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ANALYTIC EQUIVALENCE OF NORMAL CROSSING

FUNCTIONS ON A REAL ANALYTIC MANIFOLD

Goulwen Fichou and Masahiro Shiota

Abstract. By Hironaka Desingularization Theorem, any real analytic function has
only normal crossing singularities after a suitable modification. We focus on the

analytic equivalence of such functions with only normal crossing singularities. We
prove that for such functions C∞ right equivalence implies analytic equivalence.

We prove moreover that the cardinality of the set of equivalence classes is zero or

countable. We apply these results to study the cardinality of the set of equivalence
classes for almost blow-analytic equivalence.

In the study of real analytic function singularities, the choice of a relevant equiv-
alence relation is a crucial but difficult topic. After Hironaka Desingularization
Theorem [Hi], which enables to produce functions with only normal crossing sin-
gularities after a finite sequence of blowings-up along smooth analytic centers, it
seems natural to expect that equivalent real analytic functions should admit similar
resolution of their singularities. In that spirit, we propose in this paper to study the
equivalence relation obtained by requiring that two real analytic functions, defined
on a compact real analytic manifold, are equivalent if there exist two Hironaka
desingularizations such that the modified functions with only normal crossing sin-
gularities, obtained after the desingularizations, become analytically equivalent.

This definition is weaker than that of blow-analytic equivalence introduced by
T. C. Kuo [Ku, K-W], which seems to be, up to now, the best candidate to be
the real counterpart of the topological equivalence for complex analytic functions
(cf [F-P] for a recent survey). The blow-analytic equivalence imposes to the ana-
lytic isomorphism that realizes the equivalence, the additional condition to induce
a topological equivalence between the functions. Here, we release this strong con-
dition which imposes drastic restrictions that are often hopeless for many concrete
applications, typically when we only know that after some simplification process,
two given objects are similar in some sense.

The equivalence relation we propose to study in this paper is called almost
blow-analytic equivalence in the language of blow-analytic theory. Our main result
(corollary 3.3) states that the cardinality of the set of equivalence classes for al-
most blow-analytic equivalence is zero or countable (corollary 3.3). Therefore it is
reasonable to hope for a classification!

To prove the result, we reduce the problem to the analogous study for Nash
functions, i.e. real analytic functions whose graph is a semi-algebraic set (described
by a set of polynomial equalities and inequalities with real coefficient polynomials).
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The great advantage then is that we can used complexity arguments to deal with
cardinality issues. Actually, the study of almost blow-Nash equivalence for Nash
functions presents a great interest by itself (cf. [Ko,Fi] for notions on blow-Nash
equivalence). Notably the cardinality of the set of equivalence classes remains zero
or countable even if the underlying Nash manifold is no longer compact.

We give now more details on the strategy we use to tackle these issues. First,
thanks to Hironaka Desingularization Theorem, it is of great importance to focus
on the analytic (respectively Nash) equivalence between real analytic (resp. Nash)
functions with only normal crossing singularities. The first main result in this
direction is theorem 3.1,(1) which asserts that C∞ right equivalent real analytic
functions with only normal crossing singularities are automatically analytically right
equivalent. Theorem 3.1,(1) is a crucial tool in order to deal with cardinality
issues, in particular in view to make a reduction from the analytic case to the Nash
one. Its proof consists in a careful use of Cartan Theorems A and B and Oka
Theorem in order to use integration along analytic vector fields to produce analytic
isomorphisms.

The second main result (theorem 3.2) deals with the cardinality of the set of
equivalence classes of real analytic (respectively Nash) functions with only normal
crossing singularities on a compact analytic manifold (resp. on a non necessarily
compact Nash manifold) with respect to the analytic (resp. Nash) equivalence. To
prove that this cardinality is zero or countable, we first reduce the study to the
Nash case by theorem 3.1.(1), then from the non compact to the compact case via
Nash sheaf theory, a Nash version of Hironaka Desingularization Theorem and a
finer analysis of the normal crossing property on a Nash manifold with corners.
Finally Hardt triviality [Hd], Artin-Mazur Theorem [S2] and Nash Approximation
Theorem (via Popescu Approximation Theorem [Sp]) enable to achieve the proof.
Note that the techniques developped there can be used to offer (as theorem 3.1,(3))
a C2 plus semi-algebraic version of theorem 3.1,(1), namely semialgebraically C2

right equivalent Nash functions with only normal crossing singularities on a Nash
manifold are Nash right equivalent (see also theorem 3.1,(2) for a C2 version).

At this point, the nullity or countableness of the cardinality of the set of classes
for almost blow-analytic equivalence, or almost blow-Nash equivalence (corollary
3.3), becomes a direct consequence of Hironaka Desingularization Theorem and
theorem 3.2.

The paper is organized as follows. In the first section we state the definitions
of almost blow-analytic and blow-Nash equivalence relations, and try to give the
flavour of these relations. We devote the second section to some preliminaries
about real analytic and Nash sheaf theory. In particular we state Cartan Theorems
A and B and Oka Theorem in the real analytic case, and prove some more precise
corollaries that will be intensively used in the paper. We need also stronger versions
of classical Cartan Theorems A and B and Oka Theorem in the Nash case (compare
with [C-S1]), and write down a proof of Hironaka Desingularization Theorem in the
Nash setting. The last section is dedicated to the statement and proofs of the main
results.

In this paper a manifold means a manifold without boundary, analytic manifolds
and maps mean real analytic ones unless otherwise specified, and id stands for the
identity map.

Acknowledgments. The authors wish to thank Toshizumi Fukui and Satoshi
Koike for giving many advice on the content of the paper.
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1 Almost blow-analytic equivalence

Definition 1.1. Let M be an analytic manifold and f, g : M −→ R be analytic
functions on M . Then f and g are said to be almost blow-analytically equivalent
if there exist two compositions of finite sequences of blowings-up along smooth
analytic centers πf : N −→ M and πg : L −→ M and an analytic diffeomorphism
h : N −→ L so that f ◦ πf = g ◦ πg ◦ h. In the case where there exist πf : N →M
and πg : L→M with the above property and analytic diffeomorphisms h : N → L
and τ : R → R such that τ ◦ f ◦ πf = g ◦ πg ◦ h, f and g are called almost blow-
analytically R-L (=right-left) equivalent. We define also almost blow-analytic (R-L)
equivalence of germs of analytic functions (see definition 1.2 for the details).

Here and from now on we treat without mention only the case where the images
of the centers of the blowings-up of πf and πg are contained in their singular point
sets Sing f and Sing g, respectively, and the center C of each blowing-up is of
codimension > 1 and normal crossing with the union D of the inverse images of the
previous centers, i.e. there exists an analytic local coordinate system (x1, ..., xn) at
each point of C such that C = {x1 = · · · = xk} and D = {xi1 · · ·xil = 0} for some
0 < k ∈ N and 1 ≤ i1 < · · · < il ≤ n ∈ N, where N = {0, 1, ...}.

Remark. There does not exist large difference between almost blow-analytic equiva-
lence and almost blow-analytic R-L equivalence in the following sense. If the germs
of f and g on a connected component of Sing f in M are almost blow-analytically
R-L equivalent then the germs of f and g+const or of f and −g+const are almost
blow-analytically equivalent by lemma 3.10 and proposition 3.11,(i) because we can
reduce the problem to the case where f ◦ πf and g ◦ πg have only normal crossing
singularities (see the section 3.1 for the definitions of normal crossing singularities
and equivalence of function germs). The reason why we nevertheless introduce the
concept of almost blow-analytic R-L equivalence is that the cardinality of the set
of classes of analytic functions on a compact analytic manifold, classified by almost
blow-analytic equivalence, is of the continuum even if dimM = 0, and, on the
other hand, the one classified by almost blow-analytic R-L equivalence is countable
(corollary 3.3)

We define also blow-analytic equivalence (cf. [Ku]) by requiring above h to induce
a homeomorphism of M . However, we treat almost blow-analytic equivalence more
than blow-analytic equivalence for the following reason. First we can construct
a theory on almost blow-analytic and blow-Nash equivalences (see definition 1.2
below for the definition of blow-Nash equivalence) and secondly we do not need to
require (at least in this paper) above f and g to be defined globally on M for almost
blow-analytic equivalence but we need only that f ◦ πf and g ◦ πg are extensible to
analytic functions on N and L, respectively.

(i) However, we do not know whether the almost blow-analytical (R-L) equiv-
alence and the blow-analytical (R-L) equivalence give equivalence relations. (See
[F-K-K].) This is the case if we admit blowings-up along non-smooth analytic cen-
ter.

(ii) Even in the case of germs of functions, almost blow-analytically equivalent
function germs are not necessarily blow-analytically equivalent as follows.

Proof of (i). Let OM1
denote the sheaf of analytic function germs on an analytic

space M1. For a morphism g : M1 → M2 of analytic spaces, as locally ringed
spaces, and for a sheaf of OM2

-ideals I, let g−1I ·OM1
denote the inverse image

ideal sheaf, i.e., the sheaf of OM1
-ideals generated by the image of the inverse
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image g−1I of I (see [Ht]). Let fi, i = 1, .., 4, be analytic functions on an analytic

manifold M with f2 = f3, let Ni,ki

πi,ki−→ · · · −→ Ni,1
πi,1
−→ Ni,0 = M , i = 1, .., 4, be

sequences of blowings-up with respect to coherent sheaves of non-zero ONi,j
-ideals,

and let τ2 : N1,k1 → N2,k2 and τ4 : N3,k3 → N4,k4 be isomorphisms of locally ringed
spaces such that fi ◦ πi,1 ◦ · · · ◦ πi,ki

◦ τi = fi−1 ◦ πi−1,1 ◦ · · · ◦ πi−1,ki−1
, i = 2, 4. If

N2,k2

π2,k2−→ · · · −→M and N3,k3

π3,k3−→ · · · −→M coincide each other, then τ4◦τ2 is an
isomorphism from N1,k1 to N4,k4 and f4◦π4,1◦· · ·◦π4,k4◦τ4◦τ2 = f1◦π1,1◦· · ·◦π1,k1 .

Hence it suffices to reduce the problem to the case where N2,k2

π2,k2−→ · · · −→M and

N3,k3

π3,k3−→ · · · −→M coincide.
Remember a fact. Let J1 and J2 be coherent sheaves of non-zero OM1

-ideals
on a reduced and irreducible analytic space M1, and let g1 : L1 → M1, g2 : L2 →
M1, h1 : N1 → L1 and h2 : N2 → L2 denote the blowings-up with respect to
J1, J2, g

−1
1 J2 ·OL1

and g−1
2 J1 ·OL2

, respectively. Then there exists an unique
isomorphism τ : N1 → N2 such that g1 ◦ h1 = g2 ◦ h2 ◦ τ for the following reason.

N1

τ
∼= N2

h2−−−−→ L2

h1

y g2

y

L1
g1

−−−−→ M1

Apply the universal property theorem of blowing-up (see [Ht] in the algebraic
case) to the blowing-up g2 : L2 →M1 and the morphism g1 ◦ h1 : N1 →M1. Then
there exists an unique morphism π : N1 → L2 such that g2 ◦ π = g1 ◦ h1 since
(g1 ◦ h1)−1J2 ·ON1

(= h−1
1 (g−1

1 J2 ·OL1
) ·ON1

) is invertible. Next, considering the
blowing-up h2 : N2 → L2 and the morphism π : N1 → L2, we obtain a unique
morphism τ : N1 → N2 such that π = h2 ◦ τ since π−1(g−1

2 J1 ·OL2
) ·ON2

(=
(g2 ◦ π)−1J1·ON2

= (g1 ◦h1)−1J1·ON2
= h−1

1 (g−1
1 J1·OL1

)ON2
) is invertible. Then

g1 ◦ h1 = g2 ◦ π = g2 ◦ h2 ◦ τ . By the same reason we have an unique morphism
τ ′ : N2 → N1 such that g1 ◦ h1 ◦ τ ′ = g2 ◦ h2. Hence τ is an isomorphism.

By this fact we have a commutative diagram of blowings-up with respect to
coherent sheaves of OMi,j

-ideals :

Mk2,k3

νk2,k3−−−−→ Mk2−1,k3 −−−−→ · · · −−−−→ M0,k3

µk2,k3

y µk2,−1,k3

y µ0,k3

y

Mk2,k3−1

νk2,k3−1
−−−−−→ Mk2−1,k3 −−−−→ · · · −−−−→ M0,k3−1y

y
y

...
...

...
y

y
y

Mk2,0

νk2,0
−−−−→ Mk2−1,0 −−−−→ · · · −−−−→ M0,0

such that Mk2,0

νk2,0

−→ · · ·
ν1,0
−→ M0,0 and M0,k3

µ0,k3−→ · · ·
µ0,1
−→ M0,0 coincide with

N2,k2

π2,k2−→ · · ·
π2,1
−→M and N3,k3

π3,k3−→ · · ·
π3,1
−→M , respectively. In particular,

π3,1 ◦ · · · ◦ π3,k3 ◦ ν1,k3 ◦ · · · ◦ νk2,k3 = π2,1 ◦ · · · ◦ π2,k2 ◦ µk2,1 ◦ · · · ◦ µk2,k3 .
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Since τ2 : N1,k1 → Mk2,0 is an isomorphism we have a sequence of blowings-up

N1,k1+k3

π1,k1+k3−→ · · ·
π1,k1+1

−→ N1,k1 and isomorphisms τ2,k3 : N1,k1+k3 → Mk2,k3 , ...,
τ2,0 = τ2 : N1,k1 →Mk2,0 such that the following diagram is commutative.

N1,k1+k3

π1,k1+k3−−−−−→ N1,k1+k3−1 −−−−→ · · ·
π1,k1+1
−−−−−→ N1,k1

τ2,k3

y τ2,k3−1

y τ2,0

y

Mk2,k3

µk2,k3−−−−→ Mk2,k3−1 −−−−→ · · ·
µk2,1

−−−−→ Mk2,0.

Then

f2 ◦ π2,1 ◦ · · · ◦ π2,k2 ◦ µk2,1 ◦ · · · ◦ µk2,k3 ◦ τ2,k3 = · · · =

f2 ◦ π2,1 ◦ · · · ◦ π2,k2 ◦ τ2,0 ◦ π1,k1+1 ◦ · · · ◦ π1,k1+k3 =

f1 ◦ π1,1 ◦ · · · ◦ π1,k1 ◦ π1,k1+1 ◦ · · · ◦ π1,k1+k3 .

In the same way we obtain a commutative diagram :

Mk2,k3

νk2,k3−−−−→ Mk2−1,k3 −−−−→ · · ·
ν1,k3−−−−→ M0,k3

τ4,k2

y τ4,k2−1

y τ4,0

y

N4,k2+k4

π4,k2+k4−−−−−→ N4,k2+k4−1 −−−−→ · · ·
π4,k4+1

−−−−−→ N4,k4 ,

where the horizontal morphisms are blowings-up and the vertical ones are isomor-
phisms, with τ4,0 = τ4, and

f4 ◦ π4,1 ◦ · · · ◦ π4,k4 ◦ π4,k4+1 ◦ · · · ◦ π4,k2+k4 ◦ τ4,k2 =

f3 ◦ π3,1 ◦ · · · ◦ π3,k3 ◦ ν1,k3 ◦ · · · ◦ νk2,k3 .

Hence

f4 ◦ π4,1 ◦ · · · ◦ π4,k2+k4 ◦ τ4,k2 ◦ τ2,k3 = f3 ◦ π3,1 ◦ · · · ◦ νk2,k3 ◦ τ2,k3 =

f2 ◦ π2,1 ◦ · · · ◦ µk2,k3 ◦ τ2,k3 = f1 ◦ π1,1 ◦ · · ·π1,k1+k3 .

If τ2 and τ4 induce homeomorphisms of M , then τ4,k2 ◦ τ2,k3 induces clearly a
homeomorphism of M . �

Proof of (ii). Let f and g be Cω functions on R4 in variables (u, v, w, x) defined
by

f = φψξ, g = φψη,

φ = u2 + v2, ψ = u4 + v2 + u2w2,

ξ = u4 + v2 + u2(w − x)2, η = u4 + (v − xu)2 + u2w2.

Then f and g are almost blow-analytically equivalent but their germs at 0 are not
blow-analytically equivalent (i.e. there do not exist open neighborhoods U and V
of 0 in R4 such that f |U and g|V are blow-analytically equivalent and the induced
homeomorphism from U to V carries 0 to 0).
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Proof of almost blow-analytic equivalence.
Set X = {0} ×R2 ⊂ R4. Let Λ denote the half-lines in R4 starting from points

in X and orthogonal to X , and let e(λ) denote λ∩X—the end of λ ∈ Λ. It is easy
to see that for each λ ∈ Λ, f |λ and g|λ have singularities only at e(λ) and that
f(λ) = g(λ) = [0, ∞). We will find almost blow-analytic equivalence so that the
diffeomorphism induces a diffeomorphism of R4 −X carrying any λ− e(λ), λ ∈ Λ,
to some λ′ − e(λ′), λ′ ∈ Λ. Let π : M → R4 denote the blowing-up along center
X . Then

M = {(s : t, u, v, w, x) ∈ P(1) ×R4 : sv = tu},

f ◦ π(1 : t, u, v, w, x) = u6(1 + t2)(u2 + t2 + w2)(u2 + t2 + (w − x)2),

g ◦ π(1 : t, u, v, w, x) = u6(1 + t2)(u2 + t2 + w2)(u2 + (t− x)2 + w2),

f ◦ π(s : 1, u, v, w, x) = v6(1 + s2)(s4v2 + 1 + s2v2w2)(s4v2 + 1 + s2v2(w − x)2),

g ◦ π(s : 1, u, v, w, x) = v6(1 + s2)(s4v2 + 1 + s2v2w2)(s4v2 + (1 − xs)2 + s2w2),

for each λ ∈ Λ

π−1(λ− e(λ)) = {(1 : t0, u, t0u, w0, x0) : u ∈ (0, ∞)}(∗)

or = {(s0 : 1, s0v, v, w0, x0) : v ∈ (0, ∞)}

for some s0, t0, w0, x0 ∈ R.

Singf ◦ π = Sing g ◦ π = π−1(X),Hence

and the germs of f◦π and g◦π at points of π−1(X)−M1−M2 and π−1(X)−M1−M3,
respectively, are 6th powers of regular function germs, where

M1 = {(1 : 0, 0, 0, 0, x) ∈M},

M2 = {(1 : 0, 0, 0, w, x) ∈M : w = x},

M3 = {(1 : t, 0, 0, 0, x) ∈M : t = x}.

Therefore, if we have a C∞ diffeomorphism h of M such that f ◦ π = g ◦ π ◦ h,
h(M1 ∪ M2) = M1 ∪ M3 and h is of class Cω on a neighborhood of M1 ∪ M2,
then by Hironaka Desingularization Theorem (Main Theorem II, [Hi]) there exist
compositions of finite sequences of blowings-up πf : N → M and πg : L → M

along smooth analytic center and a C∞ diffeomorphism h̃ : N → L such that
f ◦ π ◦ πf = g ◦ π ◦ πg ◦ h̃ and f ◦ π ◦ πf and g ◦ π ◦ πg have only normal crossing
singularities, and hence by theorem 3.1,(1) below f ◦ π ◦ πf and g ◦ π ◦ πg are Cω

right equivalent, i.e., f and g are almost blow-analytically equivalent.
Let the variables of R2 be (t, w), and for each x ∈ R, let B|x| denote the ball in

R2 with center 0 and radius |x|. Let hx be a C∞ diffeomorphism of R2 such that
hx = id outside of B2+|x|, hx(t, w) = (w,−t) on B1+|x| and the map h : R4 → R4,

defined by h(u, t, w, x) = (u, hx(t, w), x), is a C∞ diffeomorphism. Regard R4

as a subset of M by the map (u, t, w, x) → (1 : t, u, tu, w, x). Then h can be

extended to a C∞ diffeomorphism h̃ of M , with h̃(π−1(X)) = π−1(X), the image
U of R × ∪x∈RB1+|x| × {x} in M under the inclusion map is a neighborhood of

M1∪M2∪M3, h̃(M1) = M1, h̃(M2) = M3, for any λ ∈ Λ there exists λ′ by (∗) such
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that h̃(π−1(λ− e(λ)) = π−1(λ′ − e(λ′)), h̃ is of class Cω on U , and f ◦ π = g ◦ π ◦ h̃
on U .

We need to modify h̃ outside of U so that f ◦ π = g ◦ π ◦ h̃ everywhere. That
is easy. For each a ∈ M , replace h̃(a) with π−1(λ− e(λ)) ∩ (g ◦ π)−1(f ◦ π(a))

for some λ ∈ Λ with h̃(a) ∈ π−1(λ− e(λ)). Then the new h̃ is a well-defined C∞

diffeomorphism of M because h̃(a) = π−1(λ− e(λ))∩ (g ◦π)−1(f ◦π(a)) for a ∈ U ,

U is a union of some π−1(λ− e(λ)), λ ∈ Λ, and because the restrictions of f ◦π and

g ◦ π to each π−1(λ− e(λ)) outside of U are C∞ right equivalent to the function

[0, ∞) ∋ z → z6 ∈ R. Clearly f ◦ π = g ◦ π ◦ h̃ is satisfied for the new h̃. �

We can prove, moreover, that f and g are almost blow-Nash equivalent (definition
1.2) as follows, though we omit the details. In the same way as the following
arguments we find compositions of finite sequences of blowings-up of R4 along
smooth Nash center πf : N → R4 and πg : L → R4 and we see that f ◦ πf and
g ◦πg are semialgebraically Cm right equivalent for any m ∈ N by using a partition
of unity of class semialgebraic Cm, § II.2, [S2]. Then by theorem 3.1,(3) f ◦ πf and
g ◦ πg are Nash right equivalent.

Proof of non- blow-analytic equivalence. We introduce an invariant of blow-
analytic equivalence, which is a generalization of one in [Fu]. Let C denote the set
of analytic curves germs c : [0, ǫ) → R4 at 0, ǫ > 0, and give a topology on C
by identifying C with 4-product of the one-variable convergent power series ring
R〈〈t〉〉4 and choosing the product topology on R〈〈t〉〉, i.e., R〈〈t〉〉 ∋

∑∞
n=0 an,kt

n →
0 as k → ∞ if for each n, R ∋ an,k → 0 as k → ∞. Then p : C → R4, defined
by p(c) = c(0), is a topological fibre bundle. Let π : M → R4 be the composite
of a finite sequence of blowings-up of R4 along smooth analytic centers. Then π
naturally induces a surjective C0 map π∗ : CM → C such that p◦π∗ = π◦pM , where
CM is the analytic curve germs in M and pM : CM →M is defined by pM (c) = c(0).
Hence if the germs of f and g at 0 are blow-analytically equivalent, there exist open
neighborhoods U and V of 0 in R4 and an isomorphism τ : p−1(U) → p−1(V ) as
topological fibre bundles such that f ◦ c = g ◦ τ(c) as analytic function germs in a
variable t for c ∈ p−1(U). Let τ0 : U → V denote the homeomorphism such that
p ◦ τ = τ0 ◦ p. Assuming so, we will arrive at a contradiction.

Define a map of : C → N ∪ {∞} by of (c) = the order of f ◦ c at 0. Set

Ca = p−1(a), a ∈ U , and consider a family {Ca ∩ o
−1
f (i) : i ∈ N}. We stratify U

by the type of the family. Clearly

X1
def
= {a ∈ U : of = 0 on Ca} = {(u, v, w, x) ∈ U : u 6= 0 or v 6= 0}.

X2 = {u = v = 0, w 6= 0, w 6= x},Set

X3 = {u = v = w = 0, x 6= 0} ∪ {u = v = 0, w = x 6= 0},

X4 = {u = v = w = x = 0}.

Then {X1, X2, X3, X4} is a stratification of U and we see the following property by
easy calculations. If a ∈ X2, X3 or X4, (Ca, Ca ∩ o

−1
f (6)) has the same homotopy

type as (B2, S1), (B2, S1 − S0) or (B2, S1 − S0), respectively, because

Ca ∩ o
−1
f (6) = {c = (c1, .., c4) : [0, ǫ) → R4 ∈ Ca :

dc1
dt

(0) 6= 0 or
dc2
dt

(0) 6= 0}

or = {
dc2
dt

(0) 6= 0} or = {
dc2
dt

(0) 6= 0}, respectively,
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and if a ∈ X3 or X4, (Ca, Ca ∩ o
−1
f (8)) has the same one as (B2, S0) or (B2, ∅),

respectively, where B2 is a 2-ball, S1 is its boundary and S0 is two points of S1.
Thus {X1, X2, X3, X4} is a stratification of U by type of Ca ∩ o

−1
f (i), i = 6, 8.

Consider g. Define og in the same way and set

Y1 = {a ∈ V : og = 0 on Ca} = {(u, v, w, x) ∈ V : u 6= 0 or v 6= 0},

Y2 ={u = v = 0, w 6= 0}, Y3 ={u = v = w = 0, x 6= 0}, Y4 ={u = v = w = x = 0}.

Then, if a ∈ Y2, Y3 or Y4, (Ca, Ca∩o−1
g (6)) has the same homotopy type as (B2, S1),

(B2, S1 − 4 points) or (B2, S1 −S0), respectively. Hence {Y1, Y2, Y3, Y4} is a strat-
ification of V by type of Ca ∩ o−1

g (6).
However, of (c) = og(τ(c)) for c ∈ C with p(c) ∈ U by the definition of blow-

analytic equivalence, and hence for a ∈ U , of : Ca → N∪{∞} and og : Cτ0(a) → N∪

{∞} are C0 right equivalent. Therefore, the stratifications of U by Ca∩ o
−1
f (i) and

V by Ca∩o−1
g (i) coincide up to the homeomorphism τ0. That is a contradiction. �

Definition 1.2. A semialgebraic set is a subset of a Euclidean space which is
described by finitely many equalities and inequalities of polynomial functions. A
Nash manifold is a Cω submanifold of a Euclidean space which is semialgebraic.
A Nash function on a Nash manifold is a Cω function with semialgebraic graph.
A Nash subset is the zero set of a Nash function on a Nash manifold. Let M be
a Nash manifold, X ⊂ M be a semialgebraic subset and f, g be Nash function
germs on X in M . (We call a germ on but not at X in M to distinguish the case
where X is a set from the case of a point.) Then f and g are said to be almost
blow-Nash equivalent if there exist open semialgebraic neighborhoods U and V of
X in M , two compositions of finite sequences of blowings-up along smooth Nash
centers πf : N −→ U and πg : L −→ V and a Nash diffeomorphism h from an

open semialgebraic neighborhood of π−1
f (X) in N to one of π−1

g (X) in L so that f
and g are supposed to be defined on U and V , respectively, f ◦ πf = g ◦ πg ◦ h and

h(π−1
f (X)) = π−1

g (X). We naturally define also almost blow-Nash R-L equivalence.

We define the semialgebraic Cr topology on spaces of semialgebraic Cr maps (see
[S2] for it and for elementary properties of Nash manifolds, Nash functions and the
topology, e.g., a semialgebraic C1 map between semialgebraic C1 manifolds close
to a semialgebraic C1 diffeomorphism is a diffeomorphism).

2. Real analytic and Nash sheaf theory

2.1. Real analytic sheaves.

In this section, we deal with the real analytic and Nash case of Cartan Theorems
A and B, and Oka Theorem. A crucial tool consists in the complexification of real
analytic manifolds and coherent sheaves.

Let O, N and N(M) always denote, respectively, the sheaves of analytic and
Nash function germs on an analytic and Nash manifold and the ring of Nash func-
tions on a Nash manifold M . We write OM and NM when we emphasize the domain
M . For a function f on an analytic (Nash) manifold M , a subset X of M , a vector
field v on M and for a sheaf of O- (N -) modules M on M , let fx, Xx, vx and Mx

denote the germs of f and X at a point x of M , the tangent vector assigned to x
by v and the stalk of M at x, respectively. For a compact semialgebraic subset X
of a Nash manifold M , let N (X) denote the germs of Nash functions on X in M
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with the topology of the inductive limit space of the topological spaces N(U) with
the compact-open C∞ topology where U runs through the family of open semial-
gebraic neighborhoods of X in M . In the same way we define O(X) for a compact
semianalytic subset X of an analytic manifold M . Here a semianalytic subset is a
subset whose germ at each point of M is described by finitely many equalities and
inequalities of analytic function germs.

Theorem 2.1. (Cartan Theorem A) Let M be a coherent sheaf of O-modules on
an analytic manifold M . Then for any x ∈M

Mx = H0(M,M)Ox.

See [G-R] for Cartan Theorems A and B in the complex case and [C] for the real
case. Next corollary will be useful in this paper. It deals with the case where the
number of local generators is uniformly bounded.

Corollary 2.2. In theorem 2.1, assume that Mx is generated by a uniform number
of elements for any x. Then H0(M,M) is finitely generated as a H0(M,O)-module.

Theorem 2.3. (Cartan Theorem B) Let M be a coherent sheaf of O-modules on
an analytic manifold M . Then

H1(M,M) = 0

Corollary 2.4. Let M be an analytic manifold and X ⊂ M be a global analytic
set—the zero set of an analytic function. Let I be a coherent sheaf of O-ideals on
M such that any element of I vanishes on X. Then any f ∈ H0(M,O/I) can be
extended to some F ∈ Cω(M), i.e., f is the image of F under the natural map
H0(M,O) → H0(M,O/I).

If X is normal crossing (see the definition of a normal crossing analytic set in
the section 3.1), we can choose I so as to be the function germs vanishing on X.
Then H0(M,O/I) consists of functions on X whose germs at each point of X are
extensible to analytic function germs on M .

Consider the exact sequence 0 → I → O → I/O. Then corollary 2.4 follows
from theorem 2.3.

Theorem 2.5. (Oka Theorem) Let M1 and M2 be coherent sheaves of O-modules
on an analytic manifold M , and h : M1 → M2 be an O-homomorphism. Then
Kerh is a coherent sheaf of O-modules.

See [G-R] in the complex case. The real case follows from it since we can com-
plexify M,M1,M2 and h, in the same way as in the proof of corollary 2.2 below.

Proof of corollary 2.2. Let l be a uniform number of generators. We define com-
plexifications MC and MC as follows. By Grauert Theorem, let M be a Cω

submanifold of Rn. Hence a complexification of M is naturally defined. Let MC

be the intersection of the complexification and a small Stein open neighborhood of
Rn in Cn, which is automatically a Stein manifold if we choose the neighborhood
so small that the intersection is closed in the neighborhood. Existence of such a
neighborhood follows from by the fact that any open subset of C, a finite prod-
uct of Stein manifolds and a finite intersection of Stein submanifolds of Cn are



10 GOULWEN FICHOU AND MASAHIRO SHIOTA

Stein manifolds. Indeed, any neighborhood of Rn in Cn contains a neighborhood
of the form ∩nk=0πk(E), where E = {x + iy ∈ C : |y| < ǫ(|x|)}n for some small
positive C0 function ǫ on R, π0 = id and πk(z1, ..., zn) = (z1 + zk, ..., zn + zk) for
(z1, ..., zn) ∈ Cn, k = 1, ..., n, (see [G-R] for the fact). Hence when M is a sheaf
of O-ideals or, moreover, a subsheaf of Op, shrinking the open neighborhood if
necessary, we define a complexification MC of M on MC and can prove Cartan
Theorems A and B for M by Cartan Theorems A an B in the complex case because
H0(M,M) contains the real valued elements of H0(MC,MC)|M and H1(M,M) is
the inductive limit of the real valued elements of H1(MC,M)|M as MC is shrunk
to M (Cartan Theorem B).

Consider general M. Let {Ui} be a locally finite open covering of M such that

there are exact sequences (O|Ui
)pi

φi→ (O|Ui
)qi

ψi→ M|Ui
→ 0. Then by Cartan The-

orem B for a coherent subsheaf of Op we find homomorphisms gi,j : (O|Ui∩Uj
)pi →

(O|Ui∩Uj
)pj and hi,j : (O|Ui∩Uj

)qi → (O|Ui∩Uj
)qj for each i and j such that the

following diagram is commutative :

(O|Ui∩Uj
)pi

φi|Ui∩Uj

−−−−−→ (O|Ui∩Uj
)qi

ψi|Ui∩Uj

−−−−−−→ M|Ui∩Uj

gi,j

y hi,j

y id

y

(O|Ui∩Uj
)pj

φj |Ui∩Uj

−−−−−−→ (O|Ui∩Uj
)qj

ψj |Ui∩Uj

−−−−−−→ M|Ui∩Uj

Shrink, moreover, the above Stein open neighborhood so that we can complexify
φi, ψi, gi,j and hi,j to φC

i , ψ
C

i , g
C

i,j and hC

i,j , and define MC to be the union of

CokerφC

i . Then MC is a well-defined coherent sheaf of OC-modules by existence
of gCi,j and hC

i,j such that each MC
x is generated by l-elements, where OC denotes

the sheaf of complex analytic function germs. Note that MC|M ⊃ M, MC|M =
M⊕iM and Cartan Theorems A and B for M hold by the same arguments as
before. We see the following statement.

Let x ∈MC, f1, ..., fl, g1,i, ..., gl,i ∈ H0(MC,MC), i = 1, 2, ..., such that f1x, ...,
flx are generators of MC

x . Then there exist arbitrarily small positive numbers
ǫ1, ǫ2, ... such that for any non-negative numbers ǫ′1 ≤ ǫ1, ǫ

′
2 ≤ ǫ2, ..., f1+

∑∞
i=1 ǫ

′
ig1,i,

..., fl +
∑∞
i=1 ǫ

′
igl,i are elements of H0(MC,MC), their germs at x are generators

of MC
x , and the germs of g1,1 + ǫ1f1, ..., gl,1 + ǫlfl at x also are generators of MC

x .
The first condition follows from the fact that H0(MC,OC) is a Fréchet space

in the compact-open C0 topology, [G-R], and the second and third are easy conse-
quences of elementary linear algebra.

For each irreducible analytic component MC

i of suppMC, let f1,i, ..., fl,i ∈
H0(MC,MC) such that f1,ixi

, ..., fl,ixi
are generators of MC

xi
for some point xi

of MC

i . Then by the above statement there exist non-negative numbers ǫ1, ǫ2, ...
such that

∑∞
i=1 ǫif1,i, ...,

∑∞
i=1 ǫifl,i are elements of H0(MC,MC) and their germs

at any xj are generators of MC
xj

. Set fj =
∑∞
i=1 ǫifj,i, j = 1, ..., l, MC

1 =
∑l
j=1 O

Cfj, M1 = MC
1 |M , MC

2 = MC/MC
1 and M2 = M/M1. Then M1

and M2 are coherent sheaves of O-modules by Oka Theorem, MC
1 and MC

2 are
their complexifications, MC

2x is generated by l elements for any x ∈ MC, and
dim(suppMC

2 ) < dim(suppMC). Choose one point x′i in each irreducible analytic
component of suppMC

2 and repeat the same arguments. Then we have fl+1, ..., f2l∈

H0(MC,MC) such that dim(supp(MC/
∑2l
i=1 O

Cfi)) < dim(suppMC
2 ). In this
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way we obtain generators of H0(MC,MC) of numbers (n′+1)l, where n′ = dimM .
Let g1, .., g(n′+1)l be their restrictions to M . Then each gj is of the form g′j+ ig′′j for

g′j, g
′′
j ∈ H0(M,M). Hence g′1, g

′′
1 , ..., g

′
(n′+1)l, g

′′
(n′+1)l are generators of H0(M,M).

�

2.2. Nash sheaves.

In this section M stands for a Nash manifold. A sheaf of N -modules M on
M is called finite if for some finite open semialgebraic covering {Ui} of M and
for each i there exists an exact sequence Nmi |Ui

−→ N ni |Ui
−→ M|Ui

−→ 0 of
N -homomorphisms, mi, ni ∈ N. Non-finite examples are the sheaf of N -ideals I
on R of germs vanishing on Z and N /I.

Remark. (i) If M1 is a sheaf of N -submodules of a finite sheaf of N -modules M
on a Nash manifold M , and if there exists a finite open semialgebraic covering
{Ui} of M such that for each i, M1|Ui

is generated by its global cross-sections
H0(Ui,M1|Ui

), then M1 is finite.
(ii) Let M1 and M2 be finite sheaves of N -submodules of a finite sheaf of N -

modules. Then M1 + M2 and M1 ∩M2 are also finite sheaves of N -modules.
(iii) For a finite sheaf of N -modules M on a Nash manifold M , H0(M,M) is a

finitely generated N(M)-module.

?We will prove these remarks after theorem 2.8.
?The following three theorems are slight generalizations of results in [S2], [C-R-

S1] and [C-S3], and theorem 2.7 for n = 1 and theorem 2.8 for M1 = N were shown
there. Hence, assuming that these cases hold, we give the proofs of the theorems.

Theorem 2.6. (Nash case of Oka Theorem) Let h be an N -homomorphism between
finite sheaves of N -modules on a Nash manifold. Then Ker h is finite.

Proof. Let h : M1 → M2 be the homomorphism on a Nash manifold M in the
theorem. There exists a finite open semialgebraic covering {Ui} of M such that
Mj |Ui

, j = 1, 2, satisfy the condition of exact sequence in the definition of a finite
sheaf, and it suffices to prove the theorem on each Ui. Hence we assume that
Mj , j = 1, 2, are generated by global cross-sections α1, ..., αn1

and β1, ..., βn2
,

respectively, and there are Nash maps γ1, ..., γn3
∈ N(M)n2 which are generators

of the kernel of the surjective N -homomorphism p : N n2 ⊃ N n2
x ∋ (φ1, ..., φn2

) →∑n2

i=1 φiβix ∈ M2x ⊂ M2, x ∈ M . Let α1, ..., αn1
denote the images of α1, ..., αn1

in H0(M,M2) under the induced homomorphism h∗ : H0(M,M1) → H0(M,M2)
of h.

?We prove the theorem by induction on n2. Let n2 = 1. Then there exist
α̂1, ..., α̂n1

∈ H0(M,N ) such that p∗(α̂i) = αi, i = 1, ..., n1 because by [C-R-S1] and
[C-S3] p∗ : H0(M,N ) → H0(M,M2) is surjective by theorem 2.8 for M1 = N . Let
δ1, ..., δn4

∈ N(M)n1 be generators of the kernel of the surjective homomorphism
N n1 ⊃ N n1

x ∋ (φ1, ..., φn1
) →

∑n1

i=1 φiαix ∈ M1x ⊂ Mx, x ∈ M (we choose the
above {Ui} so that δ1, ..., δn4

exist). Multiplying one small positive Nash function
on αi, αi, α̂i, γi and δi we can assume by the  Lojasiewicz inequality that the Nash
maps α̂i, γi and δi are bounded. Then by Proposition VI.2.8, [S2] we can regard
M and the maps as the interior of a compact Nash manifold possibly with corners
M̃ and the restrictions to M of Nash maps ˜̂αi, γ̃i and δ̃i on M̃ . Replace M1 and
M2 by the sheaves of N -modules on M̃ N n1/(δ̃1, ..., δ̃n4

)N n1 and N /(γ̃1, ..., γ̃n3
)N ,

respectively, and replace h : M1 → M2 with the N -homomorphism h̃ : M̃1 → M̃2
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defined by

h̃(0, ..., 0,
i
1, 0, ..., 0) = ˜̂αi mod (γ̃1, ..., γ̃n3

)N , i = 1, ..., n1.

Then it suffices to see that Ker h̃ is finite. Hence we assume from the beginning that
M is a compact Nash manifold possibly with corners. Then Kerh is isomorphic to
N ⊗N(M) Ker h∗ by Theorem 5.2, [C-R-S1]. Hence Kerh is finite.

Let n2 > 1 and assume that the theorem holds for n2 − 1. Let M0 denote
the sheaf of N -ideals with M0x = {0}. Set M3 = M2/p(N × M0 × · · · ×
M0) and let h3 : M1 → M3 denote the composite of h with the projection
: M2 → M3. Then M3 is generated by the images β2, ..., βn2

of β2, ..., βn2
,

and γ′1, ..., γ
′
n3

∈ N(M)n2−1 are generators of the kernel of the N -homomorphism

: N n2−1 ⊃ N n2−1
x ∋ (φ1, ..., φn2−1) →

∑n2−1
i=1 φiβi+1x ∈ M3x ⊂ M3, x ∈ M ,

where γi = (γi,1, ..., γi,n2
) = (γi,1, γ

′
i), i = 1, ..., n3. Hence M3 is finite, and by

induction hypothesis Kerh3 is finite. Consider h|Kerh3
: Kerh3 → M2. The image

is contained in p(N ×M0 × · · · ×M0) which is isomorphic to (Ker p ∪N ×M0 ×
· · · × M0)/Ker p and then to N × M0 × · · · × M0/(Ker p ∩ N × M0 × · · ·M0).
Hence we can regard h|Kerh3

as an N -homomorphism from Ker h3 to N × M0 ×
· · · ×M0/(Ker p∩N ×M0 × · · ·M0). Now Ker p ∩N ×M0 × · · ·M0 is finite for
the following reason.

Define a sheaf of N -submodules M of N n3 on M by

Mx = {(φ1, ..., φn3
) ∈ N n3

x :

n3∑

i=1

φiγi,jx = 0, j = 2, ..., n2}.

Then it suffices to see that M is finite because Ker p ∩ N × M0 × · · · × M0 is
the image of M under the N -homomorphism : N n3 ⊃ N n3

x ∋ (φ1, ..., φn3
) →

(
∑n3

i=1 φiγi,1x, 0, ..., 0) ∈ Nx×{0}×· · ·×{0} ⊂ N ×M0×· · ·×M0, x ∈M . On the
other hand, if we define an N -homomorphism r : N n3 → N n2−1 by r(φ1, ..., φn3

) =
(
∑n3

i=1 φiγi,2x, ...,
∑n3

i=1 φiγi,n2x) for (φ1, ..., φn3
) ∈ N n3

x , x ∈ M , then Ker r = M.
As in the case of n2 = 1 we reduce the problem to the case where γi,j are bounded
and then M is a compact Nash manifold possibly with corners. Then Ker r is finite
by Theorem 5.2, [C-R-S1].

Thus Ker p∩N ×M0×· · ·×M0 is finite. We can regard it as a sheaf of N -ideals.
Hence by the result in case of n2 = 1, Ker(h|Kerh3

) = Kerh is finite. �

The following two theorems do not hold for general sheaves of N -modules, [Hu],
[B-C-R] and VI.2.10, [S2]. However, our case is sufficient for applications.

Theorem 2.7. (Nash case of Cartan Theorem A) Let M be a finite sheaf of N -
submodules of N n on a Nash manifold M for n > 0 ∈ N. Then M is finitely
generated by its global cross-sections.

Proof. We assume that n > 1 and proceed by induction on n. Let p : N n →
N n−1 denote the projection forgetting the first factor, and set M1 = Ker p|M and

M2 = Im p|M. Then the sequence 0 −→ M1
p1−→ M

p2−→ M2 −→ 0 is exact,
we can regard M1 as a sheaf of N -ideals, which is finite by theorem 2.6, and M2

is clearly a finite sheaf of N -submodules of N n−1. By induction hypothesis we
have global generators h1, ..., hl of M1 and g1, ..., gk of M2. Then it suffices to find
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f1, ..., fk ∈ H0(M,M) such that p2∗(fi) = gi, i = 1, ..., k because f1, ..., fk, h1, ..., hl
are generators of M if fi do exist.

Fix i. Since H0(M,M) ⊂ N(M)n and H0(M,M2) ⊂ N(M)n−1, setting gi =
(gi,2, ..., gi,n) we construct gi,1 ∈ N(M) such that (gi,1, ..., gi,n) ∈ H0(M,M). For
each x ∈M , the set Φx = {φ ∈ Nx : (φ, gix) ∈ Mx} is a residue class of Nx modulo
M1x, and the correspondence Φ : x → Φx is a global cross-section of N /M1 for
the following reason.

Since it suffices to see it on each member of a finite open semialgebraic cover-
ing of M , we assume that M is generated by global cross-sections α1 = (α1,1, ...,
α1,n), ..., αk′ = (αk′,1, ..., αk′,n) ∈ N(M)n. Then α′

1 = (α1,2, ..., α1,n), ..., α′
k′ =

(αk′,2, ..., αk′,n) are also generators of M2. Let M3 denote the kernel of the N -

homomorphism N k′+1 ⊃ N k′+1
x ∋ (φ1, ..., φk′+1) →

∑k′

j=1 φjα
′
jx − φk′+1gix ∈

N n−1
x ⊂ N n−1, x ∈ M . Then M3 is finite by theorem 2.6, and each stalk M3x

contains a germ of the form (φ1, ..., φk′, 1). Hence refining the covering if necessary,
we assume that M3 is generated by a finite number of global cross-sections. Then

we have β1, ..., βk′ ∈ N(M) such that gi =
∑k′

j=1 βjα
′
j . It follows Φ =

∑k′

j=1 βjαj,1
mod M1. Thus Φ is a global cross-section.

Apply the next theorem to the projection N → N /M1 and Φ. Then there exists
gi,1 ∈ N(M) such that gi,1x = Φx mod M1x for x ∈ M and hence (gi,1, ..., gi,n) ∈
H0(M,M). �

Theorem 2.8. (Nash case of Cartan Theorem B) Let h : M1 → M2 be a surjective
N -homomorphism between finite sheaves of N -modules on a Nash manifold M .
Assume that M1 is finitely generated by its global cross-sections. Then the natural
map h∗ : H0(M,M1) → H0(M,M2) is surjective.

Proof. We can assume that M1 = N n for some n > 0 ∈ N because there exist
global generators g1, ..., gn of M1 and then we can replace h with the surjective
homomorphism N n ⊃ N n

x ∋ (φ1, ..., φn) → h(
∑n

i=1 φigix) ∈ M2x ⊂ M2, x ∈ M .
Set M = Ker h. Then by theorem 2.6, M is a finite sheaf of N -submodules of N n,
and h : N n → M2 coincides with the projection p : N n → N n/M. Hence we
consider p in place of h. As in the last proof, assume that n > 1 and the theorem
holds for smaller n.

Let f ∈ H0(M,N n/M). We need to find g ∈ H0(M,N n) = N(M)n such that
p∗(g) = f . Let M0 denote the sheaf of N -ideals with M0x = {0} for x ∈M . Then
the homomorphism M0 × N n−1 → N n/(M + N ×M0 × · · · ×M0) is surjective
and we can regard it as the projection N n−1 → N n−1/L for some finite sheaf of N -
submodules L of N n−1. Hence by induction hypothesis there exists (0, g2, ..., gn) ∈
H0(M,M0×N n−1) whose image inH0(M,N n/(M+N×M0×· · ·×M0)) coincides
with the image of f there. Replace f with the difference of f and the image of
(0, g2, ..., gn) in H0(M,N n/M). Then we can assume from the beginning that f ∈
H0(M, (M+N ×M0×· · ·×M0)/M). Hence we regard f as a global cross-section
of N×M0×· · ·×M0/(M∩N×M0×· · ·×M0) since (M+N×M0×· · ·×M0)/M
is naturally isomorphic to N ×M0 × · · ·×M0/(M∩N ×M0 × · · ·×M0). It was
shown in the proof of theorem 2.6 that M∩N×M0×· · ·×M0 is finite. Hence f is
the image of some global cross-section g of N ×M0×· · ·×M0 under the projection
H0(M,N×M0×· · ·×M0) → H0(M,N×M0×· · ·×M0/(M∩N×M0×· · ·×M0))
because this is the case of M1 = N in the theorem. Then p∗(g) = f . �

Proof of Remark (i). We can assume that there exists an exact sequence Nm q
−→
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N n p
−→ M −→ 0 and M1 is generated by global cross-sections. Then M1 is

finitely generated, say by f1, ..., fk, because H0(M,M1) is a N(M)-submodule of
H0(M,N n) = N(M)n and N(M) is Noetherian ([E] and [Ri]). Then, by the-
orem 2.8, there exist gi ∈ H0(M,N n) such that p∗(gi) = fi, i = 1, ..., k. Let

an N -homomorphism r : N k → N n be defined by r(φ1, ..., φk) =
∑k
i=1 φigix for

(φ1, ..., φk) ∈ N k
x , x ∈ M . Then Im p ◦ r = M1 and Ker p ◦ r = r−1(Im q). Apply,

once more, theorem 2.8 to r and q∗(1, 0, ..., 0), ..., q∗(0, ..., 0, 1). Then there exist
global cross-sections of N k which generate Ker p ◦ r. Hence M1 is finite. �

Proof of Remark (ii). As usual we assume that M1 and M2 are generated by
global cross-sections α1, ..., αk and β1, ..., βl, respectively. Then α1, ..., αk, β1, ..., βl
generate M1 + M2, and hence by (i) M1 + M2 is finite.

Consider M1 ∩ M2. Set M = M1 + M2, and let p : N k+l → M be an
N -homomorphism defined by

p(φ1, ..., φk, ψ1, ..., ψl) =

k∑

i=1

φiαix −
l∑

i=1

ψiβix for (φ1, ..., ψl) ∈ N k+l
x , x ∈M.

Then M1 ∩M2 is the image of Ker p under the homomorphism N k+l ⊃ N k+l
x ∋

(φ1, ..., ψl) →
∑k
i=1 φiαix ∈ Mx ⊂ M, x ∈ M . By theorem 2.6 Ker p is finite,

and hence we can assume that Ker p is generated by global cross-sections. Then
its image—M1 ∩M2 also is generated by global cross-sections. Therefore, by (i)
M1 ∩M2 is finite. �

Proof of Remark (iii). Let {Ui} be a finite open semialgebraic covering of M such
that M satisfy the condition of exact sequence in the definition of a finite sheaf of N -
modules. Set H0(M,M)⊗N(M)N = M1. Then M1 is generated by its global cross-
sections and, moreover, finite because for each i, M1|Ui

is an N(M)-submodule of
H0(Ui,M|Ui

) and H0(Ui,M|Ui
) is a finitely generated N(Ui)-module. Hence we

can assume from the beginning that M is generated by its global cross-sections, say
fα, α ∈ A, because H0(M,M) = H0(M,M1). For each i choose a finite subset
Ai of A so that {fα|Ui

: α ∈ Ai} generate M|Ui
. Then {fα : α ∈ ∪iAi} generate

M. �

Remark. (iv) The above arguments show that the family of finite sheaves of N -
modules on a Nash manifold which are generated by global cross-sections is closed
under the following operations if the operations are well-defined : to take a finite
sheaf of N -submodules, +, ∩, ⊗ and /.

Let X be a Nash subset of Rn and f1, ..., fk be generators of the ideal of N(Rn)
of functions vanishing on X . Let SingX denote the subset of X where the Jacobian
matrix rank of f1, ..., fk is smaller than codimX . Let a complexification XC of X
in Cn be defined to be the common zero set of some complexifications fC

1 , ..., f
C

k

of f1, ..., fk. Then by Lemma 1.9 and Theorem 1.10 in [C-R-S2] and theorem 2.7,
we obtain the next remark.

Remark. (v) SingX is the smallest Nash subset of X whose complement is a Nash
manifold but not the subset of X of points where the germ of X is not a Nash
manifold germ of dimX . Moreover SingX is also X ∩ SingXC, where SingXC

denotes the Cω singular point set of XC.
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Remark. (vi) If X is irreducible as a Nash subset of Rn then X is irreducible as a
global analytic subset of Rn.

Proof of remark (vi). Assume that X is irreducible as a Nash subset of Rn. Let I
denote the ideal of N(Rn) generated by f1, ..., fn, and let I the sheaf of O-ideals
on Rn of germs whose complexifications vanish on XC. Then I is a prime ideal of
N(Rn), and hence, by I.6.9, [S2], IOx is an intersection of a finite number of prime
ideals of Ox for each x ∈ Rn. Therefore, by Hilbert Nullstellensatz, Ix = IOx for
each x ∈ Rn, i.e., I = IO. Then by theorem 2.3 we see that ICω(Rn) = H0(Rn, I).
On the other hand, ICω(Rn) is a prime ideal of Cω(Rn) by Proposition 0.5, [C-R-
S1] and Corollary 2, [C-S3]. Hence I is irreducible as a coherent sheaf of O-ideals.
Therefore, the germ of XC on Rn is irreducible as the germ on Rn of complex
conjugation invariant complex analytic set. Hence X is irreducible as a global
analytic subset of Rn. �

We state and prove a Nash version of Hironaka Desingularization Theorem, [Hi].
The result may be known to some specialists of singularities. However, the authors
do not know its references. Hence we give a proof.

Theorem 2.9. (Nash case of Main Theorem I of [Hi]) Let X be a Nash subset of

Rn. Then there exists a finite sequence of blowings-up Xr
πr−→ · · ·

π1−→ X0 = X
along smooth Nash centers Ci ⊂ Xi, i = 1, ..., r − 1, such that Xr is smooth and
Ci ⊂ SingXi.

Main Theorems I and II of [Hi] state some additional conditions. Those are
satisfied in the Nash case also, which is clear by the following proofs.

Proof. Let f1, ..., fk be generators of the ideal of N(Rn) of functions vanishing on
X . Set F = (f1, ..., fk), which is a Nash map from Rn to Rk, and Y = graphF .

Let Y Z denote the Zariski closure of Y in Rn ×Rk and let Ỹ Z ⊂ Rn × Rk ×Rn′

be an algebraic set such that p : Ỹ Z → Rn × Rk—the restriction to Ỹ Z of the
projection : Rn × Rk × Rn′

→ Rn × Rk—is the normalization of Y Z (we simply

call Ỹ Z the normalization of Y Z). Then by Artin-Mazur Theorem (see Theorem

I.5.1, [S2]) there exists a connected component L of Ỹ Z consisting of only regular
points such that p(L) = Y and p|L : L → Y is a Nash diffeomorphism. Let

q1 : Ỹ Z → Rn and q2 : Ỹ Z → Rk denote the restrictions to Ỹ Z of the projections
Rn×Rk×Rn′

→ Rn and Rn×Rk×Rn′

→ Rk, respectively. Then q1|L is a Nash
diffeomorphism onto Rn, q−1

2 (0) is an algebraic set, (q1|L)−1(X) = (q2|L)−1(0), and
(q1|L)−1(SingX) is just the intersection of L with the algebraic singular point set
of q−1

2 (0). Indeed, (q1|L)−1(SingX) is contained in the intersection by remark (v)
that (q1|L)−1(SingX) is the smallest Nash subset of (q1|L)−1(X) (= (q2|L)−1(0))
whose complement is a Nash manifold, and the converse inclusion follows from the
equality q2 = F ◦ q1 on L. Hence we can replace X by L ∩ q−1

2 (0)—a union of
some connected components of q−1

2 (0). By Main Theorem I there exists a finite

sequence of blowings-up X̃r
π̃r−→ · · ·

π̃1−→ X̃0 = q−1
2 (0) along smooth algebraic

centers C̃i ⊂ X̃i, i = 0, ..., r− 1, such that X̃r is smooth and C̃i ⊂ Sing X̃i. Then
X̃r ∩ (π̃1 ◦ · · · ◦ π̃r)−1(L) → · · · → X̃0 ∩ L fulfills the requirements. �

A sheaf of N -(O-)ideals on a Nash (analytic) manifold M is called normal cross-
ing if there exists a local Nash (analytic) coordinate system (x1, ..., xn) of M at
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each point such that the stalk of the sheaf is generated by
∏n
i=1 x

αi

i for some
(α1, ..., αn) ∈ Nn.

Theorem 2.10. (Nash case of Main Theorem II of [Hi]) Let M be a Nash manifold
and let I1 and I2 be finite sheaves of non-zero N -ideals on M . Assume that I2

is normal crossing. Then there exists a finite sequence of blowings-up Mr
πr−→

· · ·
π1−→ M0 = M along smooth Nash centers Ci ⊂ Mi, i = 1, ..., r − 1, such

that (π1 ◦ · · · ◦ πr)−1I1I2NMr
is normal crossing, each Ci is normal crossing with

(π1 ◦ · · · ◦ πi)
−1(suppNM/I2) ∪ ∪ij=1(πj ◦ · · · ◦ πi)

−1(Cj−1) and π1 ◦ · · · ◦ πi(Ci) is
contained in {x ∈ M : I1x is not generated by any power of one regular function
germ or I1x + I2x 6= Nx}.

Note that (π1 ◦ · · · ◦ πi)−1I2NMi
, i = 1, ..., r, are normal crossing.

Proof. Let f1, ..., fk′ ∈ N(Rn) and fk′+1, ..., fk ∈ N(Rn) be global generators of I1

and I2, respectively, (theorem 2.7), and define F, Y, Y Z , Ỹ Z , L, q1 : Ỹ Z → Rn and

q2 : Ỹ Z → Rk as in the last proof. Let W be the subset of Ỹ Z of the points where
fk′+1 ◦ q1, ..., fk ◦ q1 do not generate a normal crossing sheaf of N -ideals. Consider

the algebraic R-scheme of the topological underlying space Ỹ Z−Sing Ỹ Z−W , and
let J1 and J2 denote the sheaf of ideals of the scheme generated by f1◦q1, ..., fk′ ◦q1
and by fk′+1 ◦ q1, ..., fk ◦ q1, respectively. Then we can replace M, I1 and I2 with
the scheme, J1 and J2. Hence the theorem follows from Main Theorem II. �

3. Equivalence of normal crossing functions

3.1. On C∞ equivalence of analytic functions with only normal crossing

singularities.

If we compare Cω and C∞ right equivalences of two analytic functions on an
analytic manifold, the latter is easier to check, and the former implies the latter.
Hence we are interested to know whether the converse holds. We will show that
this is the case for analytic functions with only normal crossing singularities, and
apply the fact to the proof of the main theorem 3.2 and hence corollary 3.3. Here
an analytic function with only normal crossing singularities at a point x of the
manifold is a function whose germ at x is of the form ±xα(= ±

∏n
i=1 x

αi

i ) + const,
α = (α1, ..., αn) 6= 0 ∈ Nn for some local analytic coordinate system (x1, ..., xn)
at x. If the function has only normal crossing singularities everywhere we say
the function has only normal crossing singularities. Remember that by Hironaka
Desingularization Theorem an analytic function becomes one with only normal
crossing singularities after a finite sequence of blowings-up along smooth center.
An analytic subset of an analytic manifold is called normal crossing if it is the zero
set of an analytic function with only normal crossing singularities. This analytic
function is called defined by the analytic set. It is not unique. However, the sheaf
of O-ideals defined by the analytic set is naturally defined and unique. We can
naturally stratify a normal crossing analytic subset X into analytic manifolds Xi

of dimension i. We call {Xi} the canonical stratification of X . We extend this
definition to the boundary of an analytic manifold with corners.

Let M be a C∞ manifold. To prove the following theorem, we introduce a
topology on C∞(M), called the strong Whitney C∞ topology, as follows. Let {Ml}
be a family of compact C∞ submanifolds of M possibly with boundary such that
{IntMl} is a locally finite covering of M . Regard C∞(M) as a subset of

∏
l C

∞(Ml)
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by the injective map C∞(M) ∋ f →
∏
l f |Ml

∈
∏
l C

∞(Ml). Then {C∞(M) ∩∏
lOl : Ol open subsets of C∞(Ml) in the C∞ topology} is a system of open sets of

C∞(M). We apply this topology unless otherwise specified. Note that this topology
is stronger than the usual Whitney C∞ topology, and Whitney Approximation
Theorem—any C∞ function on an analytic manifold is approximated by a Cω

function—holds also in this topology (see [W]).
The main theorem of this section is

Theorem 3.1. (1) Let M be a Cω manifold and f, g ∈ Cω(M). Assume that f
and g admit only normal crossing singularities. If f is C∞ right equivalent to g, f
is Cω right equivalent to g.

(2) If C∞ functions f and g on a C∞ manifold M admit only normal cross-
ing singularities and are proper and C2 right equivalent, then they are C∞ right
equivalent.

(3) If f and g are semialgebraically C2 right equivalent Nash functions on a
Nash manifold M with only normal crossing singularities then they are Nash right
equivalent.

Remark. (i) We are interested also in the germ case. Let M, f and g be the same
as in above (1). Let φ be a C∞ diffeomorphism of M such that f = g ◦ φ, set
X = Sing f and Y = Sing g, and let {Xi} and {Yi} be the irreducible analytic
components of X and Y , respectively. Let A and B be unions of some intersections
of some Xi and Yi, respectively. Assume that φ(A) = B. Then we can choose a Cω

diffeomorphism π so that f = g ◦ π and π(A) = B. Consequently, theorem 3.1,(1)
holds for the germs of f on A and g on B. Similar statements for (2) and (3) hold.

(ii) In the Nash case, C∞ right equivalence does not imply Nash right equiv-
alence. Indeed, let N be a compact contractible Nash manifold with non-simply
connected boundary of dimension n > 3 (e.g., see [Mz]). Set M = (IntN) × (0, 1)
and let f : M → (0, 1) denote the projection. Then M and f are of class Nash,
and M is Nash diffeomorphic to Rn+1 for the following reason. Smooth the cor-
ners of N × [0, 1]. Then N × [0, 1] is a compact contractible Nash manifold with
simply connected boundary of dimension> 4. Hence by the positive answers to
Poincaré conjecture and Schönflies problem (Brown-Mazur Theorem) N × [0, 1] is
C∞ diffeomorphic to an (n + 1)-ball. Hence by Theorem VI.2.2, [S2] M is Nash
diffeomorphic to an open (n+ 1)-ball. Let g : M → R be a Nash function which is
Nash right equivalent to the projection : Rn × (0, 1) → (0, 1). Then f and g are
Cω right equivalent since IntN is Cω diffeomorphic to Rn, but they are not Nash
equivalent because IntN and Rn are not Nash diffeomorphic, by Theorem VI 2.2,
[S2].

(iii) The theorem holds even if M has corners, which is clear by the following
proof. (See the definition of normal crossing singularity in this case after corollary
3.3.)

Note that for the proof of parts (2) and (3) of the theorem, we use some results
(from lemma 3.5 to proposition 3.12) that will be detailed in the next section
dedicated to cardinality issues.

Proof of theorem 3.1. (1). The idea of proof is taken from [S1]. The proof is
divided into three steps. Denote by X and Y the extended critical sets of f and
g, that is, X = f−1(f(Sing f)) and = g−1(g(Sing g)). Note that X and Y are not
necessarily analytic sets. Let M be analytic and closed in the ambient Euclidean
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space RN , and consider the Riemannian metric on M induced from that of RN .
Set n = dimM .

Step 1. Assume that X is an analytic set. Let φ denote a C∞ diffeomorphism of
M such that f = g ◦ φ. Then there exists a Cω diffeomorphism π of M arbitrarily
close to φ such that π(X) = Y .

Proof of step 1. Let {Xi : i = 0, ..., n − 1} and {Yi : i = 1, ..., n − 1} be
the canonical stratifications of X and Y respectively, and put Xn = M − X and
Yn = M − Y .

Before beginning the proof, we give some definitions and two remarks. Fix
Xi. Let {Ml} be a family of compact C∞ manifolds of dimension i possibly with
boundary such that {IntMl} is a locally finite covering of ∪ij=0Xj. A function on

∪ij=0Xj is called of class C∞ if its restriction to each Ml is of class C∞. Thus

C∞(∪ij=0Xj) is a subset of
∏
l C

∞(Ml). We give to C∞(∪ij=0Xj) the product
topology of the C∞ topology on each C∞(Ml), i.e. the compact-open C∞ topology.
Then C∞(∪ij=0Xj) is a Fréchet space, and a remark is the following statement.

Let X ′ be a normal-crossing Cω subset of M contained in X . Assume that the
sheaf of O-ideals on M defined by X ′ is generated by a single Cω function ξ on M .
Let V denote the subspace of C∞(∪ij=0Xj) consisting of functions which vanish on

X ′. Then the map C∞(∪ij=0Xj) ∋ h → ξh ∈ V is open in the compact-open C∞

topology (surjectiveness follows from Theorem VI,3.10, [Ml], and openness does
from the open mapping theorem on Fréchet spaces).

We give the strong Whitney C∞ topology on C∞(∪ij=0Xj) in the same way.
In this topology also the above remark holds, which we easily prove by the above
remark using a partition of unity of class C∞, though C∞(∪ij=0Xj) is not a Fréchet

space if ∪ij=0Xj is not compact (the second remark).

Now we begin the proof. By induction, for some i ∈ N, assume that we have
constructed a C∞ diffeomorphism πi−1 of M close to φ such that πi−1|∪i−1

j=0Xj
is

of class Cω (in the sense that πi−1|∪i−1
j=0Xj

∈
∏
l C

ω(Ml)) and πi−1(Xj) = Yj for

any j. Let M denote the sheaf of O-ideals on M defined by ∪i−1
j=0Xj , which is

coherent because X is normal-crossing. Then πi−1|∪i−1
j=0Xj

∈ H0(M,O/M)N for

the following reason. As the problem is local, we can assume that M = Rn and
X = {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0} for some n′ ≤ n ∈ N. Moreover, we
suppose that i = n because if for each irreducible analytic component E of ∪ij=0Xj

we can extend πi−1|E∩∪i−1
j=0Xj

to an analytic map on E then the extensions for all E

define an analytic map from ∪ij=0Xj to RN . Then this is easy (see the arguments

before step 2). Consider any Cω extension α : M → RN of πi−1|∪i−1
j=0Xj

(corollary

2.4). Here we can choose α so as to be sufficiently close to πi−1 and so that Imα ⊂
M for the following reason. Let γ1, ..., γk ∈ Cω(M) be generators of M (corollary

2.2). Then there exist δ1, ..., δk ∈ C∞(M,RN) such that πi−1 − α =
∑k

j=1 γjδj ,
which is proved by the above Malgrange theorem. Replace α with the composite of
α+

∑
γj(C

ω approximation of δj) and the orthogonal projection of a neighborhood
of M in RN to M . Then α becomes to satisfy the requirements. Let pj : Uj → Yj
be the orthogonal projection of a tubular neighborhood of Yj in RN . Here Uj is
described as ∪y∈Yj

{x ∈ RN : |x − y| < ǫ(y), (x − y) ⊥ TyYj} for some positive

C0 function ǫ on Yj where TyYj denotes the tangent space of Yj at y, and we can



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 19

choose ǫ so large that ǫ(y) ≥ ǫ0 dis(y,∪j−1
k=0Yk) locally at each point of ∪j−1

k=0Yk for
some positive number ǫ0 because Y is normal crossing. Then α can be so close to
πi−1 that α(Xi) ⊂ Ui since α = πi−1 on ∪i−1

j=0Xj and hence dαxv = dπi−1xv for any

x ∈ ∪i−1
j=0Xj and for any tangent vector v at x tangent to ∪i−1

j=0Xj. Define πi on

∪ij=0Xj to be α on ∪i−1
j=0Xj and pi◦α on Xi. Note that πi is a Cω map from ∪ij=0Xj

to ∪ij=0Yj ⊂ RN and close to πi−1|∪i
j=0Xj

because πi−1|∪i
j=0Xj

= pi ◦ πi−1|∪i
j=0Xj

and because the fact α is close to πi−1 implies that pi ◦α on ∪ij=0Xj (= πi) is close

to pi ◦ πi−1 on ∪ij=0Xj , where pi : Ui → ∪ij=0Yj is the natural extension of pi. We
need to extend πi to a C∞ diffeomorphism of M which is close to πi−1 and carries
each Xj to Yj . Compare πi ◦ π

−1
i−1|∪i

j=0Yj
and the identity map of ∪ij=0Yj . Then

they are close each other and what we prove is the following statement.
Let τ be a C∞ map between ∪ij=0Yj close to id. Then we can extend τ to a C∞

diffeomorphism of M which is close to id and carries each Yj to Yj , j = i+ 1, ..., n.

By the second induction it suffices to extend τ to a C∞ map between ∪i+1
j=0Yj

close to id. We reduce the problem to a trivial case. First it is enough to extend
τ to a C∞ map from ∪i+1

j=0Yj to RN close to id by virtue of pi+1 : Ui+1 → Yi+1

as above. Secondly, if we replace τ with τ − id |∪i
j=0Yj

then the problem is that

for a C∞ map τ : ∪ij=0Yj → RN close to the zero map we can extend τ to a

C∞ map from ∪i+1
j=0Yj to RN close to 0. Thirdly, we can assume that τ is a

function. Hence we can use a partition of unity of class C∞ and the problem
becomes local. So we assume that M = Rn, Y is a union of some irreducible
analytic components of {y1 · · · yn = 0} and τ ∈ C∞(∪ij=0Yj) is close to 0 and

vanishes on {y ∈ ∪ij=0Yj ⊂ Rn : |y| ≥ 1}, where (y1, ..., yn) ∈ Rn. Let ξ be a C∞

function on M such that ξ = 1 on {y ∈ Rn : |y| ≤ 1} and ξ = 0 on {|y| ≥ 2}. If
n = 0 or 1 we have nothing to do. Hence by the third induction on n, assume that
we have a C∞ extension τ1(y2, ..., yn) of τ |{y1=0}∩∪i

j=0Yj
to {y1 = 0}∩∪i+1

j=0Yj close

to 0. Regard τ1(y2, ..., yn) as a C∞ function on ∪i+1
j=0Yj, which is possible because

∪i+1
j=0Yj is contained in the product of R and the image of {y1 = 0}∩∪i+1

j=0Yj under

the projection R × Rn−1 → Rn−1. Replace τ with τ − τ1ξ, which vanishes on
{y1 = 0 or |y| ≥ 2} ∩ ∪ij=0Yj . Next consider (new τ)/y1|{y2=0}∩∪i

j=0Yj
and apply

the second remark and the same arguments. Then we reduce the problem to the
case where τ = 0 on {y1y2 = 0 or |y| ≥ 3} ∩∪ij=0Yj and by the fourth induction to

the case where τ = 0 on ∪ij=0Yj . Thus step 1 is proved.

Step 2. Assume that X = Y , X is an analytic set and there exists a C∞ diffeomor-
phism φ of M close to id so that f = g ◦φ. Then there exists a Cω diffeomorphism
π of M close to φ such that f = g ◦ π. (To be precise, we fix g and modify f and φ
so that φ is so close to id and that the following proof works, which is possible by
step 1.)

Proof of step 2. We construct π by integrating along a well-chosen vector field
on M . There exist analytic vector fields w1, ..., wN on M which span the tangent
space at each point of M , e.g., wix = dpx

∂
∂xi

, x ∈M , where (x1, ..., xN) ∈ RN and

p is the orthogonal projection of a tubular neighborhood of M in RN . Consider

a vector field v = ∂
∂t

+
∑N

i=1 aiwi on M × [0, 1] where ai ∈ Cω(M × [0, 1]) for
i ∈ {1, ..., N}. Put F (x, t) = (1 − t)f(x) + tg(x) for (x, t) ∈M × [0, 1].

Assume that we have found such ai, i = 1, ..., N , that v(F ) = 0 and |
∑N
i=1 aiwi|
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is small. Then F is constant along integral curves of v, therefore, the flow of v
furnishes an analytic diffeomorphism π so that f = g ◦ π.

Therefore, what we have to do is to construct the relevant ai, i ∈ {1, ..., N}.
First look at the local case. We will show that there exist a closed neighborhood
U of each point of M and ai ∈ Cω(U × [0, 1]), i = 1, ..., N , such that v(F ) = 0 on

U × [0, 1] and |
∑N
i=1 aiwi| is small. If the point is in X , we can write U = {x ∈

Rn : |x| ≤ 1}, g(x)− c =
∏n
i=1 x

ni

i and f(x)− c = λ(x)(g(x)− c) for x ∈ U , where
c ∈ R, λ is a Cω function on U and close to 1, and at least one of ni’s, say n1, is
non-zero. Assume that c = 0 without loss of generality. Then there exists v of the
form ∂

∂t
+ b1

∂
∂x1

, b1 ∈ Cω(U × [0, 1]), which satisfies v(F ) = 0. Actually

(
∂

∂t
+ b1

∂

∂x1
)F (x, t) =

(1 − λ)g(x) + b1(x, t)[n1(t+ (1 − t)λ(x))
g(x)

x1
+ (1 − t)g(x)

∂λ

∂x1
(x)] = 0,

b1(x, t) =
−(1 − λ(x))x1

n1(t+ (1 − t)λ(x)) + (1 − t)x1
∂λ
∂x1

(x)
,

which is an analytic function in U × [0, 1] and close to 0. Shrink U if necessary.
Then for some 0 < i1 < · · · < in ≤ N , the vector fields wi1 , ..., win span the tangent
space there, and b1

∂
∂x1

is described uniquely by
∑n
j=1 aijwij for some Cω functions

aij . Hence aij , j = 1, ..., n, and ai = 0, i 6∈ {i1, ..., in}, fulfill the requirements.
?Next consider the situation at a point outside of X (note that the values of f

and g at the point may be different, and hence the above arguments do not work).
We can choose its local coordinate system so that U = {x ∈ Rn : |x| ≤ 1} and
∂g
∂x1

= 1 on U . Then

(
∂

∂t
+ b

∂

∂x1
)F (x, t) = −f + g + b1((1 − t)

∂f

∂x1
+ t

∂g

∂x1
) = 0,

b1(x, t) =
f − g

(1 − t) ∂f∂x1
+ t ∂g∂x1

,

and (1− t) ∂f
∂x1

+ t ∂g
∂x1

and f −g are close to 1 and 0, respectively. Hence there exist
U and ai as before.

Consequently, using a partition of unity of class C∞ we obtain a C∞ vector field

v′ = ∂
∂t

+
∑N

i=1 a
′
iwi on M × [0, 1] such that v(F ) = 0 and |

∑N
i=1 a

′
iwi| is small (to

be precise, we start from a locally finite system of coordinate neighborhoods of M

and a partition of unity subordinate to it, and modify f and φ so that |
∑N
i=1 a

′
iwi|

is small).
Now, to construct the global analytic vector filed v on M × [0, 1] we use Cartan

Theorems A and B. Consider the sheaf of relations J on M × [0, 1] defined by

J = ∪(x,t)∈M×[0, 1]{(β, α1, . . . , αN) ∈ ON+1
(x,t) :

β(fx − gx) +

N∑

i=1

αi(wi((1 − t)f + tg))(x,t) = 0}.
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The sheaf J is a coherent sheaf of O-modules by Oka theorem 2.5. Later we will find
l ∈ N and global cross-sections (bk, a

k
1 , . . . , a

k
N) ∈ H0(M×[0, 1],J ), k ∈ {1, . . . , l},

such that for any (x, t) ∈M×[0, 1], any Cω vector field germ ω at (x, t) in M×[0, 1]

with ω(F(x,t)) = 0 is of the form
∑l
k=1 ξkvk(x,t) for some Cω function germs ξk at

(x, t) in M×[0, 1], where vk = bk
∂
∂t+

∑N
i=1 a

k
iwi. Assume that the existence of l and

(bk, a
k
1, . . . , a

k
N ). Then by the above method of construction of v′ and by a partition

of unity of class C∞ there exist C∞ functions θk on M such that v′ =
∑l
k=1 θkvk.

Approximate θk by Cω functions θ̃k, and set ṽ =
∑l
k=1 θ̃kvk. Then ṽ is a Cω vector

field such that F (ṽ) = 0 and is described as ã0
∂
∂t

+
∑N

i=1 ãiwi, ãi ∈ Cω(M× [0, 1]),
for the following reason. Let I denote the coherent sheaf of O-submodules of the
sheaf of O-modules of germs of Cω vector fields on M × [0, 1] defined by

I(x,t) = {ω : ω(F(x,t)) = 0} for (x, t) ∈M × [0, 1],

and define an O-homomorphism δ : Ol → I by

δ(γ1, ..., γl) =
l∑

k=1

γkvk(x,t) for (γ1, ..., γl) ∈ Ol
(x,t), (x, t) ∈M × [0, 1].

Then δ is surjective, H0(M × [0, 1], I) is the set of all Cω vector fields w on
M × [0, 1] with w(F ) = 0, and hence by Cartan Theorem B the homomorphism

Cω(M × [0, 1])l ∋ (d1, ..., dl) →
∑l

k=1 dkvk ∈ H0(M × [0, 1], I) is surjective, i.e.,

ṽ is of the form
∑l
k=1 dkvi for some Cω functions dk on M × [0, 1]. Therefore,

we have ṽ = ã0
∂
∂t

+
∑N
i=1 ãiwi for ã0 =

∑l
k=1 dk and ãi =

∑l
k=1 dka

k
i , i =

1, ..., N . Here ã0 is unique and hence close to 1, and |
∑N
i=1 ãiwi| is small. Thus

v = ∂
∂t +

∑N
i=1(ãi/ã0)wi is what we wanted.

It remains to find (bk, a
k
1 , ..., a

k
N), k = 1, ..., l. That is equivalent to prove that

H0(M × [0, 1], I) is finitely generated by Cartan Theorem B because the homo-

morphism J(x,t) ∋ (β, α1, ..., αN) → β ∂∂t +
∑N
i=1 αiwi(x,t) ∈ I(x,t) is surjective.

Moreover, it suffices to see that each stalk I(x,t) is generated by a uniform number
of elements by corollary 2.2. Note that F is an analytic function with only nor-
mal crossing singularities. Hence we replace F with f to simplify notation. Let K
denote the sheaf of O-modules of Cω vector field germs on M such that

Kx = {ω : ω(fx) = 0} for x ∈M.

Then it suffices to choose l ∈ N so that for any x0 ∈ M , Kx0
is generated by l

elements. Since the problem is local we can assume that M = Rn, x0 = 0 and

f(x) =
∏k
i=1 x

ni

i with n1, ..., nk > 0, 0 < k ≤ n. Write ω ∈ K0 as
∑n
i=1 αi

∂
∂xi

, αi ∈

O0, and set h(x) =
∏k
i=1 xi. Then ω(fx0

) = 0 means

k∑

i=1

niαif(x)/xi = 0, hence
k∑

i=1

niαih(x)/xi = 0.

Therefore, each αi is divisible by xi. Hence, setting α′
i = αi/xi we obtain

∑k
i=1 niα

′
i

= 0. It is clear that {(α′
1, ..., α

′
n) ∈ On

0 :
∑k
i=1 α

′
i = 0} is generated by n−1 elements,

which proves step 2.
The proof of step 1 shows that any C∞ diffeomorphism of M carrying Sing f to

Sing g is approximated by an analytic diffeomorphism of M with the same property.
Hence it suffices to prove the next statement.
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Step 3. Assume that Sing f = Sing g, and there exists a C∞ diffeomorphism φ of
M arbitrarily close to id in the sense of step 2 such that f = g ◦ φ. Then there
exists a Cω diffeomorphism π of M such that f = g ◦ π.

Proof of step 3. Set Z = Sing f and let Zi, i = 1, 2, ..., be connected components
of Z. Let Ui be disjoint small open neighborhoods of Zi in M such that if φ(Ui) ∩
Ui′ 6= ∅ then i = i′. Then by steps 1 and 2 there exist Cω diffeomorphisms
πi : Ui → φ(Ui) close to φ|Ui

: Ui → φ(Ui) such that f = g ◦ πi on Ui. Note
that if we define a map between M to be πi on each Ui and φ elsewhere, then
the map is a C∞ diffeomorphism by the definition of the strong Whitney C∞

topology. For x0 ∈ M , let m(x0) denote the multiplicity of g − g(x0) at x0, i.e.,
m(x0) = |α| = α1 + · · · + αn for α = (α1, ..., αn) ∈ Nn such that g(x) − g(x0) is
written as ±xα for some local coordinate system (x1, ..., xn) at x0. There exists
h ∈ Cω(M) such that h−1(0) = Z and h is m(x)-flat at each x ∈ Z for the following
reason. For each i, let {Zi,j}j be the stratification of Zi by multiplicity number, and
for each Zi,j , consider the smallest analytic set in Ui and hence in M containing
each connected component of Zi,j . Then we have a locally finite decomposition
of Zi into irreducible analytic sets {Wi,j}j in M such that m(x) is constant, say
mi,j , on each Wi,j−∪j′{Wi,j′ : dimWi,j′ < dimWi,j}. By corollary 2.2 there exists
hi,j ∈ Cω(M)—e.g., the mi,jth power of the square sum of a finite number of global

generators of the sheaf of O-ideals defined by Wi,j—such that h−1
i,j (0) = Wi,j and

hi,j is mi,j -flat at Wi,j , and then considering the sheaf of O-ideals
∏
i,j hi,jO we

obtain h in the same way.

We will reduce the problem to the case where πi − id on Ui and f − g are divis-
ible by h. Since suppO/hO = Z, {πi}i defines an element of H0(M, (O/hO)N).
Hence applying Cartan Theorem B to the exact sequence 0 → (hO)N → ON →
(O/hO)N → 0, we obtain π′ ∈ Cω(M)N such that πi − π′ ∈ hCω(Ui)

N for each
i. We need to modify π′ to be a diffeomorphism of M . Let ξ be a C∞ function
on M such that ξ = 0 outside of a small neighborhood of Z and ξ = 1 on a
smaller one. Approximate C∞ maps

∑
i ξ(πi − π′)/h and (1 − ξ)(φ − π′)/h from

M to RN by Cω maps H1 and H2, respectively. Then hH1 + hH2 + π′ is an an-
alytic approximation of φ : M → RN whose difference with πi on Ui is divisible
by h. Hence its composite π′′ with the orthogonal projection of M in RN is an
analytic approximation of φ : M → M such that πi − π′′ is divisible by h be-
cause for θ1, θ2 ∈ R〈〈x1, ..., xn〉〉m, η ∈ R〈〈x1, ..., xn〉〉 and ρ ∈ R〈〈y1, ..., ym〉〉 with
θ1(0) = θ2(0) = η(0) = ρ(0) = 0, then ρ ◦ θ1 − ρ ◦ (θ1 + ηθ2) ∈ R〈〈x1, ..., xn〉〉 is
divisible by η. Here, replace φ, πi and f with φ ◦ π′′−1, πi ◦ π′′−1 and f ◦ π′′−1,
respectively. Then the equalities f = g ◦ φ and f = g ◦ πi continue to hold, and
πi − id and hence f − g are divisible by h and, moreover, by h3+s by the same

way, where s ∈ N is such that for ψl(x) =
∏l
j=1 xj ∈ R〈〈x1, ..., xn〉〉, l ≤ n,

and for α ∈ R〈〈x1, ..., xn〉〉 which vanishes on Singψl, then αs is contained in the

ideal of R〈〈x1, ..., xn〉〉 generated by ∂ψl

∂x1
, ..., ∂ψl

∂xn
(Hilbert Zero Point Theorem). Set

h1 = (f − g)/h3+s ∈ Cω, which is close to 0 by the second remark.

As in the proof of step 2, we define Cω vector fields wi, i = 1, ..., N , and a Cω

function F on M × [0, 1], and it suffices to find a Cω vector field v of the form
∂
∂t +

∑N
i=1 aiwi on M × [0, 1] such that v(F ) = 0 and |

∑N
i=1 aiwi| is bounded.

Since f = g + h3+sh1, then F = g + (1 − t)h3+sh1, and the equality v(F ) = 0
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becomes :

h3+sh1 =

N∑

i=1

ai(wig + (1 − t)h2+sh2,i)

for some Cω functions h2,i on M close to 0. This is solvable locally. Indeed, for
each x0 ∈M − Z, at least one of wig, say w1g, does not vanish at x0. Hence a1 =
h3+sh1/(w1g + (1 − t)h2+sh2,1), a2 = · · ·aN = 0 is a solution on a neighborhood
of x0. Assume that x0 ∈ Z. Then choose an analytic local coordinate system
(x1, ..., xn) at x0 in M so that g(x) =

∏n
i=1 x

ni

i +const, where
∑n
i=1 ni = m(x0) > 1.

Here we can assume that x0 = 0, const = 0, n1, ..., nl > 0 and nl+1 = · · · = nn = 0.
Note that m(0, ..., 0, xl+1, ..., xn) = m(0) for (xl+1, ..., xn) ∈ Rn−l near 0. What

we prove is that for each t0 ∈ [0, 1], the ideal I of O(0,t0) generated by
∂g(0,t0)

∂xi
+

(1− t(0,t0))h
2+s
(0,t0)

h2,i(0,t0), i = 1, ..., l, contains h3+s
(0,t0)

h1(0,t0). Let J denote the ideal

of O(0,t0) generated by
∂g(0,t0)

∂xi
, i = 1, ..., l. Then it suffices to see that h1+s

(0,t0)
∈ J

because if so, J ⊃ I, J ∋ h3+s
(0,t0)

h1(0,t0), J = I+mJ and hence by Nakayama lemma

J = I, where m is the maximal ideal of O(0,t0). Moreover, assuming g(x) = x1 · · ·xl

we prove that hs(0,t0) ∈ J , which is sufficient because
∂g(0,t0)

∂xi
= ni

∏l
j=1 x

nj−1
j

∂x1···xl

∂xi

and h(0,t0) is divisible by
∏l
j=1 x

nj−1
j by the definition of h. However, hs(0,t0) ∈ J is

clear by the definition of s. Note that we can choose local v = ∂
∂t +

∑N
i=1 aiwi in

any case so that |
∑N
i=1 aiwi| is arbitrarily small.

We continue to proceed in the same way as in the proof of step 2. We obtain

Cω vector fields vk = bk
∂
∂t

+
∑N
i=1 a

k
iwi, k = 1, ..., l, by local existence and a C∞

vector field v′ = ∂
∂t

+
∑N

i=1 a
′
iwi such that vk(F ) = v′(F ) = 0, |

∑N
i=1 a

′
iwi| is small

and v′ is of the form
∑l
k=1 θkwi. After then we approximate θk by Cω functions

θ̃k, and v =
∑l
k=1 θ̃vk fulfills the requirements. Thus we complete the proof of (1).

(2). Set X = f−1(f(Sing f)) and Y = g−1(g(Sing g)), and let π be a C2 diffeo-
morphism of M such that f ◦π = g. Then X and Y are normal crossing, π(Y ) = X ,
and we assume that π is close to id in the Whitney C2 topology by replacing f
and π with f ◦ π′ and π′−1 ◦ π for a C∞ approximation π′ of π in the Whitney
C2 topology. Hence by lemma 3.5 (see the next section), its proof and properness
of f and g there exists a C∞ diffeomorphism π′′ of M close to id in the Whit-
ney C2 topology such that π′′(Y ) = X . Replace f and π, once more, by f ◦ π′′

and π′′−1 ◦ π. Then we can assume that, moreover, X = Y . We want to modify
π to be of class C∞ on a neighborhood of X . Set B(ǫ) = {x ∈ Rn : |x| ≤ ǫ}
for ǫ > 0 ∈ R. Let {Ui} and {U ′

i} be locally finite open coverings of X in M

such that U ′
i ⊂ Ui, π(U ′

i) ⊂ Ui, each f |Ui
is C∞ right equivalent to the function∏n

j=1 x
αj

j + constant, x = (x1, ..., xn) ∈ IntB(ǫi), for some ǫi > 0 ∈ R and some

α = (α1, ..., αn) ∈ Nn depending on i with α1 > 0, ..., αn′ > 0, αn′+1 = · · ·αn = 0
and that Ui ∩X and U ′

i are carried to IntB(ǫi) ∩ {x1 · · ·xn′ = 0} and B(ǫi/2) by
the diffeomorphism of equivalence. Then by induction on i it suffices to prove the
following statement (for simplicity of notation we assume that ǫi = 3 and U ′

i is
carried to B(1)).

Let C be a closed subset of B(3). Let f and g be C∞ functions on Rn such
that f is of the form xα =

∏n
j=1 x

αj

j for the above α and g is of the form xαg′

for some positive C∞ function g′ on Rn. Let π be a C2 imbedding of B(3) into
Rn such that f ◦ π = g on B(3) and π(X ∩ B(3)) ⊂ X where X = {xα = 0}.
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Let τ : B(3) → Rn be a C2 approximation of π in the C1 topology such that
τ(X ∩B(3)) ⊂ X , f ◦ τ = g on a neighborhood of C in B(3) and τ is of class C∞

there. Then, fixing on (B(3)−B(2))∪C, we can approximate τ by a C2 imbedding
τ̃ : B(3) → Rn in the C1 topology so that τ̃(X ∩ B(3)) ⊂ X , f ◦ τ̃ = g on B(1)
and τ̃ is of class C∞ on B(1).

We prove the statement. Set τ(x) = (τ1(x), ..., τn(x)). Then τj(x) for each 1 ≤
j ≤ n′ is divisible by xj , to be precise, there exists a positive C1 function Fj on B(3)

such that τj(x) = xjFj(x) since π(X∩B(3)) ⊂ X, X = {0}×Rn−1∪· · ·∪Rn′−1×

{0} × Rn−n′

and π is close to id. The required approximation τ̃ = (τ̃1, ..., τ̃n) also

has to have the form (x1F̃1, ..., xn′F̃n′ , τ̃n′+1, ..., τ̃n) for some positive C1 functions

F̃j and C2 functions τ̃n′+1, ..., τ̃n. Set F = (F1, ..., Fn′) and F̃ = (F̃1, ..., F̃n′). Then
F is of class C∞ on a neighborhood of C, the condition f ◦ τ̃ = g on B(1) coincides

with the one F̃α = g′ on B(1), and the other conditions which F̃ , τ̃n′+1, ..., τ̃n
satisfy are that F̃ = F on (B(3)−B(2))∪C, (F̃ , τ̃n′+1, ..., τ̃n) is an approximation
of (F, τn′+1, ..., τn) in the C1 topology and that τ̃ is of class C2 on B(3) and of class
C∞ on B(1).

Set Z = {(x, y) ∈ B(3) × Rn′

: yα = g′(x)}, which is a C∞ submanifold with

boundary of B(3)×Rn′

by the implicit function theorem since g′ is positive. Note

that F̃α = g′ on B(1) if and only if graph F̃ |B(1) ⊂ Z and that graphF |C ⊂ Z.

Let p : W → Z be a C∞ projection of a tubular neighborhood of Z in B(3) ×Rn′

such that p(x, y) for (x, y) ∈ W is of the form (x, p2(x, y)), which is constructed

as follows. Since g′ is positive, Z ∩ {x} × Rn′

for each x ∈ B(3) is smooth and,

moreover, the restriction to Z of the projection : B(3)×Rn′

→ B(3) is submersive.

Hence if we define p(x, y) for each (x, y) ∈ B(3)×Rn′

near Z to be the orthogonal

projection image of (x, y) to Z ∩ {x} × Rn′

, then p satisfies the requirements. Let

(F̂ , τ̂n′+1, ..., τ̂n) be a C∞ approximation of (F, τn′+1, ..., τn) in the C1 topology,
fixed on a neighborhood of C, and let φ be a C∞ function on B(3) such that

0 ≤ φ ≤ 1, φ = 1 on B(1) and φ = 0 on B(3) − B(2). Define a C2 map F̃ =

(F̃1, ..., F̃n′) : B(3) → Rn′

by

F̃ (x) = φ(x)p2(x, F̂ (x)) + (1 − φ(x))F (x) for x ∈ B(3),

and set τ̃ = (x1F̃1, ..., xn′F̃n′ , τ̂n′+1, ..., τ̂n) onB(3). Then graph F̃ |B(1) ⊂ Z because

F̃ |B(1) coincides with the map : B(1) ∋ x → p2(x, F̃ (x)) ∈ Rn′

whose graph is

contained in Z; F̃ = F on B(3)−B(2) since φ = 0 there; F̃ = F on C since F̂ = F

there and since p(x, F (x)) = (x, F (x)) there; (F̃ , τ̂n′+1, ..., τ̂n) is an approximation

of (F, τn′+1, ..., τn) in the C1 topology since so is (F̂ , , τ̂n′+1, ..., τ̂n); τ̃ is of class C2

because if we set p2(x, y) = (p2,1(x, y), ..., p2,n′(x, y)) then

τ̃j(x) = φ(x)xjp2,j(x, F̂ (x)) + (1 − φ(x))τj(x), 1 ≤ j ≤ n′;

τ̃ is of class C∞ on B(1) since F̃ (x) = p2(x, F̂ (x)) on B(1). Thus the statement is
proved.

In conclusion, for some closed neighborhood V of f(Sing f) in R each of whose
connected components contains one point of f(Sing f), there exists a C2 diffeo-
morphism τ of M sufficiently close to π in the Whitney C1 topology such that τ
is of class C∞ on f−1(V ) and f ◦ τ = g on f−1(V ). Then the restrictions of f
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and g to f−1(R − V ) are proper and locally trivial maps onto R − V , f ◦ π = g on
f−1(R − V ) and τ |f−1(R−V ) is an approximation of π|f−1(R−V ) in the C1 topology.

Hence it is easy to modify τ so that f ◦ τ = g and τ is of class C∞ everywhere
fixing on f−1(V ). Therefore, f and g are C∞ right equivalent, which proves (2).

(3). Note that here, we use more intensively some results and arguments from
next section. Let 0 ≪ l ∈ N. We prove first that f and g are semialgebraically
Cl right equivalent and later that semialgebraic Cl right equivalence implies Nash
right equivalence. We proceed with the former step as in the above proof of (2).
Let π be a semialgebraic C2 diffeomorphism of M such that f ◦ π = g, and set
X = f−1(f(Sing f)) and g−1(g(Sing g)). Let π′ be a Nash approximation of π in
the semialgebraic C2 topology (Approximation Theorem VI.4.1, [S2]). Then π′ is a
diffeomorphism of M and π′−1 ◦ π is a semialgebraic C2 approximation of id in the
semialgebraic C2 topology. Hence by replacing f and π with f ◦ π′ and π′−1 ◦ π,
we assume that π is close to id in the semialgebraic C2 topology. Moreover, we
suppose that X = Y as in the proof of (2) by using lemma 3.6 and its remark in
place of lemma 3.5. Furthermore, by using lemma 3.9 we can reduce the problem
to the case where M is the interior of a compact Nash manifold possibly with
boundary M1 and for each x ∈ ∂M1, (M1x, Xx) is Nash diffeomorphic to the germ
at 0 of (Rn−1 × [0, ∞), {(x1, ..., xn−1) ∈ Rn−1 : x1 · · ·xn′ = 0} × (0, ∞)) for some
n′ (< n) ∈ N.

We modify π on a semialgebraic neighborhood of X . By lemma 3.10 and propo-
sition 3.11,(iii) there exist “finite” open semialgebraic coverings {Ui} and {U ′

i} of X

in M such that the closure U ′
i in M is contained in Ui, π(U ′

i) is contained in Ui, f |Ui

is Nash right equivalent to xα+ constant on IntBξi
(ǫi) where α = (α1, ..., αn) ∈ Nn

depending on i with α1 > 0, ..., αn′ > 0, αn′+1 = · · ·αn = 0, n′ (< n) ∈ N − {0}
and Bξi

(ǫi) = {x = (x1, ..., xn) ∈ Rn : xn > 0, |xα| ≤ ξi(xn), |x| ≤ ǫi} for some
ǫi > 0 ∈ R and some positive Nash function ξi on (0, ∞) and that Ui∩X and U ′

i are
carried to IntBξi

(ǫi)∩{x1 · · ·xn′ = 0} and IntBξi/2(ǫi/2) by the diffeomorphism of
equivalence. For modification of π on a semialgebraic neighborhood of X we need
the following statement. Let l′ ∈ N such that l ≤ l′ ≤ l + #{i}.

Let ξ be a small positive Nash function on (0, ∞), and let C be a closed semialge-
braic subset of B3ξ(3). Let f and g be Nash functions on B4ξ(4) such that f is of the
form xα for the above α and g is of the form xαg′ for some positive Nash function g′

on B4ξ(4). Let π be a semialgebraic C2 imbedding of B3ξ(3) into B4ξ(4) close to id
in the semialgebraic C2 topology such that f ◦π = g on B3ξ(3) and π(X∩B3ξ(3)) ⊂
X where X = {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0}. Let τ : B3ξ(3) → B4ξ(4) be a
semialgebraic C2 approximation of π in the semialgebraic C1 topology such that
τ(X ∩ B3ξ(3)) ⊂ X, f ◦ τ = g on a closed semialgebraic neighborhood V of C

in B3ξ(3) and τ is of class Cl
′

there. Then, fixing on (B3ξ(3) − B2ξ(2)) ∪ C we
can approximate τ by a semialgebraic C2 imbedding τ̃ : B3ξ(3) → B4ξ(4) in the
semialgebraic C1 topology so that τ̃(X ∩B3ξ(3)) ⊂ X, f ◦ τ̃ = g on Bξ(1) and τ̃ is

of class Cl
′−1 on Bξ(1).

We prove the statement. As before, set τ = (τ1, ..., τn), τ̃ = (τ̃1, ..., τ̃n), let

Fj and F̃j , 1 ≤ j ≤ n′, be positive semialgebraic C1 functions on B3ξ(3) such

that τj = xjFj(x) and τ̃j = xjF̃j(x) on B3ξ(3), and set F = (F1, ..., Fn′) and

F̃ = (F̃1, ..., F̃n′). Note that Fj are of class Cl
′−1 on a semialgebraic neighborhood

of C in B3ξ(3), which is different to Fj in the proof of (2) where they are of class C∞.

Then the required conditions are F̃α = g′ on Bξ(1), F̃ = F on (B3ξ(3)−B2ξ(2))∪
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C, (F̃ , τ̃n′+1, ..., τ̃n) is a semialgebraic C1 approximation of (F, τn′+1, ..., τn) in the

semialgebraic C1 topology, and τ̃ is of class C2 on B3ξ(3) and of class Cl
′−1 on

Bξ(1).

Set Z = {(x, y) ∈ B3ξ(3)×Rn′

: yα = g′(x)}, which is a Nash submanifold with

boundary of B3ξ(3) × Rn′

, and let p : W → Z be a Nash projection of a semialge-

braic tubular neighborhood of Z in B3ξ(3) × Rn′

such that p(x, y) for (x, y) ∈ W

is of the form (x, p2(x, y)), which is constructed as before. Let (F̂ , τ̂n′+1, ..., τ̂n) be
a Nash approximation of (F, τn′+1, ..., τn) in the semialgebraic C1 topology, and let

φ and ψ be semialgebraic Cl
′

functions on B3ξ(3) such that 0 ≤ φ ≤ 1, φ = 1 on
Bξ(1), φ = 0 on B3ξ(3) −B2ξ(2), 0 ≤ ψ ≤ 1, ψ = 1 on B3ξ(3) − V and ψ = 0 on a
semialgebraic neighborhood of C in B3ξ(3) smaller than IntV . Set

F̃ (x) = φ(x)p2[x, ψ(x)F̂ (x) + (1 − ψ(x))F (x)] + (1 − φ(x))F (x) for x ∈ B3ξ(3),

τ̃ = (x1F̃1, ..., xn′F̃n′ , τ̂n′+1, ..., τ̂n) on B3ξ(3).and

Then we see as before that the required conditions are satisfied. Hence the state-
ment is proved.

By the statement and by a partition of unity of class semialgebraic Cl we obtain
an open semialgebraic neighborhood U of X and a semialgebraic C2 diffeomorphism
τ of M close to π in the semialgebraic C1 topology such that τ is of class Cl on U
and f ◦ τ = g on U (the point is that after fixing U we can choose τ so as to be
arbitrarily close to id). Then it is easy to modify τ so that τ is of class semialgebraic
Cl and f ◦ τ = g, i.e., f and g are semialgebraically Cl right equivalent as follows.

Let η be a semialgebraic Cl function on M such that 0 ≤ η ≤ 1, η = 0 outside of
U and η = 1 on a smaller semialgebraic neighborhood of X , and set A = {(x, y) ∈
(M − X)2 : f(y) = g(x)}. Then A is a Nash manifold and there exists a Nash
projection q : Q → A of a small semialgebraic tubular neighborhood of A in the
square of the ambient Euclidean space of M of the form q(x, y) = (x, q2(x, y)) for
x ∈M −X . Let τ̌ be a Nash approximation of τ in the semialgebraic C1 topology,
and set

ˇ̌τ = q2[x, η(x)τ(x) + (1 − η(x))τ̌(x)] for x ∈M.

Then ˇ̌τ is well-defined because the graph of the map from M to the ambient Eu-
clidean space of M : x→ η(x)τ(x) + (1 − η(x))τ̌(x) is contained in Q, hence ˇ̌τ is a
semialgebraic Cl diffeomorphism of M and f ◦ ˇ̌τ = g. Thus the former step of the
proof is achieved

Let 0 ≪ l(3) ≪ ·· ≪ l ∈ N. For the latter step also we can assume that X = Y
and that there exists a semialgebraic Cl diffeomorphism π of M close to id in the
semialgebraic Cl topology such that f ◦π = g. Let µ be a Nash function on R such
that µ−1(0) = f(Sing f) and µ is regular at µ−1(0). Consider µ◦f and µ◦g. Their
zero sets are X , they have only normal crossing singularities at X , the same sign
at each point of M and the same multiplicity at each point of X , and we see easily
that the Nash function on M , defined to be µ ◦ g/µ ◦ f on M − X , is close to 1
in the semialgebraic Cl topology. Hence the conditions in lemma 3.10 are satisfied
and there exists a Nash diffeomorphism π′ of M close to id in the semialgebraic Cl

′

topology such that π′(X) = X and f ◦ π′ − g is l′-flat at X . Thus, replacing f and
π with f ◦ π′ and π′−1 ◦ π, we assume that f − g is l′-flat at X and π is close to id
in the Cl

′

topology.
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By proposition 3.12 we can assume that M is the interior of a compact Nash
manifold possibly with corners M1 and f is the restriction to M of a Nash function
f1 on M1 with only normal crossing singularities (see the definition of a function
with only normal crossing singularities on a manifold with corners after corollary
3.3). Then by the definition of semialgebraic Cl topology, π is extensible to a

semialgebraic Cl
′

diffeomorphism π1 of M1 such that π1 − id is l′-flat at ∂M1.
Hence g also is extensible to a semialgebraic Cl

′

function g1 on M1, and f1 − g1
is close to 0 in the Cl

′

topology and l′-flat at ∂M1. Let vi, i = 1, ..., N , be Nash
vector fields on M1 spanning the tangent space of M1 at each point, let ν1 be a
non-negative Nash function on M1 with zero set ∂M1 and regular there, and set

ν2 =
∑N
i=1(vif1)2 and ν = νl

′′

1 ν2. Then the radical of ν2N is the sheaf of N -ideals
defined by X ∪ ∂M1, and f1 − g1 is divisible by ν; to be precise, there exists a
semialgebraic Cl

′′

function β on M1 such that f1 − g1 = νβ. Moreover, β is close

to 0 in the Cl
(3)

topology for the following reason.
As shown in step 1 of the proof of (1), the map C∞(M1) ∋ h→ νh ∈ νC∞(M1)

is open. Hence for h ∈ C∞(M1), if νh is close to 0 in the Cl
′′

topology then h is

close to 0 in the Cl
(3)

topology. This holds for h ∈ Cl
′′

(M1) also because h of class

Cl
′′

is approximated by a C∞ function h′ in the Cl
′′

topology and ν · (h− h′) and

hence νh′ are close to 0 in the Cl
′′

topology. Therefore, β is close to 0 in the Cl
(3)

topology.
It follows from the definition of semialgebraic Cl topology that νl

′′

1 β|M is close to

0 in the semialgebraic Cl
(3)

topology. Then the conditions in proposition 3.11,(ii)

for f and g (= f −νl
′′

1 β
∑N
i=1(vif1)2|M ) are satisfied. Hence f and g are Nash right

equivalent. �

3.2. Cardinality of the set of equivalence classes.

The main results of this section are theorem 3.2 and corollary 3.3.

Theorem 3.2. Let M be a compact analytic (respectively, Nash) manifold of
strictly positive dimension. Then the cardinality of analytic (resp., Nash) R-L equiv-
alence classes of analytic (resp. Nash) functions on M with only normal crossing
singularities is 0 or countable. In the Nash case we do not need to assume that M
is compact, and if M is non-compact then the cardinality is always countable.

We postpone proving theorem 3.2 until the end of this section. We reduce the Cω

case to the Nash case by proposition 3.4 and then the non-compact Nash case to the
compact Nash case by proposition 3.12. Lemmas 3.6 and 3.7 together with Nash
Approximation Theorem of Cω solutions in [C-R-S1] prove the compact Nash case.
A large portion of this section is dedicated to the reduction of the non-compact case
to the compact case. There the main tools are Nash sheaf theory, a Nash version
of Hironaka Desingularization Theorem (theorems 2.9, 2.10) and the theorems in
[S2].

Remark. (i) The case where the cardinality is zero may appear, e.g. M = S2,P(2)
(for the proof, see the arguments in (v) below in case M = R2).

(ii) In the theorem we do not need to fix M , namely, the cardinality of equivalence
classes of analytic or Nash functions on all compact analytic manifolds or Nash
manifolds, respectively, with only normal crossing singularities is also countable.
Indeed, the cardinality is clearly infinite, and there are only a countable number
of compact analytic manifolds and (not necessarily compact) Nash manifolds up to
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analytic diffeomorphism and Nash diffeomorphism, respectively, which will be clear
in the proof of lemma 3.7.

(iii) Theorem 3.2 does not hold for analytic functions on a non-compact analytic
manifold. To be precise, for a non-compact analytic manifold M , the cardinality of
analytic R-L equivalence classes of (proper) analytic functions on M with only nor-
mal crossing singularities is of the continuum (0 or of the continuum, respectively,)
as shown below.

(iv) There always exists a non-singular analytic (Nash) function on any non-
compact, connected analytic (Nash, respectively,) manifold M , which we construct
later.

(v) An example of non-compact M where there is no proper analytic (Nash)
function with only normal crossing singularities is R2. We see this by reduction
to absurdity. Assume that there exists one f . Note that each level of f is a finite
union of Jordan curves. Let a1 ∈ R and X1 ⊂ R2 be, respectively, a point of Im f
and a Jordan curve in f−1(a1) whose does not intersect with f−1(a1) inside U1.
Next choose a2 ∈ f(U1), a Jordan curve X2 in f−1(a2)∩U1 and U2 in the same way.
If we continue these arguments, we arrive at a contradiction to the above note.

Proof of (iii) for proper functions. Assume that there exists a proper analytic
function f on a non-compact analytic manifold M with only normal crossing singu-
larities. Replace f with π ◦f for some proper analytic function π on R if necessary.
Then we can assume that f(Sing f) = N because f(Sing f) has no accumulat-
ing points in R. Define a map αf : N → N so that for each n ∈ N, f − n is
αf (n)-flat at any point of f−1(n) ∩ Sing f and not (αf (n) + 1)-flat at some point
of f−1(n) ∩ Sing f . If a proper analytic function g with g(Sing g) = N is Cω R-L
equivalent to f then αf = αg. Consider all proper Cω functions π on R such
that Sing π = N and π = id on N. Then it is easy to see that the cardinality of
{απ◦f} is of the continuum. Hence the cardinality of Cω R-L equivalence classes
of proper analytic functions on M with only normal crossing singularities is of the
continuum. �

Proof of (iv). Assume that dimM > 1. We use the idea of handle body decom-
position by Morse functions (see [Mi]). Let f be a non-negative proper C∞ function
on a non-compact connected Cω manifold M with only singularities of Morse type.
Approximate f and changing R by some Cω diffeomorphism of R, we assume that
f is of class Cω, f |Sing f is injective and f(Sing f) = 2N. For each k ∈ N, let
Ak be the union of f−1(k) ∩ Sing f and one point in each connected component
of f−1(k) not containing points of Sing f . Consider the 1-dimensional simplicial
complex K whose 0-skeleton K0 is ∪k∈NAk and whose 1-skeleton K1 consists of
1-simplexes ab, a, b ∈ K0, such that f({a, b}) = {k, k + 1} for some k ∈ N and
there exists a connected component C of f−1((k, k + 1)) with C ∋ a, b. Note that
such C is unique because ff−1((2k′, 2k′+2)) : f−1((2k′, 2k′ + 2)) → (2k′, 2k′ + 2) is
a proper submersion for k′ ∈ N and that conversely for each connected compo-
nent C of f−1((k, k + 1)) there exist a, b ∈ K0 such that f({a, b}) = {k, k + 1}
and C ∋ a, b. In other words we can identify K1 as {connected components of
f−1((k, k + 1)) : k ∈ N}. Moreover, for ab ∈ K1 there exist an injective Cω

map la,b : [0, 1] → M with la,b(0) = a, la,b(1) = b, f ◦ la,b(t) = f(a) ± t and

Im la,b = Im lb,a. Here for ab 6= a′b′, Im la,b ∩ Im la′,b′ = {a} if a = a′ or a = b′,
Im la,b ∩ Im la′,b′ = {b} if b = a′ or b = b′, and Im la,b ∩ Im la′,b′ = ∅ otherwise.
Hence we identify the underlying polyhedron |K| with the subset ∪ab∈K1 Im la,b of
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M , i.e., K is realized in M . Note that also there exists an unique C0 retraction
r : M → ∪ab∈K1 Im la,b such that f ◦ r = f .

We will see that each a ∈ K0 is the end of some half-polygon in |K|, i.e., there
exist distinct a0 = a, a1, a2, ... ∈ K0 such that aiai+1 ∈ K1, i ∈ N. Note that
ai → ∞ (i.e., f(ai) → ∞) as i→ ∞. Since M is non-compact and connected, there
exists a proper C1 map l : [0, ∞) →M such that l(0) = a. We can move Im l into
|K| by r so that Im l is the underlying polyhedron of some subcomplex of K. If

there is a 1-simplex s in Kl
def
= K|Im l with an end v such that v is not l(0) nor an end

of another 1-simplex in Kl, then remove s and v from Kl, and repeat this operation
as many times as possible. Then Kl becomes a simplicial subcomplex of K and |Kl|
is the union of a half-polygon and Jordan curves. Remove, moreover, some vertices
except l(0) and 1-simplexes so that |Kl| is a half-polygon. Then we obtain an

injective simplicial map l : Ñ → K with l(0) = a, where Ñ = N∪{[i, i+1] : i ∈ N}.
Let La denote all of such l, and let la be such that min f◦la = max{min f◦l : l ∈ La}
and #(f◦la)−1(min f◦la) ≤ #(f◦l)−1(min f◦l) for l ∈ La with min f◦l = min f◦la.

Next we show that min f ◦ la → ∞ as a → ∞. Otherwise, there would exist
distinct a1, a2, ... in K0 such that min f ◦ lai

= const, say m. Note that ai → ∞ as
i → ∞. Since f−1(m) is compact we have a subsequence of a1, a2, ... where Im lai

contain one point b0 ∈ K0 with f(b0) = m. Next, choose a subsequence so that
Im lai

contain b0b1 ∈ K0 for some b1 ∈ K0 and lai
(ki + 1) = b0 and lai

(ki) = b1
for some ki ∈ N. Repeating these arguments we obtain sequences a1, a2, ... and
b0, b1, ... in K0 such that lai

(ki+ i) = b0, ..., lai
(ki) = bi for some ki ∈ N, i = 1, 2, ...

Then ∪i∈Nbibi+1 is a half-polygon by the property of la. Fix i so large that f(bj) >

m, j = i, i + 1, ..., consider a polyhedron lai
([0, ki]) ∪ bibi+1 ∪ bi+1bi+2 ∪ · · · and

remove vertices and open 1-simplexes from it as above construction of l so that
the polyhedron becomes a half-polygon starting from ai. This half-polygon defines
a new l ∈ Lai

. Clearly min f ◦ l ≥ m = min f ◦ lai
for this l by the definition

of l. However, min f ◦ l = min f ◦ lai
by the definition of la. Then the difference

between this l and lai
is #(f ◦ l)−1(m) < #(f ◦ lai

)−1(m) since f ◦ lai
(ki + 1) = m,

f ◦ lai
([0, ki]) ⊃ f ◦ l([0, ki]) and since f(bibi+1 ∪ bi+1bi+2 ∪ · · · ) > m, which

contradicts the definition of lai
. Thus min f ◦ la → ∞ as a→ ∞.

Note that M is C∞ diffeomorphic to M − Im la for any a ∈ K0 and the dif-
feomorphism can be chosen to be id outside of a small neighborhood of Im la.
Hence if Im la ∩ Im la′ = ∅ for any a 6= a′ ∈ Sing f , there exists a Cω diffeomor-
phism π : M → M − ∪a∈Sing f Im la and f ◦ π is a non-singular analytic func-
tion on M . Consider the case of Im la ∩ Im la′ 6= ∅ for some a 6= a′ ∈ Sing f .
Set {a0, a1, ...} = Sing f , X0 = Y0 = Im la0

and Z0 = ∅. Let i ∈ N. As-
sume by induction that we have defined subpolyhedra Xi ⊃ Yi ⊃ Zi of |K|. If
Xi ∩ Im lai+1

= ∅, set Xi+1 = Xi ∪ Im lai+1
, Yi+1 = Im lai+1

and Zi+1 = ∅. Oth-
erwise, set Xi+1 = Xi ∪ Im lai+1

([0, ki+1]), Zi+1 = the closure of the unbounded
connected component of the set of difference of the connected component of Xi

containing lai+1
(ki+1)) and of lai+1

(ki+1), and set Yi+1 = Zi+1 ∪ Im lai+1
([0, ki+1]),

where ki+1 = min{k ∈ N : Xi ∩ lai+1
([0, k]) 6= ∅}. Then X = ∪i∈NXi is the

underlying polyhedron of a subcomplex of K, and for each i there exists a C∞

diffeomorphism πi : M − Zi → M − Yi such that πi = id on Xi − Zi and outside
of a small neighborhood of Yi − Zi in M − Zi. By the property min f ◦ la → ∞ as
a→ ∞, we see that · · · ◦ π1 ◦ π0 : M →M is a well-defined C∞ diffeomorphism to
M −X . Approximate it by a Cω diffeomorphism π : M → M −X . Then f ◦ π is
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the required non-singular analytic function on M .
Consider the case where M is a non-compact connected Nash manifold. Then

there exists a proper Nash function on M with only singularities of Morse type
for the following reason. By Theorem VI.2.1, [S2] M is Nash diffeomorphic to
the interior of a compact Nash manifold with boundary M ′, which is called a
compactification of M . Then by using a partition of unity of class semialgebraic C2

we obtain a nonnegative semialgebraic C2 function φ on M ′ with zero set ∂M ′ and
with only singularities of Morse type. Approximate the semialgebraic C2 function
1/φ on M by a Nash function ψ in the semialgebraic C2 topology (Approximation
Theorem), which is the required function. Note that # Singψ <∞ because Singψ
is semialgebraic. Hence in the same way as in the analytic case, we find a Nash
function on M without singularities by the following fact.

Let X be a 1-dimensional closed semialgebraic connected subset of M which is
a union of smooth curves X0, ..., Xk such that any Xi is closed in M , any Xi and
Xj intersect transversally and for each a ∈ X there exists one and only one path
from a to ∞ in X . Then M and M −X are Nash diffeomorphic.

We prove this fact as follows. Assume that M = IntM ′ for M ′ as above. Then
the closure X of X in M ′ intersects with ∂M ′ at one point. By moving X by a
semialgebraic C1 diffeomorphism of M and then by a Nash diffeomorphism (Ap-
proximation Theorem) we assume that X is smooth at X ∩ ∂M ′ and X and ∂M ′

intersect transversally. Let ξ denote the function on M ′ which measures distance
from X, which is semialgebraic, and approximate ξ|M ′−X by a positive Nash func-

tion ξ̃ on M ′ − X so that ξ̃(x) → 0 as x → a point of X . Let ǫ > 0 be small

enough. Then ξ̃|ξ̃−1((0, ǫ]) : ξ̃−1((0, ǫ]) → (0, ǫ] is a proper Nash submersion by

[C-S1]. Hence M ′ − X − ξ̃−1((0, ǫ]) and M ′ − X are semialgebraically C1 diffeo-
morphic and, moreover, Nash diffeomorphic by Approximation Theorem. On the
other hand, M ′ −X − ξ̃−1((0, ǫ)) is a compact Nash manifold with corners, and if

we smooth the corners then M ′ − X − ξ̃−1((0, ǫ)) is C∞ and hence Nash (Theo-
rem VI.2.2, [S2]) diffeomorphic to M ′ by the assumptions on X , which implies that

M−X−ξ̃−1((0, ǫ]) andM are Nash diffeomorphic. Therefore, M−X = Int(M ′−X)
is Nash diffeomorphic to M . �

Proof of (iii) for non-proper functions. As in the situation above, we have a non-
bounded non-singular non-negative analytic function f on a non-compact connected
analytic manifold M . Let π be a proper analytic function on R such that Sing π =
N and π = id on N. Then π ◦ f(Sing π ◦ f) = N. Hence as in the case of proper
functions, we see that the cardinality of Cω R-L equivalence classes of analytic
functions on M with only normal crossing singularities is of the continuum. �

Let P denote the set of homogeneous polynomial functions on R2 of degree 4.
It is easy to see that the analytic R-L equivalence classes of P has the cardinality
of the continuum, almost blow-analytic R-L equivalence on analytic functions on
R2 coincides with blow-analytic R-L equivalence and is an equivalence relation,
and the blow-analytic R-L equivalence classes of P is finite. For general dimension,
as noted in the remark of definition 1.1 we do not know whether almost blow-
analytic (blow-Nash) R-L equivalence is an equivalence relation. So we say that
analytic (Nash) functions f and g lie in the same class if there exists a sequence
of analytic functions f0, ..., fk such that f0 = f, fk = g and fi and fi+1 are almost
blow-analytically (blow-Nash) R-L equivalent, i = 0, ..., k− 1. Then

Corollary 3.3. Let M be a compact analytic (resp. Nash) manifold of strictly
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positive dimension. Then the cardinality of the set of classes of analytic (resp.
Nash) functions on M , classified by almost blow-analytic (resp. blow-Nash) R-L
equivalence, is countable. In the Nash case we do not need to assume that M is
compact.

Proof of corollary 3.3. The analytic case follows from theorem 3.2 and Hironaka
Desingularization Theorem. The compact Nash case does from theorems 2.10 and
3.2. �

For the proof of theorem 3.2 in the non-compact case we need to extend the no-
tions of singularity and of normal crossing singularity. Let f be an analytic function
on analytic manifold with corners M . We say f is singular at a point x0 of ∂M if
the restriction of f to the stratum of the canonical stratification of ∂M containing
x0 is singular at x0. (Hence f is singular at points of the stratum of dimension 0 of
the canonical stratification of ∂M). We say f has only normal crossing singulari-
ties if f |IntM does so and the following condition is satisfied. We can construct an
analytic manifold M ′ which contains M and is of the same dimension by extending
a locally finite system of analytic local coordinate neighborhoods of M . (We call
M ′ an analytic manifold extension of M . We naturally define also a Nash manifold
extension of a Nash manifold with corners.) In the same way, shrinking M ′ if nec-
essary we obtain a normal crossing analytic subset X of M ′ such that IntM is a
union of some connected components of M ′ −X , and f is extended to an analytic
function f ′ on M ′. Let φ be an analytic function on M ′ defined by X . Then the
condition is that the germ of (f ′ − f ′(x0))φ at each point x0 of X has only normal
crossing singularities. We naturally define also a normal crossing analytic (Nash)
subset of M and a normal crossing sheaf of O- (N -)ideals on M .

By the following proposition we reduce the Cω case of theorem 3.2 to the Nash
case.

Proposition 3.4. Let M be a compact Nash manifold possibly with corners, and
f a Cω function on M with only normal crossing singularities. Then f is Cω right
equivalent to some Nash function.

Remark. If M is a non-compact Nash manifold, proposition 3.4 does not hold. For
example, M = R and f(x) = sinx.

Proof of proposition 3.4. Set X = f−1(f(Sing f)). Let g : X̃ → M be a Cω

immersion of a compact Cω manifold possibly with corners such that Im g = X ,
g|g−1(RegX) is injective and for each x ∈ X̃ , gx(X̃x) is an analytic subset germ

of Mg(x) (we construct X̃ and g locally and then paste them). For a connected

component C of X̃ there are 2 possible cases to consider: g(C) ⊂ ∂M or g(C) 6⊂ ∂M .

Assume that g(C) 6⊂ ∂M for any C. Then g(Int X̃) ⊂ IntM , g(∂X̃) ⊂ ∂M and
X is a normal crossing analytic subset of M . Consider the family of all C∞ maps
g′ : X̃ →M with g′(Int X̃) ⊂ IntM and g′(∂X̃) ⊂ ∂M . Then

Lemma 3.5. Let r (> 0) ∈ N ∪ {∞}. Then g is C∞ stable in the family in the

sense that any such C∞ map g′ : X̃ →M close to g in the Cr topology is C∞ R-L
equivalent to g.

Remark. Even if M is a non-compact Nash (C∞) manifold possibly with corners,
lemma 3.5 holds in the Whitney Cr (strong Whitney C∞, respectively,) topology,
which is clear by the following proof.
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Proof of lemma 3.5. It suffices to find a C∞ diffeomorphism of M which carries Im g
to Im g′. As usual, using a tubular neighborhood of M in its ambient Euclidean
space, the orthogonal projection to M and a partition of unity of class C∞, we
reduce the problem to the following local one.

Assume that M = Rn × [0, ∞)m and X = {x1 · · ·xl = 0}, l ≤ n, and let
y1 = y1(x) be a C∞ function on M which is close to the function x1 in the Whitney
Cr topology and coincides with x1 outside of a neighborhood of 0. Then there exists
a C∞ diffeomorphism π of M which is id outside of a neighborhood of 0 and close
to id in the Whitney Cr topology and carries {x2 · · ·xl = 0} ∪ {y1(x) = 0} to X .

This is true since π(x1, ..., xn+m) = (y1(x), x2, ..., xn+m) satisfies the require-
ments. �

Continued proof of proposition 3.4. Let 0 ≪ r′ ≪ r ∈ N. Case without corners.
Give a Nash manifold structure to X̃ (Theorem of Nash, see Theorem I.3.6, [S2]).

Let g′ : X̃ → M be a Nash approximation of g in the Cr topology, e.g., the
composite of a polynomial approximation of the map g from X̃ to the ambient
Euclidean space of M and the orthogonal projection of a tubular neighborhood of
the space, and set X ′ = Im g′. Then by lemma 3.5 there exists a C∞ diffeomorphism
π of M which carries X to X ′, and by the above proof π can be arbitrarily close
to the identity map in the Cr topology. Let t1, ..., tl be the critical values of f .
We assume that ti > 0. We want to construct a Nash function f ′ on M such
that (f ′)−1(f ′(Sing f ′)) = X ′, f ′ ◦ π = f on X for some modified π and, moreover,
f ′◦π−ti and f−ti have the same multiplicity at each point of f−1(ti) for each i. For
each ti, let Ii denote the sheaf of N -ideals with zero set π(f−1(ti)) and having the
same multiplicity (in the natural sense) as f ◦ π−1 − ti at each point of π(f−1(ti)),
which exists because if a non-singular analytic set germ is semialgebraic then it is a
non-singular Nash set germ. Then Ii is generated by a finite number of global Nash
functions (theorem 2.7). Let φi denote the square sum of the generators and define
a Nash function ψi on M so that ψ2

i = φi and ψi and f ◦π−1−ti have the same sign
everywhere. Note that ψ−1

i (0) = π(f−1(ti)) and ψi and f ◦ π−1 − ti have the same

multiplicity at each point of ψ−1
i (0). Set φ =

∏
φi. We have a global cross-section

of the sheaf of N -modules N /
∏
i I

2
i whose value at each point x of ψ−1

i (0) equals
ψix + ti mod I2

ix. Apply theorem 2.8 to the homomorphism N → N /
∏
i I

2
i and

the global cross-section. Then there exists a Nash function ψ on M such that for
each i, ψ− ti and f ◦π−1− ti have the same sign at each point of a neighborhood of
ψ−1
i (0) and the same multiplicity at each point of ψ−1

i (0). We need to modify ψ so
that X ′ = ψ−1(ψ(Singψ)). Let f ′′ be a C∞ function on M such that f ′′ = ψ on a
small neighborhood of X ′ and X ′ = (f ′′)−1(f ′′(Sing f ′′)), which is constructed by
ψ, f ◦ π−1 and by a partition of unity of class C∞. Then f ′′ − ψ is of the form φξ
for some C∞ function ξ on M . Set f ′ = ψ + φ · (a strong Nash approximation of
ξ in the C∞ topology). Then f ′ is a Nash function, X ′ = (f ′)−1(f ′(Sing f ′)) and
f ′ − ti and f ◦ π−1 − ti have the same multiplicity at each point of π(f−1(ti)) for
each i.

By Theorem 3.1,(1) it suffices to see that f and h
def
= f ′ ◦ π are C∞ right

equivalent. Note that h−1(h(Sing h)) = X , and f − ti and h − ti have the same
multiplicity at each point of f−1(ti) for each i. Remember that π is close to id in
the Cr topology. We can choose f ′ also so that f and h are close each other in the
Cr topology. Indeed, f ◦ π−1 − f ′ is of the form η

∏
i ψi for some C∞ function η

on M . Replace f ′ with f ′+(a strong Nash approximation of η)
∏
i ψi. Then f and
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h are close. Hence we can reduce the problem, as usual, to the local one :

Let M = Rn, f(x) = xα1
1 · · ·xαl

l and h(x) = a(x)xα1
1 · · ·xαl

l for some C∞

function a(x) on M close to 1 in the Whitney Cr
′

topology (remember the second
remark in the proof of theorem 3.1,(1)). Assume that α1 > 0. Then f and h are

C∞ right equivalent through a C∞ diffeomorphism close to id in the Whitney Cr
′

topology.

This is true since the C∞ diffeomorphism Rn ∋ (x1, ..., xn) → (a1/α1(x)x1, x2, ...,
xn) ∈ Rn satisfies the requirements. Thus the case without corners is proved.

Case with corners. Let M1 be a Nash manifold extension of M . We can assume
that M is the closure of a union of some connected components of M1 − Y for a
normal crossing Nash subset Y of M1. Let U be an open semialgebraic neighbor-
hood of M in M1 so small that f is extensible to an analytic function f1 on U
with only normal crossing singularities. Shrinking U if necessary, we replace X in
the above proof with X1 = f−1

1 (f1(Sing f1)), define a Cω manifold X̃1 and a Cω

immersion g1 : X̃1 → U in the same way. For each connected component C of X̃1

there are two possible cases to consider: g1(C) ⊂ Y or g1(C) 6⊂ Y . If g1(C) ⊂ Y , C
has locally a Nash manifold structure such that g1|C is a local Nash diffeomorphism
to g1(C). Moreover, C with this structure is a Nash manifold by fact 1 in the proof
of lemma 3.8. Set g′1 = g1 on C. If g1(C) 6⊂ Y , give a Nash manifold structure to
C, approximate g1|C by a Nash immersion g′1|C : C →M1. In this way we define a

Nash immersion g′1 : X̃1 → M1 and set X ′ = Im g′1 ∩M . The rest proceeds in the
same way as the case without corners. �

The following lemma is the Cω or Nash version of lemma 3.5 and is used to prove
theorem 3.1 and lemma 3.7.

Lemma 3.6. Let r (> 0) ∈ N ∪ {∞}. Let M and N be compact Cω manifolds
possibly with corners such that dimM = 1 + dimN , and φ : N →M a Cω immer-
sion such that φ(IntN) ⊂ IntM , φ(∂N) ⊂ ∂M , Imφ is a normal crossing analytic
subset of M and the restriction of φ to φ−1(Reg Imφ) is injective. Then φ is Cω

stable in the family of Cω maps from N to M carrying ∂N to ∂M in the same
sense as in lemma 3.5. If M, N and φ are of class Nash, φ is Nash stable in the
family of Nash maps with the same property as above.

Remark. In the case of a non-compact M and proper φ, we see easily that the former
half part of lemma 3.6 holds in the Whitney Cr topology, r (> 0) ∈ N ∪ {∞}. We
can prove the latter half in the non-compact case in the semialgebraic Cr topology
by reducing to the compact case by lemmas 3.8 and 3.9.

Proof of lemma 3.6. Let ψ be an analytic approximation of φ in family in the
analytic case. Then by lemma 3.5 ψ is C∞ R-L equivalent to φ, namely, there
exists a C∞ diffeomorphism π of M which carries Imφ to Imψ. Note that we can
choose π so as to be close to id in the Cr topology by the proof of lemma 3.5. Then
by step 1 in the proof of theorem 3.1,(1) and its proof we can choose an analytic π
even in the case with corners. the existence of an analytic diffeomorphism τ of N
with ψ ◦ τ = π ◦ φ is clear because τ = ψ−1 ◦ π ◦ φ on φ−1(Reg Imφ). Thus φ and
ψ are Cω R-L equivalent.

Assume that M, N, φ and ψ are of class Nash. It suffices to find a Nash
diffeomorphism of M which carries Imφ to Imψ. Let π be such a diffeomorphism
of M of class Cω.
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Case without corners. Let Iφ and Iψ denote the sheaves of N -ideals on M
defined by Imφ and Imψ, respectively, and let {fi} and {gj} be a finite number
of their respective global generators. Then {gj ◦ π} is a set of global generators of
the sheaf of O-ideals IφO on M . Hence in the same way as step 2 in the proof of
theorem 3.1,(1) we obtain Cω functions αi,j and βi,j on M such that

fi =
∑

j

αi,j · (gj ◦ π) and gj ◦ π =
∑

i

βi,jfi.

Let M ⊂ Rn and h a Nash function on Rn with zero set M . Extend gj to Nash
functions on Rn and use the same notation gj theorem 2.8. Consider equations of

Nash functions in variables (x, y, ai,j, bi,j) ∈M × Rn × Rn′

× Rn′

for some n′ :

h(y) = 0, fi(x) −
∑

j

ai,jgj(y) = 0, gj(y) −
∑

i

bi,jfi(x) = 0.

We have a Cω solution y = π(x), ai,j = αi,j(x) and bi,j = βi,j(x). Hence by
Theorem 1.1, [C-R-S1] there exists a Nash solution y = π′(x), ai,j = α′

i,j(x) and
bi,j = β′

i,j(x), which are close to π, αi,j and βi,j , respectively. Then

Imπ′ = M, fi =
∑

j

α′
i,j · (gj ◦ π

′), gj ◦ π
′ =

∑

i

βi,jfi.

Hence π′ is a Nash diffeomorphism of M and carries Imφ to Imψ.
Case with corners. We can assume that for Nash manifold extensions M1 and

N1 of M and N , respectively, φ, ψ and π are extensible to Nash immersion φ1 and
ψ1 of N1 into M1 and to a Cω imbedding π1 of a semialgebraic open neighborhood
U of M in M1 into M1, respectively, and there exist normal crossing Nash subsets
Y of M1 and Z of N1 such that M and N are closures of unions of some connected
components of M1−Y and of N1−Z, respectively, φ1(Z) ⊂ Y and ψ1(Z) ⊂ Y . Let
M1 be contained and closed in an open semialgebraic set O in Rn, and h1 a Nash
function on O with zero set M1. Take a small open semialgebraic neighborhood
V of M in M1 and shrink M1, N1 and U so that π(U) ⊂ V and U ∩ Imφ1 and
V ∩ Imψ1 are normal crossing Nash subsets of U and V , respectively. Then in
the same way as above we obtain a finite number of global generators {f1,i} and
{g1,i} of the sheaves of N -ideals on U and V defined by U ∩ Imφ1 and V ∩ Imψ1,
respectively, and analytic functions α1,i,j, β1,i,j on U such that

f1,i =
∑

j

α1,i,j · (g1,j ◦ π1) and g1,j ◦ π1 =
∑

i

β1,i,jf1.i on U.

We need to describe the condition π(∂M) = ∂M , i.e., π1(U ∩ Y ) ⊂ Y . Let ξ′ be
the square sum of a finite number of global generators of the sheaf of N -ideals I
on M1 defined by Y . Then ξ′ is a generator of I2, and since M is a manifold with
corners there exists an unique Nash function ξ on a semialgebraic neighborhood of
M in M1 such that ξ2 = ξ′ and ξ > 0 on IntM . Shrink U once more. Then ξ|U
and ξ ◦π1|U are well-defined generators of I|U and IO|U , respectively, and we have
a positive analytic function γ on U such that ξ ◦ π = γξ on U . We shrink O, and
using the same notation we extend g1,j and ξ to Nash functions on O.



ANALYTIC EQUIVALENCE OF NORMAL CROSSING FUNCTIONS 35

Consider the germs on M ×O × Rn′

× Rn′

× R of equations of Nash functions
in variables (x, y, ai,j, bi,j, c) ∈ U ×O ×Rn′

×Rn′

×R for some n′ :

h1(y) = 0, f1,i(x)−
∑

j

ai,jg1,j(y) = 0, g1,j(y)−
∑

i

bi,jf1,i(x) = 0, ξ(y)−cξ(x) = 0.

Then, since Theorem 1.1, [C-R-S1] holds in the case of germs, we have Nash germ
solutions on M of the equations y = π′

1(x), ai,j = α′
i,j(x), bi,j = β′

i,j(x) and

c = γ′(x). The equation ξ ◦ π′
1 = γ′ξ means π′

1(M) = M . Thus π′
1|M is the

required Nash diffeomorphism of M . �

The following lemma shows countable cardinality of the normal crossing Nash
(Cω) subsets of a compact Nash (Cω, respectively,) manifold possibly with corners.

Lemma 3.7. Let M be a compact Nash manifold possibly with corners of strictly
positive dimension. Consider Nash immersions φ from compact Nash manifolds
possibly with corners of dimension equal to dimM − 1 into M such that Imφ are
normal crossing Nash subsets of M , φ|φ−1(Reg Imφ) are injective and φ carry the
interior and the corners into the interior and the corners, respectively. Then the
cardinality of Nash R-L equivalence classes of all the φ’s is countable. The analytic
case also holds.

Proof of lemma 3.7. Note that the cardinality is infinite because for any k ∈ N we
can imbed k copies of a sphere of dimension dimM − 1 in M . It suffices to treat
only the Nash case for the following reason.

Let φ : M ′ → M be an analytic immersion as in lemma 3.7 for analytic M ′

and M . Assume that M has no corners. Since a compact analytic manifold is Cω

diffeomorphic to a Nash manifold, we suppose that M ′ and M are Nash manifolds.
Approximate φ by a Nash map. Then φ is Cω R-L equivalent to the approximation
by lemma 3.6. Hence we can replace φ by a Nash map.

Assume that M has corners. Let M1 ⊂ Rn be an analytic manifold extension of
M such that M is the closure of a union of some connected components of M1 − Y
for a normal crossing analytic subset Y of M1. We can assume that M1 is compact
as follows. Let α denote the function on M1 which measures distance from M .
Approximate α|M1−M by a Cω function α′ in the Whitney C∞ topology, and let
ǫ < ǫ′ be positive numbers so small that M ∪ α′−1((0, ǫ′]) is compact and such
that the restrictions of α′ to α′−1((ǫ, ǫ′)) and to its intersections with strata of the
canonical stratification of Y are regular. Then (M1∩α′−1((ǫ, ǫ′)), Y ∩α′−1((ǫ, ǫ′)))
is Cω diffeomorphic to (M1∩α′−1((ǫ+ǫ′)/2)), Y ∩α′−1((ǫ+ǫ′)/2)))×(ǫ, ǫ′). Hence,
replacing M1 with the double of M ∪ α′−1((0, (ǫ + ǫ′)/2]), we assume that M1 is
compact. Next we reduce the problem to the case where M1 and Y are of class
Nash. Define, as in the proof of proposition 3.4, a Cω immersion g : Ỹ → M1 of
a compact Cω manifold so that Im g = Y , g|g−1(Reg Im g) is injective and for each

y ∈ Ỹ , gy(Ỹy) is an analytic subset germ of M1g(y), give Nash structures on M1

and Ỹ , and approximate g by a Nash map g′. Then by lemma 3.6 there exists a
Cω diffeomorphism π of M1 which carries Im g to Im g′. Hence we can replace Y
with Im g′ and we assume from the beginning that M1, Y and M are of class Nash.
By the same reason we suppose that M ′ is a Nash manifold possibly with corners
and the closure of a union of some connected components of M ′

1−Y
′ for a compact

Nash manifold extension M ′
1 of M ′ and a normal crossing Nash subset Y ′ of M ′

1.
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Extend φ to a Cω immersion φ1 of a compact semialgebraic neighborhood U of M ′

in M ′
1 into M1, choose U so small that φ1(U ∩Y ′) ⊂ Y , and approximate, as in the

proof of step 1 in theorem 3.1,(1), φ1 by a Nash map φ̃1 so that φ̃1(U ∩ Y ′) ⊂ Y
(here we use theorems 2.7 and 2.8 in place of corollaries 2.2 and 2.4 in the proof in

theorem 3.1,(1)). Then φ̃1|M ′ is a Nash immersion into M , Im φ̃1|M ′ is a normal

crossing Nash subset of M , φ̃1|(φ̃1|M′ )−1(Reg Im φ̃1|M′ ) is injective, φ̃1(∂M ′) ⊂ ∂M ,

and φ̃1|M ′ is Cω R-L equivalent to φ by lemma 3.6. Thus we reduce the analytic
case to the Nash one.

Consider the Nash case. Let M ⊂ Rn and φ : M ′ →M be a Nash immersion as
in lemma 3.7. Let M1, M

′
1, Y and φ1 : M ′

1 →M1 be Nash manifold extensions of M
and M ′, a normal crossing Nash subset of M1 and a Nash immersion, respectively,
such that M1 ⊂ Rn, φ1 = φ on M ′, M and M ′ are the closures of unions of some
connected components of M1 − Y and M ′

1 − φ−1
1 (Y ), respectively, U ∩ Imφ1 is a

normal crossing Nash subset of an open semialgebraic neighborhood U of M in
M1 and φ1|φ−1

1 (Reg(U∩Imφ1))
is injective. By Artin-Mazur Theorem (see the proof

of theorem 2.9) we can regard M ′
1 as an open semialgebraic subset of the regular

point set of an algebraic variety in Rn×Rn′

for some n′ and φ1 as the restriction to
M ′

1 of the projection Rn × Rn′

→ Rn. We will describe all of such φ1 : M ′
1 →M1

with fixed complexity as follows. Any algebraic set in Rn × Rn′

, and its subset of
the regular points where the projection to Rn is regular, are, respectively, described
by the common zero set of polynomial functions f1, ..., fl on Rn × Rn′

for some
l ∈ N and

⋃

I={i1,...,ik}⊂{1,...,l}
I′={i′1,...,i

′

k+n′}⊂{1,...,l}

{x = (x1, ..., xn+n′) ∈ Rn+n′

:

f1(x) = · · · = fl(x) = 0, |
∂(fi′1 , ..., fi′k+n′

)

∂(xi1, ..., xik , xn+1, ..., xn+n′)
(x)| 6= 0,

gI′,i′′fi′′ =

k+n′∑

j=1

gI′,i′′,jfi′
j
, gI′,i′′(x) 6= 0, i′′ ∈ {1, ..., l} − I ′}

for some polynomial functions gI′,i′′ and gI′,i′′,j on Rn × Rn′

, where k = n + 1 −

dimM , and ∂( )
∂( )

denotes the Jacobian matrix. Moreover, its open semialgebraic

subset is its intersection with

∪lj′=1 ∩
l
i=1 {x ∈ Rn+n′

: hi,j′(x) > 0}

for some polynomial functions hi,j′ on Rn ×Rn′

. (Here we enlarge l if necessary.)
Thus φ1 : M ′

1 → Rn is described by the family fi, gI′,i′′ , gI′,i′′,j and hi,j′ and con-
versely, any polynomial functions fi, gI′,i′′ , gI′,i′′,j and hi,j′ define in the above way

a Nash manifold M ′
1 in Rn+n′

of dimension = dimM − 1 such that the projection
φ1 : M ′

1 → Rn is an immersion. If the degree of the polynomials are less than or
equal to d ∈ N we say φ1 : M ′

1 → Rn is of complexity l, d, n′.

Furthermore, since a polynomial function on Rn+n′

of degree less than or equal to

d is of the form
∑
α∈N

n+n′

d

aαx
α, aα ∈ R, where we regard Nn+n′

d = {α ∈ Nn+n′

:

|α| ≤ d}, the family of fi, .., hi,j′ of degree less than or equal to d as an element
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a = (aα) of RN for some N ∈ N. We write φ1 : M ′
1 → Rn as φ1a : M ′

1a → Rn.

Then the set X = ∪a∈RN {a} ×M ′
1a ⊂ RN × Rn × Rn′

is semialgebraic, and we
can identify φ1a : M ′

1a → Rn with p|(q◦p)−1(a) : (q ◦ p)−1(a) → {a} × Rn, where

p : X → RN × Rn and q : RN ×Rn → RN are the projections.
Consider the condition Imφ1a ⊂M1. The subset of RN consisting of a such that

p|(q◦p)−1(a) fails to satisfy this condition is q ◦ p(X ∩ RN × (Rn −M1) × Rn′

) and

hence is semialgebraic. Let A denote its complement in RN . Thus Imφ1a ⊂M1 if
and only if a ∈ A.

Next consider when U ∩ Imφ1a is normal crossing and φ1a|φ−1
1a (Reg(U∩Im φ1a)) is

injective. For that, remember that the tangent space TxM
′
1a of M ′

1a at x ∈M ′
1a for

M ′
1a described by fi, gI′,i′′ , ... as above. We have

TxM
′
1a = {y ∈ Rn+n′

: df1xy = · · · = dflxy = 0},

and hence the set TX
def
= {(a, x, y) ∈ X × Rn+n′

: y ∈ TxM
′
1a} is semialgebraic.

Assume that a ∈ A. Set

M ′′
1a = {(x, x′) ∈M ′

1a ×M ′
1a : x 6= x′, φ1a(x) = φ1a(x′) ∈ U,

dim(dφ1ax(TxM
′
1a) + dφ1ax′(Tx′M ′

1a)) = dimM − 1}.

Then M ′′
1a and ∪a∈A{a} ×M ′′

1a are semialgebraic, and a ∈ A− q′(∪a∈A{a} ×M ′′
1a)

if and only if for any x 6= x′ ∈ M ′
1a with φ1a(x) ∈ U , the germs of φ1a at x and x′

intersect transversally, where q′ : RN × Rn × Rn′

× Rn × Rn′

→ RN denotes the
projection. Repeating the same arguments on m-tuple of M ′

1a for any m ≤ dimM
we obtain a semialgebraic subset B of A such that for a ∈ A, a ∈ B if and only if
U ∩ Imφ1a is normal crossing and φ1a|φ−1

1a (Reg(U∩Imφ1a)) is injective.

Let {Bi} be a finite stratification of B into connected Nash manifolds such
that q ◦ p is Nash trivial over each Bi [C-S1], i.e., for each i there exists a Nash
diffeomorphism πi : (q ◦p)−1(Bi) → (q ◦p)−1(bi)×Bi of the form πi = (π′

i, q ◦p) for
some bi ∈ Bi. For a ∈ B, set M ′

a = φ−1
1a (M) and φa = φ1a|M ′

a
. Then {φa : M ′

a →
Rn}a∈B is the family of all φ : M ′ → M as in lemma 3.7 which are extensible to
φ1 : M ′

1 →M1 with fixed U and complexity l, d, n′, and if a and a′ are in the same
Bi, i ∈ I, then φa : M ′

a → M and φa′ : M ′
a′ → M are Nash R-L equivalent by

lemma 3.6 for the following reason. As there exists a C0 curve in Bi joining a and
a′, considering a finite sequence of points on the curve we can assume that a′ is
close to a as elements of RN . We can replace φa and φa′ with φa ◦ (π′

i|{a}×M ′

a
)−1 =

pn ◦ (π′
i|{a}×M ′

a
)−1 : {bi} ×M ′

bi
→ Rn and pn ◦ (π′

i|{a′}×M ′

a′
)−1 : {bi} ×M ′

bi
→ Rn,

where pn denotes the projection RN × Rn × Rn′

→ Rn. Hence for application of
lemma 3.6 it suffices to see that (π′

i|{a′}×M ′

a′
)−1 is close (π′

i|{a}×M ′
a
)−1 in the C1

topology. That is clear because we can regard (π′
i|{a′}×M ′

a′
)−1 and (π′

i|{a}×M ′
a
)−1

as π−1
i |(q◦p)−1(bi)×{a′} and π−1

i |(q◦p)−1(bi)×{a}, respectively, (q ◦ p)−1(bi) is compact

and because of the following fact. For compact C1 manifolds M2 and M3 and for a
C1 function g : M2 ×M3 → R if 2 points u and v in M3 are close each other then
the functions M2 ∋ x→ g(x, u) ∈ R and M2 ∋ x→ g(x, v) ∈ R are close in the C1

topology. Hence the cardinality of equivalence classes of φa : M ′
a → M, a ∈ B, is

finite. Until now we have fixed U . We need argue for all semialgebraic neighborhood
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U of M in M1. However, it is sufficient to treat a countable number of U ’s since
M is compact. Thus the cardinality of all equivalence classes is countable. �

The following lemmas 3.8, 3.9, 3.10 and proposition 3.11 are preparations for the
proof of proposition 3.12. Lemmas 3.8 and 3.9 show that a normal crossing Nash
subset of a non-compact Nash manifold is trivial at infinity.

Lemma 3.8. Let X be a normal crossing Nash subset of a Nash manifold M and
let f : M → Rm be a proper Nash map whose restrictions to M −X and to strata
of the canonical stratification of X are submersions onto Rm. Then f is Nash
trivial, i.e., there exists a Nash diffeomorphism π : M → f−1(0) ×Rm of the form
π = (π′, f), and π′ is chosen so that π′(X) = X ∩ f−1(0) and π′ = id on f−1(0).

?The analytic case also holds.

This is shown in [C-S1,2] in the case of empty X . We prove here the nonempty
case. If M is a Nash manifold with corners and if the restrictions of f to strata of
the canonical stratification {Mk} of ∂M compatible with X are also submersions
onto Rm, the lemma holds, which is clear by the following proof. Note that, here,
{Mk} is defined as follows. For a semialgebraic set S, let RegS denote the subset of
X consisting of points x such that Sx is a Nash manifold germ of dimension=dimS.
Then Mn−1 = Reg(∂M − X), Mn−2 = Reg(∂M −Mn−1), Mn−3 = Reg(∂M −
Mn−1 −Mn−2), ... Note that {Mk} is a stratification of ∂M to Nash manifolds of
dimension k, X ∩ ∂M is a union of some connected components of M0, ...,Mn−1,
and the method of construction of {Mk} is “canonical”.

Proof of lemma 3.8. Let n = dimM , k an integer smaller than n, and let Xk denote
the union of strata of the canonical stratification of X of dimension less than or
equal to k. We define π′ on Xk by induction on k, and then on M . To this aim,
we can assume that π′ is already given on X , say πX = (π′

X , fX), by the following
fact, where fA = f |A for a subset A of M .

Fact 1. There exist a Nash manifold X̃k of dimension k and a Nash immersion
pX̃k

: X̃k →M such that Im pX̃k
= Xk and pX̃k

|p−1

X̃k
(Xk−Xk−1)

is injective.

Proof of fact 1. (Artin-Mazur Theorem. See the proof of theorem 2.9.) Let M
be contained and closed in RN , and let XZ

k denote the Zariski closure of Xk in RN .

Then there exist an algebraic variety X̃Z
k (the normalization of XZ

k ) in RN ×RN ′

for some N ′ ∈ N and a union of some connected components X̃k of X̃Z
k such that

X̃Z
k is non-singular at X̃k, hence X̃k is a Nash manifold and the restriction pX̃k

to

X̃k of the projection p : RN × RN ′

→ RN satisfies the requirements.
Let φi be a finite number of global generators of the sheaf of N -ideals I on M

defined by X , and set φ =
∑
φ2
i . Then φ > 0 on M −X and φ is a global generator

of I2. For a subset A of M and x ∈ Rm, set A(x) = A ∩ f−1(x). We will extend
π′
X to π′. For that it suffices to find π′ of class semialgebraic Cl for a large integer
l for the following reason.

Fact 2. Let g be a semialgebraic Cl function on M whose restriction to X is of
class Nash. Then fixing g on X we can approximate g by a Nash function in the
semialgebraic Cl−n topology.

Proof of fact 2. As in the proof of theorem 3.1,(1), step 1, g|X is extensible to a
Nash function G on M by theorem 2.8. Replace g with g−G. Then we can assume
that g = 0 on X and g is of the form

∑
giφi for some semialgebraic Cl−n functions
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gi on M by using a partition of unity of class semialgebraic Cl and by reducing to
the case where (M,X) = (Rn, {x1 · · ·xn′ = 0}) for some n′ ∈ N as in the proof
of lemma 3.9. As usual, approximate gi by Nash functions g̃i in the semialgebraic
Cl−n topology we obtain the required approximation

∑
g̃iφi of g.

Moreover, it suffices to see that there exists a finite semialgebraic Cl stratification
{Bi} of Rm such that for each i, πX |X∩f−1(Bi) is extensible to a semialgebraic Cl

diffeomorphism πi = (π′
i, ff−1(Bi)) : f−1(Bi) →M(bi) ×Bi for some point bi ∈ Bi.

The reason is explained in [C-S2] and in the proof of Theorem II.6.3, [S3]. We do
not repeat it. In the following arguments we need to stratify Rm to {Bi}, each Bi
to {Bi,j : j = 1, 2, ...} and once more. However, we always use notation Rm for
strata, which does not cause problems because we can choose stratifications so that
strata are semialgebraically Cl diffeomorphic to Euclidean spaces.

We proceed to the construction of π as in the proof of Theorem II.6.7, [S3],
which is very long. Without loss of generality we assume that π′

X |X(0) = id. First

we can modify in order φ to a semialgebraic Cl function so that for each x ∈
Rm, φ|M(x)−X has only singularities of Morse type (Claim 2, ibid.) (here we
need to stratify Rm and the main method of proof is a semialgebraic version of
Thom’s transversality theorem), φ is constant on each connected component of

Z
def
= ∪x∈Rm Sing(φ|M(x)−X ) and the values are distinct from each other (Claim 4,

ibid.) (the second stratification). Next, let Y be a connected component of Z and

set Ỹ = φ−1(φ(Y )). Then there exist an open semialgebraic neighborhood U of Ỹ
in M and a semialgebraic Cl imbedding u = (u′, fU ) : U → U(0) × Rm such that
u′|U(0) = id and φ ◦ u′ = φ|U (Claim 5, ibid.) (the third stratification). Thirdly,

applying lemma 3.8 without X to the semialgebraic Cl map (f, φ)|φ−1(I) : φ−1(I) →
Rm×I for each connected component I of (0, ∞)−φ(Z), we obtain a semialgebraic
Cl diffeomorphism λ = (λ′, fφ−1(I), φ|φ−1(I)) : φ−1(I) → φ−1(I)(0, 0) × Rm × I

such that λ′|φ−1(I)(0,0) = id, where φ−1(I)(0, 0) = φ−1(t0) ∩M(0) for some t0 ∈ I
(Claim 7, ibid.). Fourthly, we paste u and λ for all I and construct a semialgebraic
Cl diffeomorphism v = (v′, fM−X) : M − X → (M(0) − X) × Rm such that
v′|M(0)−X = id and φ ◦ v′ = φ|M−X , ibid. Hence it suffices to prove the following
fact by the same idea of pasting.

Fact 3. There exist an open semialgebraic neighborhood W of X in M and a
semialgebraic Cl imbedding w = (w′, fW ) : W → M(0) × Rm such that w′ = π′

X

on X , w′|W (0) = id and φ ◦ w′ = φ|W .
Proof of fact 3. Here the condition φ ◦w′ = φ|W is not necessary. If there exists

a semialgebraic Cl imbedding w without this condition, we change φ on W with
φ◦w′, extend it to a semialgebraic Cl function on M positive on M−X , and repeat
the above arguments from the beginning. Then fact 3 is satisfied by this w′.

If X is smooth, the problem becomes easy. Hence we reduce to the smooth case.
Let X̃ ⊂ RN × RN ′

and pX̃ : X̃ → M be a Nash manifold and the restriction

to X̃ of the projection p : RN × RN ′

→ RN defined in the proof of fact 1 for
k = n− 1. For a small positive semialgebraic C0 function ǫ on X̃, let Q̃ denote the
ǫ-neighborhood of X̃ in M × RN ′

, i.e.,

Q̃ =
⋃

z∈X̃

{z′ ∈M × RN ′

: dis(z, z′) < ǫ(z)},

and let q̃ : Q̃ → X̃ denote the orthogonal projection, which is a Nash submersion.
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Set
M̃ = {(x, y) ∈ Q̃ ⊂M × RN ′

: q̃(x, y) = (x′, y) for some x′ ∈ X}.

Then M̃ is a Nash manifold of dimension n containing X̃ , and pM̃ : M̃ → M
is a (not necessarily proper) Nash immersion, where pA = p|A for a subset A of

M×RN ′

. Set A(0) = A∩M(0)×RN ′

, fA = f◦pA for the same A, and ˜̃X = p−1

M̃
(X).

Then ˜̃X is a normal crossing Nash subset of M̃ , p ˜̃X
: ˜̃X → X is a (not necessarily

proper) local Nash diffeomorphism at each point of ˜̃X , πX = (π′
X , fX) is lifted to

π ˜̃X
= (π′

˜̃X
, f ˜̃X

) : ˜̃X → ˜̃X(0) × Rm, and there exists a Nash function φ̃ on M̃ with

zero set X̃ which is, locally at each point of X̃, the square of a regular function and
such that

(1) φ̃ = φ̃ ◦ π′
˜̃
X

on ˜̃X

(we construct φ̃ first on M̃(0), and extend it to ˜̃X so that (1) is satisfied and then

to M̃ as usual). Moreover π′
˜̃
X

= id on ˜̃X(0).

Note that Xm−1 = ∅ since fXk−Xk−1
is a submersion onto Rm if Xk 6= ∅.

Let m ≤ k < n. Then by the definition of X̃, the map pX̃∩p−1(Xk−Xk−1)
:

X̃ ∩p−1(Xk−Xk−1) → Xk−Xk−1 is a Nash (n−k)-fold covering. Hence consider-
ing a semialgebraic triangulation of Xk(0) compatible with Xk−1—a semialgebraic
homeomorphism from the underlying polyhedron of some simplicial complex to
Xk(0) such that Xk−1(0) is the image of the union of some simplexes—( Lojasiewicz)
and small open semialgebraic neighborhoods of π′−1

X (open simplexes) in M −Xk−1,
we obtain finite open semialgebraic coverings {Qk,i : i} of Xk−Xk−1 in M −Xk−1

and {Q̃k,i,j : i, 1 ≤ j ≤ n − k} of X̃ ∩ p−1(Xk − Xk−1) in M̃ − X̃ ∩ p−1(Xk−1)

such that π′−1
X (X(0)∩Qk,i) = X ∩Qk,i, (Qk,i, Xk∩Qk,i) are Nash diffeomorphic to

(Rn, {0}×Rk), pQ̃k,i,j
: (Q̃k,i,j, X̃ ∩p−1(Xk)∩ Q̃k,i,j) → (Qk,i, Xk∩Qk,i) are Nash

diffeomorphisms, and Q̃k,i,j ∩ Q̃k,i,j′ = ∅ if j 6= j′. Define Nash functions φk,i,j on

Qk,i to be φ̃ ◦ p−1

Q̃k,i,j

. Then φk,i,j are the squares of Nash functions, say φ
1/2
k,i,j , and

we can choose Qk,i so small that the maps (f, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k) : Qk,i → Rm+n−k

are submersions, that if Qk,i ∩Qk,i′ 6= ∅ then

(2) {φk,i,j |Qk,i∩Qk,i′
: j = 1, ..., n− k} = {φk,i′,j |Qk,i∩Qk,i′

: j = 1, ..., n− k},

and that if Qk,i ∩Qk′,i′ 6= ∅ for k < k′ then

(3) {φk,i,j |Qk,i∩Qk′,i′
: j = 1, ..., n− k} ⊃ {φk′,i′,j|Qk,i∩Qk′,i′

: j = 1, ..., n− k′}.

Let Φk,k′,i,i′ denote the k′ − k Nash functions on Qk,i ∩ Qk′,i′ in the complement
in (3). Note that (1) implies

(1)′ φ
1/2
k,i,j ◦ π

′
X = φ

1/2
k,i,j on X ∩Qk,i.

We work from now in the semialgebraic Cl category. ? Shrink again Qk,i (fixing
alwaysXk∩Qk,i), and set Qk = ∪iQk,i. Then there are semialgebraic Cl submersive
retractions qk : Qk → Xk −Xk−1 such that

f ◦ qk = f on Qk,(4)

qk ◦ π
′
X = π′

X ◦ qk on X ∩Qk,(5)
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and the maps (qk|Qk,i
, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k) : Qk,i → (Xk −Xk−1)×Rn−k are semial-

gebraic Cl imbeddings (we construct qk as follows. For a while, assume that qk on
Qk(0) are already given so that the conditions (14) on Qk(0) ∩Qk′(0) and (15) on
Qk,i(0)∩Qk′,i′(0) below are satisfied. Extend each qk to qk : X ∩Qk → Xk−Xk−1

so that (4) and (5) are satisfied as follows, which is uniquely determined, though we
need to choose Qk so that π′

X(X∩Qk) ⊂ Qk(0). For (x, y) ∈ Q2
k with small dis(x, y),

let r(x, y) denote the orthogonal projection image of x to Xk(f(y)) − Xk−1. Let
q′k : Qk → Xk−Xk−1 be any semialgebraic Cl extension of qk, shrink Qk and define
qk(x) for x ∈ Qk to be r(q′k(x), x). Then qk is a semialgebraic Cl submersive retrac-
tion of Qk to Xk −Xk−1 and satisfies (4) and (5)). Hence for each x ∈ Xk−Xk−1,

(φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k) is a local coordinate system of q−1

k (x) ∩ Qk,i at x. Therefore,

by (3), for each Qk,i and Qk′,i′ with k < k′ there exists an unique semialgebraic Cl

submersion qk,k′,i,i′ : Qk,i ∩Qk′,i′ → Xk′ ∩Qk,i such that

qk ◦ qk,k′,i,i′ = qk on Qk,i ∩Qk′,i′ and(6)

φ
1/2
k,i,j ◦ qk,k′,i,i′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for φk,i,j|Qk,i∩Qk′,i′

∈ Φk,k′,i,i′(7)

(to be precise, the domain of definition of qk,k′,i,i′ is q−1
k′ (Qk,i) ∩ Qk,i ∩ Qk′,i′ .

However, we omit q−1
k′ (Qk,i) for simplicity of notation. In the following arguments

also we simplify the domains of definition of many maps). Then we have the
following equalities (4)′, (5)′ and (8).

f ◦ qk,k′,i,i′
(4)
= f ◦ qk ◦ qk,k′,i,i′

(6)
= f ◦ qk

(4)
= f on Qk,i ∩Qk′,i′ .(4)′

qk ◦ qk,k′,i,i′ ◦ π
′
X

(6)
= qk ◦ π

′
X

(5)
= π′

X ◦ qk
(6)
= π′

X ◦ qk ◦ qk,k′i,i′
(5)
= qk ◦ π

′
X ◦ qk,k′,i,i′

on X ∩Qk,i ∩Qk′,i′ ,

φ
1/2
k,i,j◦qk,k′,i,i′ ◦π

′
X

(7)
= φ

1/2
k,i,j ◦π

′
X

(1)′

= φ
1/2
k,i,j

(7)
= φ

1/2
k,i,j ◦qk,k′i,i′

(1)′

= φ
1/2
k,i,j ◦π

′
X ◦ qk,k′,i,i′

on X ∩Qk,i ∩Qk′,i′ for φk,i,j|Qk,i∩Qk′,i′
∈ Φk,k′i,i′ ,

hence by imbeddingness of (qk|Qk,i
, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)

(5)′ qk,k′,i,i′ ◦ π
′
X = π′

X ◦ qk,k′,i,i′ on X ∩Qk,i ∩Qk′,i′ .

By assumption, (14) on Qk(0) ∩ Qk′(0) and (15) on Qk,i(0) ∩ Qk′,i′(0) hold, then
by (4) and (5), (14) on X ∩Qk ∩Qk′ and (15) on X ∩Qk,i ∩Qk′,i′ do, and hence
by the same imbeddingness

(8) qk,k′,i,i′ = qk′ on X ∩Qk,i ∩Qk′,i′ .

Compare qk,k′,i1,i′1 and qk,k′,i2,i′2 . By (2) and (3)

qk,k′,i1,i′1 = qk,k′,i1,i′2 on Qk,i1 ∩Qk′,i′1 ∩Qk′,i′2 ,

qk,k′,i1,i′2 = qk,k′,i2,i′2 on Qk,i1 ∩Qk,i2 ∩Qk′,i′2 ,

qk,k′,i1,i′1 = qk,k′,i2,i′2 on Qk,i1 ∩Qk,i2 ∩Qk′,i′1 ∩Qk′,i′2 .hence
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Therefore, we have semialgebraic Cl submersions qk,k′ : Qk ∩Qk′ → Xk′ −Xk′−1,
k < k′, such that

f ◦ qk,k′ = f on Qk ∩Qk′ ,(4)′

qk ◦ qk,k′ = qk on Qk ∩Qk′ ,(6)

φ
1/2
k,i,j ◦ qk,k′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ ,(7)

qk,k′ = qk′ on X ∩Qk ∩Qk′ .(8)

We want to shrink the Qk’s and modify the qk’s keeping (4) and (5) so that

(9) qk,k′ = qk′ on Qk ∩Qk′ for k < k′.

We proceed by double induction. Let m ≤ k1 < k2 < n ∈ N, and assume that (9)
holds for k < k′ < k2 and for k1 < k < k′ = k2. Fix qk, k < k2. Then we need
to modify qk2 so that (9) holds for k = k1 and k′ = k2. Let ξ be a semialgebraic
Cl function on M − Xk1−1 such that 0 ≤ ξ ≤ 1, ξ = 1 outside of a small open
semialgebraic neighborhood Q′

k1
(⊂ Qk1) of Xk1−Xk1−1 in M−Xk1−1 and ξ = 0 on

a smaller one Q′′
k1

. Shrink Qk2 and define a semialgebraic Cl submersive retraction
q′k2 : Qk2 → Xk2 − Xk2−1 by q′k2 = qk2 on Qk2 − Q′

k1
and for x ∈ Qk2 ∩ Q′

k1
, let

q′k2(x) be the orthogonal projection image of ξ(x)qk2(x) + (1− ξ(x))qk1,k2(x) ∈ RN

to the Nash manifold Xk2(f(x))−Xk2−1. Then q′k2 satisfies (4) and (9) for k = k1,

k′ = k2 and for Qk replaced by Q′′
k1

, the map (q′k2 |Qk2,i
, φ

1/2
k2,i,1

, ..., φ
1/2
k2,i,n−k2

) :

Qk2,i → (Xk2−Xk2−1
) × Rn−k2 continues to be a semialgebraic Cl imbedding if we

shrink Qk2,i (of course, fixing Qk2,i ∩Xk2), q′k2 = qk2 on X ∩Qk2 by (8), hence (5)
for q′k2 holds, and q′k2 = qk2 on Qk2 ∩ ∪k1<k<k2Qk for the following reason. Let
k1 < k3 < k2. It suffices to see that qk1,k2 = qk2 on Qk1 ∩ Qk2 ∩ Qk3 , which is
equivalent, by uniqueness of qk1,k2 , to

qk1 ◦ qk2 = qk1 on Qk1 ∩Qk2 ∩Qk3 ,(10)

φ
1/2
k1,i1,j

◦ qk2 = φ
1/2
k1,i1,j

on Qk1,i1 ∩Qk2,i2 ∩Qk3(11)

for φk1,i1,j |Qk1,i1
∩Qk2,i2

∈ Φk1,k2,i1,i2 .

By (6) for k = k1 and k′ = k3 and for k = k3 and k′ = k2

qk1 ◦ qk1,k3 = qk1 on Qk1 ∩Qk3 ,

qk3 ◦ qk3,k2 = qk3 on Qk2 ∩Qk3 .

By (9) for k = k1 and k′ = k3 and for k = k3 and k′ = k2

qk1,k3 = qk3 on Qk1 ∩Qk3 ,

qk3,k2 = qk2 on Qk2 ∩Qk3 .

Hence

qk1 ◦ qk3 = qk1 on Qk1 ∩Qk3 ,(12)

qk3 ◦ qk2 = qk3 on Qk2 ∩Qk3 .(13)
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Therefore,

(10) qk1 ◦ qk2
(12)
= qk1 ◦ qk3 ◦ qk2

(13)
= qk1 ◦ qk3

(12)
= qk1 on Qk1 ∩Qk2 ∩Qk3 .

We can prove (11) in the same way because if Qk1,i1 ∩ Qk2,i2 ∩ Qk3,i3 6= ∅ then
Φk1,k2,i1,i2 |Qk1,i1

∩Qk2,i2
∩Qk3,i3

is the disjoint union of Φk1,k3,i1,i3 |Qk1,i1
∩Qk2,i2

∩Qk3,i3

and Φk3,k2,i3,i2 |Qk1,i1
∩Qk2,i2

∩Qk3,i3
. Thus the induction process works, and we as-

sume that (9) is satisfied. Consequently, the following “controlledness” conditions
are satisfied by (6), (7) and (9) :

qk ◦ qk′ = qk on Qk ∩Qk′ for k < k′,(14)

φ
1/2
k,i,j ◦ qk′ = φ

1/2
k,i,j on Qk,i ∩Qk′,i′ for k < k′ and φk,i,j |Qk,i∩Qk′,i′

∈ Φk,k′,i,i′ .

(15)

It remains to construct qk on Qk(0). First define r as above, i.e., for (x, y) ∈
Q2
k(0) with small dis(x, y), let r(x, y) denote the orthogonal projection image of

x to Xk(0) − Xk−1. Set qk(x) = r(x, x) for x ∈ Qk(0). Then qk : Qk(0) →
Xk(0) −Xk−1 are Nash submersive retractions. We need to modify them so that
(14) on Qk(0) ∩Qk′(0) and (15) on Qk,i(0) ∩Qk′,i′(0) are satisfied. This is clearly
possible by the above arguments.

Now we define W and w as in fact 3. Set W = ∪n−1
k=mQk and consider each Qk,i.

Shrink Qk,i so that

(π′
X ◦ qk, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)(Qk,i) ⊂ (qk, φ

1/2
k,i,1, ..., φ

1/2
k,i,n−k)(Qk,i(0)).

Then for each x ∈ Qk,i there exists an unique y ∈ Qk,i(0) such that

(qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(y) = (π′

X ◦ qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(x).

The correspondence w′
k,i from x to y is a semialgebraic Cl map such that wk,i =

(w′
k,i, fQk,i

) : Qk,i → Qk,i(0) × Rm is a semialgebraic Cl imbedding by (4), w′
k,i =

π′
X on X ∩Qk,i because

(qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)◦π

′
X(x)

(1)′,(5)
= (π′

X ◦ qk, φ
1/2
k,i,1, ..., φ

1/2
k,i,n−k)(x) for x ∈X∩Qk,i,

and w′
k,i|Qk,i(0) = id by (4) and by the equality π′

X = id on X(0). Hence it

suffices to see that w′
k,i = w′

k′,i′ on Qk,i ∩Qk′,i,. This is clear by (2) if k = k′ and

Qk,i∩Qk′,i′ 6= ∅. Assume that k < k′ and Qk,i∩Qk′,i′ 6= ∅. By (3) we suppose that

φ
1/2
k′,i′,j = φ

1/2
k,i,j+k′−k on Qk,i ∩Qk′,i′ , j = 1, ..., n− k′.

Then by the definition of w′
k,i and w′

k′,i′ we only need to show that

qk′ ◦ w
′
k,i = π′

X ◦ qk′ on Qk,i ∩Qk′,i′ ,

which is equivalent to :

qk ◦ qk′ ◦ w
′
k,i = qk ◦ π

′
X ◦ qk′ on Qk,i ∩Qk′,i′ and

φ
1/2
k,i,j ◦ qk′ ◦ w

′
k,i = φ

1/2
k,i,j ◦ π

′
X ◦ qk′ on Qk,i ∩Qk′,i′ , j = 1, ..., k′ − k.
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We have

qk ◦ qk′ ◦ w
′
k,i

(14)
= qk ◦ w

′
k,i = π′

X ◦ qk
(14)
= π′

X ◦ qk ◦ qk′
(5)
= qk ◦ π

′
X ◦ qk′ ,

φ
1/2
k,i,j ◦ qk′ ◦ w

′
k,i

(15)
= φ

1/2
k,i,j ◦ w

′
k,i = φ

1/2
k,i,j

(15)
= φ

1/2
k,i,j ◦ qk′

(1)′

= φ
1/2
k,i,j ◦ π

′
X ◦ qk′ ,

j = 1, ..., k′ − k.

Thus we complete the proof of fact 3 and hence of the lemma. �

Lemma 3.9. Let M be a non-compact Nash manifold contained and closed in RN

and X a normal crossing Nash subset of M . Let B(r) denote the closed ball in
RN with center 0 and radius r ∈ R. Then there exists a Nash diffeomorphism
τ : M →M ∩ IntB(r), for some large r, such that τ(X) = X ∩ IntB(r).

This does not necessarily hold in the analytic case.

Proof of lemma 3.9. Assume that M is of dimension n. Set Xn = M −X . Choose
r so large that the p|Xi−B(r/2) are submersions onto (r/2, ∞), where {Xi : i =
0, ..., n − 1} denotes the canonical stratification of X and p(x) = |x| for x ∈ M .
Then by lemma 3.8 there exists a Nash diffeomorphism ρ : M − B(r/2) → (B ∩
p−1(r))× (r/2, ∞) of the form ρ = (ρ′, p) such that ρ′(X −B(r/2)) = X ∩ p−1(r).
Let α : (−∞, r) → R be a semialgebraic Cl diffeomorphism such that α = id on
(−∞, r/2), where l is a sufficiently large integer. Set

τ0(x) =

{
x for x ∈M ∩B(r/2)

ρ−1(ρ′(x), α−1 ◦ p(x)) for x ∈M −B(r/2).

Then τ0 is a semialgebraic Cl diffeomorphism from M to M ∩ IntB(r) such that
τ0(X) = X ∩ IntB(r). We only need to approximate τ0 by a Nash diffeomorphism
keeping the last property. Let π : M → M ∩ IntB(r) be a Nash approximation of
τ0 in the semialgebraic Cl topology. Replace τ0 with π ◦ τ−1

0 . Then what we prove
is :

Let M̃ be a compact Nash manifold with boundary in RN , X̃ a normal crossing
Nash subset of M̃ with ∂M̃ 6⊂ X̃ , τ̃0 a semialgebraic Cl diffeomorphism of Int M̃
arbitrarily close to id in the semialgebraic Cl topology such that τ̃0(X̃ ∩ Int M̃) is

a normal crossing Nash subset of Int M̃ . Then we can approximate τ̃0 by a Nash
diffeomorphism τ̃ of Int M̃ in the semialgebraic C1 topology so that τ̃(X̃∩Int M̃) =

τ̃0(X̃ ∩ Int M̃).

We proceed as in the proof of step 1, theorem 3.1,(1). Let {X̃j : j = 0, ..., n− 1}

denote the canonical stratification of X̃ and set X̃n = M̃ −X . By induction, for
some i ∈ N, assume that τ̃0|∪i−1

j=0X̃j∩Int M̃ is of class Nash. Let l′ ∈ N. Then

it suffices to choose l large enough and to approximate τ̃0 by a semialgebraic Cl

diffeomorphism τ̃ of Int M̃ in the semialgebraic Cl
′

topology so that τ̃(X̃∩Int M̃) =

τ̃0(X̃∩Int M̃) and τ̃ |∪i
j=0X̃j∩Int M̃ is of class Nash. Let I denote the sheaf of N -ideals

on Int M̃ defined by ∪i−1
j=0X̃j ∩ Int M̃ . By theorem 2.7, I is generated by a finite

number of global cross-sections ξ1, ..., ξk of I. Then τ̃0|∪i−1
j=0X̃j∩Int M̃ is an element of

H0(Int M̃,N /I)N by the same reason as in the proof in step 1. Hence by theorem

2.8 we have a Nash map h : Int M̃ → RN such that h = τ̃0 on ∪i−1
j=0X̃j ∩ Int M̃ .
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Here we can choose h so as to be sufficiently close to τ̃0 in the semialgebraic Cl
′

topology for the following reason. To this aim, it suffices to see that τ̃0 − h is of

the form
∑k
j=1 ξjβj for some semialgebraic Cl

′

maps βj : Int M̃ → RN because

h +
∑k
j=1 ξj·(Nash approximation of βj in the semialgebraic Cl

′

topology) fulfills
the requirements. Hence we will prove the following statement.

Let β be a semialgebraic Cl function on Int M̃ vanishing on ∪i−1
j=0X̃j ∩ Int M̃ .

Then β is of the form
∑k

j=1 βjξj for some semialgebraic Cl
′

functions βj on Int M̃ .
By the second induction, assume that the statement holds for manifolds of dimen-

sion strictly less than n. The problem is reduced to the Euclidean case as follows.
There exists a finite open semialgebraic covering {Os} of Int M̃ such that each

(Os, Os ∩ X̃) is Nash diffeomorphic to (Rn, {(x1, ..., xn) ∈ Rn : x1 · · ·xns
= 0})

for some ns ∈ N. Let {ηs} and {η′s} be a partition of unity of class semial-

gebraic Cl subordinate to {Os}, and semialgebraic Cl functions on Int M̃ , re-
spectively, such that η′s = 1 on supp ηs and supp η′s ⊂ Os. If each (βηs)|Os

is described to be of the form
∑
j βj,sξj |Os

for some semialgebraic Cl
′

functions

βj,s on Os then the naturally defined
∑
s βj,sη

′
s, j = 1, ..., k, are semialgebraic

Cl
′

functions on Int M̃ and β =
∑
j(

∑
s βj,sη

′
s)ξj. Hence we can assume that

(Int M̃, Int M̃ ∩ X) = (Rn, {x1 · · ·xn′ = 0}) for some n′ ∈ N, and then n′ > 0.
Apply the induction hypothesis to β|{x1=0}. Then there exist semialgebraic Cl1

functions β′
j on Rn−1 such that

β(0, x2, ..., xn) =
k∑

j=1

β′
j(x2, ..., xn)ξj(0, x2, ..., xn)

because I|{x1=0} is the sheaf of N -ideals on {x1 = 0} defined by ∪i−1
j=0X̃j ∩{x1 = 0}

(here l1 > 0 is arbitrarily given and l depends on l1). Regard naturally β′
j as

semialgebraic Cl1 functions on Rn and replace β with β −
∑
β′
jξj . Then we can

suppose that β = 0 on {x1 = 0} from the beginning. It is easy to see that β/x1 is
a well-defined semialgebraic Cl1−1 function. Consider β/x1 and {x2 · · ·xn′ = 0} in
place of β and {x1 · · ·xn′ = 0}, and repeat the same arguments for {x2 = 0} and

so on. Then we finally arrive at the case of X̃ = ∅. Thus the statement is proved,
and h is chosen to be close to τ̃0 in the semialgebraic Cl

′

topology.
Set Y = τ̃0(X̃ ∩ Int M̃) and Yj = τ̃0(X̃j ∩ Int M̃). Then Y is a normal crossing

Nash subset of Int M̃ , {Yj : j = 0, ..., n − 1} is its canonical stratification, and

Y is a normal crossing semialgebraic Cl subset of M̃ in the sense that M̃ has
a semialgebraic Cl local coordinate system (x1, ..., xn) at each point of ∂M̃ with
Y = {x1 ≥ 0, x2 · · ·xn′ = 0} for some n′ > 0 ∈ N by the definition of semialgebraic
Cl topology. Hence there exists a tubular neighborhood Ui of Yi in RN such that
for some ǫ > 0 ∈ R

Ui = ∪y∈Yi
{x ∈ RN : |x− y| < ǫdis(y,∪i−1

j=0Yj), (x− y) ⊥ TyYi}.

Let qi : Ui → Yi denote the orthogonal projection. Choose h so close to τ̃0 that
h(X̃i ∩ Int M̃) ⊂ Ui. Then qi ◦ h|∪i

j=0X̃j∩Int M̃ is a Nash map to ∪ij=0Yj close to

τ̃0|∪i
j=0X̃j∩Int M̃ in the semialgebraic Cl

′

topology. Note that the map is a diffeomor-

phism by Lemma II.1.7, [S2]. Hence it remains only to extend it to a semialgebraic
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Cl approximation τ̃ : Int M̃ → Int M̃ of τ̃0 in the semialgebraic Cl
′

topology so that
τ̃(X̃ ∩ Int M̃) = Y . However, we have already proved it without the last condition.
Moreover, the proof shows also that the condition is furnished inductively. Thus
we complete the construction of τ . �

Lemma 3.10. Let f and g be Nash functions on a Nash manifold M which have

the same sign at each point of M , only normal crossing singularities at X
def
= f−1(0)

and the same multiplicity at each point of X. Let l ∈ N. Then there exists a Nash
diffeomorphism π of M such that π(X) = X and f − g ◦ π is l-flat at X.

If f is fixed and g is chosen such that the Nash function on M , defined to be

g/f on M −X, is close to 1 in the Nash (
def
= semialgebraic C∞) topology, then π

is chosen to be close to id in the Nash topology.
?The analytic case also holds.

When M, f and g are of class Cω, assume that the multiplicities of f and g are
bounded. Then the same statement holds as above, whose proof is easier than the
above.

Proof of lemma 3.10. Let M ⊂ RN , n = dimM and l be sufficiently large. For each
k (< n) ∈ N, let Xk denote the union of the strata of the canonical stratification
of X of dimension less than or equal to k. By induction, assume that f − g is l-flat
at Xk−1 for some k. Then we need only to find a Nash diffeomorphism π of M
such that π − id is l-flat at Xk−1, π(X) = X and f − g ◦ π is l-flat at Xk (to be
precise, we will construct π so that π − id and f − g ◦ π are l(4)-flat at Xk−1 and
Xk, respectively, for some 0 ≪ l(4) ≪ ·· ≪ l′ ≪ l).

We proceed as in the proof of lemma 3.8. Let (M̃, X̃) and (M̃k, X̃k) be pairs

of Nash manifolds and Nash submanifolds, p : M̃ → M and pk : M̃k → M Nash
immersions and qk : M̃k → X̃k a Nash submersive retraction such that dim M̃ =
dim M̃k = n, p(X̃) = X, pk(X̃k) = Xk, p|X̃−p−1(Xn−2)

and pk|X̃k−p
−1
k

(Xk−1)
are

injective, and pk(q−1
k (X̃k ∩ p−1

k (Xk−1))) ⊂ X . Shrink M̃k if necessary. Then we

have an open semialgebraic neighborhood U of X̃ ∩ p−1(Xk) in M̃ and a Nash

(n− k)-fold covering map r : U → M̃k such that pk ◦ r = p on U . Let φ̃ be a Nash

function on M̃ with zero set X̃ which is, locally at each point of X̃, the square
of a regular function. Then for each x ∈ M̃k, φ̃(r−1(x)) is a family of (n − k)-

numbers possibly with multiplicity, and there exist Nash functions φ̃k,1, ..., φ̃k,n−k
on an open semialgebraic neighborhood of each point of M̃k such that φ̃(r−1(x)) =

{φ̃k,1(x), ..., φ̃k,n−k(x)} for x in the neighborhood. For simplicity of notation we

assume that φ̃k,1(x), ..., φ̃k,n−k(x) are defined globally, which causes no problem
because the following arguments are done locally and do not depend on the order
of φ̃k,1(x), ..., φ̃k,n−k(x). Moreover, we suppose that each φ̃k,i is the square of a

regular Nash function, say φ̃
1/2
k,i , by the same first reason. Set f̃k = f ◦ pk and

g̃k = g ◦ pk.
We want to construct a Nash diffeomorphism π̃k between semialgebraic neigh-

borhoods of X̃k in M̃k such that π̃k(p−1
k (X)) ⊂ p−1

k (X), π̃k − id is l′′-flat at

q−1
k (X̃k∩p

−1
k (Xk−1)) and f̃k− g̃k ◦ π̃k is l′′-flat at X̃k. Assume that X̃k is connected

without loss of generality. Since f̃k and g̃k have only normal crossing singularities at
p−1
k (X), the same sign at each point of M̃k and the same multiplicity at each point

of p−1
k (X), and since f̃−1

k (0) = g̃−1
k (0) = ∪n−ki=1 (φ̃

1/2
k,i )−1(0) ∪ q−1

k (X̃k ∩ p
−1
k (Xk−1)),
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we have Nash functions F and G on M̃k and α = (α1, ..., αn−k) ∈ (N − {0})n−k

such that f̃k = Fφ̃
1/2α
k , g̃k = Gφ̃

1/2α
k , FG ≥ 0 on M̃k and FG > 0 on M̃k −

q−1
k (X̃k ∩ p−1

k (Xk−1)), where φ̃
1/2α
k =

∏n−k
i=1 φ̃

1/2αi

k,i . Assume that F ≥ 0 and
hence G ≥ 0 because the other cases are proved in the same way as follows. Note
that F and G have zero set q−1

k (X̃k ∩ p
−1
k (Xk−1)), only normal crossing singular-

ities there and the same multiplicity at each point. Shrink M̃k so that the map

(qk, φ̃
1/2
k,1 , ..., φ̃

1/2
k,n−k) : M̃k → X̃k × Rn−k is a Nash imbedding, let V denote its

image, identify M̃k and X̃k with V and X̃k×{0} through the map, set p̃k = pk|X̃k
,

regard pk as an immersion of V into M and f̃k and g̃k as functions on V , and let
(z, y) = (z, y1, ..., yn−k) ∈ V ⊂ X̃k × Rn−k. Then

f̃k(z, y) = F (z, y)yα and g̃k(z, y) = G(z, y)yα.

Set

F ′ =
∑

β∈N
n−k

l

∂|β|F

∂yβ
(z, 0)yβ/β!, G′ =

∑

β∈N
n−k

l

∂|β|G

∂yβ
(z, 0)yβ/β!,

f̃ ′
k = F ′yα and g̃′k = G′yα,

where Nn−k
l = {β ∈ Nn−k : |β| ≤ l} and β! =

∏n−k
i=1 βi!. Then f̃ ′

k and g̃′k are Nash

functions on V , f̃k − f̃ ′
k and g̃k − g̃′k are l-flat at X̃k ×{0}, and F ′ and G′ have the

same properties as F and G. Hence for the construction of π̃k, we can replace f̃k
and g̃k with f̃ ′

k and g̃′k. An advantage of f̃ ′
k and g̃′k is the fact (∗) F ′ −G′ is l′-flat

at V ∩ p̃−1
k (Xk−1)×Rn−k, though F −G is l′-flat only at p̃−1

k (Xk−1)× {0}. Write

f̃ ′
k =

n−k∏

i=1

(F ′1/|α|yi)
αi and g̃′k =

n−k∏

i=1

(G′1/|α|yi)
αi .

Then there exists an unique Nash diffeomorphism π̃k between semialgebraic neigh-
borhoods of X̃k × {0} in V of the form π̃k(z, y) = (z, π̃′

k(z, y)y), for some positive

Nash function π̃′
k on the neighborhood of source, such that f̃ ′

k = g̃′k ◦ π̃k on the
neighborhood because we can reduce the problem to the case where g̃′k = zβyα for

some β ∈ Nk and some local Nash coordinate system z = (z1, ..., zk) of X̃k such

that p̃−1
k (Xk−1) = {zβ = 0} (by considering two pairs (f̃ ′

k, z
βyα) and (g̃′k, z

βyα))

and then π̃′
k(z, y) = (F ′/zβ)1/|α| is the unique solution. Such a π̃k fulfills the re-

quirements. Indeed, π̃k(p−1
k (X)) ⊂ p−1

k (X) by the form of π̃k because p−1
k (X) in

V is of the form X̃k × {y1 · · · yn−k = 0} ∪ p̃−1
k (Xk−1) × Rn−k; π̃k − id is l′′-flat at

V ∩ p̃−1
k (Xk−1) × Rn−k because of (∗); f̃k − g̃k ◦ π̃k is l′′-flat at X̃k × {0} because

f̃k − g̃k ◦ π̃k = (f̃k − f̃ ′
k) + (f̃ ′

k − g̃′k ◦ π̃k) + (g̃′k ◦ π̃k − g̃k ◦ π̃k).

Let W be an open semialgebraic neighborhood of Xk−Xk−1 in M so small that

there exists an open semialgebraic neighborhood of (X̃k − p̃−1
k (Xk−1))×{0} in the

intersection of the domain of definition of π̃k and the range of values to which the
restriction of pk is a diffeomorphism onto W . Then π̃k induces a Nash imbedding
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πk : W →M ⊂ Rn such that πk(X∩W ) ⊂ X , πk = id on Xk−Xk−1 and f−g◦πk
is l′′-flat at Xk −Xk−1. Though πk is not necessarily extensible to a neighborhood
of Xk, there exists a Nash map η : M → RN such that η − id is l′′-flat at Xk−1,
η− πk is l′′-flat at Xk −Xk−1, and hence f − g ◦ η is l′′-flat at Xk for the following
reason. Let I denote the sheaf of N -ideals on M defined by Xk. Then by theorem
2.8, it suffices to find an element η in H0(M,N /Il

′′

)N such that ηx is the image of

πkx under the natural map N n
x → (Nx/Il

′′

x )N for x ∈W and ηx = id for x ∈ Xk−1.
This is clearly possible by the property that π̃k−id is l′′-flat at V ∩p̃−1

k (Xk)×Rn−k.
We modify π̃k to show that η can be a diffeomorphism of M . Assume that

(∗∗) π̃′
k ≤ 1 holds for simplicity of notation, which is possible if we consider the

third function h on M with the same properties as f and g, h/f ≥ 1 on M − X

and h/g ≥ 1 on M −X . Let ψ be a non-negative small Nash function on X̃k with
zero set p̃−1

k (Xk−1) such that

Z
def
= {(z, y) ∈ X̃k ×Rn−k : |y| ≤ ψ(z)} ⊂ domain of π̃k,

π̃′
k(z, sy) > |

∂π̃′
k(z, sy)

∂s
s|(3∗)

for (z, y, s) ∈ X̃k ×Rn−k × R with (z, sy) ∈ Z and |y| = 1

and pk|Z is injective, which exists by the  Lojasiewicz inequality. Let ρ(t) be a

semialgebraic Cl
′′

function on R such that (4∗) 0 ≤ ρ ≤ 1, (5∗) dρ
dt

≤ 0, ρ = 1 on
(−∞, 1/2] and ρ = 0 on [1, ∞). Set

τ̃ ′k =

{
1 for (z, y) ∈ Z ∩ p−1

k (Xk−1)

ρ(|y|/ψ(z))π̃′
k(z, y) + 1 − ρ(|y|/ψ(z)) for (z, y) ∈ Z − p−1

k (Xk−1),

τ̃k(z, y) = (z, τ̃ ′k(z, y)y) for (z, y) ∈ Z.

Then τ̃ ′k and hence τ̃k are of class semialgebraic Cl
(3)

and τ̃k − id is l(3)-flat at

Z∩p−1
k (Xk−1) = p̃−1

k (Xk−1)×{0} since π̃′
k(z, y)−1 is (l′′−1)-flat at Z∩p−1

k (Xk−1).

Clearly τ̃k = id on a semialgebraic neighborhood of ∂Z−p−1
k (Xk−1) in Z. Moreover,

τ̃k is a diffeomorphism of Z as follows. To see it we can assume that n − k = 1
because τ̃k = π̃k on a neighborhood of (X̃k− p̃

−1
k (Xk−1))×{0} in Z and because π̃k

and hence τ̃k carry each segment {z} × {Ry} ∩ Z for (z, y) ∈ (X̃k − p̃−1
k (Xk−1)) ×

Rn−k with |y| = 1 to itself. Then

∂τ̃ ′k(z, y)y

∂y
= τ̃ ′k(z, y) +

∂τ̃ ′k
∂y

(z, y)y,

τ̃ ′k(z, y) = ρ(|y|/ψ(z))π̃′
k(z, y) + 1 − ρ(|y|/ψ(z))

(∗∗),(4∗)

≥ π̃′
k(z, y),

∂τ̃ ′k
∂y

(z, y)y =
dρ

dt
(|y|/ψ(z))(π̃′

k(z, y) − 1)|y|/ψ(z) + ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y

(∗∗),(5∗)

≥

ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y, hence

∂τ̃ ′k(z, y)y

∂y
≥ π̃′

k(z, y) + ρ(|y|/ψ(z))
∂π̃′

k

∂y
(z, y)y

(3∗),(4∗)
> 0 for (z, y) ∈ Z.
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Define a semialgebraic Cl
(3)

diffeomorphism τk of M so that τk ◦ pk = pk ◦ τ̃k
on Z and τk = id on M − pk(Z). Then τk = πk on Z if we shrink Z, hence
τk − η is l(3)-flat at Xk, τk(X) = X and f − g ◦ τk is l(3)-flat at Xk. Let ω be
a non-negative-valued global generator of the square of I—the sheaf of N -ideals

defined by Xk. Then there exists a semialgebraic Cl
(4)

map ξ : M → RN such that

τk − η = ωξ. Approximate ξ by a Nash map ξ′ in the semialgebraic Cl
(4)

topology,
and set π = (η + ωξ′) ◦ o, where o denotes the orthogonal projection to M of its
semialgebraic tubular neighborhood in RN . Then π is a Nash diffeomorphism of
M such that π − id is l(4)-flat at Xk−1 and f − g ◦ π is l(4)-flat at Xk. We can
modify π so that π(X) = X in the same way as in the proof of step 1, theorem
3.1,(1) and lemma 3.9 because π is an approximation of τk and τk(X) = X . Thus
we complete the proof of the former half of lemma 3.10.

The latter half is clear by the above proof (though (∗∗) does not necessarily hold,
π′
k is close to 1 in the Nash topology, which is sufficient to proceed). �

The following lemma is also a globalization of Proposition 2, Chapter II, [T] and
shows sufficient conditions for two functions to be right equivalent.

Proposition 3.11. (i) Let f be a Cω function on a Cω manifold M . Let vi, i =
1, ..., k, be Cω vector fields on M , and I denote the ideal of C∞(M) or Cω(M)
generated by vif, i = 1, ..., k. Let φ be a small C∞ or Cω function on M contained
in I2 in the strong Whitney C∞ topology. Then f and f + φ are C∞ or Cω right
equivalent, respectively, and the diffeomorphism of equivalence can be chosen to be
close to id in the same topology.

(ii) If f, M and vi are of class Nash or C∞ or Cω, and φ is of the form∑k
i,j=1 φi,jvif · vjf for some small Nash or C∞ or Cω functions φi,j in the Nash

or (strong) Whitney C∞ topology, then f and f + φ are Nash or C∞ or Cω right
equivalent, respectively, by a Nash or C∞ or Cω diffeomorphism close to id in the
same topology.

(iii) Assume that M is a Nash manifold and f is a Nash function on M with only
normal crossing singularities. Set X = f−1(f(Sing f)). Let φ be a Nash function
on M r-flat at X for some large r ∈ N. Then there exists a Nash diffeomorphism
π : V1 → V2 between closed semialgebraic neighborhoods of X in M close to id in
the semialgebraic Cr

′

topology, for 0 < r′ (≪ r) ∈ N, such that f ◦ π = f + φ on
V1, π− id is r′-flat at X, and π is extensible to a semialgebraic Cr diffeomorphism
of M .

Proof of proposition 3.11. Consider the analytic case. We want to reduce (i) to (ii).
For a while we proceed in the strong Whitney C∞ topology. In the same way as the
remarks in the proof of step 1, theorem 3.1,(1) we can prove that for “Cω” functions

ξ1, ..., ξl on M , the map Ξ∞ : C∞(M)l ∋ (h1, ..., hl) →
∑l

i=1 ξihi ∈
∑l
i=1 ξiC

∞(M)

is open. Moreover, the map Ξω :Cω(M)l∋(h1, ..., hl) →
∑l
i=1 ξihi∈

∑l
i=1 ξiC

ω(M)
is open as follows.

Let (h1, ..., hl) ∈ Cω(M)l such that
∑l

i=1 ξihi is small. Then by openness of

Ξ∞ there exists small (h′1, ..., h
′
l) ∈ C∞(M)l such that

∑l
i=1 ξih

′
i =

∑l
i=1 ξihi and

hence (h1 − h′1, ..., hl − h′l) ∈ Ker Ξ∞. Therefore, it suffices to see that Ker Ξω is
dense in Ker Ξ∞. Let H = (h1, ..., hl) ∈ Ker Ξ∞. We want to approximate H by
an element of Ker Ξω.

Let J denote the kernel of the homomorphism : Ol ⊃ Ol
a ∋ (φ1, ..., φl) →
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∑l
i=1 ξiaφi ∈ Oa ⊂ O, a ∈ M , which is a coherent sheaf of O-submodules

of Ol by theorem 2.5. Let MC and JC be Stein and coherent complexifica-
tions of M and J which are complex conjugation preserving. Let {Ui} be a lo-
cally finite open covering of MC such that each U i is compact, and let Hi,j =
(h1,i,j, ..., hl,i,j), j = 1, ..., ni, i = 1, 2, ..., be global cross-sections of J such that
Hi,j |M are real valued and for each i, Hi,1, ..., Hi,ni

generate JC on Ui (theo-
rem 2.1). Then Hi,1|Ui∩M , ..., Hi,ni

|Ui∩M generate Ker Ξ∞|Ui∩M for the follow-
ing reason. By Theorem VI,1.1′, [Ml] it is equivalent to prove that Ker Ξa =
Fa Ker Ξωa , a ∈ Ui, where Fa is the completion of Oa in the (the maximal ideal of
Oa)-adic topology and the homomorphisms Ξωa : Ol

a → Oa and Ξa : F l
a → Fa are

naturally defined. However, this condition is the same as the definition of flatness
of Fa over Oa, and flatness is well-known (see [Ml]). Thus Hi,1|Ui∩M , ..., Hi,ni

|Ui∩M

generate Ker Ξ∞|Ui∩M . Let {ρi} be a partition of unity of class C∞ subordinate
to {Ui ∩M}. Then ρiH ∈ Ker Ξ∞|Ui∩M and we have C∞ functions χi,j on M, j =
1, ..., ni, i = 1, 2, ..., such that suppχi,j ⊂ Ui ∩M and ρiH =

∑ni

j=1 χi,jHi,j |M .

As in [W] we can approximate χi,j by analytic functions χ′
i,j so that each χ′

i,j can

be complexified to a complex analytic function χ′C
i,j on MC and

∑
i,j |χ

′C
i,jHi,j| is

locally uniformly bounded. Then
∑
i,j χ

′C
i,jHi,j is a complex analytic map from MC

to Cl, and its restriction to M is an approximation of H and an element of Ker Ξω.

Thus Ξω is open (we do not know whether this holds in the Nash case). Hence for

φ in (i) there exist small φi,j ∈ Cω(M), i, j = 1, ..., k, such that φ =
∑k
i,j=1 φi,jvif ·

vjf . Consequently, (i) is reduced to (ii). From now on, we work in the Whitney Cr

topology for any r > 0 ∈ N, though we can do in the strong Whitney C∞ topology.
We can assume that M is open in its ambient Euclidean space for the following
reason.

Let p : M̃ → M denote the orthogonal projection of a tubular neighborhood
of M in its ambient Euclidean space. Assume that proposition 3.11,(ii) (in the

analytic case) holds for M̃ . The map Cω(M̃) ∋ Ψ → Ψ|M ∈ Cω(M) is obviously

continuous, surjective by corollary 2.4 and open as follows. Let ξ ∈ C∞(M̃) with

ξ = 1 on M and ξ = 0 outside of a small neighborhood of M in M̃ . Then the
map ξCω(M̃) ∋ ξΨ → ξΨ|M ∈ Cω(M) is open because for ψ ∈ Cω(M) and

for Ψ0 ∈ C∞(M̃), we have ψ ◦ p ∈ Cω(M̃) and (ξ · ψ ◦ p)|M = ψ and the map

Cω(M) ∋ ψ → ξ · ψ ◦ p + ξΨ0 − ξ · Ψ0|M ◦ p ∈ ξCω(M̃) is continuous and carries

Ψ0|M to ξΨ0. Hence for small ψ ∈ Cω(M) there exists small ξΨ ∈ ξCω(M̃) such

that Ψ|M = ψ. Approximate ξ by an analytic function ξ′ on M̃ so that ξ′ = 1

on M . Then ξ′Ψ is analytic on M̃ , close to ξΨ and hence small since the map
C∞(M̃)2 ∋ (α, β) → αβ ∈ C∞(M̃) is continuous, and ξ′Ψ|M = ψ. Consequently,
the above restriction map Ψ → Ψ|M is open by linearity. Let ṽi, i = 1, ..., k, be

Cω vector field extensions of vi to M̃ , and let φ̃i,j be Cω extensions of φi,j to M̃

so small that f ◦ p and f ◦ p+
∑k
i,j φ̃i,j ṽi(f ◦ p) · ṽj(f ◦ p) satisfy the condition in

proposition 3.11,(ii) and hence are Cω right equivalent by a Cω diffeomorphism π̃
close to id, i.e.,

f ◦ p ◦ π̃ = f ◦ p+
k∑

i,j=1

φ̃i,j ṽi(f ◦ p) · ṽj(f ◦ p) on M̃.
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Set π = p ◦ π̃|M . Then π is a Cω diffeomorphism of M close to id, and

f ◦ π = f +

k∑

i,j=1

φi,jvif · vjf.

Thus proposition 3.11,(ii) is proved for M . Hence we assume that M is open in
Rn.

Next we can suppose that k = n and vi = ∂
∂xj

, i = 1, ..., n, because each vi is

written as
∑n
j=1 αi,j

∂
∂xj

for some Cω functions αi,j on M .

Let η denote the function on M which measures distance from ∂M
def
= M −M

(if ∂M = ∅, η ≡ +∞). Set V = {(x, y) ∈ M × Rn : |y| < η(x)} and consider the
Cω function

g(x, y) = f(x+ y) − f(x) −
n∑

i=1

yi
∂f

∂xi
(x) for (x, y) = (x1, ..., xn, y1, ..., yn) ∈ V.

Then g is a global cross-section of the sheaf of O-ideals I on V generated by
yiyj , i, j = 1, ..., n. Hence applying theorem 2.3 to the surjective homomorphism

On2

∋ (αi,j) →
∑n
i,j=1 αi,jyiyj ∈ I we obtain Cω functions gi,j on V, i, j = 1, ..., n,

such that g(x, y) =
∑n
i,j=1 yiyjgi,j(x, y). Then

(∗) f(x+ y) = f(x) +
n∑

i=1

yi
∂f

∂xi
(x) +

n∑

i,j=1

yiyjgi,j(x, y).

Let α = (αi,j)i,j=1,...,n be new variables in Rn2

, set

〈α, ∂f〉 = (
n∑

i=1

αi,1
∂f

∂xi
(x), ...,

n∑

i=1

αi,n
∂f

∂xi
(x)),

and let W be a small open neighborhood of M × {0} in M ×Rn2

such that

(x, 〈α, ∂f〉) ∈ V for (x, α) ∈W.

Take y to be 〈α, ∂f〉 in (∗). Then

f(x+ 〈α, ∂f〉) =

f(x) +
n∑

i,j

αi,j
∂f

∂xi
(x)

∂f

∂xj
(x) +

n∑

i,i′,j,j′=1

αi,i′αj,j′
∂f

∂xi
(x)

∂f

∂xj
(x)Gi′,j′(x, α)

for Cω functions Gi′,j′(x, α) = gi′,j′(x, 〈α, ∂f〉) on W . Consider the map

B : W ∋ (x, α) → (x, αi,j +
n∑

i′,j′=1

αi,i′αj,j′Gi′,j′(x, α)) ∈M × Rn2

.

Then B is id and regular at M × {0}. Hence,, shrinking W , we assume that B

is a diffeomorphism onto an open neighborhood O of M × {0} in M × Rn2

. Set
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B(x, α) = (x,Bi,j(x, α)), and B−1(x, β) = (x,A′(x, β)) for (x, β) ∈ O. Then A′ is

a Cω map from O to Rn2

,

f(x+ 〈α, ∂f〉) = f(x) +
n∑

i,j

Bi,j(x, α)
∂f

∂xi
(x)

∂f

∂xj
(x) for (x, α) ∈W,

f(x+ 〈A′(x, β), ∂f〉) = f(x) +

n∑

i,j

βi,j
∂f

∂xi
(x)

∂f

∂xj
(x) for (x, β) ∈ O.

Choose Φ = (φi,j) so small that its graph is contained in O. Then π(x) =
x + 〈A′(x,Φ(x)), ∂f〉 fulfills the requirements in (ii). Here if φi,j are small in the
Whitney Cr or the strong Whitney C∞ topology, π is close to id in the respective
topology.

If f, M and vi are of class Cω and if φ is of class C∞, the same arguments
as above work and the diffeomorphism of equivalence is of class C∞. Thus we
complete the proof of (ii) in the analytic case. (ii) in the C∞ or Nash case also is
clear by the same proof. The difference is only that existence of C∞ or Nash gi,j
follows from a partition of unity of class C∞ or theorem 2.8, respectively.

Consider (iii). Assume that M is not compact because the compact case is clear
by the following arguments. Let M be imbedded in a Euclidean space so that its
closure is a compact Nash manifold with boundary. Now, we consider an open
semialgebraic tubular neighborhood of M and extend f to the neighborhood as
before. Then we can assume that M is open in Rn and M is a compact Nash
manifold with corners, and for the construction of π it suffices to see that φ is of
the form

∑n
i,j φi,j

∂f
∂xi

∂f
∂xj

for some Nash functions φi,j on M r′-flat at X , where

0 ≪ r′ ≪ r ∈ N, for the following reason. Assume that there exist such φi,j . Then

by the above proof, we only need to find small semialgebraic Cr
′′

functions φ′i,j on

M in the semialgebraic Cr
′′

topology such that φ′i,j = φi,j on some semialgebraic
neighborhood of X for 0 < r′′ ≪ r′ ∈ N.

Consider only the case r′′ = 1 because the general case can be proven in the same
way. Set g(x) =

∏
a∈f(X)(f(x)−a)2, and let h be a Nash function on M extensible

to a Nash function h on M such that 0 < h ≤ 1/2, (1) | ∂h∂xk
| ≤ 1, k = 1, ..., n,

and h
−1

(0) = M − M , which exists since M is a compact Nash manifold with
corners. Let ψ(t) be a semialgebraic C1 function on R such that 0 ≤ ψ ≤ 1, ψ = 1

on (−∞, 1] and ψ = 0 on [2, ∞). Set c = max |dψdt |. Then for some m ∈ N,
φ′i,j = φi,jψ(g/hm) fulfill the requirements as follows. Clearly φ′i,j = φi,j on a

semialgebraic neighborhood {x ∈ M : g(x) ≤ hm(x)} of X in M , and φ′i,j = 0 on

{g(x) ≥ 2hm(x)}. Hence we prove that each φ′i,j is small on V
def
= {g(x) ≤ 2hm(x)}

in the semialgebraic C1 topology. Let ǫ > 0 ∈ R. Let ξ denote the Nash function on

M defined to be φi,j/g
2 on M −X and 0 on X . Then ξ, ∂g∂xk

and
∂φi,j

∂xk
, k = 1, ..., n,

vanish at X . Hence there exists a semialgebraic neighborhood W of X in M where

(2) |φi,j | ≤ ǫg2, (3) |
∂g

∂xk
| ≤ 1, (4) |

∂φi,j
∂xk

| ≤ ǫ.

By the  Lojasiewicz inequality, we have V ⊂ W for large m. Note that (5) g ≤
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1/2m−1 on V since h ≤ 1/2. Then on V

|φ′i,j | = |φi,jψ(
g

hm
)|

(2)

≤ ǫg2
(5)
< ǫ,

|
∂φ′i,j
∂xk

| ≤ |
∂φi,j
∂xk

ψ(
g

hm
)| + |φi,j

dψ

dt
(
g

hm
)|(|

∂g

∂xk
|/hm +m|g

∂h

∂xk
|/hm+1),

|
∂φi,j
∂xk

ψ(
g

hm
)|

(4)

≤ ǫ,

|φi,j
dψ

dt
(
g

hm
)
∂g

∂xk
|/hm

(3)

≤
c|φi,j |

hm

by def. of V

≤
2c|φi,j |

g

(2),(5)

≤ cǫ,

m|φi,j
dψ

dt
(
g

hm
)g
∂h

∂xk
|/hm+1

(1)

≤
mc|φi,j |g

hm+1

(2)

≤ 2
m+1

m mcǫg2− 1
m

(5)

≤ 24+ 1
m

−2mmcǫ.

Hence φ′i,j is small on V for large m.
It remains to find φi,j . Let K denote the sheaf of N -ideals on M defined by

X . Then φ is a cross-section of Kr since φ is r-flat at X and since X is normal
crossing. On the other hand,

∑n
i=1

∂f
∂xi

N ⊃ Kr
′

since f has only normal crossing

singularities. Hence φ is a cross-section of
∑n
i,j=1

∂f
∂xi

∂f
∂xj

Kr
′

because of r′ ≪ r. Let

gl, l = 1, ..., k′, be global generators of Kr
′

(theorem 2.7). Apply theorem 2.8 to the

surjective N -homomorphism N n2k′ ⊃ N n2k′

a ∋ (αi,j,l) →
∑
αi,j,lgla( ∂f∂xi

)a( ∂f∂xj
)a ∈

∑n
i,j=1( ∂f∂xi

)a( ∂f∂xj
)aKr

′

a ⊂
∑n
i,j=1

∂f
∂xi

∂f
∂xj

Kr
′

, a ∈ M . Then there exist Nash func-

tions φi,j , i, j = 1, ..., n, in H0(M,Kr
′

) such that φ =
∑n
i,j=1 φi,j

∂f
∂xi

∂f
∂xj

. It follows

that φi,j are r′-flat at X . �

Proposition 3.12. (Compactification of a Nash function with only normal cross-
ing singularities) Let f be a bounded Nash function on a non-compact Nash manifold
M with only normal crossing singularities. Then there exist a compact Nash mani-
fold with corners M ′ and a Nash diffeomorphism π : M → IntM ′ such that f ◦π−1

is extensible to a Nash function on M ′ with only normal crossing singularities.

The analytic case does not necessarily hold.
?We cannot necessarily choose M ′ with smooth boundary. For example any

compact Nash manifold with boundary whose interior is Nash diffeomorphic to
M = R3 is Nash diffeomorphic to a closed ball in R3 (Theorem VI.2.2, [S2]). But
there is no Nash function on a 2-sphere with only normal crossing singularities (see
remark (v) after theorem 3.2).

Extensibility of a Nash function to a compact Nash manifold with corners is
shown in Proposition VI.2.8, [S2]. Hence the problem is to impose to the extension
to have only normal crossing singularities.

Proof of proposition 3.12. Set n = dimM , X = f−1(f(Sing f)), BN = {x ∈ RN :
|x| ≤ 1} for a positive integer N , and SN−1 = ∂BN . Since there exists a Nash
imbedding of M into RN such that the image is closed in RN , we can assume by
lemma 3.9 that M ⊂ IntBN , M −M ⊂ SN−1, M is a compact Nash manifold
with boundary, M intersects transversally with SN−1 (in the sense that some Nash

manifold extension M̃ of M intersects transversally with SN−1), X is a normal

crossing Nash subset of M , and there exists a Nash function g on M̃ with only
normal crossing singularities such that g(Sing g) = f(Sing f), g−1(g(Sing g))∩M =
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X, g = f on X , for each a ∈ X , g(x)−g(a) has the same multiplicity as f(x)−f(a)
at a and g(b) > g(a) if and only if f(b) > f(a) for b ∈M . We do not know whether
g|M is Nash right equivalent to f . We will modify M and g so that this is the case
and g|M has only normal crossing singularities.

Let φ be a polynomial function on R such that φ−1(0) = f(Sing f) and φ is
regular at φ−1(0). Let r ∈ N be large enough. Apply lemma 3.10 to φ ◦ f and
φ ◦ g|M . Then we have a Nash diffeomorphism τ1 of M such that τ1(X) = X and
f ◦τ1−g|M is r-flat at X . Hence replacing f with f ◦τ1, we assume that f−g is r-flat
at X . Next, by proposition 3.11,(iii) there exists a semialgebraic Cr diffeomorphism
τ2 of M such that g = f ◦τ2 on a semialgebraic neighborhood V of X in M and τ2 is
of class Nash on V . We can choose V of the form {x ∈M : φ2◦g(x) ≤ c(x)ξm(x)} by

the  Lojasiewicz inequality, where ξ(x) = (1−|x|2)/2 for x ∈ M̃ , c is a positive Nash

function on M̃ such that c depends on only |x| and m is a large odd integer. Shrink

M̃ so that ξ < 0 on M̃ −M . We can choose, moreover, c and m so that φ2 ◦g−cξm

is regular at (its zero set)−SN−1 and hence V is a Nash manifold with boundary
{x ∈M : φ2 ◦ g(x) = c(x)ξm(x)} for the following reason. Let 0 < ǫ0 ∈ R be small.

Then for any 0 < ǫ ∈ R with ǫ < ǫ0, ξ−1(ǫ) ∪ (φ ◦ g)−1(0) is normal crossing in M̃ ,
and hence for small c and large m, φ2 ◦ g on {x ∈ ξ−1(ǫ) : 0 < φ2 ◦ g(x) < 2c(x)ξm}
is regular. We can choose c and m independently of ǫ. Therefore, φ2 ◦ g − cξm is
regular at (its zero set)∩ξ−1((0, ǫ0)). Moreover, if we choose c and m so that cξm is
close to a small constant on M − ξ−1((0, ǫ0/2]), then φ2 ◦ g− cξm is regular at (its
zero set)−ξ−1((0, ǫ0/2]). Hence φ2 ◦g− cξm can be regular at (its zero set)−SN−1.
However, we omit c for simplicity of notation. We want first to modify M so that
V is a neighborhood of X in M .

Apply theorem 2.10 to the two sheaves of N -ideals on M̃ defined by (φ◦ g)−1(0)
and generated by ξ · (φ2 ◦ g − ξm). Note that the former sheaf is normal crossing,
the stalk of the latter is not generated by one regular function germ at a point of
X −X only, and at least one of the 2 stalks of the both sheaves at each x 6∈ X −X
is Nx. Then we have a composition of a finite sequence of blowings-up τ3 : M̂ → M̃
along smooth Nash centers such that τ3|τ−1

3 (M̃−(X−X)) : τ−1
3 (M̃ − (X − X)) →

M̃ − (X −X) is a Nash diffeomorphism and (φ ◦ g · ξ · (φ2 ◦ g − ξm)) ◦ τ3 has only

normal crossing singularities at its zero set, say Y . It follows that (M̂, Y, τ−1
3 (M)),

locally at each point of τ−1
3 (M), is Nash diffeomorphic to (Rn, {(x1, ..., xn) ∈ Rn :

x1 · · ·xn′ = 0}, the closure of a union of some connected components of {x1 · · ·xn′ 6=

0}) for some n′ (≤ n) ∈ N and τ−1
3 (M) − τ−1

3 (X − X) is a Nash manifold with

boundary. However, τ−1
3 (M) is not necessarily a manifold with corners. The case

where τ−1
3 (M) is locally diffeomorphic to a union of more than one connected

components of {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ 6= 0} at some point of τ−1
3 (X−X), 0 <

n′ (≤ n) ∈ N may appear. Then we need to separate these connected components.
That is possible as shown in the proof of Theorem VI.2.1, [S2]. Namely, there exist

a compact Nash manifold L with corners and a Nash immersion τ4 : L → τ−1
3 (M)

such that τ4|L−Sing ∂L is a Nash diffeomorphism to its image and the image contains

τ−1
3 (M) − τ−1

3 (X −X) (⊃ τ−1
3 (M)).

Clearly (φ ◦ g · ξ · (φ2 ◦ g − ξm)) ◦ τ3 ◦ τ4 has only normal crossing singularities
at its zero set τ−1

4 (Y ) since τ4 is an immersion. Set τ = τ2 ◦ τ3 ◦ τ4|IntL, h =
g ◦ τ3 ◦ τ4, W = (τ3 ◦ τ4)−1(V )(, which is a non-compact Nash manifold with
boundary), W ′ = W − ∂W and Z = (τ3 ◦ τ4)−1(X). Then τ is a semialgebraic Cr
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diffeomorphism from IntL to M and of class Nash on W , h is a Nash function on
L, h = f ◦ τ on W , h is regular on IntL − Z, h|IntL∪W ′ has only normal crossing
singularities at Z though h is not necessarily so globally (note that W ′ and W are
Nash manifolds with corners by the next fact and the normal crossing property
of (ξ · (φ2 ◦ g − ξm)) ◦ τ3 ◦ τ4), and W is a neighborhood of Z in L because if it

were not, Z ∩ (τ3 ◦ τ4)−1({x ∈M : φ2 ◦ g(x) = ξm(x)}) could be not empty and of
dimension n− 2 but contained in (τ3 ◦ τ4)−1(ξ−1(0)), which contradicts the normal
crossing property of (φ ◦ g · ξ · (φ2 ◦ g − ξm)) ◦ τ3 ◦ τ4. Thus V is changed to W—a
neighborhood of Z in L. We consider h on L in place of g on M .

We replace τ by a Nash diffeomorphism. Let 0 ≪ r ∈ N, set ψ = (φr◦h·ξr)◦τ3◦τ4
on L and ψ = ψ|IntL, and let I denote the sheaf of N -ideals on IntL generated by
ψ. Then we regard τ as an element of H0(IntL,N /I)N because suppN /I = Z
and τ is of class Nash near there. Hence by theorem 2.8 there exists a Nash
map τ ′ : IntL → RN such that τ − τ ′ = ψθ for some semialgebraic Cr map
θ : IntL→ RN of class Nash on W . Approximate θ by a Nash map θ′ : IntL→ RN

in the semialgebraic Cr topology, and set τ ′′ = p ◦ (τ ′ + ψθ′), where p denotes
the orthogonal projection of a semialgebraic tubular neighborhood of M in RN .
Then τ ′′ is a well-defined Nash diffeomorphism from IntL to M and close to τ
in the semialgebraic Cr topology, f ◦ τ ′′ − h|IntL = ψδ for some semialgebraic
Cr function δ on IntL though f ◦ τ ′′ − h|IntL does not necessarily vanish on W ,

and, moreover, δ is extensible to a semialgebraic Cr
′

function δ on IntL ∪W ′ for
0 ≪ r′ (≪ r) ∈ N by the definition of the semialgebraic Cr

′

topology, by the fact
that a small semialgebraic Cr function on IntL is extensible to a semialgebraic Cr

function on L and by

f ◦ τ ′′ − h|IntL = f ◦ p ◦ (τ + ψ · (θ′ − θ)) − f ◦ p ◦ τ on W.

The last equality implies also that δ is of class Nash on W , and hence on IntL since
f ◦ τ ′′ and h are Nash functions and ψ−1(0) ⊂W .

Next we modify h. Let δ
′

be a Nash approximation on IntL ∪W ′ of δ in the

semialgebraic Cr
′

topology, and set δ′ = δ
′
|IntL and h′ = h+ψδ

′
on IntL∪W ′. Then

h′ is a Nash function on IntL∪W ′ and has only normal crossing singularities at Z
by the same property of h|IntL∪W ′ and by the definition of h′, and f ◦τ ′′−h′|IntL is
of the form ψ · (δ− δ′). Hence f and h′ ◦ τ ′′−1 satisfy the conditions in proposition

3.11,(ii) because φr ◦ h ◦ τ ′′−1 is of the form
∑k
i,j=1 ψi,jvf · vjf for some Nash

functions ψi,j on M and Nash vector fields vi, i = 1, ..., k, on M which span the
tangent space of M at each point of M and because ξr|M · (δ− δ′)◦ τ ′′−1 is small as

a semialgebraic Cr
′

function on M . Consequently, f and h′ ◦ τ ′′−1 are Nash right
equivalent, and we can replace f with h′|IntL.

We can assume that W ′ ∩ ∂L is the union of some connected components σ
of strata of the canonical stratification {Li} of ∂L such that σ ∩ Z 6= ∅ for the
following reason. Let ψL be a non-negative Nash function on L with zero set
Z, and let ǫ0 ∈ R be such that the restriction of ψL to ψ−1

L ((0, 2ǫ)) is regular.

Then ψ−1
L (ǫ) is a compact Nash manifold with corners= ∂L ∩ ψ−1

L (ǫ). Let {Lǫ,i}
denote the canonical stratification of ∂L ∩ ψ−1

L (ǫ). We blow up Lǫ,i as follows.
For a compact Nash submanifold possibly with corners L′ of L and for some Nash
manifold extension L̃′ of L′, if L̃′ ∩ L = L′ and if (L, L̃′) is locally diffeomorphic
to ({(x1, ..., xn) ∈ Rn : x1 ≥ 0, ..., xn′ ≥ 0}, {xn1

= · · · = xnk
= 0}) for some
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n′ (≤ n), 1 ≤ n1 < · · · < nk ≤ n ∈ N, we say L′ has the property (∗). For L′ with
(∗), consider γ : Γ → L—the restriction of the blowing-up of a small Nash manifold

extension L̃ of L along center L̃∩L̃′ to the closure of inverse image of L−L′, modify
γ : Γ → L so that Γ is a compact Nash manifold with corners by the idea in the
proof of Theorem VI.2.1, [S2] as before, use the same notation γ : Γ → L, and call
it the (∗)-blowing-up of L along center L′. Note that γ−1(L′) is the closure of a
union of some connected components of Reg ∂Γ. Set Γ−1 = L and let 0 ≤ k ≤ n−2.
Inductively we define (∗)-blowing-up γk : Γk → Γk−1 of Γk−1 along center Lǫ,0 if

k = 0 and center (γ0 ◦ · · · ◦ γk−1)−1(Lǫ,k) if k > 0, which is possible because Lǫ,0
and (γ0 ◦ · · · ◦ γk)−1(Lǫ,k+1) for 0 ≤ k ≤ n − 3 are compact Nash submanifolds
with corners of Γ−1 and Γk with (∗), respectively. Thus we assume that the above
condition on W holds considering (Γn−2, (ψL ◦ γ0 ◦ · · ·γn−2)−1([0, ǫ]) − ∂Γn−2)
in place of (L,W ). Here we choose ǫ so small that (∗∗) h′ is extensible to a Nash
function on an open semialgebraic neighborhood of IntL∪W in L with only normal
crossing singularities.

Moreover, we can assume that the closure of each connected component of Reg ∂L
is a Nash manifold possibly with corners. Indeed, that follows if we repeat the
same arguments as above to the canonical stratification of ∂L compatible with
{x ∈ ∂L : dis(x, Lk) = ǫk, dis(x, Li) ≥ ǫi, i = 0, ..., k− 1}, k = 0, ..., n− 2 (here we
naturally define the canonical stratification of ∂L compatible with the above family
in the same way as the remark after lemma 3.8). After this modification of L, the
property (∗∗) continues to hold.

Let Mj, j ∈ J, be the set of closures of the connected components of Reg ∂L,

and let J0 denote the subset of J consisting of j with Mj ∩ Z = ∅. Let L̃ and M̃j

be Nash manifold extensions of L and Mj , respectively, which are contained and
closed in a small open semialgebraic neighborhood U of L in the ambient Euclidean
space such that ∪j∈JM̃j is normal crossing in L̃ and for each j ∈ J there is one

and only one connected component of L̃−M̃j which does not intersect with L. Let

Z̃ denote the smallest Nash subset of L̃ containing Z. Then Z̃ is normal crossing
in L̃, and there exist Nash functions χj on L̃ with zero set M̃j , regular there and
with χj > 0 on IntL.

By (∗∗) we can choose a sufficiently small U so that h′ can be extended to a

Nash function h′+ on L+
def
= {x ∈ L̃ : χj(x) > 0, j ∈ J0}, h′+(Sing h′+) = h′(Z) and

h′+ having only normal crossing singularities. Now we smooth h′+ at L+ −L+ as in

the proof of Proposition VI.2.8, [S2]. Let L̃ ⊂ RN , set G = graphh′+ ⊂ L+ × R,

and GZ be the Zariski closure of G in RN × R and Q be the normalization of GZ

in RN × R × RN ′

for some N ′ ∈ N, and let r : Q → RN × R and q : Q → RN

denote the restrictions to Q of the projections RN × R × RN ′

→ RN × R and
RN × R × RN ′

→ RN , respectively. Then it is known that r is a proper map to
GZ , and by Artin-Mazur Theorem there exists a union of connected components
R of Q− r−1(G−G) such that R ⊂ RegQ and r|R is a Nash diffeomorphism onto
G. Here we can replace r−1(G − G) with a Nash subset q−1((

∏
j∈J0

χj)
−1(0)) of

Q because r−1(G−G) ⊂ q−1((
∏
j∈J0

χj)
−1(0)) and R∩ q−1((

∏
j∈J0

χj)
−1(0)) = ∅,

q|R is a Nash diffeomorphism onto L+, h′+ ◦ q|R is the restriction of the projection

RN × R × RN ′

→ R and hence extensible to a smooth rational function on Q,
R ∩ q−1(L) is compact because r is proper and because G ∩ L× R is compact by
boundedness of f , and h′+ ◦ q|R has only normal crossing singularities because of
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the same property of h′+ (however, χj ◦ q are now not necessarily regular at their

zero sets). By theorem 2.8, R∩q−1(Z̃) is a Nash subset of RegQ and there exists a

Nash function α on RegQ whose zero set is R∩ q−1(Z̃) and which has only normal

crossing singularities there since R ∩ q−1(Z̃) is a Nash subset of R and since its
closure in RegQ does not intersect with R −R.

Thus replacing L̃, L+, h
′
+, χj and Z̃ with RegQ, R, h′+ ◦ q|R, χj ◦ q|RegQ

and R ∩ q−1(Z̃) we assume from the beginning that M and f satisfy moreover the
following conditions.

(i) f̃ and χj , j ∈ J, are a finite number of Nash functions on a Nash manifold

M̃ , and X̃ is a normal crossing Nash subset of M̃ .
(ii) M is a union of some connected components of M̃ − (

∏
j∈J χj)

−1(0), M is

compact, f = f̃ |M , and X = X̃ ∩M (we do not assume that M is a manifold with
corners).

We make
∏
j∈J χj normal crossing at its zero set. Apply theorem 2.10 to the

sheaf of N -ideals on M̃ defined by X̃ and the sheaf of N -ideals
∏
j∈J χjN . Then

via blowings-up,
∏
j∈J χj becomes to have only normal crossing singularities at its

zero set, and the conditions (i) and (ii) do not change because the subset of M̃
where we modify by blowings-up is contained in (

∏
j∈J χj)

−1(0).

It remains to make f̃ together with (
∏
j∈J χj)

−1(0) normal crossing. Let {M̃i}

denote the canonical stratification of (
∏
j∈J χj)

−1(0), set M̃n=M̃−(
∏
j∈J χj)

−1(0),

and let φ̃ be a polynomial function on R such that φ̃−1(0) = ∪ni=0f̃(Sing f̃ |M̃i
) and

φ̃ is regular at φ̃−1(0). Once more, apply theorem 2.10 to the sheaf of N -ideals on

M̃ defined by X̃ ∪ (
∏
j∈J χj)

−1(0) and the sheaf of N -ideals [φ̃ ◦ f̃N : ∩iI
αi

i ]
def
=

∪x∈M̃{ρ ∈ Nx : ρ∩iI
αi

ix ⊂ φ̃◦ f̃Nx}, where ∩iIi is the decomposition of the sheaf of

N -ideals on M̃ defined by X̃ to irreducible finite sheaves of N -ideals and each αi is
the maximal integer such that φ̃◦ f̃N is divisible by Iαi

i . Then (f̃− f̃(x0))
∏
j∈J χj

becomes to have only normal crossing singularities at its zero set for each x0 ∈ M̃
and the subset of M̃ where we modify now by blowings-up does not intersect with
M because the stalk of the latter sheaf at each point of M is generated by a regular
function germ and because (X̃∪(

∏
j∈J χj)

−1(0)∩suppN /[φ̃◦ f̃N : ∩iI
αi

i ]∩M = ∅.

Finally, we separate as beforeM at the points ofM whereM is not locally connected
so that M is a compact Nash manifold with corners. Then f̃ |M has only normal
crossing singularities, and we complete the proof. �

Proof of theorem 3.2. By proposition 3.4 it suffices to prove the Nash case and,
moreover, that the cardinality of Nash R-L equivalence classes of Nash functions
with only normal crossing singularities on a compact Nash manifold possibly with
corners is zero or countable because we can restrict functions to being bounded
(remember the fact that R is Nash diffeomorphic to (0, 1)) and because by propo-
sition 3.12, for a bounded Nash function f with only normal crossing singularities
on a non-compact Nash manifold M , we can regard M and f as the interior of
a compact Nash manifold with corners M ′ and the restriction to M of a Nash
function on M ′ with only normal crossing singularities. Assume that there is at
least one Nash function f on M with only normal crossing singularities. Then
the cardinality is infinite because we can increase arbitrarily the cardinality of the
critical value set, which is finite, by replacing f with π ◦ f for some Nash function
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π on R. Let {Xα}α∈A denote all normal crossing Nash subsets of M . We define
α and α′ in A to be equivalent if there exists a Nash diffeomorphism of M which
carries Xα to Xα′ . Then by lemma 3.7 the cardinality of equivalence classes of
A is countable. Hence it suffices to see that for each Xα there exist at most a
countable number of Nash R-L equivalence classes of Nash functions f on M with
only normal crossing singularities such that f−1(f(Sing f)) = Xα. Let Fα denote
all such Nash functions. Clearly there are a finite number of equivalence classes
of {f |Xα

: Xα → R : f ∈ Fα} under the Nash left equivalence relation since the
value sets are finite. Moreover, there are at most a countable number of choices of
multiplicity of f − f(a) at a for f ∈ Fα and a ∈ Xα. Hence we reduce the problem
to the following one. Fix f ∈ Fα, and let Ff denote the family of g ∈ Fα such that
g = f on Xα and g − g(a) has the same multiplicity as f − f(a) at each point a
of Xα. Then the cardinality of Nash right equivalence classes of functions in Ff is
finite. Moreover, it suffices to prove that each element of Ff , say f , is stable in Ff
in the sense that any g ∈ Ff near f in the C∞ topology is Nash right equivalent to
f because there are only a finite number of connected components in Ff .

Set n = dimM , imbed M in RN , and let {Mi} denote the canonical strati-
fication of M . There exist Nash vector fields v1, ..., vk on M such that for each
x ∈Mi, v1x, ..., vkx span the tangent space TxMi of Mi at x and if we regard M as
{(x1, ..., xn) ∈ Rn : x1 ≥ 0, ..., xn′ ≥ 0} by its local coordinate system then for each
1 ≤ i ≤ n′, xi

∂
∂xi

is contained in the linear space over N(M) spanned by v1, ..., vk
for the following reason.

Set Li = ∪ij=0Mj, i = 0, ..., n − 1, and choose a Nash manifold extension M̃

of M and Nash subset extensions L̃i of Li in M̃ so that L̃n−1 is normal crossing

in M̃ and {L̃i − L̃i−1} is the canonical stratification of L̃n−1. Set Ln = M and

L̃n = M̃ also. Then when we describe (M̃, L̃n−1) by a local coordinate system as
(∗) (Rn, {(x1, ..., xn) ∈ Rn : x1 · · ·xn′ = 0}),

L̃i =
⋃

1≤j1<···<jn−i≤n′

{(x1, ..., xn) ∈ Rn : xj1 = · · · = xjn−i
= 0}, n− n′ ≤ i ≤ n.

We consider on M̃ in place of on M because existence of v1, ..., vk follows from
existence of Nash vector fields on M̃ with the same properties.

First, let wn,1, ..., wn,kn
be Nash vector fields on M̃ which span the tangent space

of M̃ at each point, and let αn be a global generator of the sheaf of N -ideals on
M̃ defined by L̃n−1—we can choose M̃ so that αn exists because M is a manifold
with corners. Then vn,1 = αnwn,1, ..., vn,kn

= αnwn,kn
are Nash vector fields on

M̃ , span the tangent space of M̃ at each point of M̃ − L̃n−1 and vanish at L̃n−1,
and in the case (∗), for each 1 ≤ i ≤ n′, xi

∂
∂xi

on {(x1, ..., xn) ∈ Rn : xj 6= 0 for

1 ≤ j ≤ n′ with j 6= i} is contained in the linear space over the Nash function ring
on the set spanned by vn,1, ..., vn,kn

.

Next fix i < n and consider on L̃i. Then it suffices to prove the following
two statements. (i) There exist Nash vector fields vi,1, ..., vi,ki

on L̃i—Nash cross-

sections of the restrictions to L̃i of the tangent bundle of RN , i.e. the restrictions
to L̃i of Nash vector fields on RN by theorem 2.8—which span the tangent space of
L̃i − L̃i−1 at its each point and vanish at L̃i−1 and such that in the case of (∗) the
condition on each irreducible component {(x1, ..., xn) ∈ Rn : xj1 = · · · = xjn−i

=

0}, same as on M̃ , is satisfied for 1 ≤ j1 < · · · < jn−i ≤ n′; to be precise, for any
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1 ≤ j ≤ n′ other than j1, ..., jn−i, then xj
∂
∂xj

on {(x1, ..., xn) ∈ Rn : xj1 = · · · =

xjn−i
= 0, xl 6= 0 for 1 ≤ l ≤ n′ other than j1, ..., jn−i, j} is contained in the linear

space over the Nash function ring on the set spanned by vi,1, ..., vi,ki
. (ii) Any Nash

vector field on L̃i tangent to L̃j − L̃j−1 at its each point for j ≤ i is extensible to

a Nash vector field on L̃i+1 tangent to L̃i+1 − L̃i at each its point.

Proof of (i). By considering the Zariski closure of L̃i and its normalization and by
Artin-Mazur Theorem we have a Nash manifold Pi and a Nash immersion ξi : Pi →
L̃i such that ξi|Pi−ξ

−1
i

(L̃i−1)
is a Nash diffeomorphism onto L̃i − L̃i−1. Note that

ξ−1
i (L̃i−1) is normal crossing in Pi. Apply the same arguments to (Pi, ξ

−1
i (L̃i−1))

as on (M̃, L̃n−1) (the difference is only that we need a finite number of global

generators αi,1, αi,2, ... of the sheaf of N -ideals on Pi defined by ξ−1
i (L̃i−1)). Then

there exist Nash vector fields wi,1, ..., wi,ki
on Pi with the corresponding properties,

and they induce semialgebraic C0 vector fields vi,1, ..., vi,ki
on L̃i through ξi because

wi,1, ..., wi,ki
vanish on ξ−1

i (L̃i−1). It is easy to see that vi,1, ..., vi,ki
are of class

Nash by the normal crossing property of L̃n−1 in M̃ and satisfy the conditions in
(i).

Proof of (ii). Let v be a Nash vector field on L̃i in (ii), let ξi+1 : Pi+1 → L̃i+1

be the same as above. Then since ξi+1 is an immersion, v pulls back a Nash cross-

section w of the restriction to ξ−1
i+1(L̃i) of the tangent bundle of the Nash manifold

Pi+1, and by theorem 2.8 we obtain a Nash vector field on Pi+1 whose restriction

to ξ−1
i+1(L̃i) is w. This vector field induces a Nash vector field of L̃i+1 through ξi+1,

which is an extension of v, by the same reason as in the proof of (i).
Let g ∈ Ff near f . It suffices to see that f and g are Cω right equivalent for

the following reason. Assume that there exists a Cω diffeomorphism π of M such
that f = g ◦ π. Let M̃ and L̃n−1 be the same as above and so small that f and

g are extensible to Nash functions f̃ and g̃ on M̃ , respectively. Extend π to a
Cω diffeomorphism π̃ : U1 → U2 between open neighborhoods of M in M̃ so that
π̃(U1 ∩ L̃n−1) ⊂ L̃n−1 and f̃ = g̃ ◦ π. As above, let αn be a global generator

of the sheaf of N -ideals on M̃ defined by L̃n−1. Then αn ◦ π̃ = βαn on U1 for
some positive Cω function β on U1. Consider the following equations in variables
(x, y, z) ∈ M̃2 × R :

f(x) − g(y) = 0 and αn(y) − zαn(x) = 0

(here the second equation means that if x ∈ L̃n−1 then y ∈ L̃n−1). Then y = π̃(x)
and z = β(x) are Cω solutions. Hence by Theorem 1.1, [C-R-S1] there exist Nash
germ solutions on M y = π′(x) and z = β′(x) which are approximations of the
germs of π̃ and β on M . Thus π′|M is a Nash diffeomorphism of M and f = g ◦ π′

on M .
Now we show that Cω right equivalence of f and g. Set G(x, t) = (1 − t)f(x) +

tg(x) for (x, t) ∈M× [0, 1]. Then G(x, 0) = f(x) and G(x, 1) = g(x). Hence by the
same reason as in the proof of theorem 3.1,(1) it suffices to find a Cω vector field

v on M × [0, 1] of the form ∂
∂t

+
∑k
i=1 aivi for some Cω functions ai on M × [0, 1]

such that vG = 0 on M × [0, 1], i.e.,

(**) f − g =

k∑

i=1

ai(vif + tvi(g − f)).
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Moreover, as shown there, we only need to solve this equations locally at each point
(x0, t0) of M × [0, 1] since M is compact.

If x0 6∈ Xα, (vif)(x0) 6= 0 for some i and hence aj = 0 for j 6= i and ai =
(f − g)/(vif + tvi(g − f)) around (x0, t0) are solutions of (∗∗) because g − f and
hence tvi(g − f) are small in the C∞ topology.

Let x0 ∈ Xα. Then we can assume that M = {x = (x1, ..., xn) ∈ Rn : |x| ≤
1, x1 ≥ 0, ..., xn′ ≥ 0} for some n′ (≤ n) ∈ N, x0 = 0, f(x) = xβ for some
β = (β1, ..., βn) ∈ Nn with |β| > 0, k = n, v1 = x1

∂
∂x1

, ..., vn′ = xn′
∂

∂xn′
, vn′+1 =

∂
∂xn′+1

, ..., vn = ∂
∂xn

and f−g = bxβ for some small Cω function b on M (remember

that the map C∞(M) ∋ ψ → ψxβ ∈ xβC∞(M) is open in the C∞ topology). Let
i be such that βi 6= 0. Then vif = βix

β/xi and vi(f − g) = bβix
β/xi + ∂b

∂xi
xβ if

i > n′, and vif = βix
β and vi(f − g) = bβix

β + xi
∂b
∂xi

xβ if i ≤ n′. In any case (∗∗)
is solved as before. Thus theorem 3.2 is proved. �
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