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Transverse instability of solitary waves in Korteweg fluids

S. Benzoni-Gavage∗

November 27, 2008

Abstract. The Euler-Korteweg model is made of the standard Euler equations for compressible fluids

supplemented with the Korteweg tensor, which is intended to take into account capillary effects. For non-

monotone ‘pressure’ laws, the Euler-Korteweg model is known to admit solitary waves, even though their

physical significance remains unclear. In fact, several kinds of solitary waves, with various endstates, can

be identified. In one space dimension, all these solitary waves may be viewed as critical points under

constraint of the total energy, the constraint being linked to translational invariance. In an earlier work

with Danchin, Descombes and Jamet [Interf. Free Bound. 2005], a sufficient condition was obtained

for their orbital stability, by the method of Grillakis, Shatah and Strauss [Journal of Functional Analysis,

1987], relying on the Hamiltonian structure and on the translational invariance. Numerical evidence was

given that this condition is satisfied by some dynamic solitary waves, whereas it fails for solitary waves

closer to thermodynamic equilibrium. That condition is of the form m′′(σ) > 0, with σ the speed and m
the constrained energy of the wave. It turns out that, as was already known in other contexts, m′′(σ) is

linked to the low frequency behavior of the Evans function associated with the linearized equations. This

link was investigated by Zumbrun [Z. Anal. Anwend. 2008] (and independently by Bridges and Derks)

for simplified equations (with constant capillarity) in Lagrangian coordinates. Zumbrun proved in that

context that m′′(σ) ≥ 0 is necessary for linearized stability. This result is revisited here with general

capillarities in Eulerian coordinates, and the main purpose is to investigate the multidimensional stability

of planar solitary waves. In this respect, variational tools are not much appropriate. Nevertheless, the

Evans function technique does extend to arbitrary space dimensions, and its low-frequency behavior can

be computed explicitly. It turns out from this behavior and an argument pointed out by Zumbrun and

Serre [Indiana Univ. Math. J 1999] that planar solitary wave solutions of the Euler-Korteweg model are

linearly unstable with respect to transverse perturbations of large wave length.

AMS classification. 76T10; 35B35; 35Q51; 37C29.

Keywords. Hamiltonian structure; Capillarity; Soliton; Orbital stability; Linearized stability; Evans

function.

1 Introduction

We consider a fluid whose free energy is allowed to depend on the gradient of density in the following

way

F (ρ,∇ρ) = F0(ρ) +
1

2
K(ρ) |∇ρ|2 .

Here above, K(ρ) stands for a capillarity coefficient depending on ρ, and is supposed to be positive for

all positive values of ρ. If dissipation phenomena are neglected, the corresponding isothermal equations

∗Université de Lyon, Université Lyon 1, INSA de Lyon, Ecole Centrale de Lyon, CNRS, UMR5208, Institut Camille Jordan,

43, boulevard du 11 novembre 1918, F - 69622 Villeurbanne Cedex (benzoni@math.univ-lyon1.fr)

1



of motion – which can be found by classical principles of mechanics [14, 19] – are

(1.1)





∂t ρ + div(ρu) = 0 ,

∂t(ρu) + div(ρu ⊗ u) + ∇ p = ∇ (ρ div(K∇ρ)) − div(K∇ρ⊗∇ρ) ,

where p := ρ ∂F
∂ρ − F also depends on ∇ρ. By definition,

p(ρ,∇ρ) = p0(ρ) +
1

2
( ρK ′(ρ) − K(ρ)) |∇ρ|2 , p0 := ρ

∂F0

∂ρ
− F0 .

For smooth solutions, (1.1) is easily seen to be equivalent to

(1.2)





∂t ρ + div(ρu) = 0 ,

∂tu + (u · ∇ )u + ∇g0 = ∇(K∆ρ + 1
2 K

′
ρ |∇ρ|2 ) ,

where g0 is the standard chemical potential of the fluid, defined by

g0 =
dF0

dρ
,

and such that
dg0
dρ

=
1

ρ

dp0

dρ
.

In one space dimension, (1.2) reduces to

(1.3)





∂t ρ + ∂x(ρ u) = 0 ,

∂tu + u ∂xu + ∂x(g0) = ∂x(K ∂2
xxρ + 1

2 K
′
ρ (∂xρ)

2 ) ,

which admits the formal Hamiltonian formulation

(1.4) ∂tU = J δH[U]

where

U :=

(
ρ
u

)
, J :=

(
0 − ∂x

− ∂x 0

)
,

H[U] :=

∫
H(U, ∂xU) dx , H(U, ∂xU) =

1

2
ρ u2 + F0(ρ) +

1

2
K(ρ) (∂xρ)

2 ,

and

δH[U] =

( 1
2 u

2 + g0(ρ) − K(ρ) ∂2
xρ − 1

2
dK
dρ (ρ) (∂xρ)

2

ρ u

)
.

To make this formulation correct we may prescribe the behavior of U at infinity, and change the integral

of H accordingly, in order to turn it into a convergent one. As far as perturbations of solitary waves are

concerned, we may assume that U converges (exponentially fast) to some limit U∞ at ±∞. Then

H̃[U;U∞] :=

∫ (
H(U, ∂xU) − H(U∞, 0) − δH[U∞] · (U − U∞)

)
dx

is well defined for U ∈ U∞ + (H1 × L2), and for such U, (1.3) equivalently reads

(1.5) ∂tU = J δH̃[U;U∞] .
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Here above, the notation δ stands for the variational gradient with respect to U, the endstate U∞ being

kept fixed. A solitary wave is by definition a homoclinic traveling wave solution, that is, a solution that

propagates a same profile, say U, at constant speed, say σ, with a same endstate U∞ at +∞ and −∞.

For a nonmonotone pressure law p0 = p0(ρ), or equivalently, for a nonconvex free energy F0 = F0(ρ),
(1.3) is known to admit solitary waves, that is, global smooth solutions of the form

U(x, t) = U(x− σt) , lim
ξ→±∞

U(ξ) = U∞ .

The existence of solitary waves follows from a simple phase portrait analysis of the governing ODEs,

which appear to be Hamiltonian too (a general fact, see [2] p. 11–12), see [6] for more details. Solitary

waves – unlike heteroclinic connections – persist under perturbation of the speed σ. Moreover, solitary

waves can be viewed, in one space dimension, as critical points of the Hamiltonian H̃ under the constraint

Q̃[U;U∞] :=

∫ (
(ρ− ρ∞) (u− u∞)

)
dx .

Indeed, working in the abstract Hamiltonian setting described above, we may write the traveling wave

ODEs as

d

dξ

(
−σU + J δH̃[U;U∞]

)
= 0 , J :=

(
0 1
1 0

)
, ξ = x − σ t ,

hence, multiplying the ODE by J and using that J2 = I,

δH̃[U;U∞] − σ JU ≡ constant .

Evaluating at ±∞, we see that the constant must be −σ JU∞, and since J (U−U∞) = δQ̃[U;U∞],
we obtain

(1.6) δ(H̃ − σQ̃)[U;U∞] ≡ 0 .

As claimed above, this means that U is a critical point of H̃ under the constraint Q̃, with associated

Lagrange multiplier σ (the speed of the wave). The fact that Q̃ is a conserved quantity along solutions of

(1.3) (in U∞ + C 1(R;H1 × L2)) is linked to translational invariance. Indeed, we have

d

dt
Q̃[U;U∞] =

∫ (
δQ̃[U;U∞] · ∂tU

)
dx = −

∫ (
J(U − U∞) · J∂xδH̃[U;U∞]

)
dx

=

∫ (
δH̃[U;U∞] · ∂xU

)
dx

after integration by parts (and using that J
t
J = I), and the nullity of the last integral follows from the

equality
d

ds
H̃[Us;U∞] = 0

for Us(x, t) := U(x + s, t). This very same translational invariance also implies that solitary waves of

given speed σ and endstate U∞, form a one-parameter family (Us)s∈R, with U(ξ) = U(ξ + s). In

addition, we see on (1.6) that

H̃[Us;U∞] − σ Q̃[Us;U∞]

does not depend on s. So there is no ambiguity in defining

m(σ;U∞) := H̃[U;U∞] − σ Q̃[U;U∞] .
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This constrained energy plays a crucial role in the one-dimensional stability analysis of the wave U. As

observed in [6], the actual computation of m(σ;U∞) does not require the resolution of the traveling

wave ODEs, and can be done in the phase plane. Indeed, the special form of

H̃[U;U∞] =

∫ (
H0(U;U∞) +

1

2
K(ρ) (∂xρ)

2

)
dx

implies that

δH̃[U;U∞] · ∂xU = ∂x

(
H0(U;U∞) − 1

2
K(ρ) (∂xρ)

2

)
,

so that dU/dξ is an integrating factor of (1.6). The integrated equation reads

H0(U;U∞) − σ (ρ
−
− ρ∞) (u− u∞) − 1

2
K(ρ

−
)

(
dρ

−

dξ

)2

≡ 0 ,

hence

m(σ;U∞) =

∫
K(ρ

−
)

(
dρ

−

dξ

)2

dξ = 2

∫ +∞

ξ0

K(ρ
−
)

(
dρ

−

dξ

)2

dξ ,

where ξ0 is the center of symmetry of the soliton. To compute m(σ;U∞) in the phase plane it suffices

to make the change of variables r = ρ
−
(ξ) for ξ ∈ (ξ0,+∞) and use the formula

dρ
−

dξ
= ±

(
2

K(ρ
−
)

(
H0(U;U∞) − σ (ρ

−
− ρ∞) (u− u∞)

))1/2

.

2 One dimensional stability criterion

In what follows we omit the tilda on H and Q for simplicity, and we emphasize with a superscript the

dependence on σ of solitary waves.

Theorem 1 We fix an endstate U∞, and assume that, for all σ in an open interval there exists a solitary

wave solution of (1.3), Uσ, of speed σ and endstate U∞. We consider the function m defined by

m(σ;U∞) := H[Uσ;U∞] − σQ[Uσ;U∞] ,

the functionals H and Q being defined by

H[U;U∞] :=

∫ (
H0(U) − H0(U∞) +

1

2
K(ρ) (∂xρ)

2

− ∂ρH0(U∞) (ρ− ρ∞) − ∂uH0(U∞) (u− u∞)
)

dx

with

H0(ρ, u) :=
1

2
ρ u2 + F0(ρ) ,

and

Q[U;U∞] :=

∫ (
(ρ− ρ∞) (u− u∞)

)
dx .

• The solitary wave U
σ is orbitally stable if

∂2m

∂σ2
(σ;U∞) > 0 .
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• It is linearly unstable if

∂2m

∂σ2
(σ;U∞) < 0 .

Remark 1 As mentioned before, solitary waves can be found by phase portrait analysis. For double-

well free energy, typical of van der Waals fluids, this matter is investigated in details in [6], with a

classification of solitary waves according to their endstate (liquid or vapor) and their amplitude.

Proof. [Theorem 1] The sufficient condition m′′(σ) > 0 for orbital stability can be deduced from

the abstract result of Grillakis, Shatah and Strauss [12]: this was already pointed out by Bona and Sachs

in [8] for the ‘good’ Boussinesq equation, a special case of (1.3) rewritten in Lagrangian coordinates;

for the general system (1.3), see [6]. That m′′(σ) < 0 implies instability cannot be deduced from the

Grillakis-Shatah-Strauss result – which is an if-and-only-if result for orbital stability –, basically because

the operator J is not onto. However, an Evans function calculation does yield a necessary condition

for stability, as was shown by Zumbrun [21] in a Lagrangian framework (also see [9]) with a constant

capillarity coefficient κ, related to the Eulerian capillarity coefficient by κ = Kρ5. We are going to

perform this calculation in the Eulerian framework with an arbitrary capillarity coefficient K. We first

make standard observations on the profile equation

(2.7) (δH − σ δQ)[Uσ;U∞] ≡ 0

(which is just (1.6) with slightly different notations). The variational form of (2.7) has two crucial

consequences regarding the second-order differential operator

Lσ := ( HessH − σHessQ )[Uσ;U∞] .

The first consequence is linked to translational invariance. Indeed, all translated profiles U
σ
s : ξ 7→

U
σ(ξ + s) satisfy the same equation (2.7). Therefore, differentiating

(δH − σ δQ)[Uσ
s ;U∞] ≡ 0

with respect to s and evaluating at s = 0 we find that ∂ξU
σ is in the kernel of Lσ. The second conse-

quence is obtained by differentiating (2.7) with respect to σ. This yields

(2.8) Lσ · ∂σU
σ = δQ[Uσ;U∞] .

To address the linearized stability of U
σ, the first, usual step consists in making a change of Galilean

frame (x, t) 7→ (ξ := x − σt, t), so as to make the wave stationary. This clearly changes the abstract

form of (1.3),

∂tU = −∂xJ δH[U;U∞] ,

into

∂tU − σ ∂ξU = −∂ξJ δH[U;U∞] .

Linearizing about Uσ we are led to

∂tU̇ − σ ∂ξU̇ = −∂ξJ (HessH)[Uσ;U∞] · U̇ ,

or equivalently, observing that U̇ = J
2
U̇ = J (HessQ)[Uσ;U∞] · U̇,

∂tU̇ = −∂ξJLσ · U̇ .

Introducing the third-order differential operator Lσ := −∂ξJLσ, we infer from (2.8) that Lσ · ∂σU
σ =

− ∂ξJ δQ[Uσ;U∞], that is,

(2.9) Lσ · ∂σU
σ = − ∂ξU

σ .
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Since

Lσ · ∂ξU
σ = − ∂ξJLσ · ∂ξU

σ = 0 ,

this means that 0 is an eigenvalue of Lσ of algebraic multiplicity greater or equal to 2. It will turn out

that, if

∂2m

∂σ2
(σ;U∞) 6= 0 ,

the eigenvalue 0 is exactly of multiplicity 2, or equivalently, the Evans function associated to Lσ has a

zero of multiplicity two at zero. This will follow from Lemma 1 below and the more explicit formula

(2.10)
∂2m

∂σ2
(σ;U∞) = −

∫ (
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
dξ .

The latter comes from the definition of m, which implies

∂m

∂σ
(σ;U∞) =

∫
(δH − σ δQ)[Uσ;U∞] · ∂σU

σ dξ − Q[Uσ;U∞] = −Q[Uσ;U∞]

because of (2.7), hence

(2.11)
∂2m

∂σ2
(σ;U∞) = −

∫
δQ[Uσ;U∞] · ∂σU

σ dξ .

Lemma 1 below shows that ∂2m/∂σ2 is proportional to the second-order derivative of the Evans func-

tion. More precisely, if ∂2m/∂σ2 is negative, then the Evans function changes sign in between 0 and

+∞, so that by the mean value theorem it must vanish at some positive λ, which is therefore an unstable

eigenvalue of the linear operator Lσ. ✷

Remark 2 The profile U
σ is a critical point of the constrained functional H− σQ, and the Hessian at

U
σ of that functional is precisely

Lσ =

(
M0 uσ − σ
uσ − σ ρσ

−

)
, M0 := − ∂ξK

σ∂ξ + ασ .

The operator Lσ is not monotone if U
σ is homoclinic. It would be monotone if the Sturm-Liouville

operator

M := M0 − 1

2
(uσ − σ)2

were so. But, Lσ · ∂ξU
σ = 0 implies that ∂ξρ

σ
−

is in the kernel of M, and since ∂ξρ
σ

−

vanishes (once),

0 is the second eigenvalue of M. In fact, this implies that 0 is also the second eigenvalue of Lσ (see

Appendix B in [6] for details). Note in addition that by (2.8) and (2.11),

∂2m

∂σ2
(σ;U∞) = −〈Lσ · ∂σU

σ , ∂σU
σ 〉L2 .

Hence the stable case ∂2m/∂σ2 > 0 corresponds to when

〈Lσ · ∂σU
σ , ∂σU

σ 〉L2 < 0 .

The main result in [12] shows that this ‘bad’ direction ∂σU
σ can then be factored out, in that

〈Lσ · Y , Y 〉L2 ≥ 0 for all Y such that 〈δQ[Uσ;U∞] , Y〉L2 = 0 .
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Lemma 1 If (2.7) admits a homoclinic solution then the endstate is necessarily subsonic, that is,

(2.12)
dp0

dρ
(ρ∞) > (u∞ − σ)2 ,

and the essential spectrum of the linear operator

Lσ = −∂ξJ ( HessH − σHessQ )[Uσ;U∞]

consists of the imaginary axis. Furthermore, Lσ can be associated with a smooth Evans function Dσ :
λ ∈ [0,+∞) → R, such that

∀λ > 0 , (Dσ(λ) = 0 ⇔ Ker(Lσ − λ) 6= {0} ) ,

and Dσ(0) = 0, (Dσ)′(0) = 0, Dσ(λ) > 0 for λ≫ 1,

sgn(Dσ)′′(0) = − sgn

∫ (
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
dξ .

Proof. The profile equation (2.7) can be rewritten more explicitly as

(2.13)





ρσ
−

(uσ − σ) ≡ ρ∞ (u∞ − σ) ,

K(ρσ
−

)∂2
ξξρ

σ
−

+ 1
2∂ξK(ρσ

−

) ∂ξρ
σ

−

− g0(ρ
σ

−

) + g0(ρ∞) − 1
2(uσ − σ)2 + 1

2(u∞ − σ)2 = 0 .

• Subsonicity of the enstate. We may eliminate the velocity uσ from (2.13) and rewrite the second

equation (of second order) as the planar system

(2.14)





φ′ = 1√
K(φ)

ψ ,

ψ′ = 1√
K(φ)

(
g0(φ) + 1

2
j2

φ2 − µ
)
,

with the simplifying notations φ := ρσ
−

, j := ρ∞ (u∞ − σ), and µ := g0(ρ∞) + 1
2

j2

ρ2
∞

. The matrix of

the linearized system at (ρ∞, 0) is

1√
K(φ)

(
0 1

dg0

dρ (ρ∞) − j2

ρ3
∞

0

)
,

which is hyperbolic if and only if

1

ρ∞

dp0

dρ
(ρ∞) =

dg0
dρ

(ρ∞) >
j2

ρ3
∞

=
(u∞ − σ)2

ρ∞
.

In other words, the fixed point (ρ∞, 0) of (2.14) is a saddle-point if (2.12) holds true, and a center if
dp0

dρ (ρ∞) < (u∞−σ)2. For a homoclinic connection to exist, (ρ∞, 0) must be a saddle-point, hence the

necessary condition (2.12). Note that (2.12) implies in particular

dp0

dρ
(ρ∞) > 0 ,

which means that the density ρ∞ corresponds to a thermodynamically stable state, where we have a real

sound speed

c∞ :=

√
dp0

dρ
(ρ∞) .

(Recall that the existence and classification of solitary waves has been discussed in [6, 7] .)
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• Essential spectrum of the linearized operator. Regarding the essential spectrum of Lσ, we have to

concentrate on the asymptotic operator Lσ
∞, obtained by freezing the coefficients at ±∞,

Lσ
∞ · U̇ :=

(
− (u∞ − σ) ∂ξρ̇ − ρ∞ ∂ξu̇

− (u∞ − σ) ∂ξu̇ − dg0

dρ (ρ∞) ∂ξρ̇ + K(ρ∞) ∂3
ξξξρ̇

)
.

By Fourier transform, we find that λ ∈ C belongs to the spectrum of Lσ
∞ if and only if there exists ζ ∈ R

such that

(2.15) (λ + i (u∞ − σ)ζ)2 + ρ∞

(
dg0
dρ

(ρ∞) + K(ρ∞) ζ2

)
ζ2 = 0 .

Since by assumption K(ρ∞) > 0, and as we have seen above, dg0

dρ (ρ∞) > 0 (a necessary condition for

the homoclinic wave to exist), (2.15) has no solution ζ ∈ R for λ /∈ iR. By standard (Coppel-Palmer

[10, 16], or Henry [13]) arguments, this implies that the essential spectrum of the variable-coefficients

operator Lσ is contained in iR (and in fact equal to iR because all elements of iR are ‘approximate

eigenvalues’ of Lσ).

• Construction of the Evans function. In order to construct an Evans function [1, 17], we first rewrite

the eigenvalue equations (Lσ − λ) · U̇ = 0 as a first order system of ODEs, where ξ is viewed as a

‘time’-variable. By definition,

Lσ · U̇ =


 − ∂ξ

(
(uσ − σ) ρ̇ + ρσ

−

u̇
)

∂ξ

(
−(uσ − σ) u̇ − ασ ρ̇ + Kσ ∂2

ξξρ̇ + ∂ξK
σ ∂ξρ̇

)

 ,

where Kσ := K(ρσ
−

) and

ασ :=
dg0
dρ

(ρσ
−

) − dK

dρ
(ρσ
−

) ∂2
ξξρ

σ
−

− 1

2

d2K

dρ2
(ρσ
−

) (∂ξρ
σ

−

)2 .

So (Lσ − λ) · U̇ = 0 is equivalent to

(2.16) (Bσ Φ)′ = A(λ) Φ ,

where the prime (′) stands for d/dξ, and

Φ :=




ρ̇
ρ̇′

ρ̇′′

u̇


 , Bσ :=




1 0 0 0
0 1 0 0

−ασ (Kσ)′ Kσ −(uσ − σ)
(uσ − σ) 0 0 ρσ

−


 , A(λ) :=




0 1 0 0
0 0 1 0
0 0 0 λ
−λ 0 0 0


 .

The eigenvalues of the asymptotic system (Bσ
∞ Φ)′ = A(λ) Φ, with

Bσ
∞ :=




1 0 0 0
0 1 0 0

−c2∞/ρ∞ 0 K∞ −(u∞ − σ)
(u∞ − σ) 0 0 ρ∞


 , K∞ := K(ρ∞) ,

are the roots ω of the dispersion relation

(2.17) (λ + (u∞ − σ)ω)2 −
(
c2∞ − ρ∞K∞ ω2

)
ω2 = 0

(Alternatively, (2.17) can be derived from (2.15) by substituting ω for iζ.) We easily see that, for Reλ >
0, (2.17) has no purely imaginary root ω, and by studying the case λ ∈ R, λ≫ 1, we find that (2.17) has
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exactly two roots of negative real parts, say ω1(λ) and ω2(λ) (either both real or complex conjugate),

and two roots of positive real parts, say ω3(λ) and ω4(λ) (either both real or complex conjugate). When

λ goes to zero, the four roots are real, and two of them go to zero. We choose their numbering so that

ω2 ∼ −λ
c∞ + u∞ − σ

, ω3 ∼ λ

c∞ − u∞ + σ
,

ω1 → −
√

(c2∞ − (u∞ − σ)2)/(ρ∞K∞) , ω4 → +
√

(c2∞ − (u∞ − σ)2)/(ρ∞K∞)

when λ goes to 0. In addition, at points λ where ω1 and ω2 are distinct, respectively where ω3 and ω4 are

distinct, which is the case for large real λ and for λ close to zero, the corresponding eigenvectors, Wσ
1 (λ),

W
σ
2 (λ), and respectively W

σ
3 (λ), W

σ
4 (λ), span the stable, and respectively the unstable, subspace (in

C
4) of the matrix (Bσ

∞)−1A(λ). They can be chosen of the form

(2.18) W
σ
j (λ) :=




ρ∞
ρ∞ ωσ

j (λ)

ρ∞ ωσ
j (λ)2

− λ
ωσ

j
(λ) − (u∞ − σ)


 .

Then their limits at λ = 0 are easily found to be

(2.19) W
σ
1,4(0) =




ρ∞
ρ∞ ωσ

1,4(0)

ρ∞ ωσ
1,4(0)2

−(u∞ − σ)


 , W

σ
2 (0) =




ρ∞
0
0
c∞


 , W

σ
3 (0) =




ρ∞
0
0

−c∞


 .

We can construct a so-called Evans functionDσ, which is analytic and real valued for λ ∈ [0,+∞), such

that

Dσ(λ) = 0 , λ > 0 ⇐⇒ Ker (Lσ − λ) 6= {0 } .

(See [1, 17] for λ > 0, and [11, 15] for the extension to λ = 0.) More precisely, Dσ can be taken of the

form

Dσ(λ) = det(Φ̃σ
1 (λ), Φ̃σ

2 (λ), Φ̃σ
3 (λ), Φ̃σ

4 (λ))|ξ=0 ,

where (Φ̃σ
1 (λ), Φ̃σ

2 (λ)) (respectively (Φ̃σ
3 (λ), Φ̃σ

3 (λ))), span the real stable (respectively unstable) man-

ifold of (2.16). These real-valued Φ̃σ
j can be constructed in a simple way from the complex-valued

solutions Φσ
j of (2.16) characterized, at nonglancing points, by

(2.20) Φσ
1,2(λ)

ξ→+∞∼ eωσ
1,2(λ)ξ

W
σ
1,2(λ) , Φσ

3,4(λ)
ξ→−∞∼ eωσ

3,4(λ)ξ
W

σ
3,4(λ) .

It suffices to define

Φ̃σ
1 := Φσ

1 + Φσ
2 , Φ̃σ

2 :=
Φσ

1 − Φσ
2

ω1 − ω2
,

Φ̃σ
3 := Φσ

3 + Φσ
4 , Φ̃σ

4 :=
Φσ

3 − Φσ
4

ω3 − ω4
.

These Φ̃σ
j s, as the Φσ

j s, depend analytically on λ away from glancing points. Furthermore, they are

obviously real-valued when the Φσ
j s are so. Otherwise, when (ω1, ω2) is a conjugate pair, so is (Φσ

1 ,Φ
σ
2 )

and therefore the Φ̃σ
1,2 are still real-valued. Of course the same observation holds true with the indices

(3, 4) instead of (1, 2). Note also that the Φ̃σ
j s do not depend on the numbering of stable and unstable

modes. As usual, it is trickier to define the Evans function at glancing points, that is, where either ω1 and
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ω2, or ω3 and ω4, collide (which does happen, as a closer examination of the algebraic equation (2.17)

shows). Indeed, even though the eigenvectors W
σ
j are such that

W̃
σ
2 :=

W
σ
1 − W

σ
2

ω1 − ω2
and W̃

σ
4 :=

W
σ
3 − W

σ
4

ω3 − ω4

do have limits at glancing points that are independent of W
σ
2 and W

σ
4 respectively (as is easily found

from (2.18)), which means that (Bσ
∞)−1A(λ) has a 2 × 2 Jordan block at those points), the behavior of

the individual Φ̃σ
2,4 is unclear. However, working with wedge products [1] we can make sure that the

Evans function crosses glancing points in a continuous (and even analytic) manner.

• Low frequency expansion of the Evans function. Observing that by definition

Dσ(λ) =
det(Φσ

1 (λ),Φσ
2 (λ),Φσ

3 (λ),Φσ
4 (λ))|ξ=0

(ω2(λ) − ω1(λ))(ω4(λ) − ω3(λ))
,

where the denominator in the neighborhood of λ = 0 is

(ω2(λ) − ω1(λ))(ω4(λ) − ω3(λ)) ∼ c2∞ − (u∞ − σ)2

ρ∞K∞
> 0 ,

we see that Dσ(λ) has the same sign as

(2.21) ∆σ(λ) := det(Φσ
1 (λ),Φσ

2 (λ),Φσ
3 (λ),Φσ

4 (λ))|ξ=0

for λ close to 0.

Since Lσ · (Uσ)′ = 0 and (Uσ)′ goes exponentially fast to zero at ±∞, the one-dimensional

stable/unstable manifold of (2.16) with λ = 0 is spanned by (Uσ)′. This means that both Φσ
1 (0) and

Φσ
4 (0) must be proportional to (Uσ)′. Now we have to be careful to comply with (2.18) and (2.20),

which imply in particular that the first component of Φσ
1 (0), respectively Φσ

4 (0), must be positive when

ξ goes to +∞, respectively −∞. Since (ρσ
−

)′ has different signs at +∞ and −∞, this means there exists

a nonzero real number r such that

(2.22) Φσ
1 (0) = − r




(ρσ
−

)′

(ρσ
−

)′′

(ρσ
−

)′′′

(uσ)′


 , Φσ

4 (0) = r




(ρσ
−

)′

(ρσ
−

)′′

(ρσ
−

)′′′

(uσ)′


 .

The actual value of r can be deduced from the phase portrait of the profile equation (which is symmetric

with respect to the horizontal axis), its sign depending on the type of soliton considered. It is of no

importance though. We only need to know that the sign of Dσ(λ) (for small λ) is opposite to the sign of

∆̆σ(λ) := det(Φ̆σ
1 (λ),Φσ

2 (λ),Φσ
3 (λ), Φ̆σ

4 (λ))|ξ=0 Φ̆1 := −(1/r) Φ1 , Φ̆4 := (1/r) Φ4.

Taking (2.22) into account in (2.21) we readily find that ∆̆σ(0) = 0. Furthermore, (∆̆σ)′(0) = 0.

This can be seen as follows. Denoting by φσ
j (λ) and µσ

j (λ) the first and fourth components of Φσ
j (λ)

(or Φ̆σ
j (λ) for j = 1 or 4) respectively, we find by differentiation of (Bσ Φσ

j (λ))′ = A(λ) Φσ
j (λ) with

respect to λ that, thanks to (2.22) and (2.9),

Lσ ·
(
∂λφ

σ
1,4(0)

∂λµ
σ
1,4(0)

)
=

(
(ρσ
−

)′

(uσ)′

)
= −Lσ ·

(
∂σρ

σ
−

∂σu
σ

)
,

which implies

(
∂λφ

σ
1,4(0) + ∂σρ

σ
−

∂λµ
σ
1,4(0) + ∂σu

σ

)
‖
(

(ρσ
−

)′

(uσ)′

)
, a generator of the one-dimensional kernel of Lσ .
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Therefore, using (2.22) again and up to adding a constant times λΦσ
1,4(λ) to Φσ

1,4(λ), we may assume

without loss of generality that

(2.23) ∂λΦ̆σ
1 (0) = ∂λΦ̆σ

4 (0) = −




∂σ(ρσ
−

)

∂σ(ρσ
−

)′

∂σ(ρσ
−

)′′

∂σ(uσ)


 .

Together with (2.22), this obviously implies that (∆̆σ)′(0) = 0. Differentiating once more, we find that

(∆̆σ)′′(0) = det(Φ̆σ
1 (0),Φσ

2 (0),Φσ
3 (0), ∂2

λλ(Φ̆σ
4 − Φ̆σ

1 )(0))|ξ=0 .

To evaluate this determinant, we first observe that detBσ|ξ=0 = ρσ
−

(0)Kσ(0) 6= 0, so that

det(Φ̆σ
1 (0),Φσ

2 (0),Φσ
3 (0), ∂2

λλ(Φ̆σ
4 − Φ̆σ

1 )(0))|ξ=0

=
1

ρσ
−

(0)Kσ(0)
det(BσΦ̆σ

1 (0), BσΦσ
2 (0), BσΦσ

3 (0), ∂2
λλB

σ(Φ̆σ
4 − Φ̆σ

1 )(0))|ξ=0 .

For simplicity, in what follows, we just denote by Φj the function Φσ
j (0), and by φj and µj its first and

last components, and Θj = ∂2
λλΦ̆σ

j (0), with θj and χj its first and last components. By construction of

Φj , since the last two rows of A(0) are zero, we have

Bσ Φj =




φj

φ′j
Rj


 ,

where Rj is a constant vector in R
2. More specifically, R1 is the null vector, while

lim
ξ→+∞

φ2(ξ) = ρ∞ , lim
ξ→+∞

µ2(ξ) = c∞ , lim
ξ→−∞

φ3(ξ) = ρ∞ , lim
ξ→−∞

µ3(ξ) = − c∞

(which come from (2.19) and (2.20)), imply that

R2 =

(
−c∞(u∞ − σ + c∞)
ρ∞(u∞ − σ + c∞)

)
, R3 =

(
c∞(u∞ − σ − c∞)
ρ∞(u∞ − σ − c∞)

)
.

Furthermore, we claim that

Bσ Θ1,4 =




θ1,4

θ′1,4

S1,4


 ,

with S1,4 : ξ → S1,4(ξ) ∈ R
2 such that

(2.24) S4 − S1 = 2

∫ +∞

−∞

(
−∂σu

σ

∂σρ
σ

−

)
dξ .

Indeed, differentiating twice (Bσ Φσ
j (λ))′ = A(λ) Φσ

j (λ) with respect to λ at λ = 0, and using (2.23),

we find that

Lσ ·
(
θ1,4

χ1,4

)
= − 2

(
∂σρ

σ
−

∂σu
σ

)
,

hence {
(uσ − σ) θ1 + ρσ

−

χ1 = − 2
∫ +∞
ξ ∂σρ

σ
−

,

Kσ θ′′1 + (Kσ)′ θ′1 − ασ θ1 − (uσ − σ)χ1 = 2
∫ +∞
ξ ∂σu

σ ,
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{
(uσ − σ) θ4 + ρσ

−

χ4 = 2
∫ ξ
−∞ ∂σρ

σ
−

,

Kσ θ′′4 + (Kσ)′ θ′4 − ασ θ4 − (uσ − σ)χ4 = − 2
∫ ξ
−∞ ∂σu

σ ,

which imply (2.24) by definition of S1 and S4. To complete the computation of (∆̆σ)′′(0), we observe

that

det(R2, R3) = 2 ρ∞ c∞ (c2∞ − (u∞ − σ)2) > 0

by (2.12), and we introduce (the unique) real numbers d2 and d3 such that

S4 − S1 = d2R2 − d3R3 .

Therefore,

(∆̆σ)′′(0) =
1

ρσ
−

(0)Kσ(0)

∣∣∣∣∣∣∣

(ρσ
−

)′ φ2 φ3 θ̃4 − θ̃1

(ρσ
−

)′′ φ′2 φ′3 θ̃′4 − θ̃′1
02 R2 R3 02

∣∣∣∣∣∣∣
|ξ=0

=
det(R2, R3)

ρσ
−

(0)Kσ(0)

∣∣∣∣∣
(ρσ
−

)′ θ̃4 − θ̃1

(ρσ
−

)′′ θ̃′4 − θ̃′1

∣∣∣∣∣
|ξ=0

with

θ̃4 := θ4 + d3 φ3 , θ̃1 := θ1 + d2 φ2 .

It thus only remains to compute δ|ξ=0, with

δ :=

∣∣∣∣∣
(ρσ
−

)′ θ̃4 − θ̃1

(ρσ
−

)′′ θ̃′4 − θ̃′1

∣∣∣∣∣ ,

knowing that (ρσ
−

)′ and θ̃1,4 all satisfy an ODE of the form

Kσ y′′ + (Kσ)′ y′ − ασ y +
1

ρσ
−

(uσ − σ)2 y = s[y] ,

and more precisely,

s[(ρσ
−

)′] = 0 , s[θ̃4] = (1, (uσ − σ)/ρσ
−

) (S4 + d3R3) = (1, (uσ − σ)/ρσ
−

) (S1 + d2R2) = s[θ̃1] .

The rest of the computation is based on the Melnikov technique. Decomposing δ as

δ = δ4 − δ1 , δ1,4 :=

∣∣∣∣∣
(ρσ
−

)′ θ̃1,4

(ρσ
−

)′′ θ̃′1,4

∣∣∣∣∣ , with δ4(−∞) = 0 , δ1(+∞) = 0 ,

and integrating the ODEs

dδ1,4

dξ
= − (Kσ)′

Kσ δ1,4 +
(ρσ
−

)′

Kσ s[θ̃1,4]

on (0,+∞) and (−∞, 0) respectively, we find that

δ|ξ=0 =
1

Kσ(0)

∫ +∞

−∞
s[θ̃1,4] (ρ

σ
−

)′ .

Now, thanks to the identity

(uσ − σ) (ρσ
−

)′ = −ρσ
−

(uσ)′ ,

we have ∫ +∞

−∞
s[θ̃4] (ρ

σ
−

)′ =

∫ +∞

−∞
((ρσ

−

)′,−(uσ)′) (S4 + d3R3) .
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Clearly (since ρσ
−

, uσ have the same limits at +∞ and −∞) the constant vector R3 does not contribute

to this integral, and recalling that

S4(ξ) = 2

∫ ξ

−∞

(
−∂σu

σ

∂σρ
σ

−

)
,

after integration by parts we finally arrive at

δ|ξ=0 =
2

Kσ(0)

∫ +∞

−∞

(
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
.

This yields the formula

(∆̆σ)′′(0) =
4 ρ∞ c∞ (c2∞ − (u∞ − σ)2)

ρσ
−

(0)(Kσ(0))2

∫ +∞

−∞

(
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
,

hence

(∆σ)′′(0) = − 4 r2 ρ∞ c∞ (c2∞ − (u∞ − σ)2)

ρσ
−

(0)(Kσ(0))2

∫ +∞

−∞

(
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
.

• High frequency behavior of the Evans function. This part of the analysis could be omitted – and

is indeed omitted in [21] – in view of the sufficient stability condition provided by the Grillakis-Shatah-

Strauss method. It is of interest though, for the method – which can be useful in other frameworks –, and

as a way to double-check that the stability condition is indeed

(2.25)

∫ (
(ρσ
−

− ρ∞) ∂σu
σ + (uσ − u∞) ∂σρ

σ
−

)
dξ < 0 .

By means of an energy estimate based on a ‘symmetrized’ reformulation of the linearized system (see

[7], Proposition 3.4), we can find λ0 > 0 such that Lσ has no eigenvalue λ > λ0. We may then argue by

homotopy. For θ ∈ [0, 1], consider the operator the operator Lσ
θ defined by

Lσ
θ · U̇ =


 − ∂ξ

(
uσ

θ ρ̇ + ρσ
θ u̇
)

∂ξ

(
−uσ

θ u̇ − ασ
θ ρ̇ + Kσ

θ ∂
2
ξξρ̇ + ∂ξK

σ
θ ∂ξρ̇

)

 ,

where

uσ
θ := θ (uσ − σ) , ρσ

θ := ρ∞ + θ(ρσ − ρ∞) , Kσ
θ := K(ρσ

θ ) ,

ασ
θ := θ

dg0
dρ

(ρσ
θ ) − dK

dρ
(ρσ

θ ) ∂2
ξξρ

σ
θ − 1

2

d2K

dρ2
(ρσ

θ ) (∂ξρ
σ
θ )2 .

At θ = 1 we recover Lσ and at θ = 0 we get the constant-coefficients operator

L0 · U̇ :=

(
− ρ∞ ∂ξu̇
K∞ ∂3

ξξξρ̇

)
.

The spectrum of L0 is found to be exactly iR by Fourier transform. Furthermore, the aforementioned

energy estimate can be adapted to deal with Lσ
θ and show that for all θ ∈ [0, 1], Lσ

θ has no eigenvalue of

real part greater than some threshold λ∗ ≥ λ0. Let us describe how to obtain this estimate, which is not

straightforward. Assume that U̇ = (ρ̇, u̇)t is an eigenvector associated with a nonzero eigenvalue λ of

Lσ
θ (viewed as an unbounded operator onH1×L2 with domainH3×H2). We look for a λ∗ independent

of U̇ and θ such that

(Reλ− λ∗) ‖U̇‖2
H1×L2 ≤ 0 .
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Since the principal part of Lσ
θ is not dissipative, the elimination of higher order derivatives is not straight-

forward. It requires a ‘symmetrized’ reformulation of the eigenvalue equation (λ − Lσ
θ )U̇ = 0. As

observed in earlier work [4, 5], a suitable reformulation makes use of the change of variables ρ 7→ ζ :=
R(ρ), where R is a primitive of ρ 7→

√
K(ρ)/ρ, which urges us to consider ζ̇ := R′(ρσ

θ )ρ̇, and derive an

estimate for ‖ζ̇‖L2 +‖
√
ρσ

θ u̇‖L2 +‖
√
ρσ

θ ẇ‖L2 with ẇ := ∂ξ ζ̇ instead of the standard norm ‖U̇‖H1×L2 .

We first compute the system satisfied by (ζ̇, u̇, ẇ) if (λ− Lσ
θ )U̇ = 0. Introducing the functions a and h

defined by a(ζ) :=
√
R−1(ζ)K(R−1(ζ)) and h(ζ) := d

dζ g0(R
−1(ζ)), we can write this system as

λ ζ̇ + uσ
θ ẇ + u̇ wσ

θ + aσ
θ ∂ξu̇ + (aσ

θ )′ ζ̇ ∂ξu
σ
θ = 0 ,(2.26)

λ u̇ + ∂ξ

(
uσ

θ u̇ − wσ
θ ẇ − aσ

θ ∂ξẇ − (aσ
θ )′ ζ̇ ∂ξw

σ
θ

)
+ hσ

θ ẇ + (hσ
θ )′ ζ̇ wσ

θ = 0 ,(2.27)

λ ẇ + ∂ξ(u
σ
θ ẇ + u̇ wσ

θ ) + ∂ξ

(
aσ

θ ∂ξu̇ + (aσ
θ )′ ζ̇ ∂ξu

σ
θ )
)

= 0 ,(2.28)

where ζσ
θ := R(ρσ

θ ), wσ
θ := R′(ρσ

θ ) ∂ξρ
σ
θ , aσ

θ := a(ζσ
θ ), (aσ

θ )′ := da
dζ (ζσ

θ ), hσ
θ := h(ζσ

θ ), (hσ
θ )′ := dh

dζ (ζσ
θ ).

Interestingly, (2.27) and (2.28) can be written as a single equation for the complex-valued function ż :=
u̇+ iẇ,

(2.29) λ ż + ∂ξ

(
zσ
θ ż + i aσ

θ ∂ξ ż + i (aσ
θ )′ ζ̇ ∂ξz

σ
θ

)
+ hσ

θ ẇ + (hσ
θ )′ ζ̇ wσ

θ = 0 ,

where zσ
θ := uσ

θ + iwσ
θ . Taking the real part of the inner product of (2.29) with ρσ

θ ż, integrating by part,

and using that aσ
θ ∂ξρ

σ
θ = ρσ

θ w
σ
θ , we get

Reλ ‖
√
ρσ

θ ż‖2
L2 + Re〈(∂ξz

σ
θ ) ż, ρσ

θ ż〉 + 〈∂ξ(ρ
σ
θ u

σ
θ ) ż, ż〉+

Re〈(hσ
θ + i(aσ

θ )′ ∂ξz
σ
θ ) ẇ, ρσ

θ ż〉 + Re〈((hσ
θ )′ + i∂ξ((a

σ
θ )′ ∂ξz

σ
θ )) ζ̇, ρσ

θ ż〉 = 0 .

(Without the weight ρσ
θ there would have remained a term with the first-order derivative ∂ξ ż: this is

reminiscent of the symmetrization issue for Euler equations.) On the other hand, taking the real part of

the inner product of (2.26) with ζ̇ we obtain

Reλ ‖ζ̇‖2
L2 + Re〈uσ

θ ẇ, ζ̇〉 + Re〈(wσ
θ − (aσ

θ )′ ∂ξζ
σ
θ ) u̇, ζ̇〉 − Re〈aσ

θ u̇, ẇ〉 + Re〈(aσ
θ )′ ζ̇ ∂ξu

σ
θ , ζ̇〉 = 0 .

Summing these two identities we find indeed by Cauchy-Schwarz a λ∗ (depending only on the W 2,∞

norm of (ζσ
θ , z

σ
θ ), which is uniformly bounded for θ ∈ [0, 1]) such that

(Reλ − λ∗) ( ‖ζ̇‖2
L2 + ‖

√
ρσ

θ ż‖2
L2) ≤ 0 ,

which obviously implies, if U̇, and thus (ζ̇, ż) is nonzero, that Reλ ≤ λ∗.

Now, we can construct an Evans function, Dσ
θ say, depending smoothly on θ, and determine the sign

of Dσ = Dσ
1 for λ > λ∗ by computing the sign of Dσ

0 , which is constant on [0,+∞). Denoting by

ωσ
j (λ; θ) the eigenvalues of (Bσ

θ,∞)−1A(λ), with

Bσ
θ,∞ :=




1 0 0 0
0 1 0 0

−θc2∞/ρ∞ 0 K∞ −θ(u∞ − σ)
θ(u∞ − σ) 0 0 ρ∞


 ,

and by W
σ
j (λ; θ) the associated eigenvectors,

(2.30) W
σ
j (λ; θ) :=




ρ∞
ρ∞ ωσ

j (λ; θ)

ρ∞ ωσ
j (λ; θ)2

− λ
ωσ

j
(λ;θ) − θ(u∞ − σ)


 ,
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we can find Φσ
j (λ; θ), solutions of the first-order ODE equivalent to (Lσ

θ − λ)U̇ = 0, characterized by

their asymptotic behavior as in (2.20). In particular, for θ = 0 they are explicitly given by

Φσ
j (λ; 0) = eωσ

j (λ;0)ξ
W

σ
j (λ; 0) ,

with the ωσ
j (λ; 0) occurring in complex conjugate pairs such that

4∑

j=1

ωσ
j (λ; 0) = 0 .

(Indeed, they are roots of λ2 + ρ∞K∞ω
4 = 0.) Therefore, we have

Dσ
0 (λ) = det

(
V1 + V2,

V2 − V1

ν2 − ν1
,V3 + V4,

V4 − V3

ν4 − ν3

)
,

where νj and Vj are simplifying notations for ωσ
j (λ; 0) and W

σ
j (λ; 0) respectively. The νj are of the

form ±(1 ± i)υ with

υ :=

√
λ

2
√
ρ∞K∞

.

Recall that the ordering of ν1 and ν2, and of ν3 and ν4, does not play any role. To fix the ideas, we can

take

ν1 = −(1 + i)υ , ν2 = (−1 + i)υ , ν3 = (1 − i)υ , ν4 = (1 + i)υ .

Then

Dσ
0 (λ) = 4 ρ3

∞ λ

∣∣∣∣∣∣∣∣

1 0 1 0
Reν1 1 Reν3 1

Re(ν2
1) ν1 + ν2 Re(ν2

3) ν3 + ν4

−Re( 1
ν1

) 1
ν1ν2

−Re( 1
ν3

) 1
ν3ν4

∣∣∣∣∣∣∣∣
= 32 ρ3

∞ λ > 0 .

3 Multi-dimensional stability criterion

The Grillakis-Shatah-Strauss argument invoked for one-dimensional (orbital) stability breaks down in

several space dimensions because planar solitary waves do not have an interpretation in terms of critical

points. However, the form of the linearized system makes it possible to extend the Evans function

calculation of Lemma 1, and eventually show that one-d stable planar solitary waves are unstable with

respect to transverse perturbations.

3.1 The linearized operator

By definition, the profile (ρσ
−

,uσ) of a planar solitary wave solution of (1.1) propagating in direction n

(a unitary vector in R
d) with speed σ and homoclinic to (ρ∞,u∞), must satisfy

(3.31)



ρσ
−

(uσ − σ) ≡ ρ∞ (u∞ − σ) ,

(uσ − σ) ∂ξv
σ = 0 ,

K(ρσ
−

) ∂2
ξξρ

σ
−

+ 1
2 ∂ξK(ρσ

−

) ∂ξρ
σ

−

− g0(ρ
σ

−

) + g0(ρ∞) − 1
2 (uσ − σ)2 + 1

2 (u∞ − σ)2 = 0 ,

where uσ := u
σ · n and v

σ := u
σ − uσ

n. Therefore, a dynamical solitary wave, for which uσ 6= σ, is

such that v
σ is constant and (ρσ

−

, uσ) satisfy the one-dimensional profile equation (2.13). By change of
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Galilean frame, we may assume without loss of generality that vσ is zero. Moreover, similarly as in one

space dimension, the change of Galilean frame (x, t) 7→ (x − σtn, t) changes (1.2) into

(3.32)





∂t ρ + div(ρ (u − σn)) = 0 ,

∂tu + ((u − σn) · ∇ )u + ∇g0 = ∇(K∆ρ + 1
2 K

′
ρ |∇ρ|2 ) ,

of which (ρσ
−

,uσ) is a stationary solution. Linearizing (3.32) about (ρσ
−

,uσ) we get

∂tU̇ = L
σ · U̇ , with U̇ :=

(
ρ̇
u̇

)
,

L
σ · U̇ :=


 − div

(
(uσ − σn)ρ̇ + ρσ(u̇ − σn)

)

−(uσ − σ) ∂ξu̇ − (u̇− σ)∂ξu
σ
n + ∇

(
−ασ ρ̇ + Kσ ∆ρ̇ + ∂ξK

σ ∂ξρ̇
)

 ,

where ξ := x · n − σt, and, as in Section 2,

Kσ := K(ρσ
−

) , ασ :=
dg0
dρ

(ρσ
−

) − dK

dρ
(ρσ
−

) ∂2
ξξρ

σ
−

− d2K

dρ2
(ρσ
−

) (∂ξρ
σ

−

)2 .

A necessary condition for the linearized stability of (ρσ
−

,uσ) is that Lσ has no spectrum in the open right

half-plane. Equivalently, the operator Lσ(η), obtained by Fourier transform in the direction normal to n,

the corresponding wave vector being denoted by η ∈ R
d−1, has no spectrum in the open right half-plane.

To obtain the explicit form of Lσ(η), we may assume without loss of generality - because of rotational

invariance of (1.2) -, that n is the last vector ed of the canonical basis in R
d. Hence we may identify the

vector v̇ ∈ e⊥d with a vector in R
d−1 = span (e1, . . . , ed−1), and U̇ and Lσ(η) · U̇ with




ρ̇
v̇

u̇


 and




− ∂ξ

(
(uσ − σ)ρ̇ + ρσ

−

(u̇− σ)
)
− i ρση · v̇

−(uσ − σ) ∂ξv̇ + i
(
−(ασ +Kσ‖η‖2) ρ̇ + Kσ ∂2

ξξρ̇ + ∂ξK
σ ∂ξρ̇

)
η

∂ξ

(
−(uσ − σ) u̇ − (ασ +Kσ‖η‖2) ρ̇ + Kσ ∂2

ξξρ̇ + ∂ξK
σ ∂ξρ̇

)




respectively. The operator Lσ(η) is clearly similar to the real-valued operator

L̃σ(η) :




ρ̇
˙̃v
u̇


 7→




− ∂ξ

(
(uσ − σ)ρ̇ + ρσ

−

(u̇− σ)
)
− ρση · ˙̃v

−(uσ − σ) ∂ξ
˙̃v −

(
−(ασ +Kσ‖η‖2) ρ̇ + Kσ ∂2

ξξρ̇ + ∂ξK
σ ∂ξρ̇

)
η

∂ξ

(
−(uσ − σ) u̇ − (ασ +Kσ‖η‖2) ρ̇ + Kσ ∂2

ξξρ̇ + ∂ξK
σ ∂ξρ̇

)




Therefore, the spectra of Lσ(η) and L̃σ(η) coincide. From now on, we concentrate on L̃σ(η) and we

omit the tildas for simplicity. The asymptotic operator at ±∞ is

Lσ
∞(η) :




ρ̇
v̇

u̇


 7→




− (u∞ − σ) ∂ξρ̇ − ρ∞∂ξu̇− ρ∞η · v̇
−(u∞ − σ) ∂ξv̇ −

(
−(dg0

dρ (ρ∞) +K(ρ∞)‖η‖2) ρ̇ + K(ρ∞) ∂2
ξξρ̇
)
η

−(u∞ − σ)∂ξu̇ − (dg0

dρ (ρ∞) +K(ρ∞)‖η‖2) ∂ξρ̇ + K(ρ∞) ∂3
ξξξρ̇

)




By Fourier tranform in ξ, we find that τ ∈ C belongs to the spectrum of Lσ
∞(η) if and only if there exists

ζ ∈ R so that, either τ = −i(u∞ − σ)ζ, or

(3.33) (τ + i (u∞ − σ)ζ)2 + ρ∞

(
dg0
dρ

(ρ∞) + K(ρ∞) (‖η‖2 + ζ2)

)
(‖η‖2 + ζ2) = 0 .
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Therefore, in all cases, τ is purely imaginary. As for the one-dimensional operator Lσ studied in Section

2, this implies the essential spectrum of Lσ(η) coincides with the imaginary axis. Consequently, the

(neutral) linearized stability of (ρσ
−

,uσ) will be determined by the point spectrum of Lσ(η). As for Lσ,

possible unstable eigenvalues τ (with Reτ > 0) of Lσ(η) can be characterized as zeroes of an Evans

function τ 7→ D(τ ; η). Viewed as a function of (τ, η),D can be made analytic along rays (as was pointed

out by Zumbrun and Serre in [22] for second order operators associated with viscous shocks; also see

[20]). Furthermore, since Lσ(η) is real valued, D can be chosen to be real for real τ . Therefore, the

comparison of the signs of D(λτ ;λη) for λ close to zero and for large λ provides a sufficient condition

for instability, by the mean value theorem argument usually valid only in one space dimension. Another

way is the one pointed out in [22, Lemma 7.5], which goes as follows in our situation. By nature of the

solitary wave there is a function P (which we shall compute explicitly), homogeneous of degree 2, such

that D(λτ ;λη) ∼ λ2 P (τ ; η) as λ goes to zero. It will turn out that for a one-d stable solitary wave, P
vanishes at points of the form (τ0(η), η). Observing that p(λ,η)(τ) := λ−2D(λτ ;λη) defines a family

a holomorphic functions on {Reτ > 0}, depending continuously on (λ, η) ∈ R
+ × R

d−1, Rouché’s

theorem will then imply the existence of a continuous branch τ∗(λ, η) close to τ0(η) for λ close to 0 such

that p(λ,η)(τ∗(λ, η)) = 0, hence

D(τ♯(η); η) = 0

with τ♯(η) := ‖η‖ τ∗(‖η‖, η/‖η‖).

3.2 The Evans function computations

We proceed similarly as in Section 2. (The following computation is also close to the one in [3] for

heteroclinic planar traveling waves.) We first rewrite the eigenvalue equations (Lσ(η) − τ)U̇ = 0 as a

first order system of ODEs,

(3.34) (Bσ(η) Φ)′ = Aσ(τ ; η) Φ ,

Φ :=




ρ̇
ρ̇′

ρ̇′′

v̇

u̇



, Bσ(η) :=




1 0 0 0∗d−1 0
0 1 0 0∗d−1 0

−(ασ +Kσ‖η‖2) (Kσ)′ Kσ 0∗d−1 −(uσ − σ)
0d−1 0d−1 0d−1 (uσ − σ) Id−1 0d−1

(uσ − σ) 0 0 0∗d−1 ρσ
−



,

Aσ(τ ; η) :=




0 1 0 0∗d−1 0
0 0 1 0∗d−1 0

0 0 0 0∗d−1 τ
(ασ +Kσ‖η‖2)η −(Kσ)′η −Kση −τId−1 0d−1

−τ 0 0 −ρσ
−

ηt 0



.

The eigenvalues of the asymptotic system

(3.35) (Bσ
∞(η) Φ)′ = Aσ

∞(τ ; η) Φ

are ωσ
0 (τ) := −τ/(u∞ − σ) and the roots ω of the dispersion relation

(3.36) (τ + (u∞ − σ)ω)2 +
(
c2∞ + ρ∞K∞ (‖η‖2 − ω2)

)
(‖η‖2 − ω2) = 0

(obtained from (3.33) by substituting ω for iζ). We assume from now on that u∞ is greater than σ, so

that ωσ
0 (τ) is negative for positive τ , and thus contributes to the stable manifold of (3.35). In addition,

it is found to be of geometric multiplicity d− 1, the associated eigenspace of Bσ
∞(η)−1Aσ

∞(τ ; η) being
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spanned by the vectors

W
j,σ
0 (τ ; η) :=




0
0
0
τ ej

(u∞ − σ)ηj



, j ∈ {1, . . . , d− 1}

for (τ, η) 6= (0, 0). Since these vectors W
j,σ
0 are homogeneous in (τ, η), we may renormalize them and

assume that they are homogeneous degree 0, that is, constant along rays {(λτ, λη) ; λ > 0}. Like the

simpler equation (2.17), Eq. (3.36) has no purely imaginary root when Reτ is positive. Thus the number

of roots of negative real parts is independent of (τ, η), within the half-space {Reτ > 0}. As already seen

in the case η = 0 (in which (3.36) degenerates to (2.17)), this number is two. We denote by ωσ
1 (τ ; η) and

ωσ
2 (τ ; η) those roots. In the same way we find that (3.36) has two roots of positive real parts, ωσ

3 (τ ; η)
and ωσ

4 (τ ; η) say. (Observe that ωσ
j (τ ; η) are distinct from ωσ

0 (τ) for τ 6= (u∞ − σ)‖η‖.) We choose

their numbering according to their behavior as λ goes to zero along the ray {(λτ, λη) ; λ > 0}. More

precisely, we have

ωσ
1 (λτ ;λη) → −

√
(c2∞ − (u∞ − σ)2)/(ρ∞K∞) , ωσ

4 (λτ ;λη) → +
√

(c2∞ − (u∞ − σ)2)/(ρ∞K∞)

ωσ
2 (λτ ;λη) ∼ λωσ

2 (τ ; η) , ωσ
3 (λτ ;λη) ∼ λωσ

3 (τ ; η) ,

as λ goes to zero, where ωσ
2,3(τ ; η) are the roots of

(3.37) (τ + (u∞ − σ)ω)2 + c2∞ (‖η‖2 − ω2) = 0 .

By definition, Reωσ
2 < 0 and Reωσ

3 > 0. Associated eigenvectors of Bσ
∞(η)−1Aσ

∞(τ ; η) are

(3.38) W
σ
j (τ ; η) :=




ρ∞
ρ∞ ωσ

j (τ ; η)

ρ∞ ωσ
j (τ ; η)2

τ+(u∞−σ)ωσ
j (τ ;η)

ωσ
j
(τ ;η)2−‖η‖2 η

−ωσ
j (τ ; η)

τ+(u∞−σ)ωσ
j (τ ;η)

ωσ
j
(τ ;η)2−‖η‖2




.

With this choice we have

lim
λց0

W
σ
1,4(λτ ;λη) =




ρ∞
ρ∞ ωσ

1,4(0; 0)

ρ∞ ωσ
1,4(0; 0)2

0d−1

−(u∞ − σ)



,

lim
λց0

W
σ
2,3(λτ ;λη) =




ρ∞
0
0

τ + (u∞ − σ)ωσ
2,3(τ ; η)

ωσ
2,3(τ ; η)

2 − ‖η‖2
η

−ωσ
2,3(τ ; η)

τ + (u∞ − σ)ωσ
2,3(τ ; η)

ωσ
2,3(τ ; η)

2 − ‖η‖2




=




ρ∞
0
0

c2∞
τ + (u∞ − σ)ωσ

2,3(τ ; η)
η

−
c2∞ ωσ

2,3(τ ; η)

τ + (u∞ − σ)ωσ
2,3(τ ; η)




.

By the method of Zumbrun et al [20, 22], we can construct an Evans function Dσ, analytic along

rays {(λτ, λη) ; λ > 0} and real valued for τ ∈ [0,+∞), such that

Dσ(τ ; η) = 0 , Reτ > 0 ⇐⇒ Ker (Lσ(η) − τ) 6= {0 } .
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By definition, away from glancing points,

Dσ(τ ; η) = det(Φ1,σ
0 (τ ; η), . . . ,Φd−1,σ

0 (τ ; η),Φσ
1 (τ ; η),Φσ

2 (τ ; η),Φσ
3 (τ ; η),Φσ

4 (τ ; η))|ξ=0 ,

where Φj(τ ; η) are solutions of (3.34) such that

(3.39)
Φj,σ

0 (τ ; η)
ξ→+∞∼ eωσ

0
(τ ;η)ξ

W
j,σ
0 (τ ; η) , Φ0,1,2(τ ; η)

ξ→+∞∼ eω0,1,2(τ ;η)ξ
W

σ
0,1,2(τ ; η) ,

Φ3,4(τ ; η)
ξ→−∞∼ eωσ

3,4(τ ;η)ξ
W

σ
3,4(τ ; η) .

Since Lσ(0) ·(Uσ)′ = 0 and (Uσ)′ goes exponentially fast to zero at ±∞, as in dimension 1 we observe

that

Dσ(τ ; η) = − r2 det(Φ1,σ
0 (τ ; η), . . . ,Φd−1,σ

0 (τ ; η), Φ̆σ
1 (τ ; η),Φσ

2 (τ ; η),Φσ
3 (τ ; η), Φ̆σ

4 (τ ; η))|ξ=0 ,

where

(3.40) Φ̆σ
1 (0; 0) = Φ̆σ

4 (0; 0) =




(ρσ
−

)′

(ρσ
−

)′′

(ρσ
−

)′′′

0d−1

(uσ)′



.

For simplicity, we shall omit the˘hats in what follows. Eq. (3.40) obviously implies that Dσ(0; 0) = 0.

Furthermore, we have

(3.41)
d

dλ
Dσ(λτ ;λη)|λ=0 = 0 .

To prove this, we introduce notations for the components of Φσ
j and Ψσ

j := ∂λΦσ
j (λτ ;λη), namely,

Φσ
j =




φσ
j

(φσ
j )′

(φσ
j )′′

νσ
j

µσ
j



, Ψσ

j =




ψσ
j

(ψσ
j )′

(ψσ
j )′′

ζσ
j

χσ
j



.

By differentiation of (Bσ(λη) Φσ
j (λτ ;λη))′ = Aσ(λτ ;λη) Φσ

j (λτ ;λη) with respect to λ, we obtain

(3.42) (Bσ(0) Ψσ
j (0; 0))′ = Aσ(0; 0)Ψσ

j (0; 0) + Aσ
1 (τ ; η) Φσ

j (0; 0) ,

Aσ
1 (τ ; η) :=

d

dλ
Aσ(λτ ;λη)|λ=0 =




0 0 0 0∗d−1 0
0 0 0 0∗d−1 0
0 0 0 0∗d−1 τ

(ασ +Kσ‖η‖2)η −(Kσ)′η −Kση −τId−1 0d−1

−τ 0 0 −ρσ
−

ηt 0



.

By (3.40), we have

Aσ
1 (τ ; η) Φσ

1,4(0; 0) =




0
0

τ(uσ)′

((ασ (ρσ
−

)′ − (Kσ)′(ρσ
−

)′′ −Kσ(ρσ
−

)′′′) η

−τ(ρσ
−

)′



.
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We thus see that the third row, respectively the last row, in (3.42) for j = 1, 4 are equivalent to the second

(and last) row, respectively the first row, in

Lσ ·
(
ψσ

1,4(0; 0)

χσ
1,4(0; 0)

)
= τ

(
(ρσ
−

)′

(uσ)′

)
= − τ Lσ ·

(
∂σρ

σ
−

∂σu
σ

)
,

where Lσ is the one-dimensional operator of Section 2. Therefore, up to adding a constant times

λΦσ
1,4(λτ ;λη) to Φσ

1,4(λτ ;λη), we may assume that

(3.43)

(
ψσ

1 (0; 0)
χσ

1 (0; 0)

)
=

(
ψσ

4 (0; 0)
χσ

4 (0; 0)

)
= − τ

(
∂σ(ρσ

−

)

∂σ(uσ)

)
.

Now the intermediate (d− 1) rows in (3.42) for j = 1, 4 read

((uσ − σ) ζ1,4(0; 0))′ = ((ασ (ρσ
−

)′ − (Kσ)′(ρσ
−

)′′ −Kσ(ρσ
−

)′′′) η = −
(1

2
(uσ − σ)2

)′
η

by the profile equation (2.13). Therefore, by integration,

ζ1(0; 0) = ζ4(0; 0) = − 1

2

(
(uσ − σ) − (u∞ − σ)2

uσ − σ

)
η .

So finally, we have

(3.44) Ψσ
1 (0; 0) = Ψσ

4 (0; 0) ,

which together with (3.40) implies (3.41), and

d2

dλ2
Dσ(λτ ;λη)|λ=0 = det(Φ1,σ

0 , . . . ,Φd−1,σ
0 ,Φσ

1 ,Φ
σ
2 ,Φ

σ
3 , ∂

2
λλ(Φσ

4 − Φσ
1 ))(λτ ;λη)|λ=0|ξ=0 .

For simplicity, in what follows we omit the superscript σ, and we just denote Φj for Φσ
j (0; 0), and Θj for

∂2
λλΦσ

j (λτ ;λη)|λ=0. The starting point is to evaluate the determinant above is to note that

detB = ρ
−
K (u− σ)d−1 6= 0 ,

hence

det(Φ1
0, . . . ,Φ

d−1
0 ,Φ1,Φ2,Φ3, ∂

2
λλ(Φσ

4 − Φσ
1 ))

=
1

ρσ
−

Kσ(u− σ)d−1
det(BΦ1

0, . . . , BΦd−1
0 , BΦ1, BΦ2, BΦ3, ∂

2
λλB(Φσ

4 − Φσ
1 )) .

By construction of Φj , since all but the first two rows of A(0; 0) are zero, we have

B(0) Φj =




φj

φ′j
Rj


 ,

where Rj is a constant vector in R
d+1 determined by the asymptotic behovior of Φj . In particular R1

is the null vector. We shall compute the other vectors Rj later on. We also need some information on

S1,4 : ξ → S1,4(ξ) ∈ R
2 such that, by definition,

BΘ1,4 =




θ1,4

θ′1,4

S1,4


 .
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Differentiating twice (B(λη) Φj(λτ ;λη))
′ = A(λτ ;λη) Φj(λτ ;λη) with respect to λ, we obtain

(3.45) (B(0) Θj + B2(η) Φj)
′ = A(0; 0)Θj + 2Aσ

1 (τ ; η) Ψj ,

B2(η) :=
d2

dλ2
B(λη)|λ=0 =




0 0 0 0∗d−1 0
0 0 0 0∗d−1 0
0 0 0 0∗d−1 0

−2K‖η‖2 0 0 −τ0d−1 0d−1

0 0 0 0 0



.

In particular, we have by (3.43) and (3.43),

S′
1,4 = 2




−τ2∂σu + (K ρ′
−

)′‖η‖2

−τ(α∂σρ− −K ′∂σρ
′

−

−K∂σρ
′′

−

)η + 1
2τ
(
(uσ − σ) − (u∞−σ)2

u−σ

)
η

τ2∂σρ− + 1
2ρ−

(
(u− σ) − (u∞−σ)2

u−σ

)
‖η‖2


 .

Lemma 2 If Π denotes the projection operator

Π :




φ
φ′

R


 ∈ C

d+3 7→ R ∈ C
d+1 ,

then, if τ2 6= (u∞ − σ)2 ‖η‖2, the vectors Rj
0 := ΠB(0)Φj

0, j = 1, . . . , d − 1, and Rk := ΠB(0)Φk,

k = 2, 3 are independent.

Remark 3 Points (τ, η) with τ2 = (u∞ − σ)2 ‖η‖2 are glancing points, for which ω2 coincides with

ω0. Our computation below does not imply at all that the second order order derivative of the Evans

function vanishes at those points: a different computation should be made to find the actual value of that

derivative.

Proof. [Lemma 2] We easily compute that

Rj
0 = (u∞ − σ)




−(u∞ − σ) ηj

τej

ρ∞ ηj


 ,

and for k = 2, 3,

Rk =
1

τ + (u∞ − σ)ωk




−c2∞ τ
(u∞ − σ)c2∞ η

ρ∞ ((u∞ − σ) (τ + (u∞ − σ)ωk) − c2∞ ωk)


 ,

hence

det(R1
0, . . . , R

d−1
0 , R2, R3) = c2∞ (ω2 − ω3) (c2∞ − (u∞ − σ)2) (τ2 − (u∞ − σ)2‖η‖2) .

Thanks to Lemma 2, we may proceed as in Section 2. We introduce (the unique) numbers dj
0,

j = 1, . . . , d− 1, and d2,3 such that

S4 − S1 =
d−1∑

j=1

dj
0R

j
0 + d2R2 − d3R3 ,
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and develop the determinant as follows,

det(B(0)Φ1
0, . . . , B(0)Φd−1

0 , BΦ1, B(0)Φ2, B(0)Φ3, ∂
2
λλB(0)(Φ4 − Φ1)) =

∣∣∣∣∣∣∣

φ1
0 . . . φd−1

0 ρ′
−

φ2 φ3 θ̃4 − θ̃1

(φ1
0)

′ . . . (φd−1
0 )′ ρ′′

−

φ′2 φ′3 θ̃′4 − θ̃′1
R1

0 . . . Rd−1
0 0d+1 R2 R3 0d+1

∣∣∣∣∣∣∣
=

det(R1
0, . . . , R

d−1
0 , R2, R3)

∣∣∣∣∣
ρ′
−

θ̃4 − θ̃1

ρ′′
−

θ̃′4 − θ̃′1

∣∣∣∣∣

with

θ̃4 := θ4 + d3 φ3 , θ̃1 := θ1 +

d−1∑

j=1

dj
0 φ

j
0 + d2 φ2 .

By the same technique as in Section 2 we find that

∣∣∣∣∣
ρ′
−

θ̃4 − θ̃1

ρ′′
−

θ̃′4 − θ̃′1

∣∣∣∣∣
|ξ=0

=
1

K(0)

∫ +∞

−∞
s[θ̃1,4] ρ

′
−

,

with

s[θ̃4] := K θ̃′′4 + (K)′ θ̃′4 − α θ̃4 +
1

ρ
−

(u− σ)2 θ̃4 = (1, 0∗d−1, (u− σ)/ρ
−
) (S4 + d3R3)

= (1, 0∗d−1, (u− σ)/ρ
−
) (S1 +

d−1∑

j=1

dj
0R

j
0 + d2R2) =: s[θ̃1] .

Since

(u− σ) ρ′
−

= −ρ
−
u′ ,

we have

∫ +∞

−∞
s[θ̃1,4] ρ

′
−

=

∫ +∞

−∞
(ρ′
−

, 0∗d−1,−u′)S4 = 2

∫ +∞

−∞
τ2
(
(ρ
−
− ρ∞) ∂σu + (u− u∞) ∂σρ−

)

+

∫ +∞

−∞
‖η‖2

(
2K (ρ′

−

)2 + ρ
−

(u− u∞)
(
(u− σ) − (u∞ − σ)2

u− σ

))

after integration by part. In factor of τ2 we recognize −m′′(σ) (see (2.10)), and the factor of ‖η‖2 is

obviously positive, since

2K (ρ′
−

)2 + ρ
−

(u−u∞)
(
(u−σ) − (u∞ − σ)2

u− σ

)
≥ ρ

−

u− σ
(u−σ−(u∞−σ))2 (u−σ+u∞−σ) > 0 .

(Recall that as j = ρ
−
(u− σ) = ρ∞(u∞ − σ) has been assumed positive.) In conclusion, if (τ ; η) is not

a glancing point, for λ close to 0, we have D(λτ, λη) ∼ λ2 P (τ ; η) with

P (τ ; η) = −r2 (−m′′(σ) τ2 + s2 ‖η‖2) ,

where r and s are nonzero real numbers. If m′′(σ) < 0, which implies that the solitary wave is one-

d unstable by Theorem 1, perturbations transverse to the wave makes the local behavior of the Evans

function even ‘worse’. Ifm′′(σ) > 0, which implies that the solitary wave is orbitally stable in one space

dimension, we find as announced above a continuous branch η 7→ τ♯(η) along which D vanishes. We

have thus proved the following.
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Theorem 2 Planar solitary waves satisfying the one-dimensional stability condition (2.25) are linearly

unstable in several space dimensions.

In view of the method developed recently by Rousset and Tzvetkov [18], we expect that this linear

transverse instability implies nonlinear instability. This will be the purpose of a separate paper.

Acknowledgement. The author warmly thanks Jean-François Coulombel and Frédéric Rousset for their

valuable comments on earlier versions of the manuscript.

References

[1] J.C. Alexander, R. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability

analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.

[2] T. B. Benjamin. Impulse, flow force and variational principles. IMA J. Appl. Math., 32(1-3):3–68,

1984.

[3] S. Benzoni-Gavage. Linear stability of propagating phase boundaries in capillary fluids. Phys. D,

155(3-4):235–273, 2001.

[4] S. Benzoni-Gavage, R. Danchin, and S. Descombes. Well-posedness of one-dimensional Korteweg

models. Electronic J. Diff. Equations, 2006(59):1–35, 2006.

[5] S. Benzoni-Gavage, R. Danchin, and S. Descombes. On the well-posedness for the Euler-Korteweg

model in several space dimensions. Indiana Univ. Math. J., 56:1499–1579, 2007.

[6] S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet. Structure of Korteweg models and

stability of diffuse interfaces. Interfaces Free Boundaries, 7:371–414, 2005.

[7] S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet. Stability issues in the Euler-

Korteweg model. In Joint Summer Research Conference Control methods in PDE-Dynamical Sys-

tems, volume 426 of Contemporary Mathematics, pages 103–127. AMS, 2007.

[8] J. L. Bona and R. L. Sachs. Global existence of smooth solutions and stability of solitary waves for

a generalized Boussinesq equation. Comm. Math. Phys., 118(1):15–29, 1988.

[9] T. J. Bridges and G. Derks. Constructing the symplectic Evans matrix using maximally analytic

individual vectors. Proc. Roy. Soc. Edinburgh Sect. A, 133(3):505–526, 2003.

[10] W. A. Coppel. Dichotomies in stability theory. Springer-Verlag, Berlin, 1978. Lecture Notes in

Mathematics, Vol. 629.

[11] R.A. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of viscous

shock profiles. Comm. Pure Appl. Math., 51(7):797–855, 1998.

[12] M. Grillakis, J. Shatah, and W. Strauss. Stability theory of solitary waves in the presence of sym-

metry. I. J. Funct. Anal., 74(1):160–197, 1987.

[13] D. Henry. Geometric theory of semilinear parabolic equations. Springer-Verlag, Berlin, 1981.

[14] D. Jamet, O. Lebaigue, N. Coutris, and J. M. Delhaye. The second gradient method for the direct

numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys., 169(2):624–651,

2001.

[15] T. Kapitula and B. Sandstede. Stability of bright solitary-wave solutions to perturbed nonlinear

Schrödinger equations. Phys. D, 124(1-3):58–103, 1998.

23



[16] K. J. Palmer. Exponential dichotomies and transversal homoclinic points. J. Differential Equations,

55(2):225–256, 1984.

[17] R. L. Pego and M. I. Weinstein. Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy.

Soc. London Ser. A, 340(1656):47–94, 1992.

[18] F. Rousset and N. Tzvetkov. Transverse nonlinear instability of solitary waves for some Hamilto-

nian PDE’s. Preprint, arXiv:0804.1308, 2008.

[19] C. Truesdell and W. Noll. The nonlinear field theories of mechanics. Springer-Verlag, Berlin,

second edition, 1992.

[20] K. Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances in the the-

ory of shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., pages 307–516.
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