of U with only normal
crossing singularities and C' has an abstract Nash manifold structure such that g1 |c
is a Nash diffeomorphism to g1 (C') (see [Sz] for the definition of an abstract Nash
manifold). Apply Artin-Mazur Theorem to g;(C). Then C with this abstract Nash
manifold structure is a Nash manifold. Set ¢f = g1 on C. If ¢;(C) ¢ Y, give a Nash
manifold structure to C, approximate g1|c by a Nash immersion gj|c : C — M;.
In this way we define a Nash immersion ¢} : X; — M; and set X’ = Im g} N M.
The rest proceeds in the same way as the case without corners. [

The following lemma is the C'“ or Nash version of lemma 4.2 and is used to prove
theorems 3.1,(2), 3.1,(3) and lemma 4.4.

Lemma 4.3. Let (> 0) € NU{oo}. Let M and N be compact C¥ manifolds
possibly with corners such that dmM = 1+ dimN. Let ¢ : N — M be a C¥
immersion such that ¢(Int N) C Int M, ¢(ON) C OM, Im ¢ is a normal crossing
analytic subset of M and the restriction of ¢ to ¢~ (RegIm @) is injective. Then
¢ is C¥ stable in the family of C* maps from N to M carrying ON to OM in the
same sense as in lemma 4.2. If M, N and ¢ are of class Nash, then ¢ is Nash
stable in the family of Nash maps with the same property as above.

Remark. In the case of a non-compact M and proper ¢, we see easily that the former
half part of lemma 4.3 holds in the Whitney C” topology, 7 (> 0) € N U {co}. We
can prove the latter half in the non-compact case in the semialgebraic C" topology
by reducing to the compact case by lemmas 4.5 and 4.6.

Proof of lemma 4.3. Let ¢ be an analytic approximation of ¢ in family in the
analytic case. Then by lemma 4.2 ¢ is C*° R-L equivalent to ¢, namely, there
exists a C'*° diffeomorphism 7 of M which carries Im ¢ to Im. Note that we can
choose 7 to be close to id in the C" topology by the proof of lemma 4.2. Then by
step 1 in the proof of theorem 3.1,(1) and its proof, we can choose an analytic 7
even in the case with corners. The existence of an analytic diffeomorphism 7 of N
with 1 o 7 = 70 ¢ is clear because 7 =¥t omo ¢ on ¢~ (RegIm ¢). Thus ¢ and
Y are C* R-L equivalent.

Assume that M, N, ¢ and 1 are of class Nash. It suffices to find a Nash
diffeomorphism of M which carries Im ¢ to Im. Let 7 be such a diffeomorphism
of M of class C*.

Case without corners. Let Z, and Z, denote the sheaves of N-ideals on M
defined by Im ¢ and Im41, respectively, and let {f;} and {g;} be a finite number
of their respective global generators. Then {g; o 7} is a set of global generators of
the sheaf of O-ideals Z,0 on M. Hence in the same way as in step 2 of the proof
of theorem 3.1,(1) we obtain C* functions «; ; and ; ; on M such that

fi=) aij-(gjom) and giom=> B ;fi
- i

Let M C R" and let h be a Nash function on R™ with zero set M. Extend g, to Nash
functions on R™ and use the same notation g; (theorem 2.8). Consider the following
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equations of Nash functions in variables (z,y, a; j,b; ;) € M x R™ x R" x R", for
/
some n':

h(y) =0, fi(z)- Z ai;9;(y) =0, g;(y) — Z bi,; fi(z) = 0.

We have a C“ solution y = m(x), a;; = a; j(z) and b; ; = ; j(x). Hence by Nash
Approximation Theorem II there exists a Nash solution y = 7'(z), ai; = o] ;()
and b; ; = 3 ;(v), which are close to 7, «; ; and 3 j, respectively. Then

' = M, fi=3al; (gon), gon' = fi,fi
j A

Hence 7’ is a Nash diffeomorphism of M and carries Im ¢ to Im 1.

Case with corners. We can assume that for Nash manifold extensions M; and
N; of M and N, respectively, ¢, are extensible to Nash immersion ¢; and ¢; of
Nj into M; and 7 to a C¥ embedding m; of a semialgebraic open neighborhood U
of M in M; into M7, and moreover there exist normal crossing Nash subsets Y of
My and Z of N7 such that M and N are closures of the unions of some connected
components of M; —Y and of Ny — Z, respectively, ¢1(Z) C Y and 1(Z) C Y. Let
M be contained and closed in an open semialgebraic set O in R"™, and h; be a Nash
function on O with zero set M;. Take a small open semialgebraic neighborhood
V of M in M; and shrink M;, N7 and U so that 7(U) C V and U N Im¢; and
V N Im1; are normal crossing Nash subsets of U and V, respectively. Then in
the same way as above, we obtain a finite number of global generators {f;;} and
{g1.:} of the sheaves of N-ideals on U and V defined by U NIm ¢; and V NImq,
respectively, and analytic functions o ; ;, 51,4,; on U such that

fl,i = Zal,i,j . (gl,j O ﬂ'l) and gl,j o = Zﬂl,i,jfl.i on U
i 7

We need to describe the condition 7(0M) = OM, i.e., m(UNY) C Y. Let & be
the square sum of a finite number of global generators of the sheaf of N-ideals 7
on M; defined by Y. Then ¢’ is a generator of Z2, and since M is a manifold with
corners there exists a unique Nash function ¢ on a semialgebraic neighborhood of
M in M; such that €2 = ¢ and € > 0 on Int M. Shrink U once more. Then &|y
and £ omy |y are well-defined generators of Z|y and ZO|y, respectively, and we have
a positive analytic function v on U such that £ o m = 4§ on U. We shrink O, and
using the same notation we extend g, ; and { to Nash functions on O.

Consider the germs on M x O X R™ x R™ x R of the following equations of
Nash functions in the variables (x,y, a; j,b; j,c¢) € U x O x R"™ x R" x R for some

n':

hi(y) =0, fl,i(i'?)—z ai jg1,5(y) =0, gl,j(y)—z bijf1,i(x) =0, §(y)—cf(x) = 0.

Then, since Nash Approximation Theorem II holds in the case of germs, we have
Nash germ solutions on M of the equations y = 71 (z), a;; = a; ;(v), bi; = B ;(v)
and ¢ = +/(x). The equation & o ] = 7' means w{ (M) = M. Thus 7|y is the
required Nash diffeomorphism of M. [J

The following lemma shows countable cardinality of the normal crossing Nash
(C%) subsets of a compact Nash (C¥, respectively,) manifold possibly with corners.
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Lemma 4.4. Let M be a compact Nash manifold possibly with corners of strictly
positive dimension. Consider Nash immersions ¢ from compact Nash manifolds
possibly with corners of dimension equal to dim M — 1 into M such that Im ¢ are
normal crossing Nash subsets of M, the restrictions ¢|y—1(Regim ¢) aT€ injective and
¢ carry the interior and the corners into the interior and the corners, respectively.
Then the cardinality of Nash R-L equivalence classes of all the ¢’s is countable.

The analytic case also holds.

Proof of lemma 4.4. Note that the cardinality is infinite because for any £ € N we
can embed k copies of a sphere of dimension dim M — 1 in M. It suffices to treat
only the Nash case for the following reason.

Let ¢ : M’ — M be an analytic immersion as in lemma 4.4 for analytic M’
and M. Assume that M has no corners. Since a compact analytic manifold is C*
diffeomorphic to a Nash manifold, we suppose that M’ and M are Nash manifolds.
Approximate ¢ by a Nash map. Then ¢ is C“ R-L equivalent to the approximation
by lemma 4.3. Hence we can replace ¢ by a Nash map.

Assume that M has corners. Let M; C R™ be an analytic manifold extension
of M such that M is the closure of the union of some connected components of
M; —Y for a normal crossing analytic subset Y of M;. We can assume that M; is
compact as follows. Let oo denote the function on M; which measures distance from
M. Approximate «|y,—pr by a C¥ function o’ in the Whitney C* topology, and
let € < ¢ be positive numbers so small that M U «a/~1((0, ¢]) is compact and such
that the restrictions of o’ to o/ ~!((e, €)) and to its intersections with strata of the
canonical stratification of Y are regular. Then (M;Na/~1((e, €)), Y Na/~1((e, €)))
is C* diffeomorphic to (M1Na/~((e+¢€)/2)),Y N/ ((e+¢€)/2))) x (e, €). Hence,
replacing M; with the double of M U o’~1((0, (e + €')/2]), we assume that M; is
compact.

Next we reduce the problem to the case where M; and Y are of class Nash.
Define, as in the proof of proposition 4.1, a C* immersion ¢ : ¥ — M; of a compact
C® manifold so that Img =Y, so that g[;-1(Reg1m ¢) is injective and g,(Y,) is an
analytic subset germ of M, for each y € Y. Give Nash structures on M; and
Y, and approximate g by a Nash map ¢’. Then by lemma 4.3 there exists a C¥
diffeomorphism 7 of M; which carries Im g to Im ¢’. Hence we can replace Y with
Im ¢’ and we assume from the beginning that M7, Y and M are of class Nash. By
the same reason, we suppose that M’ is a Nash manifold possibly with corners and
the closure of the union of some connected components of M| — Y’ for a compact
Nash manifold extension M of M’ and a normal crossing Nash subset Y’ of Mj.
Extend ¢ to a C* immersion ¢; of a compact semialgebraic neighborhood U of M’
in M{ into My, choose U so small that ¢;(UNY’) C Y, and approximate, as in the
proof of step 1 in theorem 3.1,(1), ¢, by a Nash map ¢; so that ¢;(UNY’) C Y
(here we use theorems 2.7 and 2.8 in place of corollaries 2.2 and 2.4 in the proof
in theorem 3.1,(1)). Then ¢y is a Nash immersion into M, and Im ¢1 |y is a
normfil crossing Nash subset of .M~, moreover (51|(¢;1‘M/)_1(Reg Tm &1 50) is injective
and ¢1(0M’) C OM, and finally ¢1|p is C¥ R-L equivalent to ¢ by lemma 4.3.
Thus we reduce the analytic case to the Nash one.

Consider the Nash case. Let M C R™ and ¢ : M’ — M be a Nash immersion as
in lemma 4.4. Let My, M/, Y and ¢, : M{ — M; be Nash manifold extensions of M
and M’, a normal crossing Nash subset of M7 and a Nash immersion, respectively,
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such that My € R™, ¢1 = ¢ on M', M and M’ are the closures of the unions of
some connected components of M; —Y and M| — ¢;*(Y), respectively, U N Im ¢,
is a normal crossing Nash subset of an open semialgebraic neighborhood U of M in
M; and ¢1|¢1‘1(Reg(Umm 1)) 18 injective. By Artin-Mazur Theorem (see the proof
of theorem 2.9) we can regard M| as an open semialgebraic subset of the regular
point set of an algebraic variety in R™ x R™ for some n’ and ¢1 as the restriction
to M of the projection R" x R" — R™. We will describe all such ¢y : M| — M,
with fixed complexity as follows. Any algebraic set in R™ x R™, and its subset of
regular points where the projection to R" is regular, are, respectively, described by
the common zero set of polynomial functions f1, ..., f; on R™ x R™ for some [ € N
and

U {2 = (21,0, Tppp) € R

/I:'{/il,...‘;ik}c{l,...,l}
I'={iy,..sip {1,001}

| ;c+n/
O(Ziyy ooy Tiyy T 1y ovy T’ )

()] # 0,

k+n’

gI/7i//fZ‘// = Z gI’,i”,jfi;.: gI’,i”(«f) 7£ 0, Z.” - {1, ,l} - I,}
j=1

for some polynomial functions gr ;» and g/ ;7 ; on R™ x R™, where k =n+1—
dim M, and % denotes the Jacobian matrix. Moreover, its open semialgebraic
subset is its intersection with

Uy nloy {o € R 2 by () > 0}

for some polynomial functions h; ;; on R™ X R" (here we enlarge [ if necessary).
Thus ¢1 : M{ — R™ is described by the family f;, g1, grri; and h; j and
conversely, any polynomial functions f;, gr s, gr v ; and h; j define in the above
way a Nash manifold M7 in R™" of dimension dim M — 1 such that the projection
¢1 : M] — R™ is an immersion. If the degree of the polynomials are less than or
equal to d € N, we say that ¢; : M{ — R"™ is of complexity I, d,n’.

Furthermore, since a polynomial function on R of degree less than or equal to
d is of the form ZaeNg+n' anT®, aq € R, where N’;Jr”/ ={a e N"t" : |o| < d},
we regard the family of f;,.., h; j» of degree less than or equal to d as an element
a = (ay) of RN for some N € N. We write ¢y : M] — R"™ as ¢1, : M], — R™.
Then the set X = U,epn{a} x M, € R¥ x R" x R" is semialgebraic, and we
can identify ¢1, : M{, — R"™ with p|(gop)-1(a) : (g0 p)"'(a) — {a} x R", where
p: X - RN xR" and ¢ : RY x R” — R” are the projections.

Consider the condition Im ¢y, C M;. The subset of RY consisting of a such that
Pl(qop)-1(a) fails to satisfy this condition is g o p(X NRYN x (R™ — M) X R™) and
hence is semialgebraic. Let A denote its complement in R™. Thus Im ¢1, C M; if
and only if a € A.

Next consider when U N Im ¢, is normal crossing and ¢1a|¢;a1(Reg(UmIm $10)) is
injective. For that, remember that the tangent space T, M/, of M|, at x € Mj,,
for M, described by fi, g, ... as above, is given by

T, M|, = {y € R"™ :dfi,y = --- = dfiay = 0},
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and hence the set TX defined to be {(a,z,y) € X x R"*" : y e T,M],} is
semialgebraic. Assume that a € A. Set

M ={(z,2") € M{, x Mi,:x# 7', ¢1a(x) = ¢p14(2') € U,
dim(dqﬁlax(TxM{a) + d¢1ax’(Tx’M{a)) =dim M — 1}.

Then M/, and Ugzea{a} x M, are semialgebraic, and a € A — ¢’ (Ugea{a} x M{")
if and only if for any x # 2’ € My, with ¢1,(x) € U, the germs of ¢y, at z and 2’
intersect transversally, where ¢ : RY x R™ x R™ x R" x R — R” denotes the
projection. Repeating the same arguments on m-tuple of My, for any m < dim M
we obtain a semialgebraic subset B of A such that for a € A, then a € B if and
only if U N Im ¢4, is normal crossing and ¢1a|¢1_a1(Reg(UﬂIrn $1a)) is injective.

Let {B;} be a finite stratification of B into connected Nash manifolds such
that ¢ o p is Nash trivial over each B; [C-S;], i.e., for each ¢ there exists a Nash
diffeomorphism 7; : (qop)~1(B;) — (qop)~1(b;) x B; of the form 7; = (], gop) for
some b; € B;. For a € B, set M = <;S1_a1(M) and ¢q = ¢14|nr;. Then {¢, : M) —
R"},cp is the family of all ¢ : M’ — M as in lemma 4.4 which are extensible to
¢1 @ M{ — M; with fixed U and complexity [, d, n’, and if a and a’ are in the same
B;, i € I, then ¢, : M) — M and ¢, : M), — M are Nash R-L equivalent by
lemma 4.3 for the following reason. As there exists a CY curve in B; joining a and
a’, considering a finite sequence of points on the curve we can assume that a’ is
close to a as elements of RYY. We can replace ¢, and ¢, with ¢, o (7T§|{a}><M(;)_1 =
Pr o (il ayxary)F e {bi} x My, — R™ and py o ([ taryscarr,) ™ 2 {bs} x My, — R™,
where p,, denotes the projection RY x R" x R" — R™. Hence in order to apply
lemma 4.3 it suffices to see that (wg\{a,}xM;/)—l is close (mj|{a}xar;) " in the C*
topology. That is true because we can regard (Wﬂ{a’}XML/)_l and (7]]1ayxnrr) !

as W;l‘(qop)—l(bi)x{a/} and 7Ti_1|(qop)_1(bi)><{a}7 respectively, (qop)~1(b;) is compact
and because of the following fact. For compact C! manifolds M, and M5 and for a
C! function ¢ : My x M3 — R if two points v and v in M3 are close each other then
the functions My > x — g(z,u) € R and M 3> z — g(x,v) € R are close in the C*
topology. Hence the cardinality of equivalence classes of ¢, : M, — M, a € B, is
finite. Until now we have fixed U. We need argue for all semialgebraic neighborhood
U of M in My. However, it is sufficient to treat a countable number of U’s since
M is compact. Thus the cardinality of all equivalence classes is countable. [

4.2. Compactification of a Nash function with only normal crossing
singularities.

The following lemmas 4.5, 4.6, 4.7 and proposition 4.8 are preparations for propo-
sition 4.9 that states the compactification of a Nash function with only normal
crossing singularities. The main tools are Nash sheaf theory and the Nash version
of Hironaka desingularization theorems.

Lemmas 4.5 and 4.6 show that a normal crossing Nash subset of a non-compact
Nash manifold is trivial at infinity.

Lemma 4.5. Let X be a normal crossing Nash subset of a Nash manifold M and
f: M — R™ a proper Nash map whose restrictions to M — X and to strata of the
canonical stratification of X are submersions onto R™. Then f is Nash trivial, i.e.,
there exists a Nash diffeomorphism m: M — f=1(0) x R™ of the form = = (7', f),
and 7' can be chosen so that #'(X) = X N f~1(0) and «' = id on f~1(0).
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The analytic case also holds.

This is shown in [C-Sp 2] in the case of empty X. We prove here the nonempty
case.

Proof of lemma 4.5. Consider the Nash case. Let n = dim M, take k an integer
smaller than n, and let X}, denote the union of strata of the canonical stratification
of X of dimension less than or equal to k. We define 7’ on X}, by induction on k,
and then on M. To this aim, we can assume that 7’ is already given on X, say
mx = (7', fx), by the following fact, where f4 = f|4 for a subset A of M.

Fact 1. There exist a Nash manifold X i of dimension k£ and a Nash immersion
px, - X}, — M such that Impg, = Xj and p)?k|p;-<lt(Xk—Xk_1) is injective.

Proof of fact 1. (Artin-Mazur Theorem. See the proof of theorem 2.9.) Let M
be contained and closed in RY, and let X kZ denote the Zariski closure of X, in RV.

Then there exist an algebraic variety X7 (the normalization of X7) in RY x RY /

for some N’ € N and the union of some connected components X}, of X kZ such that

X kZ is non-singular at X . Hence X r 1s a Nash manifold and the restriction px, to

X, of the projection p : RY x RN — R satisfies the requirements in fact 1.

Let ¢; be a finite number of global generators of the sheaf of N-ideals Z on M
defined by X, and set ¢ = >_ ¢2. Then ¢ > 0 on M — X and ¢ is a global generator
of 72. For a subset A of M and z € R™, set A(x) = AN f~(x). We will extend
7’ to m'. For that it suffices to find 7/ of class semialgebraic C! for a large integer
[ for the following reason.

Fact 2. Let g be a semialgebraic C! function on M whose restriction to X is of
class Nash. Then fixing g on X we can approximate g by a Nash function in the
semialgebraic C'~" topology.

Proof of fact 2. As in the proof of theorem 3.1,(1), step 1, g|x is extensible to
a Nash function G on M by theorem 2.8. Replace g with ¢ — G. Then we can
assume that ¢ = 0 on X and g is of the form Y g;¢; for some semialgebraic C'~—"
functions g; on M for the following reason. Reduce the problem to the case where
(M, X) = (R" {x1---2z = 0}) and {¢;} = {12} for some n’ € N by a
partition of unity of class semialgebraic C' (remark 2.11,(5)’). Then g is divisible
by 1 ---x, as a semialgebraic C'~" function on M by elementary calculations.
Hence g is of the form ¢z ---x, for some semialgebraic C'~" function g; on
M. As usual, we approximate g; by Nash functions §; in the semialgebraic C'—"
topology we obtain the required approximation »_ g;¢; of ¢ in fact 2.

We will see that there exists a finite semialgebraic C! stratification {B;} of
R™ such that for each i, the map mx|xns-1(p,) is extensible to a semialgebraic
C! diffeomorphism m; = (7}, ff-1(p,)) : fH(Bi) — M(b;) x B; for some point
b; € B;. In the following arguments we need to stratify R™ into {B;}, each B;
into {B;; : j = 1,2,...} and once more. However, we always use notation R™
for all strata for simplicity of notation, which does not cause problems because we
can choose stratifications so that strata are semialgebraically C* diffeomorphic to
Euclidean spaces.

We recall the construction of 7 as in the proof of Theorem I1.6.7 in [S3]. Without
loss of generality we assume that 7'y|x) = id. First we can modify in order ¢
to be a semialgebraic C! function so that for each z € R™, ¢| M(z)—x has only
singularities of Morse type (Claim 2, ibid.) (here we need to stratify R™ and
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consider the restriction of ¢ to each stratum in place of ¢, and the main method

of proof is a semialgebraic version of Thom’s transversality theorem), ¢ is constant

on each connected component of Z def Uzerm Sing(é|ar(z)—x ) and the values are

distinct from each other (Claim 4, ibid.) after the second stratification. Next, let
Y be a connected component of Z and set Y = ¢~ (¢(Y)). Then there exist an
open semialgebraic neighborhood U of Y in M and a semialgebraic C* embedding
u = (v, fy) : U — U(0) x R™ such that v|¢7) = id and ¢ o v’ = ¢[y (Claim
5, ibid.) after the third stratification. Thirdly, applying lemma 4.5 without X
to the semialgebraic C' map (f,®)|y-1(r) : ¢~1(I) — R™ x I for each connected
component I of (0, o0) — ¢(Z), we obtain a semialgebraic C! diffeomorphism \ =
N, fo-1(nys blo-1(n)) 1 71 (I) — ¢~1(1)(0,0) x R™ x I such that X'|4-1(7)(0,0) = id,
where ¢~1(1)(0,0) = ¢~ (to) N M(0) for some tg € I (Claim 7, ibid.). Fourthly,
we paste u and A for all I and construct a semialgebraic C* diffeomorphism v =
(V' fmu-x): M — X — (M(0) — X) x R™ such that v'[;0)—x = id and ¢ o v’ =
®|pm—x, ibid. Hence it suffices to prove the following fact by the same idea of
pasting.

Fact 3. There exist an open semialgebraic neighborhood W of X in M and a
semialgebraic C! embedding w = (w’, fwr) : W — M(0) x R™ such that v’ = 7’
on X, so that w'|y () = id and ¢ o w’ = @|w.

Proof of fact 3. Here the condition ¢ o w’ = ¢|w is not necessary. If there exists
a semialgebraic C! embedding w without this condition, we replace ¢ on W with
¢pow’, extend it to a semialgebraic C! function on M positive on M — X, and repeat
the above arguments from the beginning. Then fact 3 is satisfied by this w’.

If X is smooth, the problem becomes easier. Hence we reduce to the smooth
case. Let X ¢ RV x RN and Pg X — M be a Nash manifold and the restriction
to X of the projection p : RY x RV " = RY defined in the proof of fact 1 for
k = n — 1. For a small positive semialgebraic C° function € on X, let Q denote the
e-neighborhood of X in M x RN/, ie.,

Q= J{¥ e M xR :dis(z,2) < e(2)},

ZEX

and let ¢ : Q — X denote the orthogonal projection, which is a Nash submersion.
Set

M = {(z,y) € Q cMxRN :q(z,y) = (2',y) for some 2’ € X}.

Then M is a Nash manifold of dimension n containing X, and [ 2V M — M is
a (not necessarily proper) Nash immersion, where p,4 denotes p|4 for a subset A
of M x RY'. Set A(0) = AN M(0) x RN’ set fua = fopa for the same A, and
X = pxzfl (X). Then X is a normal crossing Nash subset of M, and Ps: X - Xis

a (not necessarily proper) local Nash diffeomorphism at each point of X . Moreover

Tx = (7, fx) is lifted to 7z = (w;:(,f):() : X — X(0) x R™, and there exists a

Nash function (5 on M with zero set X which is, locally at each point of X, the
square of a regular function and such that

(1) b=dor

.><11

n

on



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 31

To be precise, we construct ¢ first on M (0), and extend it to X so that (1) is
satisfied and then to M as usual. Moreover 7T;~2 = id on X(0).

Note that X,,—1 = 0 since fx,_x,_, is a submersion onto R™ if X; # 0.
Iiet m < k < n. Then by the definition of X, the map PRAp-1(Xp—Xp 1)
XNp Y (X, — Xp_1) — Xp — Xp_1 is a Nash (n — k)-fold covering. Hence con-
sidering a semialgebraic triangulation of Xj(0) compatible with X} _;—a semial-
gebraic homeomorphism from the underlying polyhedron of some simplicial com-
plex to X(0) such that X;_1(0) is the image of the union of some simplexes—
and small open semialgebraic neighborhoods of inverse image of open simplexes
by 7r’X_1 in M — Xj_1, we obtain finite open semialgebraic coverings {Qy; : i} of
Xy —Xp—1in M —Xpq and {Qpij:4, 1 <j<n—k}of XNp '(X)— X)_1) in
M—XNp~1(Xy_1) such that Wf,;l(X(O)ﬂQk,i) = XNQk,i, (Qk,i» XxNQk,;) are Nash
diffeomorphic to (R™, {0} x R¥), such that PGy, - (Qk.ijy X Np 1 Xp)NQr.ij) —
(Qk,i» Xk N Qi) are Nash diffeomorphisms, and Qg ; N Qki ;0 = O if j # 7.
Define Nash functions ¢y, ;; on Q; by ¢ o pél . Then ¢y, ; are the squares

k,i,7

of Nash functions, say d),lc/ fj, and we can choose Q)i ; so small that the maps

(f, qﬁi’/zl,..., i/lzn_k) P Qki — R™T"F are submersions, that if Qi N Qrir # 0
then

(2> {¢k77:7.j|Qk,iﬂQk'i/ j = ]-7 s = k} = {¢k,i’,j|Qk,iﬂQk)i/ .] - ]-7 = k}?

and that if Qg ; N Qx i+ # 0 for k < k' then

(3) {¢k,i,j|Qk,ika/7i/ j = 17 ...,TL - k} D {(bk/:i/’j‘Qk,ika/,i/ j = 17 "'7n - k/}

Let @y ki denote the k' — k Nash functions on Qg ; N Qs 4+ in the complement
in (3). Note that (1) implies

1/2 1/2
(1) k/” omy = ¢k’/i,j on X NQp,i-
We work from now in the semialgebraic C! category. Shrink again Qy ; (fix-
ing always Xi N Qk), and set Qr = U;Qr,;. Then there exist semialgebraic C!
submersive retractions ¢ : Qr — X — Xi_1 such that

(4) foq.=[f on Qy,
(5) qgromyx =myoq onXNQ,
and the maps (qx|q, ,{:/221, - ,1/1271_,6) t Qi — (X — Xp—1) X R" % are semial-

gebraic C! embeddings as follows.
For a while, assume that g, on Q(0) are already given so that the following con-
trolled conditions are satisfied.

(6)o Qo g = q. on Qr(0) N Qu(0) for k < K,
(7)o

V2 oqu = 61/ on Qui(0) N Quir(0) for k < K and gy,

Qr.iNQpr o € Pk iir-
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Extend each g to qr : X N Qr — Xi — Xk_1 so that (4) and (5) are satisfied
as follows, which is uniquely determined, though we need to choose @x so that
(X N Qk) C Qx(0). For (x,y) € Q% with small dis(z,y), let r(z,y) denote the
orthogonal projection image of = to Xi(f(y)) — Xp—1. Let ¢}, : Qr — X — X1
be any semialgebraic C! extension of g, shrink Q and define gy (x) for = € Q4

to be 7(q,(x),z). Then g is a semialgebraic C! submersive retraction of Qj to
X — Xk—1 and satisfies (4) and (5).

Hence ( 11/1217 e ,i/lzn_k) is a local coordinate system of qk_l(x) N Qi at x, for
each x € X, — X;_1. Therefore, by (3), for each Q; and Qp ;v with k < &k’ there
exists a unique semialgebraic C' submersion Gk i - Qri N Qi — X N Qi
such that

(8) Gk © Qr,k’iit = Gk on Qi N Qg i and
1/2 1/2
(9) ¢k,/i,j O Qi jisit = ¢k,/i,j on Qk,i N Qkr,ir for drijlqy .nQu .o € Phkr iir-
To be precise, the domain of definition of g i’ ;i is qk_,l(kai) NQk,iNQp ir. How-
ever, we omit qk_,l(kai) for simplicity of notation. In the following arguments also

we simplify the domains of definition of many maps. By the above equalities we
have the following equalities (4)’, (5)" and (10).

® (4)

(4)' fOQk:k:’,i,z’ = fOQkOQkk’z’z’ = f on kaﬁQk/ i/
) / (E) ®) (5)
dk Oqr ki3’ OTx = (qpOTxy = Tx O(Qr = Tx Oqk ©(qk,k'ii — QRO’/TXOC]kk'm
on X N Qi N Qkrir,
9 ,1/2 (1) 1/2 (9) ,1/2 " 172
O ot iiomy = o loml 2 62 2 o oquwi = &0 0 Qi

on X N Qk,i N leﬂ'/ for ¢k,i,j

Qk,iﬂQk/’i/ E ¢k,k/i,i'7

hence by embeddingness of (qx|q, , ¢k s Ilc/iQn—k)
(5) Qi OTx = Tx O iy o0 X N Qi NQpr ir-

By assumption, (6)p and (7)o hold. Then by (4) and (5)
(6)x geoqy =q onXNQrNQu for k <k,

1/2 1/2
Jioaw =62 on X N QuiN Qi for k<K and 6p 510, 00w o € Pr,iir

Hence by the same embeddingness as above
(10) Qe i = Qe on X NQp i NQprir.

Compare gy and gy, g/ By (2) and (3)

.y .y
521507 302,25 "

Qh ket iv i, = Qe in,iy, O Qryiy N Qprir N Qg iy
Tk k' iy i, = Dk iniy, O Qkiy N Qi N Qpr iy
hence Qi iy, i, = Qi b inyiy,  ON Qkyiy N Qkyiy N Qur i N Qe iy -
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Therefore, we have semialgebraic C! submersions Qi 2 Qr N Qrr — X — X1,
k < k', such that

(4) Joaquw =f onQrNQy,
(8) Qe o qrr = qr on QrNQ,
1/2 1/2
(9) Cbk,/i,j O Gk = cbk,/i,j on Qk,i N Qv for Gk jlQw Qe v € Phokr i
(10) ek = Qe on X NQE N Q.

We want to shrink the Q’s and modify the g’s keeping (4) and (5) so that

(11) Qe = @ on QrNQy for k < k.

We proceed by double induction. Let m < k; < ks < n € N, and assume that
(11) holds for k < k' < ko and for ky < k < k' = ky. Fix ¢, and k < ko.
Then we need to modify g, so that (11) holds for k& = k; and k' = ky. Let ¢
be a semialgebraic C! function on M — X}, 1 such that 0 < ¢ < 1, and ¢ = 1
outside of a small open semialgebraic neighborhood Q) (C Q&,) of Xx, — Xy, 1
in M — X}, 1 and moreover { = 0 on a smaller one Q%l Shrink ), and define a
semialgebraic C! submersive retraction Gy * Qhy — Xy — Xpy—1 by @, = q, On
Qr, — Q}, and for © € Qr, N Q) , let g, () be the orthogonal projection image
of &(2)qry () + (1 — &(2))qry .k, () € RY to the Nash manifold Xy, (f(z)) — Xg,—1-
Then gq;,, satisfies (4) and (11) for k = k1, k" = k2 and for Qi replaced by Q} , the
map (g, |Qu, .- ¢;1€£,2i,17 vy ¢;1€£’2i,n_k2) P Qkyi — (Xiy—x3, 1) x R" %2 continues to be
a semialgebraic C' embedding if we shrink Qp, ; (of course, fixing Q, iNXk,), ¢}, =
Qr, o0 X NQp, by (10), hence (5) for g;,, holds, and q;,, = qx, on Qr, NUg, <k<k, Qk
for the following reason. Let ki < k3 < ko. It suffices to see that qx, r, = qr, on
Qi N Qr, N Qry, which is equivalent, by uniqueness of g, k,, to

(12) Qhy © Gy = iy O Qg N Qiy N Qs
(13) Ohl O s = Oty 00 Qiy N Qayi N Qi
for @k, in,ilQu, 11 NQryiy € Phika,in,in-
By (8) for k = ky and k' = k3 and for k = k3 and k' = ko
Qky © Qky ks = Qky ON Qpy N Qg
Qks © Qks ko = ks ON Qry N Q-
By (11) for k = k; and k' = k3 and for k = k3 and k' = ko

Ty ks = Qy 0N Qry N Qpys
Gks,ky = gk, ON ka N Qk3'

(14) Qky © Qks = Qky ON Qpy N Qry,
(15) Qks © Qky = Qs ON Qpy N Qs
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Therefore,

(14) (15) (14)
(12) Qky ©Qks = Gk © Qhs © Qs = qky O Qs = Qi ON Qpy N Qpy N Q-

We can prove (13) in the same way because if Qg, i, N Qkyin N Qksis # O then
q)kl,kzﬂ'l,iz |ka1,i1 NQkoy inNQky iz 15 the disjoint union of @k1,k3711,i3 |ka1,i1 NQky,ioNQkg,ig
and Py iy is,is | Qr, 1, NQy.iyNQry.ip - Lhus the induction process works, and we as-

sume that (11) is satisfied. Consequently, the following controlledness conditions
are satisfied by (8), (9) and (11).

(6) qroqrw =qr on Qg NQy for k <k,
(7)
1/2 12 /
ki © Ak = ¢k,¢,j on Qi N Qv for k < k" and ¢k,i,j|Qk,ka/7i/ € gk i,r-

It remains to construct g on Qx(0). First define r as above, i.e., for (z,y) €
Q3(0) with small dis(x, y), let r(x,y) denote the orthogonal projection image of z to
Xk (0) = Xp—1. Set gy (z) = r(z,z) for € Qx(0). Then gx : Qx(0) — Xi(0) — Xp—1
are Nash submersive retractions. We need to modify them so that (6)g and (7)g
are satisfied. This is clearly possible by the above arguments.

Now we define W and w as in fact 3. Set W = UZ;}RQK and consider each Qy ;.
Shrink @ ; so that

1/2 1/2 1/2 1/2
(' © qr, k,/i,17 ) k/zn—k)<Qk1) C (g, k,/i,17 ) k/zn—k)<le<O))
Then for each = € Q)i ; there exists a unique y € Q ;(0) such that

1/2 1/2 1/2 1/2
<Qk7 k7/¢717 ceey k,/i,n—k)(y) = (W,/X' ° qk7¢k,/i,l7 ] k,/z,n—k)(m)
The correspondence wfm- from z to y is a semialgebraic C' map such that wy,; =
(W 45 fQu.s) + Qri — Qk,i(0) x R™ is a semialgebraic C! embedding by (4), wy ;=
' on X N Qy,; because
1/2 1/2 (1)',(5) 1/2 1/2

(q]fv k7/¢717 eeey k,/i,n—k)oﬂ—fx<x) = (ﬂ—fX o (g, ¢k,/i,17 seey k,/z,n—k)(m) for EXﬁ Qk,i7
and wy ;q,.0) = id by (4) and by the equality 7% = id on X (0). Hence it
suffices to see that wfm = w;,,i, on Qi N Qk ;. This is clear by (2) if &k = k' and
QriNQr v # 0. Assume that £ < k&’ and Qr ;N Qk i+ # 0. By (3) we suppose that

1/2 1/2 , /
kig = Phijt+k—k O QriNQrirs J=1,..,n—k.

Then by the definition of wy, ; and wy, ;, we only need to show that

/ /
Qe oWy ; = Tx oqr  on Qp i NQrr v,

which is equivalent to

/ /
QK O Qr OWy ; = qr O Tx O Gy Oon Qk; N Qpr i+ and

1/2

1/2 / / . /
O oWy ; =@ i 0Txoqy onQriNQu v, j=1,...k —k.

k,i,j



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 35

We have
r O ro_ © () ,
q’ﬂoq’@’owkvi—%owki—ﬁxoqk—onqzcoq;«—qwﬂxoqku
1/2 172 () 1/2 (1) 1/2
¢kngQk’Owk1 (bk/zg ;ﬂ,i:(b}@/i’] (bk/zg (bk/zgoﬂ—XOQk’
]—1,...,k—k,

Thus we have completed the proof of fact 3 and hence of the construction of m; =
(ﬂ", ff—l(Bi)): f_l(Bl) — M(bl) X B;.

Next we will extend ; to a neighborhood of f~1(B;) in M. Let n; : U; — B; be a
semialgebraic submersive C! retraction of a small semialgebraic open neighborhood
of B; in R™. Then we only need to lift n; to a semialgebraic submersive C! retraction
mis fY Z) — f7H(B;) so that i; 1 (X},) = X.Nf~1(U;) for each k and 7'y of); = 7'y
on X N f~1(U;) because if 7; exists, the map f~1(U;) 2 z — (7} o ij;(x), f(x)) €
M (b;) x U; is the required extension of m;. We proceed by two steps. First we define
f; on X N f~Y(U;) and then extend it to f=1(U;).

The first step. We can assume b; = 0. Then 7, = 7% on X N f~1(B;). Hence
there exists a unique semialgebraic C! diffeomorphism 7; , from X N f~1(y) to
X N f~Y(ni(y)) for each y € U; such that w07, = 7% on X N f~1(y). Define
7:XNfHU;) — X0 f7YB;) by 7i(x) = 7 5x)(x). Then 7); satisfies the
requirements.

The second step. Since B; is Nash diffeomorphic to a Euclidean space we can
regard U; as B; X R™ and 1; as the projection n; : B; X R™ — B;, where
m’ = m — dim B;. Then we define 7; on f~1(B; x R*¥ x {0}) by induction on
k= 0,...,m'. For that it suffices to consider the case m’ = 1. Moreover we replace
R of B; x R with the circle S' = {z € R? : |z| = 1} as follows. Let w; : S' — R
be a Nash function such that 0 is a regular value. Let 7; : B; x R — R be the
projection, M be the fiber product of 7j; o f : f~1(U;) — R and w; : S* — R, X be
the inverse image of X U f~1(B; x {0}) under the induced map &; : M — M and
f : M — B be the naturally defined projection. Then M is a Nash manifold, f is
a proper Nash map, X is a normal crossing Nash subset of M, and the conditions
in the lemma are satisfied for X, M and f. Define a map Tox = (fr;X, f) X =

(X N f71(0)) x B; so that 7 o @&; o ﬁ’X
determined Nash diffeomorphism, 7r =id on X N f~1(0), and by fact 3 the map

R L :
= mx ow;. Then 7, ¢ is a uniquely

7; x is extended to a semialgebraic Cl embedding #; = (7, f) : W; — f~1(0) x B;

for some open nelghborhood WZ of X in M. We can shrink U; and WZ so that
f _1(U ) = W; since f is proper. Hence it remains to consider the problem of lifting
n; only on 7;],-10) : n71(0) — {0}. Namely the problem is reduced to the case
where B; = {0}. This case also follows from fact 3. Thus 7; is extended to f~1(U;).
We keep the notation 7; for the extension.

For the construction of m we need to modify and paste m; together. This is what
[C-S2] proved. To be precise, [C-S1] proved local Nash triviality and [C-S3] proved
that the local Nash triviality implies the global Nash triviality. They treat the case
without X. However, the proof in [C-S3] works in the case with X (see also the
proof of Theorem I1.6.3, [S3]). Thus we obtain 7 and complete the proof of lemma
4.5 in the Nash case.

The analytic case follows in the same way. [
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Note that the above proof shows that the lemma still holds if M is a Nash mani-
fold with corners and if the restrictions of f to strata of the canonical stratification
{M}} of OM compatible with X are also submersions onto R™. Here the canonical
stratification {M}} compatible with X is defined as follows. For a semialgebraic
set S, let RegS denote the subset of X consisting of points x such that S, is a
Nash manifold germ of dimension dimS. Then M,,_; = Reg(OM — X), M, _o =
Reg(OM — M,,_1), M,_3 = Reg(OM — M,,_1 — M,,_5), ... Note that {M} is a
stratification of OM into Nash manifolds of dimension k, that X NOM is the union
of some connected components of M, ..., M,,_1, and the method of construction of
{M}} is canonical.

Lemma 4.6. Let M be a non-compact Nash manifold contained and closed in RN
and X a normal crossing Nash subset of M. Let B(r) denote the closed ball in
RYN with center 0 and radius r € R. Then there exists a Nash diffeomorphism
T7: M — M NInt B(r), for some large r, such that 7(X) = X NInt B(r).

This does not necessarily hold in the analytic case.

Proof of lemma 4.6. Assume that M is of dimension n. Set X,, = M — X. Choose
r so large that the p|x,_p(r/2) are submersions onto (r/2, o), where {X; : i =
0,...,n — 1} denotes the canonical stratification of X and p(z) = |z| for z € M.
Then by lemma 4.5 there exists a Nash diffeomorphism p : M — B(r/2) — (BN
p~L(r)) x (r/2, o) of the form p = (p’, p) such that p'(X — B(r/2)) = X Np~(r).
Let o : (—oo, 7) — R be a semialgebraic C' diffeomorphism such that o = id on
(—o0, r/2), where [ is a sufficiently large integer. Set

To(x):{a: for x € M N B(r/2)

p (P (z),a " op(x)) for x € M — B(r/2).

Then 7y is a semialgebraic C! diffeomorphism from M to M N Int B(r) such that
T0(X) = X NInt B(r). We only need to approximate 7y by a Nash diffeomorphism
keeping the last property. Let m: M — M N1Int B(r) be a Nash approximation of
70 in the semialgebraic C! topology. Replace 7o with 7o 75 ! Then what we prove
is the following statement.

Let M be a compact Nash manifold with boundary in R, let X be a normal
crossing Nash subset of M with M ¢ X, and let 7, be a semialgebraic C' diffeo-
morphism of Int M arbitrarily close to id in the semialgebraic C* topology such that
%O(X NInt M ) is a normal crossing Nash subset of Int M. Then we can approximate
7o by a Nash diffeomorphism 7 of Int M in the semialgebraic C! topology so that
F(X NInt M) = 75(X N Int M).

We proceed as in the proof of step 1, theorem 3.1,(1). Let {Xj :j=0,....,n—1}
denote the canonical stratification of X and set X,, = M — X. By induction, for
some i € N, assume that %0|U;:(1)ijn“\~4 is of class Nash. Let I’ € N. Then

it suffices to choose [ large enough and to approximate 7p by a semialgebraic C!

diffeomorphism 7 of Int M in the semialgebraic C' topology so that T(XNInt M) =

To(X NInt M) and 7| J X, Nnt 87 18 of class Nash. Let Z denote the sheaf of N-
S

ideals on Int M defined by U;;%)X ;NInt M. By theorem 2.7, the sheaf 7 is generated
by a finite number of global cross-sections &1, ..., & of Z. Then 7~'O|Ui:(1))~(jmntM is

an element of HO(Int M, N /T)N by the same reason as in the proof in step 1.
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Hence by theorem 2.8 we have a Nash map h : Int M — RN such that h = 7
on U’ —oX N Int M. Here we can choose h to be sufficiently close to 7 in the
semialgebraic C! topology for the following reason. It suffices to see that 7y — h is
of the form 2?21 §;B; for some semialgebraic C" maps B; : Int M — R” because

h + 2521 & Bj fulfills the requirements, where Bj denote Nash approximations of

B3; in the semialgebraic C" topology. Hence we will prove the following statement.
Let 8 be a semialgebraic C! function on Int M vanishing on Ué-;%)Xj N Int M.

Then (3 is of the form Z?Zl B3;&; for some semialgebraic C" functions B3; on Int M.

By the second induction, assume that the statement holds for manifolds of di-
mension strictly less than n. The problem is reduced to the Euclidean case as
follows. There exists a finite open semialgebraic covering {O,} of Int M such that
each (Oy,0,nX) is Nash diffeomorphic to (R", {(x1, ..., z,) € R™ : -y, =0})
for some ny, € N. Let {ns} and {n.} be a partition of unlty of class semlalgebralc
C' subordinate to {O,}, and semlalgebralc C! functions on Int M, respectively,
such that n. = 1 on suppns and suppn., C O,. If each (5775)|05 is described
to be of the form Zj Bj.s&j " functions Bj,s on O
then the naturally defined functions ) 3; 7., for j = 1,...,k, are semialgebraic
C" functions on Int M and 3 = >-;(224 Bj,sms)&;. Hence we can assume that
(Int M,Int M N X) = (R, {x1 -z, = 0}) for some n’ € N, and then n’ > 0.
Apply the induction hypothesis to B|;;,—o;. Then there exist semialgebraic ch
functions 3; on R~ ! such that

B(0, g, ..., x,) = Z Bi(x2, ..., 20)&5(0, 22, ..., Tn)

because Z|(,, =} is the sheaf of N-ideals on {x1 = 0} defined by Uj;%))zj N{z1 =0}
(here I; > 0 is arbitrarily given and [ depends on [1). Regard naturally ﬁ; as
semialgebraic C"* functions on R™ and replace 3 with 5 — > ﬁ}ﬁj. Then we can
suppose that § =0 on {x; = 0} from the beginning. Under this assumption 3/z
is a well-defined semialgebraic C11~1 function. Consider 3/x; and {3 -2, = 0}
in place of § and {z; - - -z, = 0}, and repeat the same arguments for {x5 = 0} and
so on. Then we finally arrive at the case X = (). Thus the statement is proved, and
h is chosen to be close to 7y in the semialgebraic cr topology.

Set Y = 7(X NInt M) and Y; = 75(X; NInt M). Then Y is a normal crossing
Nash subset of Int M, the set {YJ :7=0,...,n— 1} is its canonical stratification,
and Y is a normal crossing semialgebraic C! subset of M in the sense that M has
a semialgebraic C! local coordinate system (x1,...,2,) at each point of OM with
Y ={x; >0, 25---2, = 0} for some n’ > 0 € N by the definition of semialgebraic
C' topology. Hence there exists a tubular neighborhood U; of Y; in RY such that
for some e >0 € R

Ui = Uyevi{z € RY : |o — y| < edis(y, UZhY), (¢ —y) L T,Y;).

Let ¢; : U; — Y; denote the orthogonal projection. Choose h so close to 7o that
h(X; NInt M) C U;. Then g; o h|u;:OijIntM is a Nash map to Uj_,Y; close to
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Tol i L X AInt N1 in the semialgebraic cr topology. Note that the map is a diffeomor-
-

phism by Lemma I1.1.7 in [So]|. Hence it remains only to extend it to a semialgebraic
C' approximation 7 : Int M — Int M of 7 in the semialgebraic C' topology so that
%(X' N Int M ) =Y. However, we have already proved it without the last condition.
Moreover, the proof shows also that the condition is furnished inductively. Thus
we complete the construction of 7. [

Lemma 4.7. Let f and g be Nash functions on a Nash manifold M which have
the same sign at each point of M, only normal crossing singularities at the common
zero set X and the same multiplicity at each point of X. Let | € N. Then there
exists a Nash diffeomorphism m of M such that 71(X) = X and f —gom is [-flat at
X.

If f is fized and g is chosen such that the Nash function on M, defined to be g/ f
on M — X, is close to 1 in the Nash topology, then m is chosen to be close to id in
the Nash topology.

Proof of lemma 4.7. Let M C RY, set n = dim M and let [ be sufficiently large.
For each k(< n) € N, let X} denote the union of the strata of the canonical
stratification of X of dimension less than or equal to k. By induction, assume that
f—gisl-flat at X, for some k. Then we need only to find a Nash diffeomorphism
7 of M such that m —id is I-flat at X;_1, such that 7(X) = X and f—go is [-flat
at X} (to be precise, we will construct 7 so that = —id and f — g o 7 are [(Y)-flat
at Xp_1 and X}, respectively, for some 0 < [ <« - < I’ < 1).

We proceed as in the proof of lemma 4.5. Let (M X) and (Mk,Xk) be pairs
of Nash manifolds and Nash submanifolds, let p : M — M and py : My — M
be Nash immersions and let ¢y : Mk — X r be a Nash submersive retraction such
that dim M = dim M, = n, the equalities p(X) = X and pp(X;) = X} hold,
and moreover p|X_p,1(Xn72) and pk‘Xk_plzl(inl) are injective, and Pk(qk_l(Xk N
pr (Xk_1))) C X. Shrink M, if necessary. Then we have an open semialgebraic
neighborhood U of XNp~'(X}) in M and a Nash (n—k)-fold covering map 7 : U —
M, such that pyor = pon U. Let gb be a Nash function on M with zero set X which
is, locally at each point of X, the square of a regular function. Then ¢(r~(z))
is a family of (n — k)-numbers possibly with multiplicity, for each @ € M, and
there exist Nash functions qgk,l, - g])km_k on an open semialgebraic neighborhood
of each point of My, such that ¢(r—(x)) = {dr.1(), ..., Prm_&(z)} for z in the given
neighborhood. For simplicity of notation, we assume that ¢~>k,1(a:), e ékm_k(a:) are
defined globally, which causes no problem because the following arguments are
done locally and do not depend on the order of qgk,l(x), - gBkn_k(x) Moreover,

we suppose that each (5;“ is the square of a regular Nash function, say éi/ i2, by the

same reason as above. Set fk = fopr and g = g o pg.
We want to construct a Nash diffeomorphism 75 between semialgebraic neigh-
borhoods of X'k in My, such that 7y (p ' (X)) C py *(X), such that 7 —id is I”-flat at
. (X'k Npy (Xk 1)) and fx — i o7y is -flat at Xj,. Assume that X} is connected
Wlthout loss of generality. Since fk and gj have only normal crossing singularities at
P 1(X), the same sign at each point of M, and the same multiplicity at each point

of p;; ' (X), and since f7(0) = 7;1(0) = Ui (6,) 1 (0) U g (X N p ! (Xi)),
we have Nash functions F and G on My, and o = (avq, ..., an_1) € (N — {0})*F



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 39

such that the equalities f, = F ¢1/ ** and g = G(ﬁi/ *® hold, such that FG > 0
on My, and FG > 0 on My — q; * (X Np; (Xg_1)), where ¢1/2a =TI ~,1€7/1.2ai.
Assume that F' > 0 and hence G > 0 (the other cases can be proved in the same
way). Note that F' and G have zero set qk_l(X'k N p,zl(Xk_l)), which has only
normal crossing singularities and has the same multiplicity at each point. Shrink

M;, so that the map (g, ~,1€7/12, - ~,1€/j_k) . My, — X;, x R"* is a Nash embedding
and let V denote its image. Identify M}, and X, with V and X} x {0} through this
embedding, set pp = pk|)~(k, regard px as an immersion of V' into M and fi and g
as functions on V, and let (z,4) = (2,91, ..., Yn—k) € V C X x R**. Then

fk(z7y) = F('Z?y)ya and gk(z7y) = G<Z7y)ya~

Set

18] 18]
F= Y TEC o o= S LS00,
fi =Fy* and g}, =G'y°,

where N”_k = {B € N"F . |ﬁ| < l} and (! = H?_lk G;!. Then fk and g are
Nash functions on V, moreover fi — fk and gi — g;, are [-flat at X, X {0}, and F’
and G’ have the same properties as I and G. Hence for the construction of y,
we can replace fr and g with fk and Gr.- An advantage of fk and g, is the fact
that (x) F/ — G is I'-flat at VN p, ' (Xp_1) x R, though F — G is I'-flat only at
Pt (Xg—1) x {0}. Write

n—k n—~k
flg _ H(F11/|a|yi>ai and 92 _ H(G/1/|a|yi>ai
=1 =1

Then there exists a unique Nash diffeomorphism 7, between semialgebraic neigh-
borhoods of X x {0} in V of the form 7, (2,y) = (2, 74(2,y)y), for some positive
Nash function 7, on the neighborhood of source, such that fk = g, o T, on that
neighborhood. Actually, we can reduce the problem to the case where g, = 2By
for some 3 € N* and some local Nash coordinate system z = (21, ..., 2x) of X’k such
that p, ' (Xz_1) = {z° = 0} (by considering two pairs (f}, 2Py®) and (g, 2°y®))
and then 7 (z,y) = (F'/2%)!/1el is the unique solution. Such a 7y, fulfills the re-
quirements. Indeed, 7 (p;, ' (X)) C p; ' (X) by the form of 7, because p, '(X) in V
is of the form X}, x {y1 - Yn_r =0} Uﬁ,;l(Xk_l) x R % because 7, —id is I"-flat
at V NP (Xk—1) x R"7F because of (x), and fu — G o 7y is I"-flat at X, x {0}
because

fro—groe = (fe — fo) + (fl, — g1 o 7x) + (G o T — Gi © 7).

Let W be an open semialgebraic neighborhood of Xy — X1 in M so small that
there exists an open semialgebraic neighborhood of (X}, — P (Xk—1)) x {0} in the
intersection of the domain of definition of 7, and the range of values to which the
restriction of py is a diffeomorphism onto W. Then 7; induces a Nash embedding
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g W — M C R”™ such that m(X N W) C X, such that 7, = id on X — X1
and f — gom is I”-flat at X}, — Xi_1. Though 7 is not necessarily extensible to
a neighborhood of X}, there exists a Nash map n : M — R” such that n — id is
" -flat at X5_1, and n—my, is I”-flat at X — Xi_1, hence f —gonis I”-flat at X, for
the following reason. Let Z denote the sheaf of AM-ideals on M defined by X. Then
by theorem 2.8, it suffices to find an element 77 in H(M, N /Z"" )N such that 7, is
the image of 7y, under the natural map N — (N, /ZL )N for x € W and 7, = id
for x € X;,_1. This is possible because 7j, — id is I”-flat at V/ ﬂﬁ,;l(Xk) x Rk,

We modify 7, to show that 7 can be a diffeomorphism of M. Assume that
(%) 7, < 1 for simplicity of notation, which is possible if we consider a third
function h on M with the same properties as f and g, with A/f > 1 on M — X and
h/g>1on M — X. Let ¥ be a non-negative small Nash function on X, with zero
set pr ' (Xg_1) such that

7z {(2,y) € X x R" " : Jy| < ¢(2)} C domain of 7y,

~/
(3%) (o, sy) > | TR

for (z,,5) € Xx x R" ™% x R with (z,sy) € Z and |y| = 1

and pg|z is injective, which exists by the Lojasiewicz inequality. Let p(t) be a
semialgebraic C'" function on R such that (4%) 0 < p < 1, such that (5%) % <0,
and moreover p =1 on (—oo, 1/2] and p =0 on [1, co). Set

L { 1 for (z,y) € Zﬂp,zl(Xk_l)
p(lyl /() 7z m) + 1= p(lyl/¥(2))  for (z,y) € Z —p, " (Xk-1),

(2, y) = (2, 71(2,y)y) for (z,9) € Z.

Then 7/ and hence 74 are of class semialgebraic " and 7, — id is {®)-flat at
Z0p; M (Xk—1) = by, (Xp—1) x {0} since 7 (z,y) —1is (I” —1)-flat at ZNp; " (Xx_1).
Clearly 7, = id on a semialgebraic neighborhood of 07 —plzl (Xk—1)in Z. Moreover,
Tk is a diffeomorphism of Z. Actually, we can assume that n—k = 1 because 7 = 7%
on a neighborhood of (X} — P (Xx—1)) x {0} in Z and because 7}, and hence 7
carry each segment {2} x {Ry} N Z for (z,y) € (Xx — pp*(Xp—1)) x R"™F with
ly| =1 to itself. Then

~/

oz, )y -, !
oy oz, y) + 9y (z,9)y,

H(ery) = plyl o)Az ) + 1= pllgl/o(2) 5 #(zy),

%—?(z,y)y = %Oyl/@b(z))(fr;(z,y) — Dyl /¥(2) + p(|y|/¢(z))%f;,2 . (**)§5*)
/() ey, henee

_ o (3+)(4)
> T (2,9) + p(lyl/1(2)) ayk(z,y)y > 0 for (z,y) € Z.

o71.(z,y)y
0y
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Define a semialgebraic o diffeomorphism 74 of M so that 74 o pr. = pr 0 71 on
Z and 1, = id on M — pi(Z). Then 1, = 7 on Z if we shrink Z, hence 1, — 7 is
1)-flat at X} and 7,(X) = X and moreover f — g o7y, is [(®)-flat at X},. Let w be
a non-negative-valued global generator of the square of Z—the sheaf of N -ideals
defined by X%. Then there exists a semialgebraic ol map & : M — RY such that
T —1n = w&. Approximate £ by a Nash map &’ in the semialgebraic ' topology,
and set m = (n + w¢’) o 0, where o denotes the orthogonal projection to M of its
semialgebraic tubular neighborhood in RY. Then 7 is a Nash diffeomorphism of
M such that 7= — id is {¥-flat at Xj_; and f—gomis I flat at X,. We can
modify 7 so that 7(X) = X in the same way as in step 1 of the proof of theorem
3.1,(1) and lemma 4.6, because 7 is an approximation of 7, and 7, (X) = X. Thus
we complete the proof of the former half of lemma 4.7.

The latter half automatically follows from the above proof (though (k%) does
not necessarily hold, 7 is close to 1 in the Nash topology, which is sufficient to
proceed). O

Note that our proof of lemma 4.7 also works when M, f and g are of class C¥
and the multiplicities of f and g are bounded.

The following lemma is also a globalization of Chapter II, Proposition 2 in [T]
and shows sufficient conditions for two functions to be right equivalent.

Proposition 4.8. (i) Let f be a C¥ function on a C* manifold M. Let v;, for
i=1,..,k, be C¥ vector fields on M, and I denote the ideal of C*>°(M) or C*(M)
generated by v, f, for i = 1,....k. Let ¢ be a small C* or C¥ function on M
contained in I? in the strong Whitney C™ topology. Then f and f + ¢ are C>®
or C¥ right equivalent, respectively, and the diffeomorphism of equivalence can be
chosen to be close to id in the same topology.

(i) If f, M and v; are of class Nash or C* or C¥, and ¢ is of the form
Z,ijzl @i jvif - v; f for some small Nash or C°° or C* functions ¢; ; in the Nash
or (strong) Whitney C* topology, then f and f + ¢ are Nash or C* or C* right
equivalent, respectively, by a Nash or C* or C¥ diffeomorphism close to id in the
same topology.

(1ii) Assume that M is a Nash manifold and f is a Nash function on M with only
normal crossing singularities. Set X = f=1(f(Sing f)). Let ¢ be a Nash function
on M r-flat at X for some large r € N. Then there exists a Nash diffeomorphism
m Vi — V, between closed semialgebraic neighborhoods of X in M close to id in
the semialgebraic C™ topology, for 0 < r' (< r) € N, such that form = f + ¢
on Vi, such that m — id is r'-flat at X, and 7 is extensible to a semialgebraic C"
diffeomorphism of M.

Proof of proposition 4.8. Consider the analytic case. We want to reduce (i) to
(ii). For a while we proceed in the strong Whitney C*° topology. By lemma
1.12 for ¢ in (i), there exist small ¢; ; € C*(M), for i,j5 = 1,...,k, such that
¢ = Z?,j:l @i v f - vjf. Consequently, (i) is reduced to (ii). From now on, we
work in the Whitney C" topology for any » > 0 € N (though we can do in the
strong Whitney C*° topology). We can assume that M is open in its ambient
Euclidean. Actually, let p : M — M denote the orthogonal projection of a tubular
neighborhood of M in its ambient Euclidean space. Assume that proposition 4.8, (ii)
in the analytic case holds for M. The map C¥(M) > U — |y, € C¥(M) is
obviously continuous, surjective by corollary 2.4 and open as follows. Let & €
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C>®(M) with € =1 on M and & = 0 outside of a small neighborhood of M in M.
Then the map £C¥(M) 3 £U — €Wy, € C¥(M) is open because for 1 € C¥(M)
and for ¥y € C° (M), we have 1pop € C*(M) and (£ - o p)|ar = 1 and the map
CY¥M)3th — €E-hop+ETy—E&-Tglp op € EC¥(M) is continuous and carries
Wo|ar to €Ty, Hence for small o € C¥(M), there exists small £ € £C%(M) such
that W|p; = . Approximate £ by an analytic function & on M so that & =
on M. Then &'V is analytic on M, close to €U and hence small since the map
C®(M)? 5 (a,8) — af € C®(M) is continuous, and &'¥|y; = ). Consequently,
the above restriction map ¥ — W,/ is open by linearity. Let v;, for ¢ = 1,..., k, be
C¥ vector field extensions of v; to M and <;SZ j C“ extensions of ¢; ; to M so small
that fopand fop+ Z” gbm 0;(fop)-v;(fop) satisfy the condition in proposition
4.8,(ii) and hence are C* right equivalent by a C¥ diffeomorphism 7 close to id,
ie.,

k
fopoi=fop+ Y ¢i;ui(fop)-(fop) on M.

i,5=1

Set m = po@|y. Then 7 is a C¥ diffeomorphism of M close to id, and

k
fom=1f+ Y ¢ijvif-vf.
i,j=1
Thus proposition 4.8,(ii) is proved for M. Hence we assume that M is open in R"™.
Next we can suppose that kK = n and v; = 88 for + = 1,...,n, because each v;
is written as Z] 105 a - for some C¥ functlons a;; on M.
Let 1 denote the functlon on M which measures distance from OM < 37 — M (if

OM = () then set n = +00). Set V ={(z,y) € M x R : |y| < n(x)} and consider
the C“ function

n

0
9(z,y) = flz+y) - Zyz f, (x) for (z,y) = (T1, s Tny Y1, s Yn) E V.

Then g is a global cross-section of the sheaf of O-ideals Z on V' generated by v;y;,

for i,7 = 1,...,n. Hence applying theorem 2.3 to the surjective homomorphism
2 n . . .o

o™ 3 () — Zi,j:l o; ;yiy; € T we obtain C* functions g; jon'V, i,j =1,...,n,

such that g(z,y) = szzl YiY;gi;(x,y). Then

n

(%) f@+y) ) + Zyz (9f. (z) + Z Yiy;9ii (T, y).

Te i,j=1

. . 2
Let « = (&; ;);.i=1.. n be new variables in R™ , set
7.] 7.7 ) k) )

(o, 0f) = Za“ >""’Za””§f

and let W be a small open neighborhood of M x {0} in M x R™ such that

(z,{a,0f)) eV for (z,a) € W.
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Take y to be (o, df) in (x). Then
flz+(a,0f)) =
) 9f - of  \9f
+Zamaxl ey @ D, @y p @) (@)Cry(,a)

,17,5,5'=1

for C* functions Gy j/(x,a) = gy j(z, (o, 0f)) on W. Consider the map

n
B:W> (l‘, Oé) — (l‘, o7y + Z O!Ll'/OéjJ/Gi/J/(l‘, Oz)) e M x Rn2.
/ / 1

Then B is id and regular at M x {0}. Hence, shrinking W, we assume that B
is a diffeomorphism onto an open neighborhood O of M x {0} in M X R"™. Set
B(z,a) = (z, B; j(z,a)), and B~ (z,3) = (z, A'(z,8)) for (z,8) € O. Then A’ is
a C* map from O to R”Z,

flz+ (a,0f)) +ZB13 ai( )g—i(a:) for (z,a) € W,
flo+ (A2, 8),01)) *Zﬁ”axl a:;fjm for (z,3) € O

Choose @ = (¢; ;) so small that its graph is contained in O. Then w(z) =
z + (A'(z, ®(z)),0f) fulfills the requirements in (ii). Here if ¢; ; are small in the
Whitney C” or the strong Whitney C'°° topology, 7 is close to id in the respective
topology.

If f, M and v; are of class C¥ and if ¢ is of class C'"°, the same arguments as
above work and the diffeomorphism of equivalence is of class C*°. Thus we complete
the proof of (ii) in the analytic case. Point (ii) in the C*° or Nash case follows also
from the same proof. The difference is only that the existence of C>° or Nash g; ;
follows from a partition of unity of class C*° or theorem 2.8, respectively.

Consider (iii). Assume that M is not compact. Let M be embedded in a Eu-
clidean space so that its closure is a compact Nash manifold with boundary. Now,
we consider an open semialgebraic tubular neighborhood of M and extend f to the
neighborhood as before. Then we can assume that M is open in R™ and M is a
compact Nash manifold with corners, and for the construction of 7 it suffices to
see that ¢ is of the form Z?J ¢; 2L of for some Nash functions ¢; ; on M r'-flat

»J B, ox;
at X, where 0 < r’ < r € N. Actually, assume that there exist such ¢; ;. Then

by the above proof, we only need to find small semialgebraic C™" functions qba ;jon
M in the semialgebraic cr” topology such that qba j = ¢i,j on some semialgebraic
neighborhood of X for 0 < r”/ <« r’ € N.

Consider only the case r’" = 1 because the general case can be proved in the same
way. Set g(z) = HaEf(X)(f< r) —a)?, and let h be a Nash function on M extensible

to a Nash functlon h on M such that 0 < h < 1/2, such that (1) \8h | <1, for

k=1,...,n,and h ( ) = M — M, which exists since M is a compact Nash manifold
with corners. Let ¢(t) be a semialgebraic C" function on R such that 0 < ¢ < 1
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and ¢ = 1 on (—oo, 1] whereas ¢ = 0 on [2, c0). Then ¢} ; = ¢; j1(g/h™) fulfill
the requirements for some m € N. Actually, Clearly ¢ j = ¢i,j on a semialgebraic
neighborhood {z € M : g(z) < h™(x)} of X in M, and ¢;; = 0 on {g(z) >
2h™(z)}. Hence we prove that each ¢; ; is small on V' 2ef {g(x) < 2h™(x)} in the
semialgebraic C'! topology. Let € > 0 € R. Let ¢ denote the Nash function on M

defined to be ¢; ;j/g> on M — X and 0 on X. Then ¢ 5. ﬁ and 8¢” k=1,...,n
vanish at X. Hence there exists a semialgebraic nelghborhood W of X in M where

0¢i,

(2) |¢15] < eg®, (3) | |<1 4) 15
T

| <e.

By the Lojasiewicz inequality, we have V C W for large m. Note that (5) g <
1/2™=1 on V since h < 1/2. Set ¢ = max |2 7 Y|, Then on V

61 = 160,021 < eg?
S0 <000 ) 440y 2 22 ol D0 e,
Bty L) < e
603 20 (5 20| o L Al ™ de% 2
|¢mccl;tp(h€n)9§h |/t (S) % 2 25 meeg? (%) 245 =2y,

Hence ¢;, ; is small on V' for large m.

It remains to find ¢; ;. Let K denote the sheaf of N-ideals on M defined by
X. Then ¢ is a cross-section of K" since ¢ is r-flat at X and since X is normal
crossing. On the other hand, Y ., ng./\/' > K" since f has only normal crossing

singularities. Hence ¢ is a cross-section of ) =1 88 3{ 88 g K™ because of 7’ < r. Let

g1, for | = 1,...,k', be global generators of K" (theorem 2.7). Apply theorem 2.8
to the surjective N-homomorphism that assigns to (o ;1) € /\fc’fzk/ C N"zk/, for
a € M, the value

of of o~ OF Of )
Zazjylgla <6$3) = Z(al‘l) Z Ba:z aZL’J

i,j=1 i,j=1

Then there exist Nash functions ¢; ;, for 4,5 = 1,...,n, in H(M, ICT/) such that
o= Z” 1 bij gf 9L 1t follows that ¢i,; are r’-flat at X.

x; Oz
The case of Compact M is clear by the above arguments. [

Proposition 4.9. (Compactification of a Nash function with only normal crossing
singularities) Let f be a bounded Nash function on a non-compact Nash manifold M
with only normal crossing singularities. Then there exist a compact Nash manifold
with corners M' and a Nash diffeomorphism m: M — Int M’ such that f o w=' is
extensible to a Nash function on M’ with only normal crossing singularities.
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The analytic case does not necessarily hold.

We cannot necessarily choose M’ with smooth boundary. For example any com-
pact Nash manifold with boundary whose interior is Nash diffeomorphic to M = R?
is Nash diffeomorphic to a closed ball in R?® (Theorem VI.2.2 in [Sp]). But there
does not exist Nash function on a 2-sphere with only normal crossing singularities
(see remark (v) after theorem 3.2).

Extensibility of a Nash function to a compact Nash manifold with corners is
shown in Proposition VI.2.8 in [Se|. Hence the problem is to impose to the extension
to have only normal crossing singularities.

Proof of proposition 4.9. Set n = dim M, and X = f~!(f(Sing f)), set BY =
{zx € RN : |z| < 1} for a positive integer N and SV—1 = 9BY. Since there
exists a Nash embedding of M into R¥ such that the image is closed in R¥, we
can assume by lemma 4.6 that M C Int BY, that M — M C SN—1 that M is a
compact Nash manifold with boundary, and moreover M intersects transversally
with SV~1 in the sense that some Nash manifold extension M of M intersects
transversally with SV —1, that X is a normal crossing Nash subset of M, and there
exists a Nash function g on M with only normal crossing singularities such that
g(Sing g) = f(Sing f), the equality ¢g~'(g(Singg)) N M = X holds, and such that
g= fon X, for each a € X, g(z) — g(a) has the same multiplicity as f(z) — f(a)
at a and ¢g(b) > g(a) if and only if f(b) > f(a) for b € M. We do not know whether
g|ar is Nash right equivalent to f. We will modify M and g so that this is indeed
the case and so that g|3; has only normal crossing singularities.

Let ¢ be a polynomial function on R such that ¢=1(0) = f(Sing f) and ¢ is
regular at ¢=1(0). Let » € N be large enough. Apply lemma 4.7 to ¢ o f and
¢ o g|lpr. Then we have a Nash diffeomorphism 71 of M such that 7 (X) = X and
for1—g|n is r-flat at X. Hence replacing f with fo7y, we assume that f—g is r-flat
at X. Next, by proposition 4.8,(iii) there exists a semialgebraic C" diffeomorphism
7o of M such that g = fory on a semialgebraic neighborhood V' of X in M and 7 is
of class Nash on V. We can choose V of the form {z € M : ¢? o g(z) < c(x)E™(2)}
by the Lojasiewicz inequality, where &(z) = (1 — ||?)/2 for & € M, where ¢ is a
positive Nash function on M such that ¢ depends on only |z| and m is a large odd
integer. Shrink M so that & < 0 on M — M. We can choose, moreover, ¢ and
m so that ¢? o g — c£™ is regular at A — SNV~1, where A denotes the zero set of
¢? o g —cf™, and hence V is a Nash manifold with boundary {z € M : ¢* o g(z) =
c(z)f™(x)}. Actually, let 0 < ¢g € R be small. Then for any 0 < ¢ € R with
€ < €, £1(e) U (¢ 0 g)~*(0) is normal crossing in M, and hence for small ¢ and
large m, the function ¢? o g on {z € £71(e) : 0 < ¢? 0 g(x) < 2¢(x)E™} is regular.
We can choose ¢ and m independently of e. Therefore, ¢? o g — c£™ is regular at
ANEY(0, €)). Moreover, if we choose ¢ and m so that c£™ is close to a small
constant on M — £71((0, €g/2]), then ¢? o g — c£™ is regular at A — £71((0, €/2]).
Hence ¢2 o g — c£™ can be regular at A — SV~!. However, we omit ¢ for simplicity
of notation. We want first to modify M so that V is a neighborhood of X in M.

Apply theorem 2.10 to the two sheaves of N-ideals on M defined by (¢og)~*(0)
and generated by & - (¢? o g — ™). Note that the former sheaf is normal crossing,
the stalk of the latter is not generated by one regular function germ at a point of
X — X only, and at least one of the two stalks of both sheaves at each x ¢ X — X is
N,. Then we have a composition of a finite sequence of blowings-up 73 : M — M
along smooth Nash centers such that T3|T§1(M—(Y—X)) : 73_1(]\2 - (X - X)) —
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M — (X — X) is a Nash diffeomorphism and (¢ o g-&- (¢ 0 g — ™)) o 73 has only
normal crossing singularities at its zero set, say Y. It follows that (M,Y, 75 ' (M))
is Nash diffeomorphic to (R", {(x1, ...,x,) € R" : 21 - - - z,, = 0}, B) locally at each
point of 75 *(M) for some n’ (< n) € N, where B denotes the closure of the union

of some connected components of {z; -- -z, # 0}), and 73 }(M) — 753 1(X — X) is
a Nash manifold with boundary. However, 75 '(M) is not necessarily a manifold
with corners. It may happens that 75 1(M ) is locally diffeomorphic to the union
of more than one connected components of {(z1,...,x,) € R™ : 21+ 2, # 0} at
some point of 75 (X — X), for 0 < n’ (< n) € N. Then we need to separate these
connected components. That is possible as shown in the proof of Theorem VI.2.1

in [So]. Namely, there exist a compact Nash manifold L with corners and a Nash
immersion 74 : L — 7'3_1(M) such that 74|1,_singor, is a Nash diffeomorphism to its
image and the image contains 7; (M) — 73 1 (X — X) (D 75 (M)).

Clearly (¢pog-&-(¢?0g—E™)) o307, has only normal crossing singularities at its
zero set 7'4_1<Y) since 74 is an immersion. Set 7 = T, 0730 74|y, and h = goT307y4.
Define W = (13 074)"Y(V) and W/ = W — W and set Z = (13 0 74) 1 (X).
Then W is a non-compact Nash manifold with boundary; 7 is a semialgebraic C"
diffeomorphism from Int L to M and of class Nash on W; h is a Nash function on
L; h = for on W; his regular on Int L — Z; h|in Luw- has only normal crossing
singularities at Z though h is not necessarily so globally; W is a neighborhood of
Z in L because if it were not, Z N (t3074) 1({x € M : ¢? o g(z) = €™ (x)}) could
be not empty and of dimension n — 2 but contained in (73 0 74)71(£71(0)), which
contradicts the normal crossing property of (¢pog-&-(¢p?0g—£E™)) o3 074. Note
that W’ and W are Nash manifolds with corners by the next fact and the normal
crossing property of (£ - (¢? o g — &™) o3 07y. Thus V is changed to W-—a
neighborhood of Z in L. We consider h on L in place of g on M.

We replace 7 by a Nash diffeomorphism. Let 0 < r € N, set ¢ = (¢"oh-£")orz074
on L and v = |1t 1, and let T denote the sheaf of A'-ideals on Int L generated by
. Then we regard 7 as an element of H°(Int L, N'/Z)" because supp N /T = Z
and 7 is of class Nash near there. Hence by theorem 2.8 there exists a Nash
map 7' : Int L — RY such that 7 — 7/ = 0 for some semialgebraic C" map
6 : Int L — R of class Nash on W. Approximate § by a Nash map ¢’ : Int L — R~
in the semialgebraic C" topology, and set 7"/ = p o (7/ + ¢#’), where p denotes the
orthogonal projection of a semialgebraic tubular neighborhood of M in RY. Then
7" is a well-defined Nash diffeomorphism from Int L to M and close to 7 in the
semialgebraic C" topology; fo7” — h|int . = ¥d for some semialgebraic C™ function
d on Int L though f o 7" — h|m, does not necessarily vanish on W; moreover, d
is extensible to a semialgebraic C”" function § on Int L U W’ for 0 < ' (< r) €
N by the definition of the semialgebraic cr topology, by the fact that a small
semialgebraic C" function on Int L is extensible to a semialgebraic C" function on
L and by

for" —hlmr=fopo(r+-(¢ —0)— fopor onW.

The last equality implies also that d is of class Nash on W, and hence on Int L since
for” and h are Nash functions and ¢~1(0) C W.

Next we modify h. Let 5 be a Nash approximation on Int L U W' of § in the
semialgebraic cr' topology, and set ¢’ = 3I|Int rand b/ = h—i—wgl on Int LUW’. Then
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h' is a Nash function on Int L UW' and has only normal crossing singularities at Z
by the same property of h|it Luw and by the definition of A/, and fo7” —h/|1n 1 is
of the form ¢ - (§ — ¢’). Hence f and h/ o 7"/~! satisfy the conditions in proposition
4.8,(ii) because ¢"ohor"'~1 is of the form Z?,j:l i jus-v; f for some Nash functions
;.5 on M and Nash vector fields v;, for i = 1, ..., k, on M which span the tangent
space of M at each point of M and because £"|pr - (6 — ') o 771 is small as a
semialgebraic " function on M. Consequently, f and A’ o 7”1 are Nash right
equivalent, and we can replace f with h'|in L

We can assume that W/ N 0L is the union of some connected components o of
strata of the canonical stratification {L;} of L such that N Z # (). Actually,
let 77, be a non-negative Nash function on L with zero set Z, and let ¢ > 0 € R
be such that the restriction of ¥y to 1 *((0, 2¢)) is regular. Then ¥} '(e) is a
compact Nash manifold with corners equal to L N7 " (¢). Let {L.;} denote the
canonical stratification of LNy ;! (¢). We blow up L. ; as follows. Let L' and L’ be
a compact Nash submanifold possibly with corners of L and some Nash manifold
extension of L' respectively. If L' N L = L' and (L, L ) is locally diffeomorphic
to ({(x1,...,zpn) € R" : 21 > 0,...,xy > 0}, {x, = -+ = z,,,, = 0}) for some
n(<n),1<n; < - <ng <n €N, then we say L’ has the property (). For
L' with (%), con81der v : ' — L—the restriction of the blowing-up of a small Nash
manifold extension L of L along center LNL’ to the closure of inverse image of L—L’,
modify v : I' — L so that I' is a compact Nash manifold with corners by the idea in
the proof of Theorem VI.2.1 in [Sy] as before, use the same notation v : I' — L, and
call it the (x)-blowing-up of L along center L’. Note that v~1(L’) is the closure of the
union of some connected components of RegdI'. Set I'_1 = Landlet 0 < k <n—2.
Inductively we define (x)-blowing-up v : I'y — I'y_1 of I'y_; along center L. if

k =0 and along center (ypo---0v,—1)"'(Le ) if £ > 0, which is possible because

Lcoand (ypo---0v,) H(Legt1) for 0 < k < n—3 are compact Nash submanifolds
with corners of I'_; and I'y with (x), respectively. Thus we assume that the above
condition on W holds considering (I'y_2, (¥, © 70 © - Yn_2) ([0, €]) — O, _2)
in place of (L, W). Here we choose € so small that (xx) h’ is extensible to a Nash
function on an open semialgebraic neighborhood of Int LUW in L with only normal
crossing singularities.

Moreover, we can assume that the closure of each connected component of Reg 0L
is a Nash manifold possibly with corners. Indeed, we obtain this situation if we
repeat the same arguments as above to the canonical stratification of L compatible
with {x € L : dis(x, L) = e, dis(z, L;) > €;, i =0,....k— 1}, for k=0,....,n— 2.
Here we naturally define the canonical stratification of L compatible with the
above family in the same way as in the remark after the proof of lemma 4.5. After
this modification of L, the property (x*) continues to hold.

Let Mj, for j € J, be the set of closures of the connected components of Reg 0L,
and let Jy denote the subset of J consisting of j such that M; N Z = . Let L and
M be Nash manifold extensions of L and Mj, respectively, which are contained and
closed in a small open semialgebraic nelghborhood U of L in the ambient Euclidean
space such that U;c JM is normal Crossmg in L and for each j € J there is one
and only one connected component of L — M which does not intersect with L. Let
Z denote the smallest Nash subset of L containing Z. Then Z is normal crossing
in L, and there exist Nash functions Xj on L with zero set M , regular there and



48 GOULWEN FICHOU AND MASAHIRO SHIOTA

with x; > 0 on Int L.

By (#*) we can choose a sufficiently small U so that h’ can be extended to a Nash
function h/, on L def {x € L:xj(x) >0, j € Jy}, such that hq_(Sing_hg_) =h(2)
and h/, has only normal crossing singularities. Now we smooth b/, at L, — L asin
the proof of Proposition VI.2.8 in [Sy]. Let L € RN, set G = graph h! C Ly xR,
and let GZ be the Zariski closure of G in RY x R and @ be the normalization of
GZin RY xR xRY for some N’ e N, andlet r: Q - RV xRand ¢: Q — RV
denote the restrictions to @ of the projections RY x R x RN " 5 RM xR and
RY x R x RY — RV, respectively. Then it is known that r is a proper map to
GZ, and by Artin-Mazur Theorem there exists a union of connected components
R of Q —r~}(G — G) such that R C Reg @ and 7|p is a Nash diffeomorphism onto
G. Here we can replace 7~!(G — G) with a Nash subset q_l((l_[jeJ0 x;)(0)) of
Q because (G = G) € 4~ ((TLjes, x3)*(0)) and RNa™(TLjeq, x5)*(0)) =
q|r is a Nash diffeomorphism onto L ; the map h!_o ¢|r is the restriction of the
projection RY x R x RN " — R and hence extensible to a smooth rational function
on Q; the set RNg~1(L) is compact because r is proper and because G N L x R
is compact by boundedness of f; the function h/_ o ¢|r has only normal crossing
singularities because the same is true for b/ . However, x;oq are now not necessarily
regular at their zero sets. By theorem 2.8, RN q_l(Z) is a Nash subset of Reg ()
and there exists a Nash function o on Reg () whose zero set is qu—l(Z ) and which
has only normal crossing singularities there since RN q_l(Z ) is a Nash subset of R
and since its closure in Reg @ does not intersect with R — R.

Thus replaging L, Ly, B, x; and Z with Reg @, R, b o qlr, Xj © qlReg@
and RN ¢ 1 (Z) we assume from the beginning that M and f satisfy moreover the
following conditions.

(i) f and X;, for j € J, are a finite number of Nash functions on a Nash manifold
M, and X is a normal crossing Nash subset of M.

(ii) M is the union of some connected components of M — (ILies x;)(0), the set
M is compact, the equalities f = f |p and X = X N M hold (we do not assume
that M is a manifold with corners).

We make [] jes Xi normal crossing at its zero set. Apply theorem 2.10 to the

sheaf of M-ideals on M defined by X and the sheaf of N-ideals [] ies X4N. Then
via blowings-up, [] jea Xj becomes to have only normal crossing singularities at its
zero set, and the conditions (i) and (i) do not change because the subset of M
where we modify by blowings-up is contained in (]] jed x;) " (0).

It remains to make f together with (ILes x;)~'(0) normal crossing. Let {M;}
denote t%le canonical stratification of ([ ;¢ xj) "t (O>i set M, :M_N(HjeJ 2@)_1 (0),
and let ¢ be a polynomial function on R such that ¢—1(0) = U, f(Sing flyz,) and
(5 is regular at <;~5_1(O). Once more, apply theorem 2.10 to the sheaf of N-ideals on
M defined by X U (HjeJXj)_l(O) and the sheaf of N-ideals [¢ o fN : N;T] ot
Upenrir € N{: P I C (éo f]\/'x}, where N;Z; is the decomposition of the sheaf of
N-ideals on M defined by X to irreducible finite sheaves of N -ideals and each «; is
the maximal integer such that ¢o fA is divisible by Z7**. Then (f — f(x¢)) HjeJ X

becomes to have only normal crossing singularities at its zero set for each xg € M



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 49

and the subset of M where we modify now by blowings-up does not intersect with
M because the stalk of the latter sheaf at each point of M is generated by a regular
function germ and because

(XU (] )" (0) Nsupp N /[ o FN - VT N M =0,

JjedJ

Finally, we separate as before M at the points of M where M is not locally connected
so that M is a compact Nash manifold with corners. Then f|5; has only normal
crossing singularities, and we complete the proof. [

5. PROOFS OF THEOREM 3.2 AND THEOREMS 3.1,(2) AND 3.1,(3)

5.1. Proof of theorem 3.2.

By proposition 4.1 it suffices to prove the Nash case and, moreover, that the
cardinality of Nash R-L equivalence classes of Nash functions with only normal
crossing singularities on a compact Nash manifold possibly with corners is zero or
countable. The reasons are that first we can restrict functions to being bounded by
the fact that R is Nash diffeomorphic to (0, 1) and secondly by proposition 4.9 we
can regard a non-compact Nash manifold M and a bounded Nash function f with
only normal crossing singularities on M as the interior of a compact Nash manifold
with corners M’ and the restriction to M of a Nash function on M’ with only
normal crossing singularities. Assume that there is at least one Nash function f on
M with only normal crossing singularities. Then the cardinality is infinite because
we can increase arbitrarily the cardinality of the critical value set, which is finite,
by replacing f with 7o f for some Nash function 7 on R. Let {X,}aca denote all
normal crossing Nash subsets of M. We define o and o’ in A to be equivalent if
there exists a Nash diffeomorphism of M which carries X, to X,/. Then by lemma
4.4 the cardinality of equivalence classes of A is countable. Hence it suffices to see
that for each X, there exist at most a countable number of Nash R-L equivalence
classes of Nash functions f on M with only normal crossing singularities such that
f~Y(f(Sing f)) = X,. Let F, denote all such Nash functions. Clearly there are
a finite number of equivalence classes of {f|x, : Xa — R : f € F,} under the
Nash left equivalence relation since the value sets are finite. Moreover, there are
at most a countable number of choices of multiplicity of f — f(a) at a for f € F,
and a € X,. Hence we reduce the problem to the following one. Fix f € F,, and
let Fy denote the family of g € F,, such that ¢ = f on X, and g — g(a) has the
same multiplicity as f — f(a) at each point a of X,. Then the cardinality of Nash
right equivalence classes of functions in F is finite. Moreover, it suffices to prove
that each element of F, say f, is stable in Fy in the sense that any g € Fy near
f in the C'*° topology is Nash right equivalent to f because there are only a finite
number of connected components in F'y.

Set n = dim M, embed M in RY, and let {M;} denote the canonical stratification
of M. There exist Nash vector fields vy, ..., vx on M such that vy, ..., vk, span the
tangent space T,M; of M; at each x € M;. If we regard M as {(z1,...,x,) €
R" :z; > 0,...,z, > 0} by its local coordinate system, then xia%i is contained
in the linear space over N (M) spanned by vy, ..., vy for each 1 < i < n’. Actually,
set L; = U;ZOMj, for i = 0,...,n — 1, and choose a Nash manifold extension M

of M and Nash subset extensions f)i of L; in M so that f)n_l is normal crossing
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n M and {L — L 1} is the canonical stratification of L,_1. Set L, = M and
M also. Then when we describe (M, L,_1) by a local coordinate system as

P
( ) ( {(.’131, X3 n) eR": 21 2y = O}),
L; = U {(#1,.yzn) ER" :zj, =---=ux;,_, =0}, n—n' <i<n.

1<j1 < <Jn—i<n/

We consider the situation on M rather than on M because the existence of vy, ..., v
follows from the existence of Nash vector fields on M with the same properties.

First, let wy 1,..., wn k, be Nash vector fields on M which span the tangent
space of M at each point, and a, a global generator of the sheaf of NV -ideals on
M defined by Ln 1—we can choose M so that o, exists because M is a manifold
with corners. Then v, 1 = = QnWn,1; s Unk, = OpWnk, are Nash vector fields on
M, span the tangent space of M at each point of M — L,,_; and vanish at L,_1,
and in the case (x), for each 1 < i < n/, a:laii on {(x1,....,z,) € R" : z; # 0 for
1 <j <n/ with j # i} is contained in the linear space over the Nash function ring
on the set spanned by v, 1, ..., Un k,, -

Next fix i < n and consider on L;. Then it suffices to prove the following two
statements.

(i) There exist Nash vector fields v; 1, ..., v; k, on L —Nash cross-sections of the
restrictions to L; of the tangent bundle of RN , i.e. the restrictions to L; of Nash
vector fields on RY by theorem 2.8—which span the tangent space of L; — L;_; at
its each point and vanish at L;_; and such that in the case of (x) the condition on
each irreducible component {(z1,...,z,) € R" 1 z;, =--- =z, , = 0}, same as on
M, is satisfied for 1 < j; < -+ < jn_; < n’; to be precise, for any 1 < j < n’ other

. . 0
than ji, ..., jn—, then z; 57~ on

{(aj17 ...,{Zln) cR": Tjy = =T, = 0, x 7é 0ifl {1, ...,n’} \ {jl, ~--;jn—i7j}}

is contained in the linear space over the Nash function ring on the set spanned by
Ui,l, ceey Ui,k:i'
(ii) Any Nash vector field on L; tangent to L LJ 1 at its each point for j <1
is extensible to a Nash vector field on LZ+1 tangent to L2+1 L at each its point.
Proof of (i). By considering the Zariski closure of L; and its normalization and by
Artin-Mazur Theorem, we have a Nash manifold P; and a Nash immersion §; : P; —
L such that fZ\P —e (i) is a Nash diffeomorphism onto L — LZ 1. Note that

¢ 1(L;_1) is normal crossing in P;. Apply the same arguments to (P;, & ' (L;_1))
as on (M, L,,_,). Here the difference is only that we need a finite number of global
generators «; 1, @; 2, ... of the sheaf of N-ideals on P; defined by §fl(Li_1). Then
there exist Nash vector fields wj 1, ..., w; x, on P; with the corresponding properties,
and they induce semialgebraic C? vector fields Vily -y Vik; O Li through &; because
Wi 1, ..., Wk, vanish on §;” ( —1). Such v; 1, ..., v; i, are of class Nash by the normal
crossing property of L,,_; in M and satisfy the conditions in (i).

Proof of (ii). Let v be a Nash vector field on L; in (ii), and &41 : Py1 — Li_H
the same as above. Then since £Z+1 is an immersion, v pulls back a Nash cross-
section w of the restriction to &; le( ;) of the tangent bundle of the Nash manifold
P;.1, and by theorem 2.8 we obtain a Nash vector field on P;;; whose restriction
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to &, Jr1( ;) is w. This vector field induces a Nash vector field of Lz—l—l through &1,
which is an extension of v, by the same reason as in the proof of (i).

Let g € Fy near f. It suffices to see that f and g are C“ right equivalent.
Actually, assume that there exists a C* diffeomorphism 7 of M such that f = gom.
Let M and L,_; be the same as above and so small that f and g are extensible
to Nash functions f and § on M, respectively. Extend 7 to a C¥ diffeomorphism
T U1 — Us between open neighborhoods of M in M so that (U N Ly 1) C L, 1
and f = gom. As above, let a,, be a global generator of the sheaf of A-ideals on
M defined by Lp—1. Then o, o 7@ = Bay, on U; for some positive C* function 3 on
U;. Consider the following equations in variables (x,y, z) € M? x R.

f(x)—g(y) =0 and a,(y) — za,(x) =0

Here the second equation means that if z € f)n_l then y € f)n_l. Then y =
7(x) and z = f(x) are C¥ solutions. Hence by Nash Approximation Theorem
IT, there exist Nash germ M y = «'(z) and 2z = ('(x) solutions on M, which are
approximations of the germs of 7 and 5 on M. Thus 7’|, is a Nash diffeomorphism
of M and f =gon’ on M.

Now we show the C* right equivalence of f and g. Set G(x,t) = (1—t) f(z)+tg(x)
for (z,t) € M x [0, 1]. Then G(z,0) = f(x) and G(z,1) = g(z). Hence by the same
reason as in the proof of theorem 3.1,(1) it suffices to find a C* vector field v on
M x [0, 1] of the form % + Zle a;v; for some C* functions a; on M x [0, 1] such
that vG =0 on M x [0, 1], i.e

k
(%) =3 ai(vif + toilg — ).
=1

Moreover, as shown there, we only need to solve this equations locally at each point
(xo,to) of M x [0, 1] since M is compact.

If 29 ¢ X, then (v;f)(xg) # 0 for some i and hence we have solutions of ()
a; =0 for j #iand a; = (f — g)/(vif +tvi(g — f)) around (xo, o) because g — f
and hence tv;(g — f) are small in the C*° topology.

Let o € X,. Then we can assume that M = {x = (z1,...,z,) € R" : |z]| <
1, zy > 0,..,2, > 0} for some n' (< n) € N, that 29 = 0 and f(z) = 2P for
some 0 = (fB1,...,0,) € N™ with |G| > 0, that £ = n and v; = xla%l,...,vn/ =

xnfax%al,vnfﬂ = 8x8/+1""’vn = % and that f — g = bx? for some small C¥
function b on M by lemma 2. 12 Let i be such that 3; # 0. Then v, f = ﬁixﬁ/xi
and v;(f — g) = bBx®/x; + 935 if i > n', and v;f = Biz® and vi(f — g) =

bB;xP + Tig 935 ifi <n'. In any case (xx) is solved as before. Thus theorem 3.2
is proved.

5.2. Proof of theorems 3.1,(2) and 3.1,(3).

Let us consider the case where M is a manifold without corners.

Proof of (2). Set X = f~1(f(Sing f)) and Y = g~!(g(Singg)), and let 7 be a
C? diffeomorphism of M such that f om = ¢g. Then X and Y are normal crossing,
7(Y) = X, and we assume that 7 is close to id in the Whitney C? topology by
replacing f and m with f o7’ and 7/~! o 7 for a C*° approximation 7’ of 7 in
the Whitney C? topology. Hence by lemma 4.2 and properness of f and g, there
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exists a C> diffeomorphism 7" of M close to id in the Whitney C? topology such
that 7/(Y) = X. Replace f and 7, once more, by f on” and 7”~! o 7. Then we
can assume that, moreover, X =Y. We want to modify 7 to be of class C"*° on
a neighborhood of X. Set B(e) = {z € R" : |z| < ¢} for ¢ > 0 € R. Let {U;}
and {U/} be locally finite open coverings of X in M such that U/ C U;, such that

7(U!) C U;, each fly, is C™ right equivalent to the function HJ 1T
for x = (x4, ..., zy,) € Int B(¢;) and for some ¢; > 0 € R and some a = (ayq, ..., ap) €
N" depending on ¢ with a3 > 0, ..., > 0,41 = -+ -, = 0 and that U; N X
and U/ are carried to Int B(e;)N{xy - - - x,» = 0} and B(e;/2) by the diffeomorphism
of equivalence. Then by induction on ¢ it suffices to prove the following statement
(for simplicity of notation we assume that ¢; = 3 and U] is carried to B(1)).

Let C' be a closed subset of B (3) Let f and g be C*° functions on R" such
that f is of the form z® = H;L 1 ]J for the above « and g is of the form z%¢’
for some positive C* function g’ on R™. Let m be a C? embedding of B(3) into
R"™ such that for = g on B(3) and n(X N B(3)) C X where X = {z% = 0}.
Let 7 : B(3) — R™ be a C? approximation of 7 in the C' topology such that
7(X N B(3)) C X, such that f o7 = g on a neighborhood of C' in B(3) and 7 is of
class C° there. Then, fixing on (B(3) — B(2))UC, we can approximate 7 by a C?
embedding 7 : B(3) — R"™ in the C' topology so that 7(X N B(3)) C X, so that
foT=gon B(l) and 7 is of class C* on B(1).

We prove the statement. Set 7(x) = (71(2), ..., 7n(2)). Then 7;(z) for each 1 <
j < n’ is divisible by z;, to be precise, there exists a positive C! function F; on B(3)
such that 7‘3( ) = x;Fj(z) since 7(XNB(3)) C X and X = {0}xR"U-- UR™ ~1x

%+ constant,

{0} x R"~ "’ and 7 is close to id. The required approximation 7 = (T1, ey Tn) also
has to have the form (wlFl, . xn/Fn/, Tn/+1, ---y Tn) fOr some positive C' functions
F and C? functions /41, ..., 7. Set F = (F\, ..., Fy) and F = (F1, ..., F,/). Then

F is of class C*>° on a nelghborhood of C, the condition fo7 = g on B(1) coincides
with the one F* = ¢’ on B(1), and the other conditions which F., 7 11y -eey Tr SALISTY
are that F' = F on (B(3) — B(2))UC, that (F, 741, ...,7,) is an approximation of
(F, Ty 41, ..., Tn) in the C* topology and that 7 is of class C? on B(3) and of class
C*> on B(1).

Set Z = {(z,y) € B(3) x R" : y* = ¢/(x)}, which is a C* submanifold with
boundary of B(3) x R" by the implicit function theorem since ¢’ is positive. Note
that ' = ¢’ on B(1) if and only if graph F'|p(;y C Z and that graph F|c C Z.
We can construct a C°° projection p : W — Z of a tubular neighborhood of Z in
B(3) x R™ such that p(z,y) for (z,y) € W is of the form (z, pa(x,y)) as follows.
Since ¢’ is positive, Z N {z} x R™ for each € B(3) is smooth and, moreover,
the restriction to Z of the projection B(3) x R” — B(3) is submersive. Hence
if we define p(z,y) for each (x,y) € B(3) x R™ mnear Z to be the orthogonal
projection image of (z,y) to Z N{x} x R™, then p satisfies the requirements. Let
(F Tn/d1, - Tn) be a C°° approximation of (F,Tp/41,...,Tn) in the C! topology,
fixed on a neighborhood of C, and ¢ a C*° function on B(3) such that 0 < ¢ <1,
¢ =1on B(1) and ¢ = 0 on B(3) — B(2). Define a C? map F = (Fi,...,F,) :
B(3) — R™ by

F(z) = ¢(x)pa(z, F(x)) + (1 = ¢(2))F(x) for x € B(3),

and set 7 = (1 F1, ..., Tn/ Frr, Tpr g1y o 7n) o0 B(3). Then graph F\B(l) is included
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in Z because F|p(1) coincides with the map : B(1) 3 o — po(z, F(z)) € R"™
whose graph is contained in Z; then F = F on B(3) — B(2) since ¢ = 0 there;
then ' = F on C since F' = F there and since p(z, F(x)) = (x, F(z)) there;
then (E,7p41,...,7,) is an approximation of (F, 7,41, ...,7,) in the C! topology
since so is (F, yTnia1s ., Tn); then 7 is of class C? because if we set pa(x,y) =
(p2,1(z,y), ..., p2,n(x,y)) then

A

7i(2) = ¢(x)a;p2.i (2, F(2)) + (1 — ¢(2))7;(2), 1 <j <nf;

finally 7 is of class C™ on B(1) since F(z) = po(z, F(z)) on B(1). Thus the
statement is proved.

In conclusion, for some closed neighborhood V' of f(Sing f) in R each of whose
connected components contains one point of f(Sing f), there exists a C? diffeomor-
phism 7 of M sufficiently close to 7 in the Whitney C' topology such that 7 is of
class C* on f~1(V) and for =g on f~1(V). Then the restrictions of f and g to
f~Y(R — V) are proper and locally trivial maps onto R — V, moreover fom = g on
AR -V) and 7| -1 @®=7) is an approximation of 7| ;_, =7 in the Whitney C!
topology. Hence we can modify 7 so that for = g and 7 is of class C*° everywhere
fixing on f~1(V). Therefore, f and g are C* right equivalent, which proves (2).

Proof of (8). Let 0 < I € N. We prove first that f and g are semialgebraically
C' right equivalent and later that semialgebraic C' right equivalence implies Nash
right equivalence. We proceed with the former step as in the above proof of (2).
Let 7 be a semialgebraic C? diffeomorphism of M such that f o7 = g, and set
X = f~Yf(Sing f)) and g~'(g(Singg)). Let n’ be a Nash approximation of 7
in the semialgebraic C? topology (Approximation Theorem I). Then 7’ is a dif-
feomorphism of M and 7’/~! o 7 is a semialgebraic C? approximation of id in the
semialgebraic C? topology. Hence by replacing f and 7 with fon’ and 7/~ !on, we
assume that 7 is close to id in the semialgebraic C? topology. Moreover, we suppose
that X =Y as in the proof of (2) by using lemma 4.3 and its remark in place of
lemma 4.2. Furthermore, by using lemma 4.6 we can reduce the problem to the
case where M is the interior of a compact Nash manifold possibly with boundary
My and for each x € OMy, the germ (M,, X,) is Nash diffeomorphic to the germ
at 0 of (R"™! x [0, o), {(z1, ..., wpn_1) € R" L 1212, = 0} x (0, 00)) for some
n’ (< n) e N.

We modify 7 on a semialgebraic neighborhood of X. By lemma 4.7 and proposi-
tion 4.8,(iii) there exist finite open semialgebraic coverings {U;} and {U/} of X in
M such that the closure U/ in M is contained in U;, such that 7(U) is contained
in U;, such that f|y, is Nash right equivalent to 2“4 constant on Int B, (¢;) where
a = (aq,....,a,) € N™ depending on i with oy > 0,...,p > 0,741 = -+, = 0,
for ' (< n) € N — {0} and B¢, (¢;) = {x = (z1,...,2,) € R" : z, > 0, |2%] <
&i(xn), || < €} for some ¢, > 0 € R and some positive Nash function & on
(0, c0) and that U; N X and U, are carried to Int B, (¢;) N {x1 -2,y = 0} and
Int By, /5(€;/2) by the diffeomorphism of equivalence. For modification of 7 on a
semialgebraic neighborhood of X we need the following statement. Let I’ € N such
that | <1’ <1+ #{i}.

Let £ be a small positive Nash function on (0, c0), and C' a closed semialgebraic
subset of B3¢(3). Let f and g be Nash functions on By¢(4) such that f is of the form
x® for the above a and g is of the form x%g’ for some positive Nash function ¢’ on
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Byg(4). Let 7 be a semialgebraic C? embedding of Bs¢(3) into Bag(4) close to id in
the semialgebraic C? topology such that for = g on Bsg¢(3) and m(X NBs¢(3)) € X
where X = {(21,...,2,) € R" : ©1 -2z, = 0}. Let 7 : B3¢(3) — Bug(4) be a
semialgebraic C? approximation of 7 in the semialgebraic C' topology such that
7(X N B3¢(3)) C X, such that f o7 = g on a closed semialgebraic neighborhood V
of C' in Bsg(3) and 7 is of class C' there. Then, fixing on (Bse(3) — Bae(2)) UC
we can approximate T by a semialgebraic C? embedding 7 : Bsg(3) — Bag(4) in
the semialgebraic C' topology so that 7(X N Bs¢(3)) C X, such that fo7 =g on
Be(1) and 7 is of class C*'~1 on Be(1).

We prove the statement. As before, set 7 = (71,...,70), T = (T1,...,Tn), let
F; and Fj, 1 < j < n/, be positive semialgebraic C'! functions on Bs¢(3) such
that 7; = x;Fj(z) and 7; = 2;Fj(x) on Bs(3), and set F = (Fy, ..., Fyy) and
F = (Fl, e Fn/). Note that F; are of class C"~1 on a semialgebraic neighborhood
of C in Bs¢(3), which is different to F} in the proof of (2) where they are of class
C>°. Then the required conditions are that F* = ¢’ on Be(1), that F = F on
(B3e(3) — Bae(2)) UC, that (F,Fpy1, ..., 7,) is a semialgebraic C' approximation
of (F,Tp/41, ..., T) in the semialgebraic C! topology, and 7 is of class C? on Bs¢(3)
and of class C*'~1 on Be(1).

Set Z = {(x,y) € B3¢(3) x R"™ : y® = ¢/(x)}, which is a Nash submanifold with
boundary of Bs¢(3) x R”/, and let p: W — Z be a Nash projection of a semialge-
braic tubular neighborhood of Z in Bs¢(3) x R™ such that p(x,y) for (z,y) € W
is of the form (z,pa(z,y)), which is constructed as before. Let (F, Tr/ 41y -y Tn) D€
a Nash approximation of (F,7,/y1,...,7,) in the semialgebraic C' topology, and
¢ and 1 semialgebraic C!" functions on Bs¢(3) such that 0 < ¢ < 1, such that
¢ =1o0n B¢(1) and ¢ = 0 on Bsg(3) — Bag(2), such that 0 < ¢ <1 and ¢ =1 on
Bs¢(3) — V whereas 1) = 0 on a semialgebraic neighborhood of C' in Bs¢(3) smaller
than Int V. Set

F(z) = ¢(x)pa (2,9 (x) F(z) + (1 — () F(z)) + (1 — ¢(x))F(x) for z € Bse(3),
and T = (xlﬁ’l, ooy T For Tn/41s s Tn) ON Bge(3).

Then we see as before that the required conditions are satisfied. Hence the state-
ment is proved.

By the statement, a partition of unity of class semialgebraic C! and by remark
2.11,(5)" we obtain an open semialgebraic neighborhood U of X and a semialgebraic
C? diffeomorphism 7 of M close to 7 in the semialgebraic C! topology such that
7 is of class C' on U and f o7 = g on U (the point is that after fixing U we can
choose T so as to be arbitrarily close to id). Then we modify 7 so that 7 is of
class semialgebraic C! and f o7 = g, i.e., f and g are semialgebraically C' right
equivalent as follows.

Let n be a semialgebraic C! function on M such that 0 < n < 1, such that
n = 0 outside of U and n = 1 on a smaller semialgebraic neighborhood of X,
and set A = {(z,y) € (M — X)? : f(y) = g(x)}. Then A is a Nash manifold
and there exists a Nash projection ¢ : ) — A of a small semialgebraic tubular
neighborhood of A in the square of the ambient Euclidean space of M of the form
q(z,y) = (z,q2(x,y)) for x € M — X. Let 7 be a Nash approximation of 7 in the
semialgebraic C! topology, and set

7 =g (2, n(@)r(z) + (1 —n(2))7(z)) forz € M.
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Then 7 is well-defined because the graph of the map from M to the ambient Eu-
clidean space of M : x — n(z)7(z) + (1 — n(x))7(x) is contained in @, hence 7 is a
semialgebraic C! diffeomorphism of M and f o7 = ¢g. Thus the former step of the
proof is achieved.

Let 0 < I®) <« .- <« 1 € N. For the latter step also we can assume that X =Y
and that there exists a semialgebraic C! diffeomorphism 7 of M close to id in the
semialgebraic C! topology such that f om = ¢g. Let i be a Nash function on R
such that x~1(0) = f(Sing f) and pu is regular at u=1(0). Consider po f and po g.
Their zero sets are X, they have only normal crossing singularities at X, the same
sign at each point of M and the same multiplicity at each point of X, and we see
easily that the Nash function on M, defined to be pog/puo f on M — X is close to
1 in the semialgebraic C* topology. Hence the conditions in lemma 4.7 are satisfied
and there exists a Nash diffeomorphism 7’ of M close to id in the semialgebraic C¥
topology such that 7/(X) = X and fon’ — g is !’-flat at X. Thus, replacing f and
7 with f o7’ and 7/~! o7, we assume that f — ¢ is I’-flat at X and = is close to id
in the semialgebraic c topology.

By proposition 4.9 we can assume that M is the interior of a compact Nash
manifold possibly with corners M; and f is the restriction to M of a Nash function
f1 on M, with only normal crossing singularities. Then by the definition of semial-
gebraic C! topology, 7 is extensible to a semialgebraic cv diffeomorphism 7y of M;
such that m —id is I-flat at &M;. Hence g also is extensible to a semialgebraic C¥
function g; on My, and f; — g7 is close to 0 in the ol topology and I’-flat at OMj.
Let v;, for « = 1,..., N, be Nash vector fields on M; spanning the tangent space of
M; at each point, 11 a non-negative Nash function on M; with zero set dM; and
regular there, and set v = Zfil(vi f1)? and v = V{N V9. Then the radical of vo N
is the sheaf of NV-ideals defined by X U OM;, and f; — g is divisible by v; to be
precise, there exists a semialgebraic C"" function 8 on M; such that fi—g1=vpg.
Moreover, (3 is close to 0 in the ol topology. Actually, by lemma 2.12 the map
C>*(My) > h — vh € vC>®(M;) is open. Hence for h € C>° (M), if vh is close
to 0 in the C'" topology then h is close to 0 in the ol topology. This holds for
h e CV' (M) also because h of class C'" is approximated by a C°° function h’ in
the C'" topology and v - (h — h') and hence vh' are close to 0 in the C"" topology.
Therefore, (3 is close to 0 in the ol topology.

It follows from the definition of semialgebraic C' topology that V{” Bl is close

to 0 in the semialgebraic ol topology. Then the conditions in proposition 4.8, (ii)
for fand g (= f— l/{”ﬁ Zévzl(vifl)ﬂM) are satisfied. Hence f and g are Nash right
equivalent.

We can prove the case with corners in the same way. [
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