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Utility maximization in incomplete markets with default

Thomas LIM ∗ Marie-Claire QUENEZ †

Abstract

We address the maximization problem of expected utility from terminal wealth.

The special feature of this paper is that we consider a financial market where the

price process of risky assets can have a default time. Using dynamic programming, we

characterize the value function with a backward stochastic differential equation and

the optimal portfolio policies. We separately treat the cases of exponential, power and

logarithmic utility.

Key words : Utility maximization, dynamic programming, backward stochastic dif-

ferential equation, default time, incomplete market, exponential utility, power utility, loga-

rithmic utility.

1 Introduction

We consider an incomplete financial model with one bond and one risky asset. The price

process S of the risky asset is assumed to be a local martingale driven by a brownian motion

and a default indicating process. In such a context, we solve the portfolio optimization

problem when investors want to maximize the expected utility from terminal wealth.

The utility maximization problem has been largely studied in the literature. Originally

introduced by Merton (1971) in the context of constant coefficients and treated by markovian

methods via Bellman equation of dynamic programming, it was developed for general process

by martingal duality approach. For the case of complete markets, we refer to Karatzas et al.

(1987), Cox and Huang (1989). For the case of incomplete and/or constrained markets, we

refer to Karatzas et al. (1991), He and Pearson (1991) and Cvitanic̀ and Karatzas (1992).

Lukas (2001) considers the case of incomplete markets with a default in the markovian

case. In contrast to these papers, in Hu et al. (2004), the authors do not use the duality

approach, and they directly characterize the solution of the primal problem as the solution

of a backward stochastic differential equation (BSDE), by using a verification theorem of

the same spirit as El Karoui et al. (1997). Since they work in a Brownian filtration, they

can use directly some results on quadratic BSDEs (Kobylanski (2000)). For the case of a
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discontinuous framework, we refer to Morlais (2008). She supposes that the price process of

stocks is modeled by a local martingale driven by an independent one dimensional brownian

motion and a Poisson point process. In using the same approach as in Hu et al. (2004),

she obtains formally a BSDE for which there is none existence and uniqueness results. She

proves the existence of a solution of this BSDE using an approximation method but she does

not obtain uniqueness result, so it is not possible to characterize the value function as the

solution of a BSDE. To be able to solve completely the problem, she restrains the admissible

portfolio set to a compact set so that in this case the value function can be proved to be the

unique solution of a BSDE.

The method we propose in order to obtain value function and optimal strategy is simple.

We propose to study directly the value function with few dynamical programming technics.

Then it is possible to prove that the value function is a particular solution of a quadratic

BSDE.

The outline of the paper is organized as follows. In Section 2, we present the market

model and the problem. In Section 3, we carry out the calculation of the value function and

an optimal strategy for exponential utility and in Section 4 we define the indifference price for

a contingent claim with the results of Section 3. In Section 5, we consider logarithmic utility,

and in the final section we treat the power utility to complete the spectrum of important

utility functions.

2 The market model

Let (Ω,G,P) be a complete probability space equipped with a Brownian motion (Wt)0≤t≤T .

The filtration F is the completion of the filtration generated by W . We consider a financial

market which consists of one risk-free asset, whose price process is assumed for simplicity to

be equal to 1 at each date, and one risky asset with price process S. We suppose that the

risky asset admits a default time τ . We introduce the jump process Nt = 1τ≤t, we denote

by H the filtration generated by this process and by G the enlarged filtration F ∨ H (we

suppose that G = GT ). For any t ∈ R+, we write Ft = P {τ ≤ t|Ft}, and we denote by G

the F-survival process of τ with respect to the filtration F, given as

Gt := 1 − Ft = P {τ > t|Ft} , ∀t ∈ R+.

Definition 2.1. Assume that Ft < 1 for all t ∈ R+. The F-hazard process of τ under P,

denoted by Γ, is defined through the formula 1 − Ft = e−Γt. Equivalently, Γt = − lnGt =

− ln(1 − Ft) for every t ∈ R+.

Let us assume that this process is absolutely continuous with respect to the Lebesgue

measure, so that there exists a process γ such that Γt =
∫ t

0
γsds for all t ∈ R+. It can be

shown (see, for instance, Bielecki and Rutkowski (2004), chap. 6) that the process given by

the formula :

Mt = Nt −
∫ t∧τ

0

γsds (2.1)
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is a G-martingale. For the sake of brevity we shall denote λt = (1−Nt)γt thereafter. Recall

that the filtrations F and G satisfy the following property called H-hypothesis (see Bremaud

and Yor (1978) for a detailed study)

Proposition 2.1. Martingale invariance property Every F-martingale under P is also

a G-martingale under P.

Proof. By construction of the process N with G-predictable intensity, Gt and FT are in-

dependent, given Ft. The result now follows from the observation that this property is

equivalent to E[X|Ft] = E[X|Gt] for every FT -measurable random variable X.

The martingale invariance property is a common assumption in the literature on default

risk modeling (see Elliott et al. (2000)) and as well as hedging and portfolio choice with

jumps (see Blanchet-Scalliet and Jeanblanc (2004)). We also recall the useful martingale

representation theorem (see Jeanblanc (2001))

Proposition 2.2. Martingale representation theorem Let m be any (P,G)-local mar-

tingale with m0 = 0. Then, there exist two valued processes φ and ψ which are G-predictable

processes, P-a.s. square integrable and such that

mt =

∫ t

0

φsdWs +

∫ t

0

ψsdMs, 0 ≤ t ≤ T.

The price process S evolves according to the equation :

dSt = St−(µtdt+ σtdWt + βtdNt). (2.2)

Assumption 2.1. (i) µ, σ and β are G-predictable and uniformly bounded stochastic pro-

cesses.

(ii) The process β satisfied βt > −1 for all t ∈ R+.

(iii)
(

µt

σt

)

0≤t≤T
is uniformly bounded.

A G-predictable process π = (πt)0≤t≤T is called trading strategy if
∫ T

0
πt

S
t−
dSt is well

defined, e.g.
∫ T

0
|πtσt|2dt <∞ P-a.s. and

∫ T

0
|πtβt|2λtdt <∞ P-a.s. The process (πt)0≤t≤T

describes the amount of money invested in the risky asset S at time t. The wealth process

Xx,π of a trading strategy π with initial capital x satisfies the equation :

X
x,π
t = x+

∫ t

0

πs

Ss−
dSs

and by self-financing, we get :

dX
x,π
t = πt(µtdt+ σtdWt + βtdNt). (2.3)
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A function U : (0,∞) → R will be called utility function if it is strictly increasing,

strictly concave, of class C1, and satisfies the Inada’s conditions :

U ′(0+) = lim
x↓0

U ′(x) = ∞, U ′(∞) = lim
x→∞

U ′(x) = 0.

The optimization problem is to maximize the expected utility from terminal wealth over

the class A(x) of admissible portfolios, provided that the expectation is well defined. More

precisely, the value function of this problem is defined by :

V (x) = sup
π∈A(x)

E [U(Xx,π
T )] .

In the following, we will characterize the value function V (x) and the optimal strategy.

3 Exponential utility

In this section, we specify the sense of optimality for trading strategies by stipulating

that the investor wants to maximize his expected utility with respect to the exponential

utility from his terminal wealth. Let us recall that for γ > 0 the exponential utility function

is defined as :

U(x) = − exp(−γx), x ∈ R.

Definition 3.1. (Admissible strategies) The set of admissible trading strategies A(x)

consists of all G-predictable processes π = (πt)0≤t≤T which satisfy
∫ T

0
|πtσt|2dt < ∞ a.s.

and
∫ T

0
|πtβt|2λtdt < ∞ a.s. and there exists a constant Kπ such that Xx,π

t ≥ Kπ for all

t ∈ [0, T ]. We denote At if the initial time is t.

For the sake of brevity we shall denote A instead of A(x) if there is no confusion.

Let ξ ∈ GT be a given non-negative contingent claim, and let x be the initial endowment

of the investor. Our first goal is to solve an optimization problem for an agent who buys a

contingent claim ξ. To this end it suffices to find a strategy that maximizes

V (x, ξ) = sup
π∈A

E [− exp(−γ (Xx,π
T + ξ))] , γ > 0, (3.1)

V is called value function. The maximization problem is evidently equivalent to :

V (x, ξ) = −e−γx inf
π∈A

E
[

exp
(

−γ
(

X
0,π
T + ξ

))]

.

We denote V (x) the value function if the investor does not buy the contingent claim ξ and

invests only in the risk-free asset and in the risky asset.

To solve this problem we define the value function J(t) at t by the following formula :

J(t) = ess inf
π∈At

E [exp(−γ(Xx,π
T −X

x,π
t + ξ))|Gt] a.s. (3.2)
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Remark 3.1. The function J is independent of the initial wealth x, then we can take x = 0

for the next.

For the sake of brevity, we shall denote now Xπ
t instead of X0,π

t . In the following, we

want to characterize J by a BSDE. Let us define the function Γ(t, π) by the formula :

Γ(t, π) = E [exp(−γ(Xπ
T −Xπ

t + ξ))|Gt] .

Proposition 3.1. The set {Γ(t, π), π ∈ At} is stable by infimum, i.e. for every π0, π1 ∈ At,

there exists π ∈ At such that Γ(t, π) = Γ(t, π0) ∧ Γ(t, π1).

Proof. Let us define the set E :

E =
{

Γ(t, π0) ≤ Γ(t, π1)
}

.

Thus E ∈ Gt. Let us define π by the formula :

∀ s ∈ [t, T ], πs = π0
s1E + π1

s1Ec.

Then Xπ
s = Xπ0

s 1E +Xπ1

s 1Ec , therefore Xπ
s ≥ Kπ0 ∧Kπ1 , thus π ∈ At. By construction of

π, we have that Γ(t, π) = Γ(t, π0) ∧ Γ(t, π1).

With Proposition 3.1 the value function can be characterized with the function Γ

Corollary 3.1. For all t, there exists a sequence (πn)n∈N ∈ At, such that :

J(t) = lim
n→∞

↓ Γ(t, πn) a.s.

Let us define the G-adapted process (J ′
t)0≤t≤T by the formula :

J ′
t =

{

J(t) if J is defined at t

0 else

With the dynamic programming we obtain few properties about the process J ′

Proposition 3.2. For all strategies π ∈ A, (e−γXπ
t J ′

t)0≤t≤T is a submartingale.

Proof. It is sufficient to show that :

E
[

e−γXπ
t J ′

t|Gs

]

≥ e−γXπ
s J ′

s, ∀ t ≥ s

i.e. E
[

e−γ(Xπ
t −Xπ

s )J ′
t|Gs

]

≥ J ′
s, ∀ t ≥ s.

With equality (2.3) and Corollary 3.1, we have by monotone convergence theorem :

E [exp(−γ(Xπ
t −Xπ

s ))J ′
t| Gs] = lim

n→∞
↓ E

[

exp

(

−γ
(
∫ t

s

πu

dSu

Su−
+

∫ T

t

πn
u

dSu

Su−
+ ξ

))
∣

∣

∣

∣

Gs

]
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Let us define the strategy π̃n by

π̃n
u =

{

πu if s ≤ u < t

πn
u if t ≤ u ≤ T

We can easily show that π̃n ∈ As. By definition of J ′
s, we have lim

n→∞
Γ(s, π̃n) ≥ J ′

s a.s.

Therefore :

E [exp(−γ(Xπ
t −Xπ

s ))J ′
t|Gs] = lim

n→∞
↓ Γ(s, π̃n) ≥ J ′

s a.s.

Then,
(

e−γXπ
t J ′

t

)

0≤t≤T
is a submartingale for all π ∈ A.

We can so characterize the process J ′ by the following proposition

Proposition 3.3. (Dynamic Programming principle) (J ′
t)0≤t≤T is the largest G-adapted

process for the almost surely equality such that for all strategies π ∈ A,
(

e−γXπ
t J ′

t

)

0≤t≤T
is

a submartingale and J ′
T = exp(−γξ).

Proof. Let (Yt)0≤t≤T be a G-adapted process such that ∀ π ∈ A,
(

e−γXπ
t Yt

)

0≤t≤T
is a sub-

martingale and YT = exp(−γξ). For all t ∈ [0, T ] and for all π ∈ A, we have :

E
[

e−γXπ
TYT |Gt

]

≥ e−γXπ
t Yt

Then

E

[

exp

(

−γ
(
∫ T

t

µsπsds+ σsπsdWs + βsπsdNs + ξ

))
∣

∣

∣

∣

Gt

]

≥ Yt.

Therefore we have :

ess inf
π∈At

E

[

exp

(

−γ
(
∫ T

t

µsπsds+ σsπsdWs + βsπsdNs + ξ

))
∣

∣

∣

∣

Gt

]

≥ Yt

Then we get :

J ′
t ≥ Yt a.s.

We now show that there exists a càd-làg version of the value function. More precisely,

Proposition 3.4. There exists a càd-làg G-adapted process (Jt)0≤t≤T such that for all t ∈
[0, T ] :

Jt = ess inf
π∈At

E [exp(−γ(Xx,π
T −X

x,π
t + ξ))|Gt] a.s.

Proof. Let D = [0, T ]∩Q. Because (J ′
t) is a submartingale, we have for almost every ω ∈ Ω,

that the mapping t→ J ′
t(ω) defined on D has at each point t of [0, T [ a finite right limit :

J ′
t+(ω) = lim

s∈D,s↓t
J ′

s(ω)
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and at each point of ]0, T ] a finite left limit

J ′
t−(ω) = lim

s∈D,s↑t
J ′

s(ω).

Thanks to Dellacherie and Meyer (1980), chap. 6, the process J ′
t+ is a Gt+-submartingale.

We can show that the process
(

exp (−γXπ
t ) J ′

t+

)

0≤t<T
is a Gt+-submartingale and because

the filtration is right continuous, it is a Gt-submartingale. Consequently, from Proposition

3.3, for all t ∈ [0, T ] J ′
t+

≤ J ′
t a.s. We have also J ′

t ≤ E
[

J ′
t+
|Gt

]

. Thus : J ′
t+

= J ′
t a.s. and

∀ t ∈ [0, T ], J ′
t+ = ess inf

π∈At

E [exp(−γ(Xx,π
T −X

x,π
t + ξ))|Gt] a.s.

The result follows in taking Jt equals to the above process J ′
t+

.

Remark 3.2. The property of dynamic programming can be written for the process J un-

der the form : (Jt)0≤t≤T is the largest càd-làg G-adapted process such that for all π ∈
A,

(

e−γXπ
t Jt

)

0≤t≤T
is a submartingale and JT = exp(−γξ).

We now show that the value function is bounded, that is interesting for the following to

use the Doob-Meyer decomposition. More precisely,

Lemma 3.1. For all 0 ≤ t ≤ T , the process J verifies :

0 < Jt ≤ 1 a.s.

Proof. By definition of process J , we know that for all t, Jt > 0. Moreover the strategy

πs = 0 for all s ∈ [t, T ] is admissible following Definition 3.1, hence Jt ≤ exp(−γξ) for all t.

As we suppose that the contingent claim ξ is non negative, we have that Jt ≤ 1.

With the dynamic programming principle, we can give a classical characterization of the

optimal strategies:

Proposition 3.5. (Characterization of optimal strategies)

Let π̂ ∈ A, the two following assertions are equivalent :

(i) π̂ is an optimal strategy, i.e. J0 = inf
π∈A

E [exp(−γ(Xπ
T + ξ))] = E

[

exp(−γ(X π̂
T + ξ))

]

.

(ii)
(

e−γXπ̂
t Jt

)

0≤t≤T
is a martingale.

Proof. Suppose (i) that is π̂ is an optimal strategy, hence we have

J0 = E
[

exp(−γ(X π̂
T + ξ))

]

. (3.3)
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As
(

e−γXπ̂
t Jt

)

0≤t≤T
is a submartingale from Remark 3.2 and by (i), we have J0 = E

[

exp(−γ(X π̂
T + ξ))

]

which implies (ii).

To show the converse, suppose that
(

e−γXπ̂
t Jt

)

0≤t≤T
is a martingale, then we have :

E
[

e−γXπ̂
T e−γξ

]

= J0.

which gives (i).

Remark 3.3. Note that we can obtain a quite general verification theorem for the value

function : let (Yt)0≤t≤T be a G-adapted process which is equal to exp(−γξ) at T and such

that for all strategies π ∈ A,
(

exp
(

−γ
∫ t

0
πs

S
s−
dSs

)

Yt

)

0≤t≤T
is a submartingale and that

there exists a strategy π̂ ∈ A satisfying
(

exp
(

−γ
∫ t

0
π̂s

S
s−
dSs

)

Yt

)

0≤t≤T
is a martingale, then

we have Yt = Jt a.s. for each t ∈ [0, T ].

Remark 3.4. In the Brownian filtration case, see Hu et al. (2004), the authors use a

similar verification theorem but they look for Y as the solution of a BSDE of the form

Yt = F −
∫ T

t

ZsdWs −
∫ T

t

f(s, Zs)ds

for which some existence and uniqueness results hold. They characterize easily the function

f with the two properties of verification theorem. In the case of jumps, see Morlais (2008),

the author uses the same approach as in Hu et al. (2004), she obtains formally a BSDE for

which there is none existence and uniqueness results. She proves the existence of a solution

of this BSDE with an approximation method but she does not obtain uniqueness result, so it

is not possible to characterize the value function as the solution of a BSDE. In order to be

able to solve completely the problem, she restrains the admissible portfolio set to a compact

set so that in this case, the value function can be proved to be the unique solution of her

BSDE.

Now, we will define the process J as a solution of a BSDE. For that we need to define

the following sets S∞, L2(W ) and L2(M) :

S∞ =

{

Y càd-làg G-adapted such that ess sup
ω,t

(|Yt(ω)|) <∞
}

L2(W ) =

{

Z G-predictable, E

[
∫ T

0

|Zt|2dt
]

<∞
}

L2(M) =

{

U G-predictable, E

[
∫ T

0

|Ut|2λtdt

]

<∞
}

With Remark 3.2 and Lemma 3.1, (Jt)0≤t≤T is a submartingale of class D and admits a

unique Doob-Meyer decomposition thanks to Dellacherie and Meyer (1980), chap. 7 :
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dJt = dmt + dAt

withm is a square integrable martingale and A is an increasing càd-làg G-predictable process

with A0 = 0. From Theorem 3.3, the Doob-Meyer decomposition can be written under the

form

dJt = ZtdWt + UtdMt + dAt (3.4)

with Z ∈ L2(W ), U ∈ L2(M).

In using Remark 3.2 and Proposition 3.5, it is possible to determine the process A of 3.4

and we prove that the value function is solution of a BSDE with a quadratic driver.

Proposition 3.6. The process (Jt, Zt, Ut)0≤t≤T ∈ S∞ × L2(W ) × L2(M) is solution of the

following BSDE :















dJt = ZtdWt + UtdMt

+ sup
π∈A

{

−γ2

2
π2

t σ
2
t Jt + γπt(µtJt + σtZt) + λt(1 − e−γπtβt)(Jt + Ut)

}

dt

JT = exp(−γξ)
(3.5)

Proof. To prove this proposition, we use the property that for each π, the process (e−γXπ
t Jt)

is a submartingale and that for at least one π̂ this process is a martingale. It follows the finite

variation part which appears in the decomposition of the semi-martingale (e−γXπ
t Jt) (resp.

(e−γXπ̂
t Jt)) is an increasing process (resp. null process). More precisely, let us calculate the

derivative of process e−γXπ
t Jt, we first use Itô’s formula

d
(

e−γXπ
t

)

= −γe−γXπ

t−dX
π,c
t +

γ2

2
e−γXπ

t−d <Xπ,c>t +
(

e−γXπ
t − e−γXπ

t−

)

dNt

= e−γXπ

t−

[

−γ(πtµtdt+ πtσtdWt) +
γ2

2
π2

t σ
2
t dt+

(

e−γπtβt − 1
)

dNt

]

= e−γXπ

t−

[(

γ2

2
π2

t σ
2
t − γπtµt

)

dt− γπtσtdWt +
(

e−γπtβt − 1
)

dNt

]

with Xπ,c the continuous part of Xπ.

The product rule yields

d
(

e−γXπ
t Jt

)

= e−γXπ

t−dJt + Jt−d
(

e−γXπ
t

)

+ d
[

e−γXπ
t , Jt

]

= e−γXπ

t− (ZtdWt + UtdMt + dAt) + e−γXπ

t−Jt−

[(

γ2

2
π2

t σ
2
t − γπtµt

)

dt

−γπtσtdWt +
(

e−γπtβt − 1
)

dNt

]

− e−γXπ

t−γπtσtZtdt

+e−γXπ

t−

(

e−γπtβt − 1
)

UtdNt.
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We have with equality (2.1) :

d
(

e−γXπ
t Jt

)

= e−γXπ

t−

[

(Zt − γπtσtJt)dWt + (Ut + (e−γπtβt − 1)(Ut + Jt−))dMt + dAt

+

{(

γ2

2
π2

t σ
2
t − γπtµt

)

Jt + λt

(

e−γπtβt − 1
)

(Ut + Jt) − γπtσtZt

}

dt

]

= local martingale + dAπ
t .

With dAπ
t = dAt +

{(

γ2

2
π2

t σ
2
t − γπtµt

)

Jt + λt

(

e−γπtβt − 1
)

(Ut + Jt) − γπtσtZt

}

dt.

By the dynamic programming principle (Remark 3.2), the process
(

e−γXπ
t Jt

)

0≤t≤T
is a sub-

martingale for all strategies π ∈ A, then dAπ
t ≥ 0 for all strategies π ∈ A and we get

dAt ≥
[(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

]

dt.

From Theorem 2.2 of Kramkov and Schachermayer (1999), there exists an optimal strat-

egy π̂ ∈ A for problem 3.1. By Proposition 3.5, this optimal strategy π̂ is such that
(

e−γXπ̂
t Jt

)

0≤t≤T
is a martingale, which implies that a.s.,

dAt =

[(

−γ
2

2
π̂2

t σ
2
t + γπ̂tµt

)

Jt − λt

(

e−γπ̂tβt − 1
)

(Ut + Jt) + γπ̂tσtZt

]

dt.

Therefore we have
(

−γ
2

2
π̂2

t σ
2
t + γπ̂tµt

)

Jt − λt

(

e−γπ̂tβt − 1
)

(Ut + Jt) + γπ̂tσtZt

= sup
π∈A

{(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

}

.

Thus decomposition (3.4) of (Jt)0≤t≤T is given by :

dJt = ZtdWt + UtdMt

+ sup
π∈A

{(

−γ
2

2
π2

t σ
2
t + γπtµt

)

Jt − λt

(

e−γπtβt − 1
)

(Ut + Jt) + γπtσtZt

}

dt.

The problem is that we can not prove that BSDE (3.5) admits a unique solution in S∞×
L2(W )×L2(M). We will see in the next that if the set of admissible portfolios is restricted

to some bounded sets then BSDE (3.5) admits a unique solution in S∞ × L2(W ) × L2(M).

But the value function can be characterized as the largest solution of a BSDE

Theorem 3.1. (Jt)0≤t≤T is the largest solution in the set S∞ × L2(W ) × L2(M) of the

BSDE :














dJt = ZtdWt + UtdMt

+ sup
π∈A

{

−γ2

2
π2

t σ
2
t Jt + γπt(µtJt + σtZt) + λt

(

1 − e−γπtβt
)

(Jt + Ut)
}

dt

JT = exp(−γξ)
(3.6)
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The optimal strategy π̂ to problem (3.1) is defined by :

π̂t = arg max
π∈A

{

−γ
2

2
π2

t σ
2
t Jt + γπt(µtJt + σtZt) + λt

(

1 − e−γπtβt
)

(Jt + Ut)

}

.

Proof. Let (J ′
t, Z

′
t, U

′
t) be a solution of equation (3.6) in S∞×L2(W )×L2(M). Let us prove

that for all strategies π ∈ A we have
(

e−γXπ
t J ′

t

)

0≤t≤T
is a submartingale

d
(

e−γXπ
t J ′

t

)

= e−γXπ

t−

[

(Z ′
t − γπtσtJ

′
t−) dWt +

(

U ′
t +
(

e−γπtβt − 1
)

(U ′
t + J ′

t−)
)

dMt + dAt

+

{(

γ2

2
π2

t σ
2
t − γπtµt

)

J ′
t− + λt

(

e−γπtβt − 1
)

(U ′
t + J ′

t) − γπtσtZ
′
t

}

dt

]

= dMπ
t + dAπ

t

With :
{

dAπ
t = e−γXπ

t

{

dAt +
[(

γ2

2
π2

t σ
2
t − γπtµt

)

J ′
t + λt

(

e−γπtβt − 1
)

(U ′
t + J ′

t) − γπtσtZ
′
t

]

dt
}

dMπ
t = e−γXπ

t−

[

(Z ′
t − γπtσtJ

′
t)dWt +

(

U ′
t +
(

e−γπtβt − 1
) (

U ′
t + J ′

t−

))

dMt

]

dAπ
t ≥ 0, as dAt = sup

π∈A

{(

−γ2

2
π2

t σ
2
t + γπtµt

)

J ′
t − λt

(

e−γπtβt − 1
)

(U ′
t + J ′

t) + γπtσtZ
′
t

}

dt.

Thus Mπ
t ≤ e−γXπ

t J ′
t −J ′

0 and by definition of an admissible strategy there exists a constant

Kπ such that Xπ
t ≥ Kπ and J ′ is a positive bounded process, therefore Mπ is upper bounded

by a constant.

Thus
(

e−γXπ
t J ′

t

)

0≤t≤T
is a submartingale, because it is the sum of a submartingale and a

nondecreasing process.

From Remark 3.2, (Jt)0≤t≤T is the largest process such that ∀ π ∈ A,
(

e−γXπ
t Jt

)

0≤t≤T
is a

submartingale and JT = exp(−γξ). Therefore we get :

∀ t ∈ [0, T ], J ′
t ≤ Jt a.s.

Remark 3.5. If we suppose that the set A is closed and there is no default (i.e. we consider

the brownian motion case), then this result corresponds to that obtained in Hu et al. (2004).

In the rest of this section, we show another characterization of the value function. For

each k we consider the value function Jk defined by

Jk
t = ess inf

π∈Ak
E [exp (−γ(Xx,π

T −X
x,π
t + ξ)) |Gt] a.s.

with Ak =
{

π ∈ A, |πt| ≤ k ∀ t ∈ [0, T ] a.s.
}

. Then the value function J can be charac-

terized to be the limit of the value functions Jk.
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These processes (Jk
t )0≤t≤T have the same properties as the process (Jt)0≤t≤T : for all

strategies π ∈ Ak,
(

e−γXπ
t Jk

t

)

0≤t≤T
is a submartingale and there exits a strategy π̂ such that

(

e−γXπ̂
t Jk

t

)

0≤t≤T
is a martingale.

For each k ∈ N∗, the process Jk can be showed to be characterized as the unique solution

of a BSDE. Note that the uniqueness follows from the fact that the admissible set of strategies

Ak is bounded. More precisely

Proposition 3.7. The process
(

Jk
t , Z

k
t , U

k
t

)

0≤t≤T
is the unique solution in S∞ × L2(W ) ×

L2(M) of the following BSDE :























dJk
t = Zk

t dWt + Uk
t dMt + sup

π∈Ak

{

− γ2

2
π2

t σ
2
t J

k
t + γπt(µtJ

k
t + σtZ

k
t )

+ λt

(

1 − e−γπtβt
)

(Jk
t + Uk

t )

}

dt

Jk
T = exp(−γξ)

(3.7)

Proof. To prove that the process
(

Jk
t , Z

k
t , U

k
t

)

is solution of (3.7) we do as in the proof of

Proposition 3.6. Let us show the uniqueness of the solution of BSDE (3.7). In BSDE (3.7)

the driver is equal dP ⊗ dt a.s. to

inf
π∈Ak

{

γ2

2
π2

t σ
2
t y − γπt(µty + σtz) − λt

(

1 − e−γπtβt
)

(y + u)

}

.

We can easily show that the driver is Lipschitz w.r.t. y, z, u because Ak is bounded (not

necessarily compact). Then thanks to classical results (see Tang and Li (1994) or Barles et

al. (1997)), BSDE (3.7) admits a unique solution.

Remark 3.6. Note that in the case A is compact, the result we have derived in a more

simple way stated in Morlais (2008).

We can characterize the value function J as the limit of the processes Jk

Proposition 3.8. Jt = lim
k→∞

↓ Jk
t a.s. ∀ t ∈ [0, T ].

Proof. It is obvious with the definitions of sets A and Ak that

∀ k ∈ N Jt ≤ Jk
t a.s.

and as for all t the sequence
(

Jk
t

)

k≥0
is nonincreasing and lower bounded, we get the existence

of a limit that we denote J̄t for all t and Jt ≤ J̄t a.s. (we can suppose that J̄ is càd-làg as

in the proof of Proposition 3.4).

In order to prove that for all t we have Jt ≥ J̄t, we first prove that for each π ∈ A,
(

e−γXπ
t J̄t

)

0≤t≤T
is a submartingale. As Jk is a submartingale, we get

∀ k ∈ N E[Jk
t |Gs] ≥ Jk

s ≥ J̄s a.s.
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By monotone convergence theorem, we have :

E[J̄t|Gs] ≥ J̄s a.s.

Then
(

J̄t

)

0≤t≤T
is a submartingale of class D and admits the following Doob-Meyer de-

composition : dJ̄t = Z̄tdWt + ŪtdMt + dĀt where Z̄ ∈ L2(W ), Ū ∈ L2(M) and Ā is a

nondecreasing càd-làg G-predictable process where Ā0 = 0.

We prove that for all bounded strategies π, the process
(

e−γXπ
t J̄t

)

0≤t≤T
is a submartingale

from monotone convergence theorem. By similar arguments of the proof of Proposition 3.6

we get

dĀt ≥ sup
π∈Ā

{

−γ
2

2
π2

t σ
2
t J̄t + γπt

(

µtJ̄t + σtZ̄t

)

+ λt

(

1 − e−γπtβt
)

(J̄t + Ūt)

}

dt

where Ā is the set of admissible and bounded strategies.

We show that for all admissible strategies π ∈ A that
(

e−γXπ
t J̄t

)

0≤t≤T
is a submartingale :

Let π ∈ A, we have

d
(

e−γXπ
t J̄t

)

= e−γXπ

t−

[

(

Z̄t − γπtσtJ̄t

)

dWt +
(

Ūt +
(

e−γπtβt − 1
) (

Ūt + J̄t−

))

dMt + dĀt

+
{

γ2

2
π2

t σ
2
t J̄t − γπt

(

µtJ̄t + σtZ̄t

)

− λt

(

1 − e−γπtβt
) (

J̄t + Ūt

)

}

dt
]

= dMπ
t + dAπ

t

with
{

dAπ
t = e−γXπ

t

{

dĀt +
[

γ2

2
π2

t σ
2
t J̄t + λt

(

e−γπtβt − 1
) (

Ūt + J̄t

)

− γπt

(

µtJ̄t + σtZ̄t

)

]

dt
}

dMπ
t = e−γXπ

t−

[(

Z̄t − γπtσtJ̄t

)

dWt +
(

Ūt +
(

e−γπtβt − 1
) (

Ūt + J̄t−

))

dMt

]

by definition of dĀ we have dAπ
t ≥ 0. Then :

Mπ
t = e−γXπ

t J̄t − J̄0 − (Aπ
t −Aπ

0 )

i.e Mπ
t ≤ e−γXπ

t J̄t − J̄0.

As J̄t ≥ Jt ≥ 0 and J̄t ≤ 1, we get :

Mπ
t ≤ e−γXπ

t .

By the definition of an admissible strategy we have that Mπ
t ≤ e−γKπ . Thus (Mπ

t )0≤t≤T

is an upper bounded local martingale, therefore it is a submartingale. As (Mπ
t )0≤t≤T is a

submartingale and (Aπ
t )0≤t≤T is nondecreasing,

(

e−γXπ
t J̄t

)

0≤t≤T
is a submartingale. Because

(

J̄t

)

0≤t≤T
is càd-làg G-adapted and J̄T = exp(−γξ), we have from Remark 3.2 :

J̄t ≤ Jt a.s.

Remark 3.7. Note that we have derived in a simple way the same approximation result

as the one stated in Morlais (2008). By using BSDEs technics, she also proves that the

processes Zk and Uk converge in L2 to the processes Z and U .
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4 Indifference pricing

We present a general framework of the Hodges and Neuberger (1989) approach with

some utility functions as define in Section 2. We solve explicitly the problem in the case of

exponential utility.

The Hodges approach for pricing of unhedgeable claims is a utility-based approach and can

be summarized as follows : the issue at hand is to assess the value of some claim ξ as

seen from the perspective of an investor who optimizes his behavior relative to some utility

function, say u. The investor has two choices : else he invests only in the risk-free asset

and in the risky asset or he invests also in the contingent claim. We can define the Hodges

price:

Definition 4.1. For a given initial endowment x, the Hodges buying price of a contingent

claim ξ is the real number p such that V (x) = V (x− p, ξ).

The Hodges price p can be derived explicitly in the case of exponential utility by applying

the results of Section 3. If the investor buys the contingent claim at the price p and invests

the rest of his wealth the value function is equal to

V (x− p, ξ) = − exp(−γ(x− p))Jξ
0 .

If he invests all his wealth in the risk-free asset and in the risky asset the value function is

equal to

V (x) = − exp(−γx)J0
0 .

Where Jξ
t is the largest solution of















dJt = ZtdWt + UtdMt

+ sup
π∈A

{

−γ2

2
π2

t σ
2
t Jt + γπt(µtJt + σtZt) + λt

(

1 − e−γπtβt
)

(Jt + Ut)
}

dt

JT = exp(−γξ)
The Hodges price for the contingent claim ξ is given by the formula :

p =
1

γ
ln

(

J0
0

J
ξ
0

)

.

We can also define the Hodges price of the contingent claim ξ at time t by :

pt =
1

γ
ln

(

J0
t

J
ξ
t

)

.

Remark 4.1. If we consider the admissible strategies set Ak, the price of indifference pk

can be also defined by the same method. More precisely

pk =
1

γ
ln

(

J
k,0
0

J
k,ξ
0

)

(resp. pk
t =

1

γ
ln

(

J
k,0
t

J
k,ξ
t

)

).

We remark that

p = lim
k→∞

pk (resp. pt = lim
k→∞

pk
t ).
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5 Logarithmic utility

In this section we calculate the value function and characterize the optimal strategy for

the utility maximization problem with respect to

U(x) = log(x).

This time, we shall use a somewhat different notion of trading strategy : pt denotes the part

of the wealth X
x,p
t invested in stock S, that is advantageous for the calculus. The number

of shares of stock is given by the formula
ptX

x,p
t

St
. A G-predictable process p = (pt)0≤t≤T is

said to be a trading strategy if the following wealth process is well defined :

X
x,p
t = x+

∫ t

0

psX
x,p

s−

Ss−
dSs.

By self-financing we have the following relation :

dX
x,p
t = X

x,p

t−
pt(µtdt+ σtdWt + βtdNt),

and from Dolean’s formula, we get the expression of the wealth Xx,p
t :

X
x,p
t = x exp

(
∫ t

0

psµsds+

∫ t

0

psσsdWs −
1

2

∫ t

0

|psσs|2ds+

∫ t

0

log(1 + psβs)dNs

)

. (5.1)

Definition 5.1. The set of admissible trading strategies A consists of all G-predictable

processes p satisfying E
[

∫ T

0
|ptσt|2dt+

∫ T

0
| log(1 + ptβt)|2λtdt

]

< ∞ and X
x,p
t > 0 for all

0 ≤ t ≤ T .

Remark 5.1. The condition X
x,p
t > 0 for all 0 ≤ t ≤ T is equivalent to ptβt > −1 for all

0 ≤ t ≤ τ .

The optimization problem is given by

V (x) = sup
p∈A

E [log (Xx,p
T )] . (5.2)

Let us define the value function J0 = sup
p∈A

E
[

log (
X

x,p

T

x
)
]

to solve the problem (5.2). To

solve this problem, we need few assumptions

Assumption 5.1. The intensity λ is uniformly bounded.

Assumption 5.2. The process β−1 is uniformly bounded.

Contrary to the previous section, it is possible to characterize directly the value function

without BSDE
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Theorem 5.1. The solution of problem (5.2) is given by V (x) = log(x) + J0 with :

J0 = E

[
∫ T

0

(

p̂tµt −
p̂2

tσ
2
t

2
+ λt log(1 + p̂tβt)

)

dt

]

where p̂ is the optimal trading strategy and given by

p̂t =







µt

2σ2
t

− 1
2βt

+

√
(µtβt+σ2

t )2+4λtβ
2
t σ2

t

2βtσ2
t

if t < τ
µt

σ2
t

if t ≥ τ

Proof. With equality (5.1) we get the following expression for the process J :

J0 = sup
p∈A

E

[
∫ T

0

(

psµs −
|psσs|2

2
+ λs log(1 + psβs)

)

ds

]

,

then

J0 ≤ E

[
∫ T

0

sup
psβs>−1

{

psµs −
|psσs|2

2
+ λs log(1 + psβs)

}

ds

]

.

In the following we want to look for the strategy p̂ whose maximizes for each s ∈ [0, T ]

psµs − p2
sσ2

s

2
+ λs log(1 + psβs) with the unique condition that p̂sβs > −1 before the default,

for that we study the function f :

f(x) = µsx−
σ2

s

2
x2 + λs log(1 + βsx)

and her derivative

f ′(x) = µs − σ2
sx+

λsβs

1 + βsx
. (5.3)

After the default, it is easy to see that the optimal strategy is p̂t = µt

σ2
t
. Now we are interested

by the optimal strategy before the default. Let y = 1 + βsx :

f ′(x) = 0 ⇔
{

µsy − σ2
s

βs
y(y − 1) + λsβs = 0

y = 1 + βsx

Let y− and y+ be the roots of µsy − σ2
s

βs
y(y − 1) + λsβs with y− ≤ y+, then :

y−y+ = −λsβ
2
s

σ2
s

.

Thus y− < 0 < y+ and by taking p̂s = y+−1
βs

we have that p̂sβs > −1 and

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs) = sup

ps>− 1

βs

{

psµs −
p2

sσ
2
s

2
+ λs log(1 + psβs)

}

.

From (5.3) and the condition ptβt > −1 we obtain:

p̂s =
σ2

s − µsβs −
√

(µsβs + σ2
s )

2 + 4λsβ2
sσ

2
s

−2βsσ2
s

.
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Then we have the following inequality

J0 ≤ E

[
∫ T

0

(

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs)

)

ds

]

.

Now it is sufficient to show that the strategy p̂ is admissible, but that is easy with Assumption

5.1 and Assumption 5.2. Thus the previous inequality is an equality

J0 = E

[
∫ T

0

(

p̂sµs −
p̂2

sσ
2
s

2
+ λs log(1 + p̂sβs)

)

ds

]

and the strategy p̂ is an optimal strategy.

If we substitute p̂t by its value in the expression of the value function J0, we get

J0 = E

[

∫ T

0

(

µ2
t

4σ2
t

− µ2
t

2β2
t

− σ2
t

4β2
t

− λt

2
+

(µtβt+σ2
t )2
√

(µtβt+σ2
t )2+4λtβ

2
t σ2

t

4β2
t σ2

t

+λt log
(

1
2

+ µtβt

2σ2
t

+
√

(µtβt + σ2
t )

2 + 4λtβ
2
t σ

2
t

))]

.

Remark 5.2. Assumption 5.1 can be reduced to the fact that the strategy p̂ is an admissible

strategy.

Remark 5.3. Recall that in the case of no default, the optimal strategy is given by

p0
t =

µt

σ2
t

.

Thus, in the case of default, the optimal strategy p̂ can be written under the form

p̂t = p0
t − ǫt

where ǫt is an additional term given by

ǫt =

{

µt

2σ2
t

+ 1
2βt

−
√

(µtβt+σ2
t )2+4λtβ2

t σ2
t

2βtσ
2
t

, ∀t ≤ T

0, ∀t ≥ T

Note that ǫt ≥ 0, which is expected because of the default. After the default the optimal

strategy is equal to the optimal strategy in a model without default.

Remark 5.4. Note that if the coefficient β converges to 0, then the optimal strategy con-

verges to µt

σ2
t
, which is expected because if β converges to 0, all happens as if there is no

default.
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6 Power utility

To complete the spectrum of important utility functions, in this section we calculate the

value function and characterize the optimal strategy for the utility maximization problem

with respect to

U(x) = xγ , x ≥ 0, γ ∈ (0, 1).

Trading strategies and wealth process have the same meaning as in Section 5. We have

X
x,p
t = x+

∫ t

0

psX
x,p

s−

Ss−
dSs.

and by self-financing property we get :

dX
x,p
t = X

x,p

t−
pt(µtdt+ σtdWt + βtdNt).

By using Dolean’s formula, we get an expression of the wealth Xx,p
t :

X
x,p
t = x exp

(
∫ t

0

psµsds+

∫ t

0

psσsdWs −
1

2

∫ t

0

|psσs|2ds+

∫ t

0

log(1 + psβs)dNs

)

.

Definition 6.1. The set of admissible trading strategies A consists of all G-predictable

processes p = (pt)0≤t≤T that satisfy
∫ T

0
|ptσt|2dt+

∫ T

0
| log(1 + ptβt)|2λtdt <∞ and Xx,p

t > 0

for all 0 ≤ t ≤ T .

The investor faces the maximization problem

V (x) = sup
p∈A

E[(Xx,p
T )γ]. (6.1)

In order to find the value function and an optimal strategy we apply the same method as

for the exponential utility function. Most of the proofs are identical to Section 3 and are

given in the annex.

As in Section 3 and Section 5, we give a dynamic extension of the initial problem and define

the value function for each time t. More precisely, we have

Jt = ess sup
p∈A

E

[

(Xx,p
T )γ

(Xx,p
t )γ

∣

∣

∣

∣

Gt

]

a.s.

Now, for the sake of brevity we shall denote Xp
t instead of Xx,p

t .

As in Section 3, we have a characterization for the process J by dynamic programming.

More precisely

Proposition 6.1. (Jt)0≤t≤T is the smallest càd-làg G-adapted process such that for all p ∈ A
((Xp

t )
γ
Jt)0≤t≤T is a supermartingale and JT = 1.

And we have also a characterization for the optimal strategy

Proposition 6.2. Let p̂ ∈ A, the two following assertions are equivalent :
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(i) p̂ is an optimal strategy, i.e. J0 = sup
p∈A

E[(Xp
T )

γ
] = E

[(

X
p̂
T

)γ]

.

(ii)
((

X
p̂
t

)γ

Jt

)

0≤t≤T
is a martingale.

Now we will characterize the process J as the solution of a BSDE. For that we define

the following sets :

S+,∞ =

{

Y càd-làg G-adapted such that Yt > 0 ∀ t ∈ [0, T ] and ess sup
ω,t

(|Yt(ω)|) <∞
}

L2
loc(W ) =

{

Z G-predictable,

∫ T

0

|Zt|2dt <∞ a.s.

}

L2
loc(M) =

{

U G-predictable,

∫ T

0

|Ut|2λtdt <∞ a.s.

}

From Proposition 6.1, (Jt)0≤t≤T is a supermartingale and we can write it under the

following form with Doob-Meyer decomposition thanks to Dellacherie and Meyer (1980) :

dJt = dmt − dAt

with m a local martingale and A a càd-làg G-predictable nondecreasing process where A0 =

0. With a local martingale representation theorem, there exist Z ∈ L2
loc(W ) and U ∈

L2
loc(M), such that :

dJt = ZtdWt + UtdMt − dAt. (6.2)

From Proposition 6.1 and Proposition 6.2 we can give a characterization of the process

J with a BSDE

Theorem 6.1. The value function (Jt)0≤t≤T is the smallest solution in S+,∞ × L2
loc(W ) ×

L2
loc(M) of the following BSDE :























dJt = ZtdWt + UtdMt − sup
p∈A

{

(

γptµt + γ(γ−1)
2

p2
tσ

2
t

)

Jt + γptσtZt

+ λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt

JT = 1

(6.3)

The optimal strategy p̂ to problem (6.1) is characterized by the following formula :

p̂t = arg max
p∈A

{

γ(γ − 1)

2
p2

tσ
2
t Jt + γpt (µtJt + σtZt) + λt((1 + ptβt)

p − 1)(Jt + Ut)

}

dt⊗dP a.s.

Unfortunately we can not say if BSDE (6.3) admits a unique solution. But we have

another characterization for the process J , this one is obtained by approximation using the

following processes Jk

19



Proposition 6.3. As previously for the exponential utility, for all k ∈ N there exists a

bounded positive càd-làg G-adapted process (Jk
t )0≤t≤T such that :

Jk
t = ess sup

p∈Ak

E

[(

X
p
T

X
p
t

)γ∣
∣

∣

∣

Gt

]

a.s.

The process (Jk, Zk, Uk) is the unique solution in S+,∞×L2(W )×L2(M) of the BSDE :























dJk
t = Zk

t dWt + Uk
t dMt − sup

p∈Ak

{

(

γptµt + γ(γ−1)
2

p2
tσ

2
t

)

Jk
t + γptσtZ

k
t

+ λt((1 + ptβt)
p − 1)(Jk

t + Uk
t )

}

dt

Jk
T = 1

(6.4)

We get another characterization of process J with the processes Jk. More precisely

Proposition 6.4. Jt = lim
k→∞

↑ Jk
t a.s.

Appendix A : Proof of Proposition 6.1 and Proposition

6.2

The technics are similar to Section 3. We first want to show that J is the smallest process

such that for all p ∈ A, ((Xp
t )γJt)0≤t≤T is a supermartingale and JT = 1. Let (Yt)0≤t≤T be

a G-adapted process such that ∀ p ∈ A, ((Xp
t )γYt)0≤t≤T is a supermartingale and YT = 1.

For all t ∈ [0, T ] and for all p ∈ A, we have :

E [(Xp
T )γYT |Gt] ≤ (Xp

t )γYt

Then

E

[

(Xp
T )γ

(Xp
t )γ

∣

∣

∣

∣

Gt

]

≤ Yt.

Therefore we have :

ess sup
p∈At

E

[

(Xp
T )γ

(Xp
t )γ

∣

∣

∣

∣

Gt

]

≤ Yt.

Then we get :

Jt ≤ Yt a.s.

We want now to prove the equivalence for the optimal strategy : suppose that p̂ is an

optimal strategy, hence we have

J0 = sup
p∈A

E [(Xp
T )γ] = E

[

(X p̂
T )γ
]

.
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As
(

(X p̂
t )γJt

)

0≤t≤T
is a supermartingale, we have the following inequalities :

E
[

(X p̂
t )γJt

]

≤ J0

and

E
[

(X p̂
T )γ |Gt

]

≤ (X p̂
t )γJt.

If we take the expectation in this last inequality we get

E
[

(X p̂
T )γ
]

≤ E
[

(X p̂
t )γJt

]

≤ J0.

Therefore we have

E
[

(X p̂
t )γJt

]

= J0.

Hence
(

(X p̂
t )γJt

)

0≤t≤T
is a supermartingale with a constant expectation value, then it is a

martingale.

To show the converse, suppose that
(

(X p̂
t )γJt

)

0≤t≤T
is a martingale, then we have :

E
[

(X p̂
T )γ
]

= J0.

Because ((Xp
t )γJt)0≤t≤T is a supermartingale for all p ∈ A, we have :

E [(Xp
T )γ] ≤ J0

Thus we have :

J0 = sup
p∈A

E [(Xp
T )γ] = E

[

(X p̂
T )γ
]

.

Appendix B : Proof of Theorem 6.1

We first characterize the process A of Doob-Meyer decomposition (6.2). For that we use

the properties of process J . By Itô’s formula we get :

d((Xp
t )γJt) = (Xp

t−
)γJt−

[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

dt+ γptσtdWt + ((1 + ptβt)
γ − 1)dNt

]

+(Xp

t−
)γ(ZtdWt + UtdMt − dAt) + γ(Xp

t−
)γptσtZtdt

+(Xp

t−
)γ((1 + ptβt)

γ − 1)Utdt

= local martingale − (Xp
t )γ

{

dAt −
[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt

+γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt

}
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From Proposition 6.1, ((Xp
t )γJt)0≤t≤T is a supermartingale for all strategies (pt)0≤t≤T ∈

A, thus :

dAt −
[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt ≥ 0.

Then we have :

dAt ≥
[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
γ − 1)(Jt + Ut)

]

dt.

From Theorem 2.2 of Kramkov and Schachermayer (1999), there exists an optimal strat-

egy to problem (6.1). With Proposition 6.2, this optimal strategy p̂ ∈ A is such that
((

X
p̂
t

)γ

Jt

)

0≤t≤T
is a martingale, thus we get :

dAt −
[(

γp̂tµt +
γ(γ − 1)

2
p̂2

tσ
2
t

)

Jt + γp̂tσtZt + λt((1 + p̂tβt)
γ − 1)(Jt + Ut)

]

dt = 0.

Therefore we have :

dAt = sup
p∈A

{(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Jt + γptσtZt + λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt.

Thus the process J is solution of the BSDE























dJt = ZtdWt + UtdMt − sup
p∈A

{

(

γptµt + γ(γ−1)
2

p2
tσ

2
t

)

Jt + γptσtZt

+ λt((1 + ptβt)
p − 1)(Jt + Ut)

}

dt

JT = 1

Now we want to show that the process J is the smallest solution of this BSDE : let (Y, Z, U)

be a solution of BSDE (6.3), we show that for all p ∈ A we have that ((Xp
t )γ

Jt)0≤t≤T is a

supermartingale :

d ((Xp
t )

γ
Yt) = Yt−d ((Xp

t )
γ
) +

(

X
p

t−

)γ
dYt + d [(Xp

t )
γ
, Yt]

= Yt−

(

X
p

t−

)γ
[

γptµtdt+ γptσtdWt + γ(γ−1)
2

p2
tσ

2
t dt+ [(1 + ptβt)

γ − 1] dNt

]

+
(

X
p

t−

)γ
(ZtdWt + UtdMt − dAt) + γZt

(

X
p

t−

)γ
ptσtdt

+Ut

(

X
p

t−

)γ
[(1 + ptβt)

γ − 1] dNt

= dmt − (Xp
t )γ [dAt − dA

p
t ]

with

dA
p
t =

[(

γptµt +
γ(γ − 1)

2
p2

tσ
2
t

)

Yt + γptσtZt + λt((1 + ptβt)
p − 1)(Yt + Ut)

]

dt

and (mt)0≤t≤T is a local martingale :

dmt = (Xt−)p [(γptσtYt− + Zt) dWt + [[(1 + ptβt)
γ − 1](Ut + Yt−) + Ut]dMt] .
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Then :

(Xp
t )

γ
Yt − (Xp

0 )
γ
Y0 = mt −m0 −

∫ t

0

(Xp
s )γ (dAs − dAp

s)

mt ≥ m0 + (Xp
t )γ

Yt − (Xp
0 )γ

Y0

mt ≥ m0 − (Xp
0 )γ

Y0

Therefore (mt)0≤t≤T is a lower bounded local martingale, thus (mt)0≤t≤T is a supermartingale

and ((Xp
t )

γ
Jt)0≤t≤T is a supermartingale for all p ∈ A. From Proposition 6.1, we can affirm

that Jt ≤ Yt a.s. for all t ∈ [0, T ].

Appendix C : Proof of Proposition 6.3

The proof of existence of process Jk is similar to the proof of Proposition 3.4. Thus we

show that the process Jk is bounded

Jk
t = ess sup

p∈Ak

E

[

exp

(
∫ T

t

γµspsds+

∫ T

t

γσspsdWs

− 1

2

∫ T

t

γ|σsps|2ds+

∫ T

t

γ log(1 + psβs)dNs

)
∣

∣

∣

∣

Gt

]

.

Let Qp be the equivalent probability to P defined by the formula :

dQp

dP
= exp

(
∫ T

t

γσspsdWs −
1

2

∫ T

t

|γσsps|2ds
)

.

Then we have :

Jk
t = ess sup

p∈Ak

EQp

[

exp

(
∫ T

t

γµspsds+
γ2 − γ

2

∫ T

t

|σsps|2ds+

∫ T

t

γ log(1 + psβs)dNs

)
∣

∣

∣

∣

Gt

]

.

As the processes µ, σ et β are supposed bounded, the process (Jk
t )0≤t≤T is bounded.

These processes (Jk
t )0≤t≤T have the same properties as the process (Jt)0≤t≤T : for all strate-

gies p ∈ Ak,
(

(Xp
t )

γ
Jk

t

)

0≤t≤T
is a supermartingale and there exits a strategy p̂ such that

((

X
p̂
t

)γ

Jk
t

)

0≤t≤T
is a martingale.

As the process (Jk
t )0≤t≤T is a bounded supermartingale, so it admits a Doob-Meyer decom-

position :

dJk
t = Zk

t dWt + Uk
t dMt − dAk

t

with Zk ∈ L2(W ), Uk ∈ L2(M) and Ak is a càd-làg G-predictable nondecreasing process

where A0 = 0.

In using the properties of process Jk we can determine the form of process Ak as in the

previous appendix and we obtain a BSDE for which the process Jk is solution. Since the

set Ak is bounded this BSDE admits a unique solution.
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