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Utility maximization in incomplete markets with default

Thomas LIM * Marie-Claire QUENEZ |

Abstract

We address the maximization problem of expected utility from terminal wealth.
The special feature of this paper is that we consider a financial market where the
price process of risky assets can have a default time. Using dynamic programming, we
characterize the value function with a backward stochastic differential equation and
the optimal portfolio policies. We separately treat the cases of exponential, power and
logarithmic utility.

Key words : Utility maximization, dynamic programming, backward stochastic dif-
ferential equation, default time, incomplete market, exponential utility, power utility, loga-
rithmic utility.

1 Introduction

We consider an incomplete financial model with one bond and one risky asset. The price
process S of the risky asset is assumed to be a local martingale driven by a brownian motion
and a default indicating process. In such a context, we solve the portfolio optimization
problem when investors want to maximize the expected utility from terminal wealth.

The utility maximization problem has been largely studied in the literature. Originally
introduced by Merton (1971) in the context of constant coefficients and treated by markovian
methods via Bellman equation of dynamic programming, it was developed for general process
by martingal duality approach. For the case of complete markets, we refer to Karatzas et al.
(1987), Cox and Huang (1989). For the case of incomplete and /or constrained markets, we
refer to Karatzas et al. (1991), He and Pearson (1991) and Cvitani¢ and Karatzas (1992).
Lukas (2001) considers the case of incomplete markets with a default in the markovian
case. In contrast to these papers, in Hu et al. (2004), the authors do not use the duality
approach, and they directly characterize the solution of the primal problem as the solution
of a backward stochastic differential equation (BSDE), by using a verification theorem of
the same spirit as El Karoui et al. (1997). Since they work in a Brownian filtration, they
can use directly some results on quadratic BSDEs (Kobylanski (2000)). For the case of a
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discontinuous framework, we refer to Morlais (2008). She supposes that the price process of
stocks is modeled by a local martingale driven by an independent one dimensional brownian
motion and a Poisson point process. In using the same approach as in Hu et al. (2004),
she obtains formally a BSDE for which there is none existence and uniqueness results. She
proves the existence of a solution of this BSDE using an approximation method but she does
not obtain uniqueness result, so it is not possible to characterize the value function as the
solution of a BSDE. To be able to solve completely the problem, she restrains the admissible
portfolio set to a compact set so that in this case the value function can be proved to be the
unique solution of a BSDE.

The method we propose in order to obtain value function and optimal strategy is simple.
We propose to study directly the value function with few dynamical programming technics.
Then it is possible to prove that the value function is a particular solution of a quadratic
BSDE.

The outline of the paper is organized as follows. In Section 2, we present the market
model and the problem. In Section 3, we carry out the calculation of the value function and
an optimal strategy for exponential utility and in Section 4 we define the indifference price for
a contingent claim with the results of Section 3. In Section 5, we consider logarithmic utility,
and in the final section we treat the power utility to complete the spectrum of important
utility functions.

2 The market model

Let (€2, G, P) be a complete probability space equipped with a Brownian motion (W;)o<i<r.
The filtration F is the completion of the filtration generated by W. We consider a financial
market which consists of one risk-free asset, whose price process is assumed for simplicity to
be equal to 1 at each date, and one risky asset with price process S. We suppose that the
risky asset admits a default time 7. We introduce the jump process N, = 1,<;, we denote
by H the filtration generated by this process and by G the enlarged filtration F Vv H (we
suppose that G = Gr). For any t € R, we write I, = P{r < t|F;}, and we denote by G
the F-survival process of 7 with respect to the filtration [F, given as

Gy =1—-F=P{r >t|lF}, VteR,.

Definition 2.1. Assume that Fy < 1 for allt € R,. The F-hazard process of T under P,
denoted by T, is defined through the formula 1 — F, = e . Equivalently, I';, = —InG, =
—In(1 — F) for every t € R,.

Let us assume that this process is absolutely continuous with respect to the Lebesgue
measure, so that there exists a process v such that I'; = fot vsds for all t € R,. It can be
shown (see, for instance, Bielecki and Rutkowski (2004), chap. 6) that the process given by
the formula :

tAT
Mt = Nt — / %ds (21)
0
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is a G-martingale. For the sake of brevity we shall denote \; = (1 — N;)~, thereafter. Recall
that the filtrations F and G satisfy the following property called H-hypothesis (see Bremaud
and Yor (1978) for a detailed study)

Proposition 2.1. Martingale invariance property Every F-martingale under P is also
a G-martingale under P.

Proof. By construction of the process N with G-predictable intensity, G, and Fr are in-
dependent, given F;. The result now follows from the observation that this property is
equivalent to E[X|F;] = E[X|G,] for every Fr-measurable random variable X. O

The martingale invariance property is a common assumption in the literature on default
risk modeling (see Elliott et al. (2000)) and as well as hedging and portfolio choice with
jumps (see Blanchet-Scalliet and Jeanblanc (2004)). We also recall the useful martingale
representation theorem (see Jeanblanc (2001))

Proposition 2.2. Martingale representation theorem Let m be any (P, G)-local mar-
tingale with mg = 0. Then, there exist two valued processes ¢ and 1 which are G-predictable
processes, P-a.s. square integrable and such that

t t
mt:/ ¢des+/ edM,, 0<t<T.
0 0

The price process S evolves according to the equation :
dSt = Sff (,U/tdt + Utth + ﬂtht) (22)

Assumption 2.1. (i) pu, o and § are G-predictable and uniformly bounded stochastic pro-
cesses.

(i) The process (3 satisfied By > —1 for allt € R,..

(ii) (g—

t) s uniformly bounded.
t/0<¢<T

A G-predictable process m = (m)o<i<r is called trading strategy if fOT 5=dS; is well
<t< -

defined, e.g. fOT |7i0¢|?dt < oo P-a.s. and fOT |70 | A\edt < 0o P-a.s. The process (m;)o<i<T
describes the amount of money invested in the risky asset S at time ¢. The wealth process
X®™ of a trading strategy 7 with initial capital = satisfies the equation :

t
T
X0 = —2.dS,
h x+/0 S

and by self-financing, we get :

dth’W == Wt(ﬂtdt + O'tth + 6tht) (23)
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A function U : (0,00) — R will be called utility function if it is strictly increasing,
strictly concave, of class O, and satisfies the Inada’s conditions
U'(0t) = 1iﬂ)1 U'(x) =00, U'(c0) = lim U'(z) = 0.
The optimization problem is to maximize the expected utility from terminal wealth over

the class A(x) of admissible portfolios, provided that the expectation is well defined. More
precisely, the value function of this problem is defined by

V(z) = sup E[UX7")].
TEA(x)

In the following, we will characterize the value function V' (z) and the optimal strategy.

3 Exponential utility

In this section, we specify the sense of optimality for trading strategies by stipulating
that the investor wants to maximize his expected utility with respect to the exponential
utility from his terminal wealth. Let us recall that for v > 0 the exponential utility function
is defined as :

U(x) = —exp(—yz), z= €R.

Definition 3.1. (Admissible strategies) The set of admissible trading strategies A(x)
consists of all G-predictable processes T = (m;)o<i<r which satisfy fOT‘ﬂ'tO'tht < 00 a.s.
and fOT |7 B2 Nedt < o0 a.s. and there exists a constant K, such that X" > K, for all
t €10,T]. We denote A, if the initial time is t.

For the sake of brevity we shall denote A instead of A(x) if there is no confusion.

Let £ € Gr be a given non-negative contingent claim, and let x be the initial endowment
of the investor. Our first goal is to solve an optimization problem for an agent who buys a
contingent claim . To this end it suffices to find a strategy that maximizes

V(z,§) = ilelgE [—exp(— (X7" +&)], >0, (3.1)

V is called value function. The maximization problem is evidently equivalent to :
V(z, &) = —e* ;QJEE [exp (—7 (X%7r + 5))} )

We denote V(x) the value function if the investor does not buy the contingent claim ¢ and
invests only in the risk-free asset and in the risky asset.
To solve this problem we define the value function J(t) at ¢ by the following formula :

J(t) = essinf E [exp(—y(X7" — X;"" + €))|Gi] a.s. (3.2)
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Remark 3.1. The function J is independent of the initial wealth x, then we can take x = 0
for the next.

For the sake of brevity, we shall denote now X/ instead of Xf ™. In the following, we
want to characterize J by a BSDE. Let us define the function I'(¢, 7) by the formula :

[t m) = E[exp(—(X7 — X[ +£))|Gi] -

Proposition 3.1. The set {I'(t,7), ™ € A;} is stable by infimum, i.e. for every °, ' € A,
there exists m € A; such that T(t,7) = T(t,7%) AT (¢, 7).

Proof. Let us define the set E :
E={r(t% <T(tx")}.
Thus F € G;. Let us define 7 by the formula :
Vselt,T], ng=mlg + milge.

Then X7 = X™ 15+ X7 1., therefore X7 > Ko A K1, thus 7 € A,. By construction of
7, we have that T'(¢,7) = T(¢t,7%) AT (¢, 7). O

With Proposition Bl the value function can be characterized with the function I"

Corollary 3.1. For all t, there exists a sequence (7" )nen € Ay, such that :

J(t)=lim | ['(t,7") a.s.

n—oo

Let us define the G-adapted process (J;)o<i<r by the formula :

J J(t) if J is defined at ¢
! 0 else

With the dynamic programming we obtain few properties about the process .J’/
Proposition 3.2. For all strategies 1 € A, (e 77X J)o<i<r is a submartingale.
Proof. 1t is sufficient to show that :

Ele " J|G] > e T, Vi>s

ie. E[e? X XIJIG] > T, V> s

With equality (23)) and Corollary Bl, we have by monotone convergence theorem :

t d " T d ’
E[exp(—y(X] — X)) J;|Gs] = lim | E {exp (—fy (/ W“Si +/ ﬂ_ZSS +£))
nee S u t U~

3
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Let us define the strategy 7" by

an _ m, I s<u<t
Sl if t<u<T

We can easily show that 7 € A;. By definition of J., we have lim I'(s,7") > J. as.

n—~o0

Therefore :
E exp(—y(X] — X7))J{|G,] = lim | T'(s,7") > J; a.s.

Then, (e7*7J;) is a submartingale for all 7 € A. O

0<t<T
We can so characterize the process J' by the following proposition

Proposition 3.3. (Dynamic Programming principle) (J})o<;<7 is the largest G-adapted

process for the almost surely equality such that for all strategies m € A, (e‘”Xtﬂ J{)0<t<T is

a submartingale and J = exp(—v§).

Proof. Let (Y;)o<t<r be a G-adapted process such that ¥V m € A, (e"YXtWY})(KKT is a sub-

martingale and Y7y = exp(—~€). For all ¢t € [0,7] and for all 7 € A, we have :
E [e7%Y7|G] > e Y,

Then .
E [exp (—7 (/ WsTsds + osmsdWs + BsmedNg + f))
t

Therefore we have :

G| = Ve

T
essinf F {exp (—7 (/ psTsds + o medW, + Bymed Ny + 5)) Qt] >Y,
t

TeAL

Then we get :
J >Y; a.s.

O

We now show that there exists a cad-lag version of the value function. More precisely,

Proposition 3.4. There exists a cad-lag G-adapted process (Ji)o<i<r Such that for all t €
0,77 :
Jy = essinf E [exp(—y(X7" — X" +9))|G] a.s.

TeAL

Proof. Let D = [0, T]NQ. Because (J;) is a submartingale, we have for almost every w € €2,
that the mapping ¢t — J/(w) defined on D has at each point ¢ of [0, 7] a finite right limit :

@)= lim Jw)

seD,s|t



and at each point of ]0, 7 a finite left limit

/ T /
Ji-(w) = lm Ji(w).
Thanks to Dellacherie and Meyer (1980), chap. 6, the process J;, is a G,+-submartingale.

We can show that the process (exp (—vXT) f;) is a Gi+-submartingale and because

0<t<T
the filtration is right continuous, it is a G;-submartingale. Consequently, from Proposition

B3 for all ¢ € [0,T] J}, < J; a.s. We have also J; < E [J/,|G;]. Thus : J/, = J] a.s. and

Viel0,T], J = esz}AnfE [exp(—y(X7" — X" +€))|G] a.s.

t

The result follows in taking J; equals to the above process Jj. . O

Remark 3.2. The property of dynamic programming can be written for the process J un-
der the form : (Ji)o<i<r is the largest cad-lag G-adapted process such that for all m €

A, (e 1) is a submartingale and Jr = exp(—§).

0<t<T

We now show that the value function is bounded, that is interesting for the following to
use the Doob-Meyer decomposition. More precisely,

Lemma 3.1. For all0 <t < T, the process J verifies :

0< J, <1 a.s.

Proof. By definition of process J, we know that for all ¢, J; > 0. Moreover the strategy
7y = 0 for all s € [¢,T] is admissible following Definition Bl hence J; < exp(—+¢) for all ¢.
As we suppose that the contingent claim ¢ is non negative, we have that J; < 1. O

With the dynamic programming principle, we can give a classical characterization of the
optimal strategies:

Proposition 3.5. (Characterization of optimal strategies)
Let m € A, the two following assertions are equivalent :

(i) 7 is an optimal strategy, i.e. Jy = iIGlEE lexp(—v(XT +&))] = E [exp(—v(XT +€))].

(i1) <e"YXtﬁ Jt) is a martingale.
0<t<T

Proof. Suppose (1) that is 7 is an optimal strategy, hence we have

Jo = E [exp(—(X7 +€))] - (3.3)



As (e‘VXf Jt) . is a submartingale from Remark B2 and by (i), we have Jy = E [exp(—7(X7 + €))]
0<t<
which implies (7).

To show the converse, suppose that <€_“’XZr Jt) is a martingale, then we have :
0<t<T
E |:€_ng6_751| = Jo.
which gives (7). O

Remark 3.3. Note that we can obtain a quite general verification theorem for the value
function : let (Y:)o<i<r be a G-adapted process which is equal to exp(—v€) at T and such

that for all strategies m € A, (exp (—7 fg ;—SdSs> Y}) 1s a submartingale and that
5™ 0<t<T
there exists a strategy © € A satisfying <exp (—7 f(f 5fr—SalSs) Yt> 1s a martingale, then
s 0<t<T

we have Y; = J; a.s. for each t € [0,T].

Remark 3.4. In the Brownian filtration case, see Hu et al. (2004), the authors use a
similar verification theorem but they look for'Y as the solution of a BSDE of the form

T T
Y, =F — / Z,dW, — / (s, Z,)ds
t t

for which some existence and uniqueness results hold. They characterize easily the function
f with the two properties of verification theorem. In the case of jumps, see Morlais (2008),
the author uses the same approach as in Hu et al. (2004), she obtains formally a BSDE for
which there is none existence and uniqueness results. She proves the existence of a solution
of this BSDFE with an approximation method but she does not obtain uniqueness result, so it
1s not possible to characterize the value function as the solution of a BSDE. In order to be
able to solve completely the problem, she restrains the admissible portfolio set to a compact

set so that in this case, the value function can be proved to be the unique solution of her
BSDE.

Now, we will define the process J as a solution of a BSDE. For that we need to define
the following sets S>, L2(W) and L*(M) :

S = {Y cad-lag G-adapted such that esssup(]Yi(w)|) < oo}
w,t

T
L*(W) = {Z G-predictable, £ [/ \Zﬁdt} < oo}
0

T
L*(M) = {U G-predictable, E [/ \Ut\2>\tdt] < oo}
0

With Remark and Lemma Bl (J;)o<i<r is a submartingale of class D and admits a
unique Doob-Meyer decomposition thanks to Dellacherie and Meyer (1980), chap. 7 :

8



dJ, = dm; + dA,

with m is a square integrable martingale and A is an increasing cad-lag G-predictable process
with Ag = 0. From Theorem B3, the Doob-Meyer decomposition can be written under the
form

th == thWt ‘l‘ Utht + dAt (34)
with Z € L*(W), U € L*(M).
In using Remark and Proposition B, it is possible to determine the process A of B4
and we prove that the value function is solution of a BSDE with a quadratic driver.

Proposition 3.6. The process (Jy, Z;, Up)o<i<r € S x L*(W) x L*(M) is solution of the
following BSDE :

th = thVVt“‘Utht

+sup {—gwfam by pady + 0120) + Ae(1 — e 7m0 (J, + Ut)} dt  (35)
TeA

Jr = exp(—§)

Proof. To prove this proposition, we use the property that for each 7, the process (e=7%7 .J;)
is a submartingale and that for at least one 7 this process is a martingale. It follows the finite
variation part which appears in the decomposition of the semi-martingale (e=7%7 J;) (resp.
(e=7X7.J,)) is an increasing process (resp. null process). More precisely, let us calculate the
derivative of process e X7 J,, we first use Ito’s formula

2
A7) = =y T axT 4 DN d <X 4 (¢ — N )i,
2
— X |:—’y(7Tt/,Ltdt 4 WtUtth) + %Wfafdt + (e"wrtﬁt — 1) de}

2
= ¢ [(%7&203 - 77Tt/~l/t) dt — ymodWy + (7™ — 1) dNt}

with X™¢ the continuous part of X™.
The product rule yields

d(eTg) = e XEdg 4 Jd (e7F) 4 d [, )
2

= N (Z, AWy + Ud M, + dA,) + e 7 [(%Wfﬂ? - wtut) dt

—”YWtUtth + (e—’*ﬂl’t,@t - 1) dNt:| — 6_’\/er* ’}/ﬂ'tO'ttht

e N (e — 1) UpdN,.



We have with equality Z1]) :

d ( R J) = e 7" [(Zt — ymopJy)dWy + (Up + (e_fymﬁt — DU + Jp-))dM; + dA,

2
+ {(72 2ol — vﬂtut) Jr+ N (e el _ 1) U+ J;) — ’YWtUtZt} dt}

= local martingale + dAy.

With dAT = dA; + {( o2 — ’}/ﬂ't/J/t) Ji+ N (e‘”’”ﬁt — 1) (U + Jy) — ’}/ﬂ'tO'tZt} dt.

By the dynamic programming principle (Remark B2), the process (e77%7 Jt)o <o 18 @ sub-

martingale for all strategies m € A, then dAT > 0 for all strategies 7 € A and we get
2
dA; > {(—%Wfaf + 77&;%) Jr— M (e_mﬁt — 1) U+ Jy) + ’Y?TtO'tZt:| dt.

From Theorem 2.2 of Kramkov and Schachermayer (1999), there exists an optimal strat-
egy 1 € A for problem Bl By Proposition B3, this optimal strategy 7 is such that

<e"YXtﬁ Jt> is a martingale, which implies that a.s.,
0<t<T

2
dAt = |i(—%7¢('t20't2 + ’}/ﬁ}lut) Jt - >\t (e_fyﬂtﬁt - 1) (Ut + Jt) + ”)/ﬁtO'tZt:| dt.

Therefore we have

2
(—%’ﬂ't Oy + Vﬁtﬂt) Jt — )\t (€_V7rtﬁt — 1) (Ut + Jt) + vﬁto’tZt

2
= suE { (—%Wfaf + 77rt,ut) Jr— N (e‘”’”ﬁt — 1) U+ ) + vﬁtatZt} )
e

Thus decomposition BA) of (J;)o<i<7 is given by :

th - thWt + Utht
2
+ sup { (-%7’(’?0}2 —+ ’Yﬂtﬂt) Jt - >‘t (e"Yﬂt,@t — 1) (Ut + Jt) + ”y#tUtZt} dt.
TEA
0

The problem is that we can not prove that BSDE (BH) admits a unique solution in S x
L*(W) x L*(M). We will see in the next that if the set of admissible portfolios is restricted
to some bounded sets then BSDE (BH) admits a unique solution in S x L*(W) x L*(M).
But the value function can be characterized as the largest solution of a BSDE

Theorem 3.1. (J;)o<i<r is the largest solution in the set S® x L*(W) x L*(M) of the
BSDE :

th = thWt‘i‘Utht

+ suB{ Lriol Jy + ym(pedy + 00 Zy) + A (1 — e ™) (J, + Ut)} dt  (3.6)
TE

Jr = exp(—§)
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The optimal strategy 7 to problem (31) is defined by :

2
7, = arg max{ 72 7Tt lop 2], + (e dy + 00 Zy) + N (1 —e 'mﬁt) (J; + Ut)} )
TeA

Proof. Let (J/, Z],U]) be a solution of equation B8] in S x L?(W) x L*(M). Let us prove

that for all strategies m € A we have ( XL ) is a submartingale

0<t<T
H() = [ o) AW (UL (=) (0 L) i+ d

2
= dM] + dAT

2
+ { (lﬂfat fym,ut) Ji-+ N (e — 1) (U] + J)) — ymoe 2] } dt}

With :

AAT = T {dA+ | (Fmdo? —amu) Ji+ M (€770 = 1) (U] 4 Jf) = Amion 2] dt }
AMF = N [(Z = Amo J) AW, + (U] + (e — 1) (U] + J.-) ) dM]

dAT >0, as dA; = sup { (——7Tt o2+ ’}/ﬂ't/J,t> J =\ (e—wrtﬁt _ ) (U! + J!) + ym00 2! } dt.
TeA
Thus M[ < e 7 J] — Jj and by definition of an admissible strategy there exists a constant

K such that X > K and J' is a positive bounded process, therefore M7 is upper bounded
by a constant.

Thus (¥ J/)O<t<T
nondecreasing process.
From Remark B2 (J;)o<:<r is the largest process such that V 7 € A, (e XE Jt) is a
submartingale and Jp = exp(—~¢). Therefore we get :

is a submartingale, because it is the sum of a submartingale and a

Vielo,T], J, <J; as.

Remark 3.5. If we suppose that the set A is closed and there is no default (i.e. we consider
the brownian motion case), then this result corresponds to that obtained in Hu et al. (2004).

In the rest of this section, we show another characterization of the value function. For
each k we consider the value function J* defined by

JF = essinfE [exp (—y(X7" = X{"+ ) 1G] a.s.
TE

with A¥ = {mr € A, |m| <k Vt€[0,T] as.}. Then the value function J can be charac-
terized to be the limit of the value functions J*.

11



These processes (JF)o<;<r have the same properties as the process (J;)yc,op : for all

strategies m € A*, (e‘VXtW th)o <47 18 a submartingale and there exits a strategy 7 such that

(e"YXf Jf) is a martingale.
0<t<T
For each k € N*, the process J* can be showed to be characterized as the unique solution

of a BSDE. Note that the uniqueness follows from the fact that the admissible set of strategies
A* is bounded. More precisely

Proposition 3.7. The process (Jf,Zf,Utk)
L*(M) of the following BSDE :

) ; ; ; 0o 2
o<i<r U8 the unique solution in 5> X L (W) x

dJf = ZFdW, + UFdM, + sup { — L2628+ ymy (e JF + 00 ZF)
reAk

+ >\t (1 _ e—’YWtﬁt) (Jlgc 4 Utk)} dt (37)

Ji = exp(—€)
Proof. To prove that the process (Jf, ZF, Utk) is solution of (B7) we do as in the proof of

Proposition Let us show the uniqueness of the solution of BSDE (B). In BSDE (B)
the driver is equal dP ® dt a.s. to

2
Wienjk {%W?O’fy —ym(pey + 02) — A (L — 777 (y + u)} :

We can easily show that the driver is Lipschitz w.r.t. ¥, 2z, u because A* is bounded (not
necessarily compact). Then thanks to classical results (see Tang and Li (1994) or Barles et
al. (1997)), BSDE (B) admits a unique solution. O

Remark 3.6. Note that in the case A is compact, the result we have derived in a more
simple way stated in Morlais (2008).

We can characterize the value function J as the limit of the processes J*
Proposition 3.8. J; = kll_)rglo L JFas Vtelo,T).
Proof. It is obvious with the definitions of sets A and A* that
VkeN JtSJf a.s.

and as for all ¢ the sequence (Jf) >0
of a limit that we denote .J; for all t and .J, < J, a.s. (we can suppose that J is cad-lag as
in the proof of Proposition BZ).

In order to prove that for all t we have J, > J,, we first prove that for each 7 € A,
()

is nonincreasing and lower bounded, we get the existence

. . k . .
o<t<y 15 2 submartingale. As J" is a submartingale, we get

VkeN E[JFNG]>JF > U, as.

12



By monotone convergence theorem, we have :
E[J|Gy > Js a.s.

Then (Jt) 0<t<T is a submartingale of class D and admits the following Doob-Meyer de-
composition : dJ, = Z,dW, + U, dM, + dA, where Z € L*(W), U € L?*(M) and A is a
nondecreasing cad-lag G-predictable process where Ay = 0.

We prove that for all bounded strategies m, the process (e"YXtﬂ jt) is a submartingale

0<t<T
from monotone convergence theorem. By similar arguments of the proof of Proposition Bl

we get
p— 2 — —
dAt Z SU.R { ’; 7Tt gy Jt + YTt (,U/tJt + UtZt) -+ >\t (1 - e_’YWtﬁt) (Jt —+ Ut)} dt
TeA

where A is the set of admissible and bounded strategies.
We show that for all admissible strategies m € A that (e_“’X'zr jt)
Let m € A, we have

o<i<r 1S @ submartingale :

d(eX7]) = T [(Zt ymoTy) AW, + (T, + (€% — 1) (T, + J,-)) dM, + dA,
+{Zmtotd = am (e + 0 Ze) = M (1= ™8 (i + 0) } ]
— dM] + dAT

with
{ dAT = X {dA [ ST+ A (e = 1) (4 F) = 9m (e + 0 %) | dt}

AM] = e [(Zy = ymoy ) AW, + (U + (e77™% — 1) (U + J,-)) dM,]

by definition of dA we have dAT > 0. Then :

M = e X J, — Jo — (AT — A7)
i.e M < e X T — .
As J, > J;, > 0and J, <1, we get :
MT < e X,

By the definition of an admissible strategy we have that M7 < e . Thus (M]),<,<r

is an upper bounded local martingale, therefore it is a submartingale. As (M]),c <7 is a

. T . . _,YXTr - . .
submartingale and (Af) (., is nondecreasing, (e ¢ Jf)o <i<p 182 submartingale. Because

(jt)o <7 18 cad-lag G-adapted and Jr = exp(—~€), we have from Remark :
Jy < J, a.s.
[

Remark 3.7. Note that we have derived in a simple way the same approximation result
as the one stated in Morlais (2008). By using BSDEs technics, she also proves that the
processes Z* and U* converge in L? to the processes Z and U.

13



4 Indifference pricing

We present a general framework of the Hodges and Neuberger (1989) approach with
some utility functions as define in Section 2. We solve explicitly the problem in the case of
exponential utility.

The Hodges approach for pricing of unhedgeable claims is a utility-based approach and can
be summarized as follows : the issue at hand is to assess the value of some claim ¢ as
seen from the perspective of an investor who optimizes his behavior relative to some utility
function, say u. The investor has two choices : else he invests only in the risk-free asset
and in the risky asset or he invests also in the contingent claim. We can define the Hodges
price:

Definition 4.1. For a given initial endowment x, the Hodges buying price of a contingent

claim & is the real number p such that V(x) = V(x — p,§).

The Hodges price p can be derived explicitly in the case of exponential utility by applying
the results of Section 3. If the investor buys the contingent claim at the price p and invests
the rest of his wealth the value function is equal to

V(z —p,&) = —exp(—7(z — p))J.

If he invests all his wealth in the risk-free asset and in the risky asset the value function is

equal to
V(x) = —exp(—yx)Jg.

Where Jf is the largest solution of
th = thWt ‘l‘ Utht

+ suE {—%zwfath + ym(peJy + 00 Zy) + M (1 — e—vmﬁt) (J; + Ut)} dt
e

Jr = exp(—)

The Hodges price for the contingent claim € is given by the formula :
1 J0
p=—In (—%) .
g J5
We can also define the Hodges price of the contingent claim & at time ¢ by :
| Jg)
pr = —1In (— .
oy

Remark 4.1. If we consider the admissible strategies set A*, the price of indifference py,
can be also defined by the same method. More precisely

1 Jk0 1 Jk0
F— Zn [ 22 resp. pF = —In [ - |).
=i e (resp. p; S\ e )

p= lim p* (resp. p, = lim pf).
k—o0

k—o0

We remark that

14



5 Logarithmic utility

In this section we calculate the value function and characterize the optimal strategy for
the utility maximization problem with respect to

U(z) = log(z).

This time, we shall use a somewhat different notion of trading strategy : p; denotes the part
of the wealth X;” invested in stock S, that is advantageous for the calculus. The number
of shares of stock is given by the formula 2 t . A G-predictable process p = (p¢)o<i<r 18
said to be a trading strategy if the following Wealth process is well defined :

X/t =x+

0 5 -
By self-financing we have the following relation :
dXxp X ppt(,utdt + Utth + ﬁtht)

and from Dolean’s formula, we get the expression of the wealth X;" :

t t 1 t t
X/ = zexp (/ Dsfbsds —i—/ PO AW, — 5/ |psas|2ds —i—/ log(1 +psﬁs)st) . (5.1)
0 0 0 0

Definition 5.1. The set of admissible trading strategies A consists of all G-predictable
processes p satisfying E [fOT |pios|2dt + fOT |log(1 —i—ptﬂt)P)\tdt] < o0 and X" > 0 for all
0<t<T.

Remark 5.1. The condition X" > 0 for all 0 <t < T is equivalent to p;3; > —1 for all
0<t<r.

The optimization problem is given by

V(z) = sup E [log (XZ7)] . (5.2)

peA

Let us define the value function Jy = sup £ [log (Xip)] to solve the problem (52). To

peEA
solve this problem, we need few assumptions

Assumption 5.1. The intensity A is uniformly bounded.
Assumption 5.2. The process 3~ is uniformly bounded.

Contrary to the previous section, it is possible to characterize directly the value function
without BSDE

15



Theorem 5.1. The solution of problem (2ZA4) is given by V(z) = log(x) + Jo with :

T $202
Jo=F [/ (ﬁt#t — % + A¢log(1 +ﬁtﬁt)) dt}
0

where p is the optimal trading strategy and given by

1 VmBopPrangier
=4 27 2 T 25107 ift<r
% ift>r

t

Proof. With equality (BJl) we get the following expression for the process J :

T 2
Jo=supE [/ <psus — |psgs| + A log(1 +psﬂs)) ds} ,
0

peA

then

T 2
Jo< E [/ sup {ps,us — |p5;78| + Aslog(1 +p5/68)} ds] )
0

psfBs>—1
In the following we want to look for the strategy p whose maximizes for each s € [0,7]
2 2
psits — Z7= 4 A log(1 + py ;) with the unique condition that p,3; > —1 before the default,
for that we study the function f :

2
f() = pex = 2+ A log(1 + foa)

and her derivative

(5.3)

After the default, it is easy to see that the optimal strategy is p; = £3. Now we are interested
t
by the optimal strategy before the default. Let y =1+ SBsx :

Fla) =0 MY~ 5yl —1) + AL =0
y=1+ 05z

[

Let y_ and y, be the roots of usy — ﬁ—fy(y — 1) + X35 with y_ <y, then :

A
Y-Y+ = — o
0-8
Thus y_ < 0 < y4 and by taking ps = ygs_l we have that ps3s > —1 and
) 2 2
A~ psas A pSO-S
DPsptls — 92 + >\s 10%(1 +psﬂs) = Sup1 {psﬂs - 2 + >\s 10g<1 +psﬂs)} .
Ps>—7-

From (B3)) and the condition p;; > —1 we obtain:

~ 0'3 - /J/sﬁs - \/(,usﬁs + 0'3)2 + 4)\36520'2
Ps = .

® —203502
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Then we have the following inequality

T $202
Jo < FE [/ (ﬁsus — 52 =+ A log(1 +]§sﬂs)) ds] )
0

Now it is sufficient to show that the strategy p is admissible, but that is easy with Assumption
BTl and Assumption Thus the previous inequality is an equality

T ZA)2O.2
JO =k |i/ (ﬁs,us - 82 : + )‘s 10g(1 +ﬁsﬂs>) d8:|
0

and the strategy p is an optimal strategy. O

If we substitute p; by its value in the expression of the value function Jy, we get

Jo = Elﬁ(ﬂ? . S VR (T e 9 VA (L D G i

o7 27 4B 2 48707

+ log (% + 5%+ (B + 07)? + 4&@?0’?))} :

Remark 5.2. Assumption L1 can be reduced to the fact that the strategy p is an admissible
strategy.

Remark 5.3. Recall that in the case of no default, the optimal strategy is given by

0_ Mt
2 o2

Thus, in the case of default, the optimal strategy p can be written under the form
pe= p? — &

where € is an additional term given by

2‘7t2 203t 25,50'? )

0, Vi>T

Note that ¢, > 0, which is expected because of the default. After the default the optimal
strateqy is equal to the optimal strategy in a model without default.

) _{ S R/ (T L T LA <7
=

Remark 5.4. Note that if the coefficient 3 converges to 0, then the optimal strateqy con-
verges to Y5, which is erpected because if 3 converges to 0, all happens as if there is no
t

default.
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6 Power utility

To complete the spectrum of important utility functions, in this section we calculate the
value function and characterize the optimal strategy for the utility maximization problem
with respect to

Ulx)=2", x>0, ve€(0,1).

Trading strategies and wealth process have the same meaning as in Section Bl. We have

t ,p
P X,

0 Ss*

X/ =x+ dsSs.

and by self-financing property we get :
de’p = ijppt(utdt + Utth + ﬁtht)

By using Dolean’s formula, we get an expression of the wealth X" :

t t 1 t t
XP = wexp (/ Psttsds +/ PsosdW, — 5/ psos|ds +/ log(1 +psﬁs)st) .
0 0 0 0

Definition 6.1. The set of admissible trading strategies A consists of all G-predictable
processes p = (py)o<i<r that satisfy fOT |peos)?dt + fOT |Tog(1 + peB) [P Aedt < 00 and X7 > 0
forall0 <t<T.

The investor faces the maximization problem

V() = sup E[(X7")7]. (6.1)
peA
In order to find the value function and an optimal strategy we apply the same method as
for the exponential utility function. Most of the proofs are identical to Section Bl and are
given in the annex.
As in Section Bl and Section B, we give a dynamic extension of the initial problem and define
the value function for each time ¢t. More precisely, we have

s

Jy = esssup &
peA

Qt} a.s.

Now, for the sake of brevity we shall denote X! instead of X;”.
As in Section B, we have a characterization for the process J by dynamic programming.
More precisely

Proposition 6.1. (J;)o<i<r is the smallest cad-lag G-adapted process such that for allp € A
(X)) Ti)ocser s a supermartingale and Jp = 1.

And we have also a characterization for the optimal strategy

Proposition 6.2. Let p € A, the two following assertions are equivalent :

18



N\
(i) p is an optimal strategy, i.e. Jo =sup E[(XF)] = E [(X;) }

peEA
N\
(i1) ((Xf) Jt> is a martingale.
0<t<T

Now we will characterize the process J as the solution of a BSDE. For that we define
the following sets :

S = {Y cad-lag G-adapted such that Y; > 0V ¢ € [0,7] and esssup(|Yi(w)]) < oo}
w,t

L2

loc

T
(W) = {Z G-predictable, / | Z|?dt < oo a.s.}
0

T
L} (M) = {U G-predictable, /0 |U |2 Aedt < o0 a.s.}

From Proposition Bl (J;)o<i<r is a supermartingale and we can write it under the
following form with Doob-Meyer decomposition thanks to Dellacherie and Meyer (1980) :

th = dmt — dAt

with m a local martingale and A a cad-lag G-predictable nondecreasing process where Ay =
0. With a local martingale representation theorem, there exist Z € L2 (W) and U €
L? (M), such that :
dJy = Zy dWy + Upd My — dA,. (6.2)
From Proposition and Proposition we can give a characterization of the process
J with a BSDE

Theorem 6.1. The value function (J;)o<i<r is the smallest solution in ST x LI (W) x
L% (M) of the following BSDE :
dJ, = ZydW, + UdM,; — sup { <7p e + 7(7 L tht) Ji + Yo Zy
peA
(6.3)

N+ puB) — )+ m)} at
Jr =1

The optimal strategy p to problem (G1) is characterized by the following formula :

R —1
Py = argmax {%Pt% Jo A0 (e + 00 Ze) + N (1 + pe3)? — 1) (Jy + Ut)} dt®dP a.s.

peA

Unfortunately we can not say if BSDE (E3)) admits a unique solution. But we have
another characterization for the process J, this one is obtained by approximation using the
following processes J*
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Proposition 6.3. As previously for the exponential utility, for all k € N there exists a
bounded positive cad-lag G-adapted process (JF)o<i<r such that :

Xp Y
JF = esssup F [ (—T>
! peEAF Xf

gt:| a.S.
The process (J*, Z%, U*) is the unique solution in ST x L*(W) x L?(M) of the BSDE :

dJE = ZEAW,+ UM, — sup { (vpere + 20520302 ) JE + o 28

pe Ak
(Lt ) — 1) + Uf)} d
JEoo=1

(6.4)

We get another characterization of process J with the processes J*. More precisely

Proposition 6.4. J, = klim T JF as.

Appendix A : Proof of Proposition and Proposition
0.2

The technics are similar to Section Bl We first want to show that J is the smallest process
such that for all p € A, ((X})?J;)o<i<r is a supermartingale and Jr = 1. Let (Y;)o<i<r be
a G-adapted process such that V p € A, ((X})"Y:)o<i<r is a supermartingale and Y7 = 1.
For all t € [0,7] and for all p € A, we have :

E[(X2)Y7r|G] < (XD)Y,

Then }
G| <Y.

PG

Therefore we have :

Py
esssup F [(XT) Qt] <Y,

pEA:

Then we get :
Jt S Y; a.s.

We want now to prove the equivalence for the optimal strategy : suppose that p is an
optimal strategy, hence we have

Jo=sup E[(X})"] = E [(X})7].

peA
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As ((Xf3 )VJt) is a supermartingale, we have the following inequalities :
0<t<T

B (X 5] < o

and
B |(X)1G:] < (X})"

If we take the expectation in this last inequality we get
E (X)) < E[(X) ] < Jo.

Therefore we have
E [(Xf)ut} = .

Hence ((Xff3 )'YJt> is a supermartingale with a constant expectation value, then it is a
0<t<T
martingale.
To show the converse, suppose that ((Xf3 )'YJt) is a martingale, then we have :
0<t<T

E [(X?)”’} = .

Because ((X})?J;)o<,<p is a supermartingale for all p € A, we have :
(X)) < Jo

Thus we have :

Jo=sup E[(X})"] = B |(x})].

peA

Appendix B : Proof of Theorem

We first characterize the process A of Doob-Meyer decomposition (£2). For that we use
the properties of process J. By Itd’s formula we get :

—1
ey = 0y | (e X0t ) s i+ (-4 py - i

"‘(Xf, )W(thWt + Utht — dAt) + ”)/(ti, )WptO'ttht

X))+ ) — 1) Ude

-1
= local martingale — (X?)” {dAt — {(w%ut + %pfaf) J;

+ypeo Zy + M((1+ peBe)” — 1) (Jp + Ut)] dt}
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From Proposition Bl ((X7)”J;)o<i<r is a supermartingale for all strategies (p;)o<i<r €
A, thus :

—1
dAt - |i(fypt/~’/t + %pt Ut) Jt -+ ”ythtZt —+ >\t((1 _’_ptﬁt)w _ 1)<Jt + Ut):| dt > 0.
Then we have :
Yy =1 , .
dAy > || ypese + Tptat i+ Zy + M((1+ pef3y) — 1)(J + Uy) | dt.

From Theorem 2.2 of Kramkov and Schachermayer (1999), there exists an optimal strat-
egy to problem (G1). With Proposition 2, this optimal strategy p € A is such that

((Xf)fy Jt) is a martingale, thus we get :
0<t<T
R Y(y - 1) A% _
dA; — || YD + Tptat Ji + 900 Zy + M((1+ pe3y)” — 1) (Jp + Uy) | dt = 0.

Therefore we have :

1
dA, = sup { (wtut + %pm) Ji + 00t Zy + M((1+ peB)” — 1) (g + Ut)} dt.
pe

Thus the process J is solution of the BSDE

dJy = Z, AW+ UdM; — sug{ (mu + 200y at) Jo+ 10 Z
pe
+ M (L4 peBr)P = 1)(Jr + Ut)} dt
Jro= 1

Now we want to show that the process J is the smallest solution of this BSDE : let (Y, Z,U)
be a solution of BSDE (E3)), we show that for all p € A we have that ((X})” J;)gcicq is a
supermartingale :

d((X)Ys) = Yed (X)) + (X7)" dY, +d[(X])", Y]
- ¥ (x7) [yptutdt—i-”yptatth + 202026201 4+ (14 pB) — 1] dNt]
+ (Xf,) (Z, dWy + UpdM; — dAy) + th (Xf,) progdt
+U; (X)) [(1 + pufB)” — 1] AN,
= dmy — (XP)7 [dA, — dA?]
with

Yy —1) ,

dA} = Kmut +—

40 ) Yot ot ML = (Y + 0| a

and (my)o<t<r is a local martingale :
dmy = (X )" [(vpeoeYe- + Ze) AWy + [[(1 4 pef3)" — 1)(Ur + Y- ) + UnJdMy]
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Then : .
(Xﬂyﬁ—(X@ﬁﬁzﬁu—mm—/(X@Wm&—dﬁg
0
my > mo + (X7)"Y; — (X§)" Yo
my > mo — (X§)" Yo

Therefore (m;)o<:<r is a lower bounded local martingale, thus (m;)o<;<7 is a supermartingale
and ((X{)" Ji)g<y<r is a supermartingale for all p € A. From Proposition Bl we can affirm
that J; <Y; a.s. forall t € [0,T].

Appendix C : Proof of Proposition

The proof of existence of process J* is similar to the proof of Proposition B4 Thus we
show that the process J* is bounded

T T
Jf =esssup F {exp </ Yispsds —i—/ Yo AW
t t

peAk

1 T T
- 5/ W‘Usps|2d5+/ 710g<1+psﬂs)st) gt:| .
t t

Let QP be the equivalent probability to P defined by the formula :

D T 1 T
% = €xp </t ’Yo-spdes - i/t |’)/0'sps|2d8) .

Then we have :

T V=~ (T T
Jf = esssup Egr [exp (/ Yispsds + 5 / |osps|?ds + / ~vlog(1 —l—psﬁs)d]\fs) ‘ Qt} )
t t t

pe Ak

As the processes p, 0 et 3 are supposed bounded, the process (Jf)o<i<r is bounded.

These processes (Jf)o<i<r have the same properties as the process (J;),<,<p : for all strate-

gies p € A*, (X])" th)ogth

((Xf)fy Jf) is a martingale.
0<t<T

As the process (JF)o<i<r is a bounded supermartingale, so it admits a Doob-Meyer decom-

is a supermartingale and there exits a strategy p such that

position :
dJF = ZFaW, + UFdM, — dAF
with Z% € L>(W), U* € L*(M) and A* is a cad-lag G-predictable nondecreasing process
where Ag = 0.
In using the properties of process J* we can determine the form of process A* as in the

previous appendix and we obtain a BSDE for which the process J* is solution. Since the
set A* is bounded this BSDE admits a unique solution.
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