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Utility Maximization in Incomplete Markets with Default

Thomas LIM ∗ Marie-Claire QUENEZ†

Abstract

We address the expected utility maximization from terminal wealth. The special

feature of this paper is that we consider a financial market with a stock exposed to

a counterparty risk inducing a jump in the price, and which can still be traded after

this default time. We use a default-density modeling approach. Using dynamic pro-

gramming, we characterize the value function with a backward stochastic differential

equation and the optimal portfolio policies. We separately treat the cases of expo-

nential, power and logarithmic utility functions. We define the indifference price of a

contingent claim and we study in particular the indifference price for the exponential

utility function. We also generalize the results to case of several default times and to

case of Poisson jumps.

Keywords Counterparty risk, density of default time, optimal investment, dynamic

programming, backward stochastic differential equation, indifference pricing.

1 Introduction

We consider an incomplete financial model with one bond and one risky asset. The

price process (St)0≤t≤T of the risky asset is assumed to be a local martingale driven by a

Brownian motion and a default indicating process. In such a context, we solve the portfolio

optimization problem when an investor wants to maximize the expectation of his utility

from terminal wealth.

The utility maximization problem has been largely studied in the literature. Originally

introduced by Merton (1971) in the context of constant coefficients and treated by marko-

vian methods via Bellman equation of dynamic programming, it was developed for general

process by martingal duality approach by Kramkov and Schachermayer (1999). For the

case of complete markets, we refer to Karatzas et al. (1987), Cox and Huang (1989). For

the case of incomplete and/or constrained markets, we refer to Karatzas et al. (1991), He

and Pearson (1991) and Cvitanic̀ and Karatzas (1992). Lukas (2001) considers the case of

incomplete markets with a default in the markovian case. In contrast to these papers, in Hu

et al. (2004), the authors do not use the duality approach, and they directly characterize the

solution of the primal problem as the solution of a backward stochastic differential equation
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(BSDE) by using a verification theorem of the same spirit as El Karoui et al. (1997). Since

they work in a Brownian filtration, they can use directly some results on quadratic BSDEs

(see Kobylanski (2000)). For the case of a discontinuous framework, we refer to Morlais

(2008). She supposes that the price process of stocks is modeled by a local martingale

driven by an independent one dimensional Brownian motion and a Poisson point process.

Using the same approach as in Hu et al. (2004), she obtains formally a BSDE for which

there is no existence and uniqueness results. She proves the existence of a solution of this

BSDE by using an approximation method but she does not obtain uniqueness result, which

does not allow to characterize the value function as the solution of a BSDE. To be able

to characterize completely the optimization problem, she restricts the admissible portfolios

set to a compact set so that in this case the value function can be proved to be the unique

solution of a BSDE.

The utility maximization problem is also used for the pricing in the incomplete markets,

we refer to Hodges and Neuberger (1989) for the case of Brownian filtration or Bielecki and

Jeanblanc (2008) for the case of a discontinuous filtration in which the authors compare

the optimal strategy and the indifference price depending on the filtrations.

In this paper, we use dynamic programming technics to show directly that the value

function is solution of a quadratic BSDE. This method allows to derive in a simpler way

the results stated in Morlais (2008) and to improve some of them.

The outline of this paper is organized as follows. In Section 2, we present the market

model and the maximization problem. In Section 3, we carry out the calculation of the

value function and an optimal strategy for exponential utility and in Section 4, we study

the indifference price for a contingent claim using the results of Section 3. In Section 5,

we consider the case of a logarithmic utility, and in Section 6 we treat the power utility

to complete the spectrum of important utility functions. In the final section, we generalize

the results of Section 3 to the case of several assets and default times. At last, we extend

the previous results to the case of Poisson jumps.

2 The market model

Let (Ω,G,P) be a complete probability space. We assume throughout that all stochastic

processes are defined on a finite time horizon [0, T ]. Suppose that this space is equipped

with two stochastic processes : a unidimensional standard Brownian motion (Wt)0≤t≤T and

a jump process (Nt = 1τ≤t)0≤t≤T where τ is a default time, we assume that P(τ > t) > 0

for all t ∈ [0, T ], that implies that the default can appear at any time. We denote by

G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by these processes :

Gt = σ(Ws, 0 ≤ s ≤ t) ∨ σ(Ns, 0 ≤ s ≤ t) ∨N ,

where N denotes the class of negligible subsets of Ω.

We denote by (Mt) the compensated martingale of the process (Nt) and by (Λt) its

compensator. We assume that the compensator (Λt) is absolutely continuous with the
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Lebesgue measure, so that there exists a process (λt) such that Λt =
∫ t

0 λsds. We have that

Mt = Nt −
∫ t

0
λsds. (2.1)

is a G-martingale. It should be noted that the construction of such process (Nt) is fairly

standard; see, for example, Bielecki and Rutkowski (2004).

We introduce the classical sets S+,∞, L2(W ), L2
loc(W ), L2(M) and L2

loc(M) :� S+,∞ is the set of positive càd-làg G-adapted P-essentially bounded processes on

[0, T ].� L2(W ) (resp. L2
loc(W )) is the set of G-predictable processes on [0, T ] under P with

E

[
∫ T

0
|Zt|2dt

]

<∞. (resp.

∫ T

0
|Zt|2dt <∞ a.s. ).� L2(M) (resp. L2

loc(M)) is the set of G-predictable processes on [0, T ] under P with

E

[
∫ T

0
|Ut|2λtdt

]

<∞ (resp.

∫ T

0
|Ut|2λtdt <∞ a.s. ).

We recall the useful martingale representation theorem (see Kusuoka (1999))

Proposition 2.1. Let m be any (P,G)-(resp. locally) square integrable (resp. local) mar-

tingale with m0 = 0. Then, there exist two valued G-predictable processes φ and ψ such

that φ ∈ L2(W ) and ψ ∈ L2(M) (resp. φ ∈ L2
loc(W ) and ψ ∈ L2

loc(M)) and

mt =

∫ t

0
φsdWs +

∫ t

0
ψsdMs, 0 ≤ t ≤ T.

We consider a financial market which consists of one risk-free asset, whose price process

is assumed for simplicity to be equal to 1 at each date, and one risky asset with price process

S which admits a jump at time τ . In the following, we consider that the price process S

evolves according to the equation :

dSt = St−(µtdt+ σtdWt + βtdNt) (2.2)

with the classical assumptions :

Assumption 2.1. (i) (µt), (σt) and (βt) are G-predictable stochastic processes.

(ii) The process (βt) satisfied βt(ω) > −1 for all t ∈ R+ and ω ∈ Ω (this assumption

implies that the process S is positive).
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A G-predictable process π = (πt)0≤t≤T is called trading strategy if
∫ T

0
πt

S
t−
dSt is well

defined, e.g.
∫ T

0 |πtσt|2dt <∞ P-a.s. and
∫ T

0 |πtβt|2λtdt <∞ P-a.s. The process (πt)0≤t≤T

describes the amount of money invested in the risky asset S at time t. The wealth process

(Xx,π
t ) of a trading strategy π with initial capital x satisfies the equation :

X
x,π
t = x+

∫ t

0

πs

Ss−
dSs

and under the assumption that the trading strategy is self-financing, we get :

dX
x,π
t = πt(µtdt+ σtdWt + βtdNt). (2.3)

For a given initial time t and an initial capital x, the associated wealth process is denoted

by Xt,x,π
s .

Our aim is to study the classical optimization problem

V (x) = sup
π∈A

E
[

U(Xx,π
T )

]

. (2.4)

where U is a utility function and A is the admissible portfolios set, which will be specified

in the following.

In the rest of this paper, we will give a characterization of the value function V (x) and

of the optimal strategy.

3 Exponential utility

In this section, we specify the sense of optimality for trading strategies by stipulating

that the investor wants to maximize his expected utility from his terminal wealth in the

case of an exponential utility function. Let us recall that the exponential utility function

is defined as :

U(x) = − exp(−γx), x ∈ R

where γ > 0 is a given constant, which can be seen as a coefficient of absolute risk aversion.

In the following, we want to maximize the expectation of utility from terminal wealth

over a set of admissible strategies defined by

Definition 3.1. The set of admissible trading strategies A consists of all G-predictable

processes π = (πt)0≤t≤T which satisfy
∫ T

0 |πtσt|2dt < ∞ a.s. and
∫ T

0 |πtβt|2λtdt < ∞ a.s.

and such that there exists a constant Kπ such that X0,π
t ≥ Kπ for all t ∈ [0, T ].

Note that the amount π0
t invested in the risk-free asset does not need to be specified

since it is determined by the amount πt invested in the risky asset and the wealth X
x,π
t

through the equation π0
t = X

x,π
t − πt.

We assume that the investor in this financial market faces some liability, which we

model by a random variable ξ (for example, ξ may be a contingent claim written on a

default event, which itself affects the price of the underlying asset). We suppose that
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ξ ∈ GT and is non-negative (note that all the results still hold under the assumption that

ξ is only lower bounded). Our first goal is to solve the optimization problem for an agent

who buys a contingent claim ξ. Then, in Section 4, we will study the indifference price of

this contingent claim. To this end it suffices to find a strategy that maximizes the value

function

V (x, ξ) = sup
π∈A

E
[

− exp(−γ
(

X
x,π
T + ξ

)

)
]

, γ > 0, (3.5)

which can be clearly written as

V (x, ξ) = −e−γxJ0,

where J0 = inf
π∈A

E
[

exp
(

−γ
(

X
0,π
T + ξ

))]

.

Let us fix ξ ∈ GT a non-negative contingent claim. To solve this optimization problem,

we give a dynamic extension of the initial problem. For each initial time t ∈ [0, T ] we define

the value function J(t) by the following random variable :

J(t) = ess inf
π∈At

E
[

exp(−γ(Xt,0,π
T + ξ))

∣

∣

∣
Gt

]

(3.6)

where the set At consists of all G-predictable processes π = (πs)t≤s≤T which satisfy
∫ T

t
|πsσs|2ds < ∞ a.s. and

∫ T

t
|πsβs|2λsds < ∞ a.s. and such that there exists a con-

stant Kπ such that Xt,0,π
s ≥ Kπ for all s ∈ [t, T ]. For the sake of brevity, we shall denote

now Xπ
s (resp. Xt,π

s ) instead of X0,π
s (resp. Xt,0,π

s ).

Note that the random variable J(t) is defined uniquely only up to P-almost sure equiv-

alent. Also, note that the process (J(t)) is adapted but not necessarily progressive. First,

recall the dynamic programming principle :

Proposition 3.2. For each admissible strategy π ∈ A, (e−γXπ
t J(t))0≤t≤T is a submartin-

gale.

Proof. According to Schachermayer (2001) Theorem 2.2, for each initial time t ∈ [0, T [,

there exists a strategy π̂ ∈ At such that

J(t) = E
[

exp
(

−γ
(

X
t,π̂
T + ξ

))
∣

∣

∣
Gt

]

a.s.

Suppose that 0 ≤ t ≤ T . For each admissible strategy π, we have :

E
[

e−γ(Xπ
t −Xπ

s )J(t)
∣

∣

∣
Gs

]

= E
[

exp
(

−γ(Xs,π′

T + ξ)
)∣

∣

∣
Gs

]

, a.s.,

where the strategy π′ is defined by

π′u =

{

πu if s ≤ u ≤ t

π̂u if t < u ≤ T

It is clear that π′ ∈ As. Hence, we have :

E
[

e−γXπ
t J(t)

∣

∣Gs

]

≥ e−γXπ
s J(s) a.s.,

which gives that (e−γXπ
t J(t)) is a submartingale for each admissible strategy π.
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Remark 3.1. Note that it is possible to prove this proposition without using the existence

of an optimal strategy (see Appendix).

Also, the value function can be characterized as follows :

Proposition 3.3. (J(t))0≤t≤T is the largest G-adapted process such that for each admissible

strategy π ∈ A, the process (e−γXπ
t J(t))0≤t≤T is a submartingale and J(T ) = exp(−γξ).

Proof. Let (Ĵt) be a G-adapted process such that for all π ∈ A, the process (e−γXπ
t Ĵt) is a

submartingale and ĴT = exp(−γξ). Hence for all t ∈ [0, T ] and for each π ∈ A, we have :

E
[

e−γXπ
T ĴT

∣

∣

∣
Gt

]

≥ e−γXπ
t Ĵt a.s.

Then for each admissible strategy π ∈ A, we have :

E
[

exp
(

−γ
(

X
t,π
T + ξ

))∣

∣

∣
Gt

]

≥ Ĵt a.s.

Therefore we get :

ess inf
π∈At

E
[

exp
(

−γ
(

X
t,π
T + ξ

))
∣

∣

∣
Gt

]

≥ Ĵt a.s.,

which implies that :

J(t) ≥ Ĵt a.s.

We now show that there exists a càd-làg version of the value function (J(t))0≤t≤T . More

precisely,

Proposition 3.4. There exists a càd-làg G-adapted process (Jt)0≤t≤T such that for all

t ∈ [0, T ] :

Jt = J(t) a.s.

Proof. Let D = [0, T ] ∩ Q where Q is the set of rational numbers. Because (J(t)) is a

submartingale, we have that for almost every ω ∈ Ω, the mapping t → J(t, ω) defined on

D has at each point t of [0, T [ a finite right limit :

J(t+, ω) = lim
s∈D,s↓t

J(s, ω)

and at each point of ]0, T ] a finite left limit ;

J(t−, ω) = lim
s∈D,s↑t

J(s, ω)

(see Karatzas and Shreve (1991), Proposition 1.3.14 or Dellacherie and Meyer (1980), Chap-

ter 6).

Note that it is possible to define J(t+, ω) for each (t, ω) ∈ [0, T ] × Ω by :






J(t+, ω) := lim sup
s∈D,s↓t

J(s, ω), 0 ≤ t < T

J(T+, ω) := J(T, ω)
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From the right-continuity of the filtration (Gt), the process (J(t+)) is G-adapted.

We can show that (J(t+)) is a G-submartingale and even that for each π ∈ A, the process

(exp(−γXπ
t )J(t+)) is a G-submartingale. Indeed, for s ≤ t and for any sequence of rationals

(tn)n≥1 converging down to t,

E[exp(−γXπ
tn

)J(tn)|Gs] ≥ exp(−γXπ
s )J(s).

Hence, by the Lebesgue theorem for conditional expectation, by letting n tend to +∞,

E[exp(−γXπ
t )J(t+)|Gs] ≥ exp(−γXπ

s )J(s).

This inequality applied to s = t gives

J(t+) = E[J(t+)|Gt] ≥ J(t) a.s.

On the other hand, by characterization of (J(t)) (see Proposition 3.3), and since for each

π ∈ A, the process (exp(−γXπ
t )J(t+)) is a G-submartingale, we have that for each t ∈ [0, T ],

J(t+) ≤ J(t) a.s.

Thus, for each t ∈ [0, T ]

J(t+) = J(t) a.s.

Furthermore, the process (J(t+)) is càd-làg.

The result follows by taking Jt = J(t+).

Remark 3.2. Note that Proposition 3.3 can be written for the càd-làg process (Jt) under

the form : (Jt) is the largest càd-làg G-adapted process such that for each π ∈ A, the process

(e−γXπ
t Jt) is a submartingale and JT = exp(−γξ).

We now show that the process (Jt) is bounded (which will be useful in the following).

More precisely,

Lemma 3.1. For all 0 ≤ t ≤ T , the process (Jt)0≤t≤T verifies :

0 < Jt ≤ 1 a.s.

Proof. Fix t ∈ [0, T ]. The first inequality is easy to prove, since according to Schachermayer

(2001), there exists an admissible strategy π̂ ∈ At such that

Jt = E
[

exp
(

−γ
(

X
t,π̂
T + ξ

))

|Gt

]

,

which implies that 0 < Jt for all 0 ≤ t ≤ T .

The second inequality is due to the fact that the strategy πs = 0 for all s ∈ [t, T ] is

admissible according to Definition 3.1, hence Jt ≤ exp(−γξ) for all t. As we suppose that

the contingent claim ξ is non negative, we have that Jt ≤ 1 for all 0 ≤ t ≤ T .
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Remark 3.3. Note that if ξ is only lower bounded by a constant K, then (Jt) is still upper

bounded but by exp(−γK) instead of 1.

Recall that the dynamic programming principle gives the following classical character-

ization of the optimal strategy :

Proposition 3.5. Let π̂ ∈ A, the two following assertions are equivalent :

(i) π̂ ∈ A is an optimal strategy, that is J0 = E
[

exp
(

−γ
(

X π̂
T + ξ

))]

.

(ii) The process (e−γXπ̂
t Jt)0≤t≤T is a martingale.

Proof. Suppose (i). Hence we have

J0 = inf
π∈A

E [exp(−γ(Xπ
T + ξ))] = E

[

exp(−γ(X π̂
T + ξ))

]

. (3.7)

As the process (e−γXπ̂
t Jt) is a submartingale from Remark 3.2 and as J0 = E

[

exp(−γ(X π̂
T + ξ))

]

,

it follows that (e−γXπ̂
t Jt) is a martingale.

To show the converse, suppose that the process (e−γXπ̂
t Jt) is a martingale. Then we have

E
[

e−γXπ̂
T JT

]

= J0. Also, recall that by Remark 3.2, the process (e−γXπ
t Jt) is a submartin-

gale for each π ∈ A and since JT = exp(−γξ), we have J0 ≤ inf
π∈A

E [exp(−γ(Xπ
T + ξ))].

Consequently,

J0 = inf
π∈A

E [exp(−γ(Xπ
T + ξ))] = E

[

exp(−γ(X π̂
T + ξ))

]

,

thus π̂ is an optimal strategy.

Remark 3.4. Note that we can obtain a quite general verification theorem for the value

function, which gives a sufficient condition for a process to be the value function : let (Ĵt)

be a G-adapted process which is equal to exp(−γξ) at T , such that for each strategy π ∈ A,

the process
(

exp
(

−γ
∫ t

0
πs

S
s−
dSs

)

Ĵt

)

is a submartingale and there exists a strategy π̂ ∈ A
satisfying

(

exp
(

−γ
∫ t

0
π̂s

S
s−
dSs

)

Ĵt

)

is a martingale, then we have Ĵt = Jt a.s. for each

t ∈ [0, T ].

Remark 3.5. In the Brownian filtration case, see Hu et al. (2004), the authors use a

similar verification theorem but they look for the process (Jt) under the form (exp(γYt))

where (Yt) is a process defined as the solution of a BSDE of the form

Yt = −ξ −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds

for which some existence and uniqueness results hold. They characterize easily the function

f(s, z) with the two properties of the verification theorem. In the case of a filtration with

jumps, see Morlais (2008), the author uses the same approach as in Hu et al. (2004); she

obtains formally a BSDE for which there is no existence and uniqueness results. She proves

the existence of a solution of this BSDE with an approximation method but she does not

obtain uniqueness result; so, the value function cannot be characterized as the solution of
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a BSDE. In order to be able to solve completely the optimization problem, she restricts the

admissible portfolios set to a compact set, so that in this case, the value function can be

proved to be the unique solution of a BSDE.

In this work, we will not use a verification theorem (which corresponds to a sufficient

condition for a process to be equal to the value function). Instead, by using dynamic

programming technics (more precisely see Remark 3.2 and Proposition 3.5), we will show

directly that the value process (Jt) is solution of a BSDE. Note that it is a necessary

condition.

Since (Jt) is a submartingale by Remark 3.2 and since (Jt) is bounded by Lemma 3.1

(and hence of class D), it admits a unique Doob-Meyer decomposition (see Dellacherie and

Meyer (1980), Chapter 7) :

dJt = dmt + dAt

where (mt) is a square integrable martingale and (At) is an increasing G-predictable process

with A0 = 0. From the martingale representation theorem (see Proposition 2.1), the

previous Doob-Meyer decomposition can be written under the form :

dJt = ZtdWt + UtdMt + dAt (3.8)

with Z ∈ L2(W ) and U ∈ L2(M).

Using Remark 3.2 and Proposition 3.5, it is possible to characterize the process (At) of

(3.8), which gives that the value function (Jt) is solution of a BSDE with a quadratic

driver. More precisely,

Proposition 3.6. The process (Jt, Zt, Ut)0≤t≤T ∈ S+,∞ × L2(W ) × L2(M) is solution of

the following BSDE :















dJt = ess sup
π∈A

{

−γ2

2 π
2
t σ

2
t Jt + γπt(µtJt + σtZt) + λt(1 − e−γπtβt)(Jt + Ut)

}

dt

+ZtdWt + UtdMt

JT = exp(−γξ)
(3.9)

Proof. The proof of this proposition is based on the following arguments : first, for each

strategy π ∈ A, the process (e−γXπ
t Jt) is a submartingale (see Remark 3.2). Also, since

there exists an optimal strategy π̂ ∈ A (see Schachermayer (2001), Theorem 2.2) and by the

previous characterization of optimal strategies (see Proposition 3.5), the process (e−γXπ̂
t Jt)

is a martingale. It follows that the finite variation part which appears in the decomposition

of the semi-martingale (e−γXπ
t Jt) (resp. (e−γXπ̂

t Jt)) is an nondecreasing process (resp. null

process).

More precisely, let us calculate the derivative of process (e−γXπ
t Jt). By Itô’s formula, we

have :

d
(

e−γXπ
t
)

= −γe−γXπ

t−dX
π,c
t +

γ2

2
e
−γXπ

t−d <Xπ,c>t +
(

e−γXπ
t − e

−γXπ

t−

)

dNt

= e
−γXπ

t−

[(

γ2

2
π2

t σ
2
t − γπtµt

)

dt− γπtσtdWt +
(

e−γπtβt − 1
)

dNt

]

9



with Xπ,c the continuous part of Xπ.

Then the product rule yields

d
(

e−γXπ
t Jt

)

= e
−γXπ

t−dJt + Jt−d
(

e−γXπ
t

)

+ d
[

e−γXπ
t , Jt

]

= e
−γXπ

t− (ZtdWt + UtdMt + dAt) + e
−γXπ

t−Jt−

[(

γ2

2
π2

t σ
2
t − γπtµt

)

dt

−γπtσtdWt +
(

e−γπtβt − 1
)

dNt

]

− e
−γXπ

t−γπtσtZtdt

+e−γXπ

t−

(

e−γπtβt − 1
)

UtdNt.

Since dNt = dMt + λtdt, we have :

d
(

e−γXπ
t Jt

)

= e
−γXπ

t−

[

(Zt − γπtσtJt)dWt + (Ut + (e−γπtβt − 1)(Ut + Jt−))dMt + dAt

+

{(

γ2

2
π2

t σ
2
t − γπtµt

)

Jt + λt

(

e−γπtβt − 1
)

(Ut + Jt) − γπtσtZt

}

dt

]

= dmπ
t + dAπ

t ,

with Aπ the finite variational part given by Aπ
0 = 0 and

dAπ
t = e

−γXπ

t−

[

dAt +

{(

γ2

2
π2

t σ
2
t − γπtµt

)

Jt + λt

(

e−γπtβt − 1
)

(Ut + Jt) − γπtσtZt

}

dt

]

and mπ the local martingale part given by mπ
0 = J0 and

dmπ
t = e

−γXπ

t−

[

(Zt − γπtσtJt)dWt + (Ut + (e−γπtβt − 1)(Ut + Jt−))dMt

]

.

Since by Remark 3.2, the process
(

e−γXπ
t Jt

)

is a submartingale for each strategy π ∈ A, it

follows that dAπ
t ≥ 0 for each strategy π ∈ A and we get

dAt ≥ ess sup
π∈A

{[(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

]

dt

}

.

Recall that there exists an optimal strategy π̂ ∈ A for our optimization problem 3.5 (see

Theorem 2.2, Schachermayer (2001)), that is such that J0 = E
[

exp
(

−γ
(

X π̂
T + ξ

))]

. By

the previous characterization of an optimal strategy (see Proposition 3.5), the process

(e−γXπ̂
t Jt) is a martingale, which implies that dAπ̂

t = 0 and hence, a.s.

dAt =

[(

−γ
2

2
π̂2

t σ
2
t + γπ̂tµt

)

Jt − λt

(

e−γπ̂tβt − 1
)

(Ut + Jt) + γπ̂tσtZt

]

dt.

Therefore we have

dAt =

(

−γ
2

2
π̂2

t σ
2
t + γπ̂tµt

)

Jt − λt

(

e−γπ̂tβt − 1
)

(Ut + Jt) + γπ̂tσtZt

= ess sup
π∈A

{(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

}

.
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Thus the Doob-Meyer decomposition (3.8) of (Jt) can be written as follows :

dJt = ZtdWt + UtdMt

+ ess sup
π∈A

{(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

}

dt

and the essential supremum is attained at π̂.

The problem is that we can not prove that BSDE (3.9) admits a unique solution in

S+,∞ × L2(W ) × L2(M). On the other hand we can characterize the value function (Jt)

with the notion of largest solution of a BSDE defined by : (Jt, Zt, Ut) is called the largest

solution if for all solution (J̄t, Z̄t, Ūt) of the BSDE in S+,∞ × L2(W )× L2(M), we have for

all 0 ≤ t ≤ T : J̄t ≤ Jt a.s. More precisely,

Theorem 3.1. (Jt, Zt, Ut)0≤t≤T is the largest solution in S+,∞ × L2(W ) × L2(M) of the

BSDE :














dJt = ess sup
π∈A

{

−γ2

2 π
2
t σ

2
t Jt + γπt(µtJt + σtZt) + λt

(

1 − e−γπtβt
)

(Jt + Ut)
}

dt

+ZtdWt + UtdMt

JT = exp(−γξ)
(3.10)

The optimal strategy π̂ of the optimization problem (3.5) is characterized by the fact

that the essential supremum in (3.10) is attained at π̂t dt ⊗ dP a.s. for t ∈ [0, T ].

Proof. Let
(

J̄t, Z̄t, Ūt

)

be a solution of (3.10) in S+,∞×L2(W )×L2(M). Let us prove that

for each strategy π ∈ A, the process (e−γXπ
t J̄t) is a submartingale.

We have :

d
(

e−γXπ
t J̄t

)

= e
−γXπ

t−

[

(

Z̄t − γπtσtJ̄t−
)

dWt +
(

Ūt +
(

e−γπtβt − 1
)

(

Ūt + J̄t−
)

)

dMt + dĀt

+

{(

γ2

2
π2

t σ
2
t − γπtµt

)

J̄t− + λt

(

e−γπtβt − 1
)

(

Ūt + J̄t

)

− γπtσtZ̄t

}

dt

]

,

where dĀt = ess sup
π∈A

{

−γ2

2 π
2
t σ

2
t J̄t + γπt(µtJ̄t + σtZ̄t) + λt

(

1 − e−γπtβt
)

(J̄t + Ūt)
}

dt.

Hence, d
(

e−γXπ
t J̄t

)

can be written under the form :

d
(

e−γXπ
t J̄t

)

= dM̄π
t + dĀπ

t ,

with Āπ the finite variational part given by Āπ
0 = 0 and

dĀπ
t = e−γXπ

t

{

dĀt +

[(

γ2

2
π2

t σ
2
t − γπtµt

)

J̄t + λt

(

e−γπtβt − 1
)

(

Ūt + J̄t

)

− γπtσtZ̄t

]

dt

}

,

and M̄π the local martingale part given by M̄π
0 = J̄0 and

dM̄π
t = e

−γXπ

t−

[

(Z̄t − γπtσtJ̄t)dWt +
(

Ūt +
(

e−γπtβt − 1
)

(

Ūt + J̄t−
)

)

dMt

]

.
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It is easy to show that dĀπ
t ≥ 0 from the definition of the process (Āt). Thus we have the

inequality

M̄π
t ≤ e−γXπ

t J̄t.

By definition of an admissible strategy, there exists a constant Kπ for each admissible strat-

egy π ∈ A such that Xπ
t ≥ Kπ for all 0 ≤ t ≤ T and since (J̄t) is a positive bounded process,

we have that the process (M̄π
t ) is upper bounded by a constant. Hence, the process (M̄π

t )

is a submartingale.

Thus the process (e−γXπ
t J̄t) is a submartingale, because it is the sum of a submartingale

and a nondecreasing process.

Now recall that (Jt) is the largest process such that for each π ∈ A, (e−γXπ
t Jt) is a sub-

martingale and JT = exp(−γξ) (see Remark 3.2). Therefore, we get :

∀ t ∈ [0, T ], J̄t ≤ Jt a.s.

Remark 3.6. If we suppose that the set there is no default (i.e. we consider the Brownian

motion case), then this result corresponds to that obtained in Hu et al. (2004) by taking

Yt = 1
γ

ln(Jt) (since they consider the process (Yt) instead of the process (Jt)), see also

Pham (2007). Recall that this result had been first stated by Rouge and El Karoui (2000).

In the rest of this section, we show that the value function (Jt) can also be characterized

as the limit of a nondecreasing sequence of solutions of classical BSDEs. More precisely,

for each k ∈ N, we consider the value function (Jk
t ) defined by :

Jk
t = ess inf

π∈Ak
t

E
[

exp
(

−γ(Xt,π
T + ξ)

)

|Gt

]

a.s.

with Ak
t =

{

π ∈ At, |πs| ≤ k ∀ s ∈ [t, T ] a.s.
}

.

We will now show that the value function (Jt) can be characterized as the nonincreasing

limit of the sequence (Jk
t )k∈N. But for that we need to make the following assumptions :

Assumption 3.2. The processes (µt)0≤t≤T , (σt)0≤t≤T and (βt)0≤t≤T are uniformly bounded,

like the compensator (λ)0≤t≤T .

For each k ∈ N, since the subset Ak is bounded, the process (Jk
t ) is characterized as the

unique solution of a BSDE. More precisely,

Proposition 3.7. The process
(

Jk
t , Z

k
t , U

k
t

)

0≤t≤T
is the unique solution in S+,∞×L2(W )×

L2(M) of the following classical BSDE :















dJk
t = ess sup

π∈Ak

{

−γ2

2 π
2
t σ

2
t J

k
t + γπt(µtJ

k
t + σtZ

k
t ) + λt

(

1 − e−γπtβt
)

(Jk
t + Uk

t )
}

dt

+Zk
t dWt + Uk

t dMt

Jk
T = exp(−γξ)

(3.11)
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Proof. The proof is very similar to that of Proposition 3.6. To prove that the process
(

Jk
t , Z

k
t , U

k
t

)

is solution of (3.11), we use that for each strategy π ∈ Ak, the process

(e−γXπ
t Jk

t ) is a submartingale and that, since the domain Ak is bounded, there exits a

strategy π̂ optimal for Jk
0 , which gives that the process (e−γXπ̂

t Jk
t ) is a martingale.

We now show the uniqueness of the solution of BSDE (3.11). In BSDE (3.11) the driver is

equal dP ⊗ dt a.s. to

f(t, y, z, u) = ess inf
π∈Ak

{

γ2

2
π2

t σ
2
t y − γπt(µty + σtz) − λt

(

1 − e−γπtβt

)

(y + u)

}

.

We can easily show that the driver is Lipschitz w.r.t. y, z, u. Indeed, the driver is written

as an infimum of linear drivers w.r.t. (y, z, u) with uniformly bounded coefficients since Ak

is bounded and the coefficients σt, µt, βt, λt are bounded by Assumption 3.2. The Lipschitz

property of the driver follows by classical analysis results (see Lemma B.3 in Appendix

B).

Remark 3.7. Note that in the case where the domain is restricted to a compact set, we

have derived in a simpler way the result stated in Morlais (2008) (in which she considers

the process defined by Yt = 1
γ

ln(Jt) instead of Jt).

We now state that the value function (Jt) can be written as the limit of the sequence

(Jk
t )

Proposition 3.8. Jt = lim
k→∞

↓ Jk
t a.s. ∀ t ∈ [0, T ].

Proof. It is obvious with the definition of sets A and Ak that Ak ⊂ A and hence,

∀ k ∈ N Jt ≤ Jk
t a.s.

Also, since for each k ∈ N, Ak ⊂ Ak+1, it follows that the sequence
(

Jk
t

)

k∈N
is nonincreasing.

Since it is also lower bounded, we get the existence of the limit denoted by J̃t. Note that

(J̃t) is an adapted process. We have clearly that Jt ≤ J̃t for all 0 ≤ t ≤ T a.s.

Let us now prove that the process (J̃t) is a submartingale. Fix 0 ≤ s ≤ t ≤ T . As (Jk
t ) is

a submartingale, we get :

∀ k ∈ N E[Jk
t |Gs] ≥ Jk

s ≥ J̃s a.s.

By monotone convergence theorem for conditional expectation, we have :

E[J̃t|Gs] ≥ J̃s a.s.

Hence, the process (J̃t) is a submartingale. Let us show that for each bounded strategy

π ∈ A, the process (e−γXπ
t J̃t) is a submartingale.

Let π be an admissible bounded strategy. Then, there exists n ∈ N such that π is uniformly

bounded by n. For each k ≥ n, since π ∈ Ak, the process (e−γXπ
t Jk

t ) is a submartingale.

Then, by the monotone convergence theorem for conditional expectation, it can be easily

be proved that the process (e−γXπ
t J̃t) is a submartingale.

Note now that the process (J̃t) is a submartingale not necessarily càd-làg. Let D = [0, T ]∩Q.
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Because (J̃t) is a submartingale, for almost every ω ∈ Ω, the mapping t → J̃t(ω) defined

on D has at each point t of [0, T ] a finite right limit :

J̃t+(ω) = lim
s∈D,s↓t

J̃s(ω).

The process (J̃t+) can be proved to be a G-submartingale. Also, for each bounded strategy

π ∈ A, the process (exp(−γXπ
t )J̃t+) can be shown to be a G-submartingale. Also, note

that since (J̃t) is a submartingale and since the filtration (Gt) is right-continuous, we have

clearly that

J̃t ≤ E[J̃t+ |Gt] = E[J̃t+ |Gt+ ] = J̃t+ a.s. (3.12)

It follows that

Jt ≤ J̃t ≤ J̃t+ a.s.

To simplify notation, the process (J̃t+) will now be denoted by (J̄t). So, we have proved

that Jt ≤ J̄t a.s.

Let us show that J̄t ≤ Jt a.s. Since (J̄t) is a càd-làg submartingale of class D, it admits the

following Doob-Meyer decomposition :

dJ̄t = Z̄tdWt + ŪtdMt + dĀt,

where Z̄ ∈ L2(W ), Ū ∈ L2(M) and Ā is a nondecreasing G-predictable process with Ā0 = 0.

As before, we will use the fact that for each bounded strategy π ∈ A, the process (e−γXπ
t J̄t)

is a submartingale to give some necessary conditions satisfied by the process (Āt).

Let π ∈ A a bounded strategy. We have

e−γXπ
t J̄t = M̄π

t + Āπ
t

with Āπ the finite variational part given by Āπ
0 = 0 and

dĀπ
t = e−γXπ

t

{

dĀt +

[

γ2

2
π2

t σ
2
t J̄t + λt

(

e−γπtβt − 1
)

(

Ūt + J̄t

)

− γπt

(

µtJ̄t + σtZ̄t

)

]

dt

}

(3.13)

and M̄π the local martingale part given by M̄π
0 = J̄0 and

dM̄π
t = e

−γXπ

t−

[

(

Z̄t − γπtσtJ̄t

)

dWt +
(

Ūt +
(

e−γπtβt − 1
)

(

Ūt + J̄t−
)

)

dMt

]

. (3.14)

Let Ā be the set of essentially bounded admissible strategies. Since for each π ∈ Ā, the

process (e−γXπ
t J̄t) is a submartingale, we have that a.s. dĀπ

t ≥ 0 and hence,

dĀt ≥ ess sup
π∈Ā

{

−γ
2

2
π2

t σ
2
t J̄t + γπt

(

µtJ̄t + σtZ̄t

)

+ λt

(

1 − e−γπtβt

)

(J̄t + Ūt)

}

dt (3.15)

Let us now show that for each admissible (not necessarily essentially bounded) strategy

π ∈ A, the process
(

e−γXπ
t J̄t

)

is a submartingale. Now, it is clear that dt ⊗ dP a.s.

ess sup
π∈Ā

{

−γ
2

2
π2

t σ
2
t J̄t + γπt

(

µtJ̄t + σtZ̄t

)

+ λt

(

1 − e−γπtβt

)

(J̄t + Ūt)

}

=

ess sup
π∈A

{

−γ
2

2
π2

t σ
2
t J̄t + γπt

(

µtJ̄t + σtZ̄t

)

+ λt

(

1 − e−γπtβt

)

(J̄t + Ūt)

}

(3.16)
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Fix π ∈ A (not necessarily bounded). We have

e−γXπ
t J̄t = M̄π

t + Āπ
t ,

where Āπ and M̄π are given by (3.13) and (3.14).

Hence, from inequality (3.15) and equality (3.16), we have that dĀπ
t ≥ 0 a.s. Then we get :

M̄π
t = e−γXπ

t J̄t − Āπ
t

and hence

M̄π
t ≤ e−γXπ

t J̄t.

As J̄t ≤ 1, we get :

M̄π
t ≤ e−γXπ

t ≤ e−γKπ .

where Kπ is a constant such that Xπ
t ≥ Kπ. Thus, the process

(

M̄π
t

)

is an upper bounded

local martingale, therefore it is a submartingale. As
(

M̄π
t

)

is a submartingale and
(

Āπ
t

)

is nondecreasing, the process
(

e−γXπ
t J̄t

)

is a submartingale and this holds for any π ∈ A.

Also, the process
(

J̄t

)

is càd-làg G-adapted and J̄T = exp(−γξ). Since (Jt) is the largest

process (see Remark 3.2) satisfying these properties, we have :

J̄t ≤ Jt a.s.

and the proof is ended.

Remark 3.8. Note that we have derived in a simpler way the same approximation result

as the one stated in Morlais (2008) (in which she considers the processes defined by Y k
t =

1
γ

ln(Jk
t ) instead of Jk

t ).

4 Indifference pricing

We present a general framework of the Hodges and Neuberger (1989) approach with

some strictly increasing, strictly concave and continuously differentiable mapping u, defined

on R. We solve explicitly the problem in the case of exponential utility.

The Hodges approach to pricing of unhedgeable claims is a utility-based approach and

can be summarized as follows : the issue at hand is to assess the value of some (defaultable)

claim ξ as seen from the perspective of an investor who optimizes his behavior relative to

some utility function, say u. The investor has two choices :� he invests only in the risk-free asset and in the risky asset, in this case the associated

optimization problem is

V (x, 0) = sup
π∈A

E[u(Xx,π
T )],� he invests also in the contingent claim, whose price is p at 0, in this case the associated

optimization problem is

V (x− p, ξ) = sup
π∈A

E[u(Xx−p,π
T + ξ)].
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Definition 4.2. For a given initial endowment x, the Hodges buying price of a defaultable

claim ξ is the price p such that the investor’s value functions are indifferent between holding

and not holding the contingent claim, i.e.

V (x, 0) = V (x− p, ξ).

Remark 4.9. We can define the Hodges selling price p∗ of ξ by considering −p, where p

is the buying price of −ξ, as specified in the previous definition.

In the rest of this part, we give an explicit solution for the exponential utility function

u(x) = − exp(−γx), where γ > 0 is fixed.

The Hodges price p can be derived explicitly by applying the results of Section 3. If the

investor buys the contingent claim at the price p and invests the rest of his wealth in the

risk-free asset and in the risky asset, the value function is equal to

V (x− p, ξ) = − exp(−γ(x− p))Jξ
0 .

If he invests all his wealth in the risk-free asset and in the risky asset, the value function is

equal to

V (x, 0) = − exp(−γx)J0
0 .

Recall that (Jξ
t , Zt, Ut) is the largest solution of















dJ
ξ
t = ess sup

π∈A

{

−γ2

2 π
2
t σ

2
t J

ξ
t + γπt(µtJ

ξ
t + σtZt) + λt

(

1 − e−γπtβt
)

(Jξ
t + Ut)

}

dt

+ZtdWt + UtdMt

J
ξ
T = exp(−γξ)

(4.17)

The Hodges price for the contingent claim ξ is clearly given by the formula :

p =
1

γ
ln

(

J0
0

J
ξ
0

)

.

We can also define the Hodges price of the contingent claim ξ at time t by :

pt =
1

γ
ln

(

J0
t

J
ξ
t

)

.

Remark 4.10. If we restrict the admissible strategies to the bounded set Ak, the indifference

price pk can be also defined by the same method. More precisely,

pk =
1

γ
ln

(

J
k,0
0

J
k,ξ
0

)

(resp. pk
t =

1

γ
ln

(

J
k,0
t

J
k,ξ
t

)

),

where Jk,ξ is the unique solution of (3.11) which is identical to BSDE (4.17) by substituting

the bounded subset Ak for A.

Note that

p = lim
k→∞

pk (resp. pt = lim
k→∞

pk
t ).

That allows to approximate the indifference price by numerical computation.
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5 Logarithmic utility

In this section, we calculate the value function and characterize the optimal strategy

for the utility maximization problem with respect to

U(x) = log(x).

This time, we shall use a somewhat different notion of trading strategy : pt denotes the

part of the wealth X
x,p
t invested in stock S, that is advantageous for the calculus. The

amount of money invested in stock S is given by the formula πt = ptX
x,p

t−
. A G-predictable

process p = (pt)0≤t≤T is said to be a trading strategy if the wealth process (Xx,p
t ) given by

X
x,p
t = x+

∫ t

0

psX
x,p

s−

Ss−
dSs

is well defined where x is the initial capital. Under the assumption that the trading strategy

is self-financing, we have the following relation :

dX
x,p
t = X

x,p

t−
pt(µtdt + σtdWt + βtdNt)

and from Dolean’s formula, we get the expression of the wealth process (Xx,p
t ) :

X
x,p
t = x exp

(
∫ t

0
psµsds +

∫ t

0
psσsdWs −

1

2

∫ t

0
|psσs|2ds+

∫ t

0
log(1 + psβs)dNs

)

.

(5.18)

In the following we want to maximize on a subset of strategies the expectation of utility

from terminal wealth. For that we define the admissible strategies set :

Definition 5.3. The set of admissible strategies A consists of all G-predictable processes

(p)0≤t≤T satisfying E
[

∫ T

0 |ptσt|2dt+
∫ T

0 | log(1 + ptβt)|2λtdt
]

< ∞ and X
x,p
t > 0 for all

0 ≤ t ≤ T .

Remark 5.11. The condition X
x,p
t > 0 for all 0 ≤ t ≤ T is equivalent to ptβt > −1 for all

0 ≤ t ≤ τ .

The optimization problem is given by

V (x) = sup
p∈A

E
[

log (Xx,p
T )
]

. (5.19)

Let us define the value function J0 = sup
p∈A

E
[

log (
X

x,p
T

x
)
]

. To solve this problem, we need

few assumptions :

Assumption 5.3. The processes (µt)0≤t≤T , (σt)0≤t≤T and (βt)0≤t≤T are uniformly bounded,

like the processes (σ−1
t ) and (β−1

t ).

Assumption 5.4. The intensity (λt)0≤t≤T is uniformly bounded.

Contrary to the previous section, it is possible to characterize directly the value function

without BSDE. More precisely,
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Theorem 5.2. The solution of the optimization problem (5.19) is given by V (x) = log(x)+

J0 with :

J0 = E

[
∫ T

0

(

p̂tµt −
p̂2

tσ
2
t

2
+ λt log(1 + p̂tβt)

)

dt

]

where p̂ is the optimal trading strategy given by

p̂t =







µt

2σ2
t

− 1
2βt

+

√
(µtβt+σ2

t )2+4λtβ
2
t σ2

t

2βtσ
2
t

if t < τ
µt

σ2
t

if t ≥ τ

Proof. With (5.18) and Definition 5.3, we get the following expression for J0 :

J0 = sup
p∈A

E

[
∫ T

0

(

psµs −
|psσs|2

2
+ λs log(1 + psβs)

)

ds

]

,

which implies that

J0 ≤ E

[

∫ T

0
ess sup
psβs>−1

{

psµs −
|psσs|2

2
+ λs log(1 + psβs)

}

ds

]

. (5.20)

In the following, for each s ∈ [0, T ] and each ω ∈ Ω, we look for the value p̂s(ω) denoted

also p̂s which maximizes

f(x) = µsx− σ2
sx

2

2
+ λs log(1 + βsx),

with the unique condition that βsx > −1 before the default. The derivative of this function

f is

f ′(x) = µs − σ2
sx+

λsβs

1 + βsx
. (5.21)

After the default, since the process (λt) is null, the optimal value is clearly given by p̂s = µs

σ2
s
.

We now are interested by the optimal value before the default. For that, let y = 1 + βsx :

f ′(x) = 0 ⇔
{

µsy − σ2
s

βs
y(y − 1) + λsβs = 0

y = 1 + βsx

Let y− and y+ be the roots of µsy − σ2
s

βs
y(y − 1) + λsβs with y− ≤ y+, then :

y−y+ = −λsβ
2
s

σ2
s

.

Thus we have the inequality

y− < 0 < y+.

Hence, by taking p̂s = y+−1
βs

we have that p̂sβs > −1 and for each ω ∈ Ω we have the

equality :

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs) = sup

βsx>−1

{

µsx− σ2
sx

2

2
+ λs log(1 + βsx)

}

.
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From (5.21) and the condition βtx > −1 we obtain for each s ∈ [0, T ] and each ω ∈ Ω :

p̂s =
σ2

s − µsβs −
√

(µsβs + σ2
s)

2 + 4λsβ2
sσ

2
s

−2βsσ2
s

.

Then from inequality (5.20), we have the following inequality :

J0 ≤ E

[
∫ T

0

(

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs)

)

ds

]

.

It now is sufficient to show that the strategy p̂, defined by p̂s =
σ2

s−µsβs−
√

(µsβs+σ2
s)2+4λsβ2

sσ2
s

−2βsσ2
s

,

is admissible. That is clearly right with Assumptions 5.3 and 5.4. Thus the previous

inequality is an equality

J0 = E

[
∫ T

0

(

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs)

)

ds

]

and the strategy p̂ is an optimal strategy.

Note that if we substitute p̂t by its value in the expression of the value function J0, we

get

J0 = E

[

∫ T

0

(

µ2
t

4σ2
t

− µ2
t

2β2
t

− σ2
t

4β2
t

− λt

2 +
(µtβt+σ2

t )2
√

(µtβt+σ2
t )2+4λtβ

2
t σ2

t

4β2
t σ2

t

+λt log
(

1
2 + µtβt

2σ2
t

+
√

(µtβt + σ2
t )

2 + 4λtβ
2
t σ

2
t

))]

.

Remark 5.12. Assumptions 5.3 and 5.4 can be reduced to the fact that the strategy p̂ is

an admissible strategy.

Remark 5.13. Recall that in the case of no default, the optimal strategy is given by

p0
t =

µt

σ2
t

.

Thus, in the case of default, the optimal strategy p̂ can be written under the form

p̂t = p0
t − ǫt

where ǫt is an additional term given by

ǫt =







µt

2σ2
t

+ 1
2βt

−
√

(µtβt+σ2
t )2+4λtβ

2
t σ2

t

2βtσ
2
t

, ∀ t < τ

0, ∀ t ≥ τ

Note that if we assume that βt ≤ 0 (resp. βt ≥ 0), i.e. S has a negative jump (resp. a

positive jump) at default, the additional term ǫt is positive (resp. negative), which is expected

due to the default. After the default, the optimal strategy corresponds to the optimal strategy

in a model without default.

Remark 5.14. Note that if the process (βt) converges to 0, then the optimal strategy

converges to µt

σ2
t

, which is expected because if (βt) converges to 0, it is as if there is no

default.
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6 Power utility

To complete the spectrum of important utility functions, in this section we calculate

the value function and characterize the optimal strategy for the optimization problem with

respect to

U(x) = xγ , x ≥ 0, γ ∈ (0, 1).

Trading strategies and wealth process have the same meaning as in Section 5. Under the

assumption that the trading strategy is self-financing, the investor’s wealth equation is

{

dX
x,p
t = X

x,p

t−
pt(µtdt+ σtdWt + βtdNt),

X
x,p
0 = x.

Using Dolean’s formula, we get an expression of the wealth process (Xx,p
t ) :

X
x,p
t = x exp

(
∫ t

0
psµsds +

∫ t

0
psσsdWs −

1

2

∫ t

0
|psσs|2ds+

∫ t

0
log(1 + psβs)dNs

)

.

The optimization problem consists in maximizing the expectation of utility from terminal

wealth on the admissible strategies set defined by :

Definition 6.4. The set of admissible strategies A consists of all G-predictable processes

p = (pt)0≤t≤T that satisfy
∫ T

0 |ptσt|2dt +
∫ T

0 | log(1 + ptβt)|2λtdt < ∞ and Xx,p
t > 0 for all

0 ≤ t ≤ T .

The investor faces the maximization problem

V (x) = sup
p∈A

E[(Xx,p
T )γ ]. (6.22)

In order to find the value function and an optimal strategy we apply the same method

as for the exponential utility function. Most of the proofs are identical to Section 3 and

are given in Appendix. As in Section 3, we give a dynamic extension of the initial problem

and define the value function for each time t ∈ [0, T ]. More precisely, we denote

Jt = ess sup
p∈A

E

[

(Xx,p
T )γ

(Xx,p
t )γ

∣

∣

∣

∣

Gt

]

a.s.

we assume that (Jt) is a càd-làg process, which is possible as in Section 3.

As in Section 3, we have a characterization for the process (Jt) by dynamic programming.

More precisely,

Proposition 6.9. (Jt)0≤t≤T is the smallest càd-làg G-adapted process such that for each

p ∈ A, the process
(

(Xx,p
t )

γ
Jt

)

0≤t≤T
is a supermartingale and JT = 1.

And the dynamic programming principle also gives a characterization for the optimal

strategy :

Proposition 6.10. Let p̂ ∈ A, the two following assertions are equivalent :
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(i) p̂ is an optimal strategy, i.e. J0 = sup
p∈A

E
[(

X
x,p

T

x

)γ]

= E

[(

X
x,p̂

T

x

)γ]

.

(ii) The process ((Xx,p̂
t )γJt)0≤t≤T is a martingale.

We now will characterize the process (Jt) as a solution of a BSDE. From Proposition

6.9, the process (Jt) is a supermartingale and we can write it under the following form with

Doob-Meyer decomposition (see Dellacherie and Meyer (1980)) :

dJt = dmt − dAt

with (mt) is a local martingale (since (Jt) is not necessarily of class D) and (At) is a

nondecreasing G-predictable process where A0 = 0. Using a local martingale representation

theorem (see Proposition 2.1), there exist two predictable processes (Zt) and (Ut) such that

Z ∈ L2
loc(W ), U ∈ L2

loc(M) and :

dJt = ZtdWt + UtdMt − dAt. (6.23)

From Propositions 6.9 and 6.10, we can give a characterization of the process (Jt) with

a BSDE. For that we define the notion of smallest solution of a BSDE by : (Jt, Zt, Ut) is

called the smallest solution of a BSDE if for all solution (J̄t, Z̄t, Ūt) of the BSDE we have

that Jt ≤ J̄t a.s.

Theorem 6.3. (Jt, Zt, Ut)0≤t≤T is the smallest solution in S+,∞ × L2
loc(W ) × L2

loc(M) of

the following BSDE :














dJt = − ess sup
p∈A

{(

γptµt + γ(γ−1)
2 p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt

+ZtdWt + UtdMt

JT = 1

(6.24)

The optimal strategy p̂ of the optimization problem (6.22) is characterized by the fact that

the essential supremum in (6.24) is attained at p̂t dt⊗ dP a.s. for t ∈ [0, T ].

As in the case of an exponential utility function, we can not say if BSDE (6.24) admits

a unique solution. But again we have another characterization of the process (Jt) as the

limit of a nonincreasing sequence of solutions of classical BSDEs, but for that we need to

make Assumption 3.2.

Proposition 6.11. For all k ∈ N, there exists a bounded positive càd-làg G-adapted process

(Jk
t )0≤t≤T such that :

Jk
t = ess sup

p∈Ak

E

[(

X
x,p
T

X
x,p
t

)γ∣
∣

∣

∣

Gt

]

a.s.

where Ak = {π ∈ A, |πt| ≤ k a.s., ∀ t ∈ [0, T ]}.
The process (Jk

t , Z
k
t , U

k
t )0≤t≤T is the unique solution in S+,∞ × L2(W ) × L2(M) of the

classical BSDE :














dJk
t = − ess sup

p∈Ak

{(

γptµt + γ(γ−1)
2 p2

tσ
2
t

)

Jk
t + γptσtZ

k
t + λt((1 + ptβt)

p − 1)(Jk
t + Uk

t )
}

dt

+Zk
t dWt + Uk

t dMt

Jk
T = 1

(6.25)
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We now can state that the value function (Jt) can be written as the limit of the processes

(Jk
t ). More precisely,

Proposition 6.12. Jt = lim
k→∞

↑ Jk
t a.s.

7 Generalizations

In this section, we give some generalizations of the previous results. The proofs are not

given, but they are identical at the proofs of Section 3. It is also possible to generalize the

results of Section 5 and Section 6, but it is not given in this paper.

7.1 Several default times

We consider a market defined on the complete probability space (Ω,G,P) equipped with

two stochastic processes : a n-dimensional Brownian motion (Wt)0≤t≤T and a p-dimensional

jump process (N)0≤t≤T = ((N i)0≤t≤T , 1 ≤ i ≤ p) with N i
t = 1τ i≤t where (τ i)1≤i≤p are p

default times. We denote by G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by

these processes :

Gt = σ(Ws, 0 ≤ s ≤ t) ∨ σ(Ns, 0 ≤ s ≤ t) ∨N .

Assumption 7.5. We do the following assumptions on the default times

(i) The defaults do not appear simultaneously : P(τ i = τ j) = 0 for i 6= j.

(ii) Each default can appear at any time : P(τ i > t) > 0.

We suppose that the G-compensator (Γi
t) of (N i

t ) for each i is absolutely continuous with

respect to the Lebesgue measure, so that there exists a process (λi
t) such that Γi

t =
∫ t

0 λ
i
sds.

Then the process (M i
t ) defined by :

M i
t = N i

t −
∫ t

0
λi

sds

is a G-martingale.

Introduce the classical sets� L2(W ) (resp. L2
loc(W )) is the set of G-predictable processes on [0, T ] under P with

E

[

n
∑

i=1

∫ T

0
|Zi

t |2dt
]

<∞ (resp.

n
∑

i=1

∫ T

0
|Zi

t |2dt <∞ a.s. ).� L2(M) (resp. L2
loc(M)) is the set of G-predictable processes on [0, T ] under P with

E

[

p
∑

i=1

∫ T

0
|U i

t |2λi
tdt

]

<∞ (resp.

p
∑

i=1

∫ T

0
|U i

t |2λi
tdt <∞ a.s. ).

The martingale representation theorem given in Section 2 still holds in the multidimen-

sional case (see Kusuoka (1999)) :
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Proposition 7.13. Let m be any (P,G)-(resp. locally) square integrable (resp. local)

martingale with m0 = 0. Then, there are two valued G-predictable processes φ = (φi, 1 ≤
i ≤ n) and ψ = (ψi, 1 ≤ i ≤ p) such that φ ∈ L2(W ) and ψ ∈ L2(M) (resp. φ ∈ L2

loc(W )

and ψ ∈ L2
loc(M)) and

mt =
n
∑

i=1

∫ t

0
φi

sdW
i
s +

p
∑

i=1

∫ t

0
ψi

sdM
i
s, 0 ≤ t ≤ T.

We consider a financial market which consists of one risk-free asset, whose price process

is assumed for simplicity to be equal to 1 at each time, and n risky assets with price

processes (Si
t)1≤i≤n which admit p jumps at time (τ j)1≤j≤p. In the following, we consider

that the price processes (Si
t)1≤i≤n evolve according to the equation :

dSi
t = Si

t−(µi
tdt+

n
∑

j=1

σ
ij
t dW

j
t +

p
∑

j=1

β
ij
t dN

j
t ) (7.26)

with the classical assumption :

Assumption 7.6. (i) (µi
t), (σij

t ) and (βij
t ) are G-predictable stochastic processes for each

i and j.

(ii) The process (βij
t ) satisfied βij

t > −1 for all t ∈ R+ and for each i and j (it is necessary

for that the processes (Si
t)1≤i≤n are positive).

A G-predictable process π = (πi
t, 0 ≤ t ≤ T )1≤i≤n is called trading strategy if

n
∑

i=1

∫ T

0
πi

t

Si

t−

dSi
t

is well defined. The process (πi
t) describes the amount of money invested in stock Si. Under

the assumption that the trading strategy is self-financing, the wealth process (Xx,π
t ) of a

trading strategy π with initial capital x satisfies the equation :

dXt =

n
∑

i=1

πi
t

Si
t−

dSi
t.

In this part, we characterize the value function (Jt) for the maximization problem with

an exponential utility function as in Section 3. For that, we first define the admissible

strategies set on which we maximize the expectation of utility from terminal wealth :

Definition 7.5. The admissible trading strategies set A consists of all G-predictable pro-

cesses π = (πt)0≤t≤T which satisfy
∫ T

0 |π⊤t σt|2dt <∞1 a.s. and
n
∑

i=1

p
∑

j=1

∫ T

0 |πi
tβ

ij
t |2λj

tdt <∞

a.s. and there exists a constant Kπ such that X0,π
t ≥ Kπ for all t ∈ [0, T ].

Recall that there exists a càd-làg process (Jt) such that for each t ∈ [0, T ] :

Jt = ess inf
π∈At

E
[

exp(−γXt,π
T )|Gt

]

a.s.

1
x
⊤ denotes the transpose vector of the vector x
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where the set At consists of all G-predictable processes π = (πs)t≤s≤T which satisfy
∫ T

t
|π⊤t σt|2dt < ∞ a.s. and

n
∑

i=1

p
∑

j=1

∫ T

t
|πi

tβ
ij
t |2λj

tdt < ∞ a.s. and there exists a constant

Kπ such that Xt,0,π
s ≥ Kπ for all s ∈ [t, T ]. Using the same technics as in Section 3

and by noticing that [M i,M j ]t = 0 for each i and j, since the defaults do not appear

simultaneously, we obtain :

Theorem 7.4. (Jt, Zt, Ut)0≤t≤T is the largest solution in S+,∞ × L2(W ) × L2(M) of the

BSDE :














dJt = ess sup
π∈A

{

−γ2

2 |πT
t σt|2Jt + γπT

t (µtJt + σtZt) +
∑p

j=1 λ
j
t

(

1 − e−γ
Pn

i=1
πi

tβ
ij
t

)

(Jt + U
j
t )
}

dt

+ZtdWt + UtdMt

JT = 1

(7.27)

The optimal strategy π̂ is characterized by the fact that the essential supremum in (7.27)

is attained at π̂t dt⊗ dP a.s. for t ∈ [0, T ].

7.2 Poisson jumps

We consider a market defined on the complete probability space (Ω,G,P) equipped with

two independent processes : a unidimensional Brownian motion (Wt) and a real-valued

Poisson point process p defined on [0, T ] × R\{0}, we denote by Np(ds, dx) the associated

counting measure, such that its compensator is N̂p(ds, dx) = n(dx)ds and the Levy measure

n(dx) is positive and satisfies n({0}) = 0 and
∫

R\{0}(1 ∧ |x|)2n(dx) < ∞. We denote by

G = {Gt, 0 ≤ t ≤ T} the completed filtration generated by the two processes (Wt) and

(Np). We denote by Ñp(ds, dx) (Ñp(ds, dx) = Np(ds, dx) − N̂p(ds, dx)) the compensated

measure, which is a martingale random measure : in particular, for any predictable and

locally square integrable process (Ut), the stochastic integral U.Ñp =
∫

Us(x)Ñp(ds, dx) is

a locally square integrable martingale. We denote by Z.W (resp. U.Ñp) the stochastic

integral of Z w.r.t. W (resp. the stochastic integral of U w.r.t. Ñp). Introduce the classical

sets� L2(W ) (resp. L2
loc(W )) is the set of G-predictable processes on [0, T ] under P with

E

[
∫ T

0
|Zt|2dt

]

<∞ (resp.

∫ T

0
|Zt|2dt <∞ a.s.).� L2(Ñp) (resp. L2

loc(Ñp)) is the set of G-predictable processes on [0, T ] under P with

E

[
∫ T

0
|Ut(x)|2n(dx)dt

]

<∞ (resp.

∫ T

0
|Ut(x)|2n(dx)dt <∞ a.s.).

The filtration G has the predictable representation property : for any (resp. local) martin-

gale (Kt) of G, there exist two predictable processes (Zt) and (Ut) such that Z ∈ L2(W )

and U ∈ L2(Ñp) (resp. Z ∈ L2
loc(W ) and U ∈ L2

loc(Ñp)) and

Kt = K0 + (Z.W )t + (U.Ñp)t ∀ t ∈ [0, T ].
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The financial market consists in one risk-free asset, whose price process is assumed to

be equal to 1, and one single risky asset, whose price process is denoted by S. In particular,

the stock price process is a one dimensional local martingale satisfying

dSt = St−

(

µtdt+ σtdWt +

∫

R\{0}
βt(x)Ñp(dt, dx)

)

.

All processes (µt),(σt) and (βt) are assumed to be predictable and the process (βt) satisfies :

βt(x) > −1. This last condition implies that the process (St) is almost surely positive.

Recall that there exists a càd-làg process (Jt) such that for each t ∈ [0, T ] :

Jt = ess inf
π∈At

E
[

exp(−γXt,π
T )
]

a.s.

where the admissible trading strategies set At consists of all G-predictable processes π =

(πs)t≤s≤T which satisfy
∫ T

t
|πsσs|2ds < ∞ a.s. and

∫ T

t
|πsβs(x)|2n(dx)ds < ∞ a.s. and

there exists a constant Kπ such that Xt,π
s ≥ Kπ for all s ∈ [t, T ].

Using the same technics as in Section 3, we obtain the following theorem which charac-

terizes the solution to the maximization problem of exponential utility

Theorem 7.5. (Jt, Zt, Ut)0≤t≤T is the largest solution in S+,∞ × L2(W ) × L2(Ñp) of the

BSDE :














dJt = ess sup
π∈A

{

−γ2

2 |πtσt|2Jt + γπt(µtJt + σtZt) +
∫

R\{0} (1 − e−γx) (Jt + Ut(x))
}

n(dx)

+ZtdWt +
∫

R\{0} Ut(x)Ñp(dt, dx)

JT = 1

(7.28)

The optimal strategy π̂ is characterized by the fact that the essential supremum in (7.28)

is attained at π̂t dt⊗ dP a.s. for t ∈ [0, T ].

Remark 7.15. It is exactly the case treated by Morlais (2008). For the case A is compact,

we prove as Morlais but in a simpler way that the BSDE has a unique solution. For the

case A is no compact, we also prove in a simpler way that the BSDE has a solution.

Appendix

A Proof of Proposition 3.2

In this section, we just note that it is possible to prove Proposition 3.2 without using

the results of Schachermayer (2001). For that let us define the random variable Γ(t, π) by

the formula :

Γ(t, π) = E
[

exp(−γ(Xt,π
T + ξ))|Gt

]

.

This family of random variables is stable by infimum. More precisely,
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Lemma A.2. For each t ∈ [0, T ], the set {Γ(t, π), π ∈ At} is stable by infimum, i.e. for

every π0, π1 ∈ At, there exists π ∈ At such that Γ(t, π) = Γ(t, π0) ∧ Γ(t, π1).

Furthermore, for each t ∈ [0, T ], there exists a sequence (πn)n∈N ∈ At, such that :

J(t) = lim
n→∞

↓ Γ(t, πn) a.s.

Proof. Let us fix t ∈ [0, T ] and define the set E :

E =
{

Γ(t, π0) ≤ Γ(t, π1)
}

.

Thus by definition of the family (Γ(t, π))π∈At , we have that E ∈ Gt. Let us define π by the

formula :

∀ s ∈ [t, T ], πs = π0
s1E + π1

s1Ec .

Then the wealth process (Xt,π
s ) associated at the strategy π is equal to :

Xt,π
s = Xt,π0

s 1E +Xt,π1

s 1Ec,

therefore we have the inequality

Xt,π
s ≥ Kπ0 ∧Kπ1 ,

thus π ∈ At. By construction of π, we have that

Γ(t, π) = Γ(t, π0) ∧ Γ(t, π1).

The second part of lemma follows by classical results (see Karatzas and Shreve (1999),

Theorem A.3 in Appendix A).

Let us now give the proof of Proposition 3.2 without using the results of Schachermayer

(2001). It is sufficient to show that :

E
[

e−γXπ
t J(t)|Gs

]

≥ e−γXπ
s J(s), ∀ t ≥ s

i.e. E
[

e−γ(Xπ
t −Xπ

s )J(t)|Gs

]

≥ J(s), ∀ t ≥ s.

With (2.3) and Lemma A.2, we have by monotone convergence theorem :

E [exp(−γ(Xπ
t −Xπ

s ))J(t)| Gs] = lim
n→∞

↓ E
[

exp

(

−γ
(
∫ t

s

πu
dSu

Su−

+

∫ T

t

πn
u

dSu

Su−

+ ξ

))∣

∣

∣

∣

Gs

]

Let us define the strategy π̃n by

π̃n
u =

{

πu if s ≤ u ≤ t

πn
u if t < u ≤ T

We can easily show that π̃n ∈ As. By definition of J(s), we have lim
n→∞

Γ(s, π̃n) ≥ J(s) a.s.

Therefore :

E [exp(−γXs,π
t )J(t)|Gs] = lim

n→∞
↓ Γ(s, π̃n) ≥ J(s) a.s.

Then, for each π ∈ A, the process (e−γXπ
t J(t)) is a submartingale .
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B Proof of Proposition 3.7

Lemma B.3. The supremum of affine functions, whose coefficients are bounded by a con-

stant c > 0, is Lipschitz with Lipschitz constant c.

More precisely, let A be a subset of [−c, c]n × [−c, c]. Then the function f defined for each

y ∈ Rn by

f(y) = sup
(a,b)∈A

{a.y + b}

is Lipschitz with Lipschitz constant c.

Proof.

sup
(a,b)∈A

{a.y + b} ≤ sup
(a,b)∈A

{a.(y − y′)} + sup
(a,b)∈A

{a.y′ + b}.

Hence, we have

f(y) − f(y′) ≤ c||y − y′||.
By symmetry,

f(y′) − f(y) ≤ c||y − y′||,
which give the desired result.

C Proofs of Propositions 6.9 and 6.10

The technics are similar to Section 3. We first want to show that for each strategy p ∈ A,

the process ((Xx,p
t )γJt) is a supermartingale. According to Theorem 2.2 of Kramkov and

Schachermayer (1999) (we can prove this property without using this theorem by doing as

the previous appendix), for each t ∈ [0, T ] there exists a strategy p̂ ∈ A such that :

Jt = E

[(

X
x,p̂
T

X
x,p̂
t

)γ∣
∣

∣

∣

∣

Gt

]

.

For each admissible strategy p ∈ A, we have :

E

[(

X
x,p
t

X
x,p
s

)γ

Jt

∣

∣

∣

∣

Gs

]

= E

[(

X
x,p′

T

X
x,p′
s

)γ∣
∣

∣

∣

∣

Gs

]

where the strategy p′ is defined by

p′u =

{

pu if 0 ≤ u ≤ t

p̂u if t < u ≤ T

It is easy to show that the strategy p′ is admissible. Hence

E

[(

X
x,p′

T

X
x,p′
s

)γ∣
∣

∣

∣

∣

Gs

]

≤ Js.

Thus we get the inequality

E [(Xx,p
t )γJt|Gs] ≤ (Xx,p

s )γJs.
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Hence, the process ((Xx,p
t )γJt) is a supermartingale for each admissible strategy p.

We now prove that (Jt) is the smallest process such that for each strategy p ∈ A, the

process ((Xx,p
t )γJt) is a supermartingale and JT = 1. Let (Ĵt) be a G-adapted process such

that for each p ∈ A, the process ((Xx,p
t )γ Ĵt) is a supermartingale and ĴT = 1. For all

t ∈ [0, T ] and for each p ∈ A, we have :

E
[

(Xx,p
T )γ ĴT |Gt

]

≤ (Xx,p
t )γ Ĵt,

which implies that

E

[

(Xx,p
T )γ

(Xx,p
t )γ

∣

∣

∣

∣

Gt

]

≤ Ĵt.

Therefore we have :

ess sup
p∈A

E

[

(Xx,p
T )γ

(Xx,p
t )γ

∣

∣

∣

∣

Gt

]

≤ Ĵt.

Then we get :

Jt ≤ Ĵt a.s.

We now want to prove the equivalence for the optimal strategy : suppose that the

strategy p̂ is an optimal strategy, hence we have

J0 = sup
p∈A

E

[(

X
x,p
T

x

)γ]

= E

[(

X
x,p̂
T

x

)γ]

.

As the process ((Xx,p̂
t )γJt) is a supermartingale and that we have J0 = E

[(

X
x,p̂

T

x

)γ]

, we

have that the process ((Xx,p̂
t )γJt) is a martingale.

To show the converse, suppose that the process ((X p̂
t )γJt) is a martingale, then we have

E

[(

X
p̂

T

x

)γ]

= J0. Thus we have :

J0 = sup
p∈A

E

[(

X
x,p
T

x

)γ]

= E

[(

X
x,p̂
T

x

)γ]

.

D Proof of Theorem 6.3

We first characterize the process (At) of Doob-Meyer decomposition (6.23). For that

we use the properties of process (Jt) (see Propositions 6.9 and 6.10). By Itô’s formula we

get :

d((Xx,p
t )γJt) = (Xx,p

t−
)γJt−

[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

dt+ γptσtdWt + ((1 + ptβt)
γ − 1)dNt

]

+(Xx,p

t−
)γ(ZtdWt + UtdMt − dAt) + γ(Xx,p

t−
)γptσtZtdt

+(Xx,p

t−
)γ((1 + ptβt)

γ − 1)Utdt

= local martingale − (Xx,p
t )γ

{

dAt −
[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt

+γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt

}
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From Proposition 6.9, the process ((Xx,p
t )γJt) is a supermartingale for each strategy

p ∈ A, thus :

dAt −
[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt ≥ 0.

Then we have :

dAt ≥ ess sup
p∈A

[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt.

From Theorem 2.2 of Kramkov and Schachermayer (1999), there exists an optimal strategy

p̂ of the optimization problem (6.22). With Proposition 6.10, this optimal strategy p̂ ∈ A
is such that the process (

(

X
x,p̂
t

)γ

Jt) is a martingale, hence we get :

dAt −
[(

γp̂tµt +
γ(γ − 1)

2
p̂2

tσ
2
t

)

Jt + γp̂tσtZt + λt((1 + p̂tβt)
γ − 1)(Jt + Ut)

]

dt = 0.

Therefore we have :

dAt = ess sup
p∈A

{(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt.

Thus the process (Jt) is solution of the BSDE















dJt = − ess sup
p∈A

{(

γptµt + γ(γ−1)
2 p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt

+ZtdWt + UtdMt

JT = 1

We now want to show that the process (Jt) is the smallest solution of this BSDE : let

(J̄t, Z̄t, Ūt) be a solution of BSDE (6.24), we show that for each p ∈ A we have that the

process
(

(Xx,p
t )

γ
J̄t

)

is a supermartingale :

d
(

(Xx,p
t )

γ
J̄t

)

= J̄t−
(

X
x,p

t−

)γ
[

γptµtdt+ γptσtdWt + γ(γ−1)
2 p2

tσ
2
t dt + [(1 + ptβt)

γ − 1] dNt

]

+
(

X
x,p

t−

)γ
(Z̄tdWt + ŪtdMt − dĀt) + γZ̄t

(

X
x,p

t−

)γ
ptσtdt

+Ūt

(

X
x,p

t−

)γ
[(1 + ptβt)

γ − 1] dNt

where

dĀt = ess sup
p∈A

{(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

J̄t + γptσtZ̄t + λt((1 + ptβt)
p − 1)(J̄t + Ūt)

}

dt.

d
(

(Xx,p
t )

γ
J̄t

)

can be written under the form :

d
(

(Xx,p
t )

γ
J̄t

)

= dmt − (Xx,p
t )

γ [
dĀt − dĀ

p
t

]

with

dĀ
p
t =

[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

J̄t + γptσtZ̄t + λt((1 + ptβt)
p − 1)(J̄t + Ūt)

]

dt
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and (mt) is a local martingale given by m0 = (Xx,p
0 )

γ
J̄0 and

dmt = (Xx,p

t−
)γ
[(

γptσtJ̄t− + Z̄t

)

dWt + [[(1 + ptβt)
γ − 1](Ūt + J̄t−) + Ūt]dMt

]

.

By integrating, we get :

(Xx,p
t )

γ
J̄t − (Xx,p

0 )
γ
J̄0 = mt −m0 −

∫ t

0
(Xx,p

s )γ
(

dĀs − dĀp
s

)

.

As dĀs ≥ dĀ
p
s, we have

mt ≥ (Xx,p
t )

γ
J̄t

and as (Xx,p
t )

γ
J̄t ≥ 0, we get

mt ≥ 0.

Therefore the process (mt) is a lower bounded local martingale, thus (mt) is a supermartin-

gale and the process
(

(Xx,p
t )

γ
J̄t

)

is a supermartingale for each p ∈ A. From Proposition

6.9, we can affirm that Jt ≤ J̄t a.s. for all t ∈ [0, T ].

E Proof of Proposition 6.11

The proof of existence of process (Jk
t ) is similar to the proof of Proposition 3.4. Thus

we only show that the process (Jk
t ) is bounded

Jk
t = ess sup

p∈Ak

E

[

exp

(
∫ T

t

γµspsds +

∫ T

t

γσspsdWs −
1

2

∫ T

t

γ|σsps|2ds+

∫ T

t

γ log(1 + psβs)dNs

)
∣

∣

∣

∣

Gt

]

.

Let Qp be the equivalent probability measure to P defined by the formula :

dQp

dP
= exp

(
∫ T

0
γσspsdWs −

1

2

∫ T

0
|γσsps|2ds

)

.

Then we have :

Jk
t = ess sup

p∈Ak

EQp

[

exp

(
∫ T

t

γµspsds+
γ2 − γ

2

∫ T

t

|σsps|2ds+

∫ T

t

γ log(1 + psβs)dNs

)∣

∣

∣

∣

Gt

]

.

As the processes (µt), (σt) and (βt) are supposed bounded, the process (Jk
t ) is bounded.

These processes (Jk
t ) have the same properties as the process (Jt) : for each strategy p ∈ Ak,

the process ((Xp
t )

γ
Jk

t ) is a supermartingale and there exits a strategy p̂ such that the pro-

cess (
(

X
p̂
t

)γ

Jk
t ) is a martingale.

As the process (Jk
t ) is a bounded supermartingale, so it admits a Doob-Meyer decomposi-

tion :

dJk
t = Zk

t dWt + Uk
t dMt − dAk

t

with Zk ∈ L2(W ), Uk ∈ L2(M) and Ak is a nondecreasing G-predictable process with

Ak
0 = 0.

Using the properties of process (Jk
t ), we can determine the form of process (Ak

t ) as in the

previous appendix and we obtain a BSDE for which the process (Jk
t ) is a solution. Since

the set Ak is bounded, this BSDE admits a unique solution.
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