
HAL Id: hal-00342366
https://hal.science/hal-00342366v1

Submitted on 27 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursion Schemata for NCk
Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, Isabel Oitavem

To cite this version:
Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, Isabel Oitavem. Recursion Schemata for
NCk. 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro,
Italy, September 16-19, 2008. Proceedings, Sep 2008, Bertinoro, Italy. pp.49-63, �10.1007/978-3-540-
87531-4_6�. �hal-00342366�

https://hal.science/hal-00342366v1
https://hal.archives-ouvertes.fr

Recursion schemata for NCk

Guillaume Bonfante1, Reinhard Kahle2, Jean-Yves Marion1, and Isabel
Oitavem3

1 Loria - INPL, 615, rue du Jardin Botanique, BP-101, 54602 Villers-lès-Nancy,
France, {Jean-Yves.Marion|Guillaume.Bonfante}@loria.fr

2 CENTRIA and DM, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal,
kahle@mat.uc.pt

3 UNL and CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003
Lisboa, Portugal, isarocha@ptmat.fc.ul.pt

Abstract. We give a recursion-theoretic characterization of the com-
plexity classes NCk for k ≥ 1. In the spirit of implicit computational
complexity, it uses no explicit bounds in the recursion and also no sepa-
ration of variables is needed. It is based on three recursion schemes, one
corresponds to time (time iteration), one to space allocation (explicit
structural recursion) and one to internal computations (mutual in place
recursion). This is, to our knowledge, the first exact characterization of
the NCk by function algebra over infinite domains in implicit complexity.

1 Introduction

Since the seminal works of Simmons [19], of Leivant [11,12], of Bellantoni and
Cook [3], and of Girard [8], implicit computational complexity has provided mod-
els over infinite domains of major complexity classes which are independent from
the notion of time or of space related to machines.

These studies have nowadays at least two twin directions. The first direction
concerns the characterization of complexity classes by means of logics or of recur-
sion schemas. A motivation is to have a mathematical model of resource-bounded
computations. The second direction is more practical and aims to analyze and
certify resources, which are necessary for a program execution. One of the major
challenges here is to capture a broad class of useful programs whose complexity
is bounded. There are several approaches [1,10,16,6].

This paper falls in the first direction which can be seen as a guideline for
the second approach. We give a recursion-theoretic characterization of each class
NCk by mean of a function algebra INCk based on tree recursion. We demonstrate
that INCk = NCk for k ≥ 1.

The classes NCk were firstly described based on circuits. NCk is the class
of functions accepted by uniform boolean circuit families of depth O(logk n)

Research supported by the project Teorias e linguagens de programação para
computações com recursos limitados within the Programa PESSOA 2005/2006 of
GRICES - EGIDE and partly by the FCT project POCI/MAT/61720/2004 and by
DM, FCT-UNL.

2 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

and polynomial size with bounded fan-in gates, where n is the length of the
input—see [2] or [9]. In [18], Ruzzo identifies NCk with the classes of languages
recognized by alternating Turing machines (in short ATMs) in time O(logk n)
and space O(log n).

In fact, the main difficulty in this characterization of NCk relies on the double
constraint about time and space. Other previous characterizations based on tree
recursion fail to exactly capture for this reason. In 1998, Leivant [13] character-
ized NC using a hierarchy of classes RSR, such that RSRk ⊆ NCk ⊆ RSRk+2 for
k ≥ 2. In the sequence of [4] and [17], this result was refined in [5] by defining
term systems T k such that T k ⊆ NCk ⊆ T k+1 for k ≥ 2. Both approaches are
defined in a sorted context, either with safe/normal arguments or with tiered
recursion.

We define INCk as classes of functions, over the tree algebra T, closed under
composition and three recursion schemes over T: time iteration, explicit struc-
tural recursion and mutual in place recursion. No explicit bounds are used in the
schemes and also no separation of variables is needed. The mutual in place re-
cursion scheme, one main point of our contribution, is related to previous work
of Leivant and Marion, see [14]. The absence of tiering mechanism is related
to [15], so that similar diagonalization argument should be possible.

2 Preliminaries

Let W be the set of words over {0, 1}. We denote by ε the empty word and by
Wi the subset of W of words of length exactly i. We consider the tree algebra
T, generated by three 0-ary constructors 0,1,⊥ and a binary constructor ", in
other words, binary trees with leaves are labeled by {0,1,⊥}1. S(t) denotes the
size of a tree, H(t) corresponds to the usual notion of height. We say that a tree
t is perfectly balanced if it has 2H(t) leaves. All along, 0 serves as false, 1 as true
and ⊥ as the undefined.

Given a non-empty (enumerable) set of variables X , we denote by T(X) the
term-algebra of binary trees whose leaves are labeled by 0,1,⊥ or variables from
X . If t, u denote some terms and x is a variable, the term t[x ← u] denotes the
substitution of x by u in t. Then, t[x ← u, y ← v] = t[x ← u][y ← v]. All
along, we take care to avoid clashes of variables. When we have a collection I
of variable substitutions, we use the notation t[(xw ← uw)w∈I]. Again, we will
avoid conflicts of variables.

We now define some convenient notations, used extensively all along the
paper. Given a set of variables X = (xw)w∈W, we define a family of balanced
trees that we call tree patterns (ti)i∈N in T(X) where each leaf is labeled by a

1 Actually, we could build trees by means of only two constructors !, nil and develop
the theory out of this algebra. This choice, though correct, involves much more
tedious encodings which we will avoid without changing in essence the theory.

Recursion schemata for NCk 3

distinct variable:

t0 = xε

ti+1 = ti[(xw ← x0w)w∈Wi
] " ti[(xw ← x1w)w∈Wi

]

Observe that the index of a variable of some tree pattern indicates the path
from the root to it. For example, t2 = (x00 " x01) " (x10 " x11). The use of
the t’s and substitutions makes notations very short. For instance, t2[(xw ←
fw(xw))w∈W2

] = (f00(x00) " f01(x01)) " (f10(x10) " f11(x11)). This notation is
particularly useful to define ”big-step” recursion equations as in:

f((x00 " x01) " (x10 " x11)) = (f(x00) " f(x01)) " (f(x10) " f(x11))

which we shall note: f(t2) = t2[(xw ← f(xw))w∈W2
]

3 The classes INCk

Definition 1. The set of basic functions is B = {0,1,⊥, ", (πj
i)i≤j , cond, d0, d1}

where 0,1,⊥ and " are the constructors of the algebra T, d0 and d1 are the
destructors of T, cond is a conditional and πj

i are the projections. Destructors
and conditional are defined as follows:

d0(c) = d1(c) = c, c ∈ {0,1,⊥}
d0(t0 " t1) = t0, d1(t0 " t1) = t1,

cond(0, x0, x1, x⊥, x") = x0, cond(1, x0, x1, x⊥, x") = x1,

cond(⊥, x0, x1, x⊥, x") = x⊥, cond(t0 " t1, x0, x1, x⊥, x") = x".

The set of basic functions closed by composition is called the set of explicitly
defined functions. If the output of a function is 0,1 or ⊥, then we say that the
function is boolean. If the definition of a function does not use ", the function
is said to be "-free. As a shorthand notation, we use db1···bk for the function
dbk ◦ · · · ◦ db1 .

Definition 2. INCk is the closure of the set B under composition, mutual in
place recursion (mip), explicit structural recursion (esr), and time iteration
(ti) for k.

The mentioned schemes are described below.
To relate functions over words to functions over trees, we encode words of

W by perfectly balanced trees of T. For this, we define tr(w) as the perfectly
balanced tree of height 'log(|w|)(whose leaves read from left to right are the
letters of w padded by ⊥ on the right if necessary.

A function φ : Wn → W is represented by a function f ∈ Tk → T iff for
all words w1, . . . , wn, f(tr(w1), . . . , tr(wn)) = tr(φ(w1, . . . , wn)). Actually, the
representation of φ(w1, . . . , wn) does not need to be canonical, that is the height
of the output tree may be greater than 'log(|φ(w1, . . . , wn)|)(.

4 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

Theorem 3. For k ≥ 1, the set of functions over words represented in INCk is
exactly the set of functions computed by circuits in NCk.

The proof of the theorem is a direct consequence of Proposition 13 and
Proposition 14 coming in Section 4 and 5.

3.1 Mutual in place recursion

As a shorthand for finite sequences, we use ¯(·). The notation can be nested
such as in σ̄(ū) which denotes a sequence σ1(u1, . . . , uk1), . . . ,σn(u1, . . . , ukn).

The first recursion scheme, mutual in place recursion, is the key element of
our characterization.

Definition 4. The functions (fi)i∈I (with the set I finite) are defined by mutual
in place recursion (mip) if they are defined by a set of equations, with i, j, l ∈ I
and c ∈ {0,1,⊥}, of the form

fi(t0 " t1, ū) = fj(t0, σ̄i,0(t0 " t1, ū)) " fl(t1, σ̄i,1(t0 " t1, ū)) (1)
fi(c, ū) = gi,c(ū) (2)

where σ̄i,0 and σ̄i,1 are sequences of "-free explicitely defined functions and the
functions gi,c are explicitely defined boolean functions.

Notice that the first argument is shared by the entire set of mutually defined
functions as recursion argument. While for the others, copies, switch and visit can
be performed freely. As a consequence, for any such function f , one may observe
that f(t, x̄) is a tree with the exact shape of t but, possibly, with different leaves.
Actually, informally, to compute the value corresponding to each leaf, one first
runs a transducer using the path to that leaf as input. At the end, one computes
the bit by a conditional using the outputs of the transducer as pointers to some
bits in the input tree.

Example 5. The following function turns the leaves its argument to some fixed
constant c ∈ {0,1,⊥}:

constc(t0 " t1) = constc(t0) " constc(t1)
constc(c′) = c c′ ∈ {0,1,⊥}

Taking the convention that b ∨ ⊥ = ⊥ ∨ b = ⊥, one may compute (with
mip-recursion) the bitwise-or of two perfectly balanced trees of common size.

or(t0 " t1, u) = or(t0, d0(u)) " or(t1, d1(u))
or(0, u) = cond(u,0,1,⊥,⊥)
or(1, u) = cond(u,1,1,⊥,⊥)
or(⊥, u) = ⊥

Actually, all ”bitwise boolean formula” of several balanced trees of the same
size can be written in a similar manner.

Recursion schemata for NCk 5

We now give some closure properties of mip-definable functions, the first one
allows us to define a family of mip-definable functions in terms of the shorthand
notation defined above.

Lemma 6. We suppose given a (finite) family (ni)i∈I of integers, and a family
(fi)i∈I of functions satisfying equations of the form:

fi(tni , ū) = tni [(xw ← fp(i,w)(xw, σ̄i,w(ū)))w∈Wni
], (3)

fi(tm[(xw ← cw)w∈Wm
], ū) = tm[(xw ← gi,w,cw(ū))w∈Wm

], 0 ≤ m < ni, (4)

where p is a finite mapping from I ×W to I, cw ∈ {0,1,⊥}, σ̄i,w are vectors of
"-free explicitly defined functions, and (gi,w,cw)i∈I,w∈W,cw∈{0,1,⊥} are explicitely
defined boolean functions. Then, the functions (fi)i∈I are mip-definable.

One may note that the equations above specify the functions only for well
balanced trees. Since we only use the Lemma for such trees, we do not care with
their values for other inputs given by the proof bellow.

Proof. In an equation such as Equation (3), we call ni the level of the definition
of fi. The proof is by induction on the maximal level of the functions N =
maxi∈I ni. If N = 1, then the equations correspond to usual mip-equations.

Suppose now N > 1. For all the indices i such that fi has level N , we replace
its definitional equations by:

fi(t0 " t1, ū) = fi•0(t0, ū) " fi•1(t1, ū)
fi•w(t0 " t1, ū) = fi•w0(t0, ū) " fi•w1(t1, ū), (1 < |w| < N − 1)
fi•w(t0 " t1, ū) = fp(i,w0)(t0, σ̄i,w0(ū)) " fp(i,w1)(t1, σ̄i,w1(ū)), (|w| = N − 1)

fi•w(c, ū) = gi,w,c(ū), (1 ≤ |w| < N)
fi(c, ū) = gi,ε,c(ū)

where the indices i•w are fresh. One may observe that the level of each of these
functions is 1. We end by induction.

The following Lemma is easy to verify:

Lemma 7. Suppose that f ∈ (fi)i∈I is defined by mip-recursion. Then, any
function g(t, ū) = f(t, σ̄(t, ū)) where the σ̄ are "-free explicitly defined functions
can be defined by mip-recursion.

3.2 Explicit structural recursion

The recursion scheme defined here corresponds to the space aspect of functions
definable in INCk. It will be used to construct trees of height O(log n), see the
following Lemma.

6 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

Definition 8. Explicit structural recursion (esr) is the following schema:

f(t0 " t1, ū) = h(f(t0, ū), f(t1, ū))
f(c, ū) = g(c, ū) c ∈ {0,1,⊥}

where h and g are explicitely defined.

Lemma 9. Given two natural numbers α0 and α1, there is a function f defined
by esr such that for any tree t, H(f(t)) = α1H(t) + α0.

Proof. The proof is immediate, taking f defined by explicit structural recursion
with h = hα1 and g = hα0(1,1) where h1(w0, w1) = w0 " w1 and hi(w0, w1) =
hi−1(w0, w1) " hi−1(w0, w1) for i > 1.

3.3 Time iteration

The following scheme allows us to iterate mip-definable functions. It serves to
capture the time aspect of functions definable in NCk. The scheme depends on
the parameter k used for the stratification.

Definition 10. Given k ≥ 1, a function f is defined by k-time iteration (k-ti)
from the function h which is mip-definable and the function g if:

f(t′1 " t′′1 , t2, . . . , tk, s, ū) = h(f(t′1, t2, . . . , tk, s, ū), ū)
f(c1, t

′
2 " t′′2 , t3, . . . , tk, s, ū) = f(s, t′2, t3 . . . , tk, s, ū)

...
f(c1, . . . , ci−1, t

′
i " t′′i , ti+1, . . . , tk, s, ū) = f(c1, . . . , ci−2, s, t

′
i, ti+1, . . . , tk, s, ū)

...
f(c1, . . . , ck, s, ū) = g(s, ū)

where c1, . . . , ck ∈ {0,1,⊥}.

Lemma 11. Given a mip-definable function h, a function g and constants β1

and β0, there is a function f defined by k-ti such that for all perfectly balanced
trees t

f(t, ū) = h(. . . h︸ ︷︷ ︸
β1(H(t))k+β0 times

(g(t, ū), ū) . . .).

Proof. The proof follows the lines of Lemma 9.

4 Simulation of alternating Turing machines

We introduce alternating random access Turing machines (ARMs) as described
in [14] by Leivant, see also [7,18]. An ARM M = (Q, q0, δ) consists of a (finite) set

Recursion schemata for NCk 7

of states Q, one of these, q0, being the initial state and actions δ to be described
now. States are classified as disjunctive or conjunctive, those are called action
states, or as accepting, rejecting and reading states. The operational semantics
of an ARM, M , is a two stage process: firstly, generating a computation tree;
secondly, evaluating that computation tree for the given input. A configuration
K = (q, w1, w2) consists of a state q and two work-stacks wi ∈ W, i ∈ {1, 2}.
The initial configuration is given by the initial state q0 of the machine and two
empty stacks.

In the first step, one builds a computation tree, a tree whose nodes are
configurations. The root of a computation tree is the initial configuration. Then,
if the state of a node is an action state, depending on the state and on the bits at
the top of the work-stacks, one spawns a pair of successor configurations obtained
by pushing/popping letters on the work-stacks. The t-time computation tree is
the tree obtained by this process until height t.

Wlog, we assume that for each action state q, one of the two successor con-
figurations of q, let us say the first one, lets the stacks unchanged. And for the
second successor configuration, either the first stack or the second one is modi-
fied, but not both simultaneously. We write accordingly the transition function
δ for action states: δ(q, a, b) = (q′, q′′, popi) with i ∈ {1, 2} means that being in
state q with top bits being a and b, the first successor configuration has state
q′ and stacks unchanged, and the second successor has state q′′ and pops one
letter on stack i. When we write δ(q, a, b) = (q′, q′′, pushi(c)), with i ∈ {1, 2} and
c ∈ W1, it is like above but we push the letter c on the top of the stack i.

The evaluation of a finite computation tree T is obtained as follows. Begining
from the leaves of T until its root, one labels each node (q, w1, w2) according to:

– if q is a rejecting (resp. accepting) state, then it is labeled by 0 (resp. 1);
– if q is a c, j-reading state (c = 0, 1, j = 1, 2), then it is labeled by 0 or 1

according to whether the n’th bit of the input is c, where n is the content
read on the j’th stack. If n is too large, the label is ⊥;

– if q is an action state,
• if it has zero or one child, it is labeled ⊥;
• if it has two children, take the labels of its two children and compute

the current label following the convention that c = (c ∨ ⊥) = (⊥ ∨ c) =
(c ∧ ⊥) = (⊥ ∧ c) with c ∈ {0, 1,⊥}.

The label of a computation tree is the label of the root of the computation
tree thus obtained.

We say that the machine works in time f(n) if, for all inputs, the f(n)-time
tree evaluates to 0 or 1 where n is the size of the input. It works in space s(n)
if the size of the stacks are bounded by s(n).

Actually, to relate our function algebra to the NCk, we say that a function is
in ATM(O(logk n, O(log n)), for k ≥ 1 if it is polynomially bounded and bitwise
computed by an ATM working in time O(logk n) and space O(log n).

Theorem 12 (Ruzzo [18]). NCk is exactly the set of languages recognized by
ARM working in time O(log(n)k) and space O(log(n)).

8 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

From that, one inclusion (from the right to the left) of our main theorem is
a corollary of:

Proposition 13. Given k ≥ 1 and constants α1,α0,β1,β0, any ARM working
in space α1 log(n) + α0 and time β1 logk(n) + β0, where n is the length of the
input, can be simulated in INCk.

Proof (sketch). Let us consider such a machine M = (Q, q0, δ). Take d = 'log(|Q|)(.
We attribute to each state in Q a word w ∈ Wd taking the convention that the
initial state q0 has encoding 0 · · · 0. From now on, the distinction between the
state and its associated word is omitted.

Let us consider the encoding of two stacks s1 = a1a2 · · · ai ∈ W and s2 =
b1b2 · · · bj ∈ W of length less or equal than α1 · log(n) + α0:

P(s1, s2) = l(a1)l(b1)l(a2) · · · l(ai)l(#)l(b2) · · · l(bj)l(#)l(#) · · · l(#)

where l(0) = 10, l(1) = 11 and l(#) = 00, in such a way that this word has length
exactly 2(α1 ·log(n)+α0+1). The “+1” origins from the extra character # which
separates the two (tails of the) stacks. For convenience we use a typewriter font
for the encoding l. Then, the encoding of stacks above is written

P(s1, s2) = a1 b1 a2 a3 · · · ai # b2 b3 · · · bj # # · · · #.

To perform the computations for some input of size n, we use a configuration
tree which is a perfectly balanced tree of height d + 2(α1 · log(n) + α0 + 1). It
is used as a map from all2 configurations to (some currently computed) values
{0,1,⊥}. Given a configuration K = (q, w1, w2), the leaf obtained following
the path qP(w1, w2) from the root of the configuration tree is the stored value
for that configuration. In other words, given a configuration tree t, the value
corresponding to the configuration (q, s1, s2) is dqP(s1,s2)(t).

We describe now the process of the computation. The initial valued config-
uration tree has all leaves labeled by ⊥ (this tree can be defined by explicit
structural recursion, cf. Lemma 9). The strategy will be to update the leaves of
the initial valued configuration tree, as many times as the running time of the
machine. We will show that updates can be performed by a mip-function. Then,
we use Lemma 11 to iterate this update function. After this process, the output
can be read on the left-most branch of the configuration tree, that is the path of
the initial configuration (q0, ε, ε). So, to finish the proof, we have to show that
such an update can be done by mip-recursion.

For that, we introduce a function next which takes as input the currently
computed valued configuration tree and the input tree. It returns the updated
configuration tree. Actually, the function works by finite case distinction just
calling auxiliary functions. By Lemma 6 next is shown mip-definable3:

next(td+4, y) = td+4[(xqab←nextq,a,b(xqab, td+4, y))q∈Wd,a∈W2,b∈W2
]

2 Actually, all configurations with stacks smaller than O(log(n)).
3 Since, wrt the simulation, Equations for m < d + 4 play no role, we do not write

them explicitly.

Recursion schemata for NCk 9

where nextq,a,b are the auxiliary functions. The role of these functions is to
update the part of the configuration tree they correspond to. The definition of
these auxiliary functions depends on the kind of states (accepting, rejecting, etc)
and, for action states, on the top bits of the stacks.

We begin by the case of accepting and rejecting states. We define

nextq,a,b(x, t, y) = const1(x) if q is accepting
nextq,a,b(x, t, y) = const0(x) if q is rejecting

and use Lemma 7 to get mip-definability.
For the reading states, we only provide the definition corresponding to a

1, 1-reading state. Other cases are similar, nextq,a,b(x, t, y) = read(x, da(y)) with:

read(t2, y) = (read′(x00, y) " read(x01, y)) " (read(x10, d10(y)) ∗ read(x11, d11(y)))
read′(x0 " x1, y) = read′(x0, y) " read(x1, y)

read(c, y) = ⊥
read′(c, y) = cond(y,0,1,⊥,⊥)

The hard cases are the action states. To compute the value of such configura-
tions, we need the value of its two successor configurations. The key point is that
the transitions of a configuration (q, a1 · · · ai, b1 · · · bj) to its successors are en-
tirely determined by the state q and the two top bits a1 and b1 so that nextq,a1,b1

”knows” exactly which transition it must implement. We have to distinguish the
four cases where we push or pop an element on one of the two stacks:

1. δ(q, a1,b1) = (q′, q′′, push1(a0));
2. δ(q, a1,b1) = (q′, q′′, pop1);
3. δ(q, a1,b1) = (q′, q′′, push2(b0));
4. δ(q, a1,b1) = (q′, q′′, pop2).

Let us see first how these action modify the encoding of configurations. So,
we suppose the current configuration to be K = (q, a1 · · · ai, b1 · · · bj). By as-
sumption, the stacks of q′ are the same as for q, so that the encoding of the first
successor of K is

q′ a1 b1 a2 a3 · · · ai # b2 b3 · · · bj # # · · · #

For the second successor of K, the encoding depends on the four possible
actions:

1. q′′ a0 b1 a1 a2 a3 · · · ai # b2 b3 · · · bj # · · · #
2. q′′ a2 b1 a3 · · · ai # b2 b3 · · · bj # # # · · · #
3. q′′ a1 b0 a2 a3 · · · ai # b1 b2 b3 · · · bj # · · · #
4. q′′ a1 b2 a2 a3 · · · ai # b3 · · · bj # # # · · · #

As for accepting and rejecting states, we will use auxiliary functions next◦,1,
next◦,2,b1 , next◦,3,b1 , and next◦,4, which correspond to the four cases mentioned

10 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

above (and where ◦ is ∧ or ∨ according to the state q). Then we use Lemma 7
to show the functions nextq,a1,b1 defined by mip-recursion.

We come back now to the definition of the four auxiliary functions next◦,1,
next◦,2,b1 , next◦,3,b1 , and next◦,4. The principle of their definition is to follow in
parallel the paths of the two successor configurations. To do that, we essentially
use substitution of parameters, in the mutual in place recursion scheme.

For the case δ(q, a1,b1) = (q′, q′′, push1(a0)), we define nextq,a1,b1(x, t, y) =
next◦,1(x, dq′a1b1(t), dq′′a0b1a1(t)). With respect to the configuration tree encod-
ing and to the definition of next, observe that next◦,1(x, u, v) is fed with the
arguments (dqa1b1(t), dq′a1b1(t), dqa0b1a1(t)) where t is the configuration tree to
be updated. So that the height of the last argument is two4 less than the others.
In this case, we can go in parallel, with the only previso that the second stack
is shorter. Equations below cope with that technical point. Formally we define
next◦,1 as:

next◦,1(t2, u, v) = t2[(xw ← next◦,1′(xw, dw(u), dw(v)))w∈W2
]

next◦,1′(t4, u, v) = t4[(xw ← next◦,1′(xw, dw(u), dw(v)))w∈W4
]

next◦,1′(t2[xw ← cw], u, v) = t2[(xw ← dw(u) ◦ v)w∈W2
]

where the cw are to be taken in {0,1,⊥} and ◦ is the conditional corresponding
to the state.

If δ(q, a1,b1) = (q′, q′′, pop1), let nextq,a1,b1(x, t, y) = next◦,2,b1(x, dq′a1b1(t), dq”(t)).
In that case, it is the last argument which is the bigger one.

next◦,2,b1(t2, u, v) = t2[(xw ← next′◦,2(xw, dw(u), dwb1(v)))w∈W2
]

next′◦,2(t2, u, v) = t2[(xw ← next′◦,2(xw, dw(u), dw(v)))w∈W2
]

next′◦,2(c, u, v) = u ◦ d00(v)

If δ(q, a1,b1) = (q′, q′′, push2(b0)), we define nextq,a1,b1 by the equation:

nextq,a1,b1(x, t, y) = next◦,3,b1(x, dq′a1b1(t), dq”a1b0(t))
next◦,3,b1(t2, u, v) = (next◦,1(x00, d00(u), d00b1(v)) " next◦,1(x01, d01(u), d01b1(v))) "

(next◦,3,b1(x10, d10(u), d10(v)) " next◦,3,b1(x11, d11(u), d11(v)))
next◦,3,b1(c, u, v) = ⊥

For the last case, that is δ(q, a1,b1) = (q′, q′′, pop2), we use four auxiliary
arguments to remind the first letter read on the stack of the second successor.

nextq,a1,b1(x, t, y) = next◦,4,ε(x, dq′a1b1(t), dq”00(t), dq”01(t), dq”10(t), dq”11(t))
next◦,4,00(t2, u, v00, v01, v10, v11) = t2[(xw ← next′◦,2(xw, dw(u), vw))w∈W2

]

next◦,4,v(t2, u, v00, v01, v10, v11) = t2[(xw ← next◦,4,w(xw, dw(u), dw(v00),
dw(v01), dw(v10), dw(v11))w∈W2

]

next◦,4,v′(c, u, v00, v01, v10, v11) = ⊥

with v ∈ {ε, 01, 10, 11} and v′ ∈ W0 ∪W2.
4 one bit of the stack is encoded as two bits in the configuration tree.

Recursion schemata for NCk 11

5 Compilation of recursive definitions to circuit

This section is devoted to the proof of the Proposition:

Proposition 14. For k ≥ 1, any function in INCk is computable in NCk.

We begin with some observations. All along, n denotes the size of the input.
First, to simulate theoretic functions in INCk, we will forget the tree structure
and make the computations on the words made by the leaves. Actually, since
the trees are always full balanced binary trees, we could restrict our attention
to input of size 2k for some k.

Second, functions defined by explicit structural recursion can be computed
by NC1 circuits. This is a direct consequence of the fact that explicit struc-
tural recursion is a particular case of LRRS-recursion as defined in Leivant and
Marion [14].

Third, by induction on the definition of functions, one proves the key Lemma:

Lemma 15. Given a function f ∈ INCk, there are (finitely many) mip-functions
h1, . . . , hm and polynomials P1, . . . , Pm of degree smaller than k such that f(t̄, ū) =
hP1(log(n))

1 (· · ·hPm(log(n))
m (g(ū)) . . .) where g is defined by structural recursion.

Now, the compilation of functions to circuits relies on three main ingredients.
First point, we show that each function hi as above can be computed by a circuit:

1. of fixed height with respect to the input (the height depends only on the
definition of the functions),

2. with a linear number of gates with respect to the size of the first input of
the circuit (corresponding to the recurrence argument),

3. with the number of output bits equal to the number of input bits of its first
argument.

According to 1), we note H the maximal height of the circuits corresponding to
the hi’s.

Second point, since there are
∑

i=1..m Pi(log(n)) applications of such hi, we
get a circuit of height bounded by H×

∑
i=1..m Pi(log(n)) = O(logk(n)). That is

a circuit of height compatible with NCk. Observe that we have to add as a first
layer a circuit that computes g. According to our second remark, this circuit has
a height bounded by O(log(n)), so that the height of the whole circuit is of the
order O(logk(n)).

Third point, the circuits corresponding to g, being in NC1, have a polynomial
number of gates with respect to n and a polynomial number of output bits with
respect to n. Observe that the output of g is exactly the recurrence argument
of some hi whose output is itself the first argument of the next hi, and so on.
So that according to item 3) of the first point, the size of the input argument of
each of the hi is exactly the size of the output of g. Consequently, according to
item 2) above, the number of circuit gates is polynomial.

Since all constructions are uniform, we get the expected result.

12 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

5.1 NC0 circuits for mutual recursion

In this section, we prove that functions defined by mutual in place recursion can
be computed by NC0 circuits with a linear number of gates wrt the size of the
first argument. Since mip-functions keep the shape of their first argument, we
essentially have to build a circuit for each bit of this argument.

Lemma 16. Explicitely defined boolean functions can be defined without use
of ".

Lemma 17. Explicitly defined boolean functions are in NC0.

Proof. Consider the following circuits. To stress the fact that circuits are uni-
form, we put the size of the arguments into the brackets. n corresponds to the
size of x, n0 to the size of x0 and so on. x(k) for k ∈ N corresponds to the k-th
bit of the input x. The ”long” wires correspond to the outputs. Shorter ones are
simply forgotten.

· · ·x
0

C0[n] : · · ·x
1

C1[n] :

x
Cd0

[1] = Cd1
[1] =

x(0) · · · x(n/2) x(n/2 + 1) · · · x(n)

Cd0
[2 + n] =

x(0) · · · x(n/2) x(n/2 + 1) · · · x(n)
Cd1

[2 + n] =

C
πj

i
[n1, · · · , nj] : · · ·x1

· · ·xi−1
· · · · · ·xi

· · ·xi+1
· · ·xj

· · ·

· · ·x0
· · ·x1

· · ·x!

∧ ∧

∨

∧ ∧

∨

b

· · ·Ccond[1, n0, n0, n!] =

Ccond[2 + nb, n0, n1, n!] = · · ·xb
· · ·x0

· · ·x1
· · ·x!

We see that composing the previous cells, with help of Lemma 16, we can
build a circuit of fixed height (wrt to the size of input) for any explicitly defined
boolean function. Observe that the constructions are clearly uniform.

5.2 Simulation of time recursion

Lemma 18. Any mip-function can be computed by a circuit of fixed height wrt
the size of the input.

Recursion schemata for NCk 13

Proof. Let us consider a set (fi)i∈I of mip-functions. Write their equations as
follows:

fi(t0 " t1, ū) = fp(i,0)(t0, σ̄i,0(ū)) " fp(i,1)(t1, σ̄i,1(ū))
fi(c, ū) = gi(c, ū)

where p(i, b) ∈ I is an explicit (finite) mapping of the indices, σ̄i,0 and σ̄i,1

are vectors of "-free explicitely defined functions and the functions gi,c (and
consequently the gi) are explicitly defined boolean functions.

First, observe that any of these explicitly defined functions gi can be com-
puted by some circuit Bi of fixed height as seen in Lemma 17. Since I is finite,
we call M the maximal height of these circuits (Bi)i∈I .

Suppose we want to compute fi(t, x̄) for some t and x̄ which have both size
smaller than n. Remember that the shape of the output is exactly the shape
of the recurrence argument t. So, to any k-th bit of the recurrence argument
t, we will associate a circuit computing the corresponding output bit, call this
circuit Ck. Actually, we will take for each k, Ck ∈ {Bi : i ∈ I}. Putting all the
circuits (Ck)k in parallel, we get a circuit that computes all the output bits of
fi, and moreover, this circuit has a height bounded by M . So, the last point is
to show that for each k, we may compute uniformly the index i of the circuit Bi

corresponding to Ck and the inputs of the circuit Ck.
To denote the k-th bit of the input, consider its binary encoding where we

take the path in the full binary tree t ending at this k-th bit. Call this path w.
Notice first that w itself has logarithmic size wrt n, the size of t. Next, observe
that any sub-tree of the inputs can be represented in logarithmic size by means
of its path. Since all along the computations, the arguments ū are sub-trees of
the input, we can accordingly represent them within the space bound.

To represent the value of a subterm of some input, we use the following data
structure. Consider the record type st = {r; w; h}. The field r says to which input
the value corresponds to. r = 0 corresponds to t, r = 1 correspond to x1 and
so on. w gives the path to the value (in that input). For convenience, we keep
its height h. In summary {r=i;w=w’;h=m} corresponds to the subtree dw′(ui)
(where we take the convention that t = u0). We use the ’.’ notation to refer
to a field of a record. We consider then the data structure val = st + {0, 1}.
Variables u, v coming next will be of that ”type”.

To compute the function (σi,b)i∈I,b∈{0,1} appearing in the definition of the
(fi)i∈I , we compose the programs:

zero(u){ one(u){
return 0; return 1;

} }

pi_i_j(u_1,...u_j){
return u_i;
}

14 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

d0(u){ if(u == 0 || u == 1 || u.h = 0) return u;
else return [r=u.r;w=u.w 0;h= u.h-1]; }

d1(u){ if(u == 0 || u == 1 || u.h == 0) return u;
else return [r=u.r;w=u.w 1;h= u.h-1]; }

cond(u_b,u_0,u_1,u_s){
if (u_b == 0 ||

(u_b.h == 0 && last-bit(u_b.w) == 0))
return u_0;

elseif (u_b == 1||
(u_b.h == 0 && last-bit(u_b.w) == 1))

return u_1;
else return u_s;

}

Then we compute the values of i and the ū in gi(c, ū) corresponding to the
computation of the k-th bits of the output. Take d + 1 the maximal arity of
functions in (fi)i∈I . To simplify the writing, we take it (wlog) as a common
arity for all functions.

G(i,w,u_0,...,u_d){
//u_0 corresponds to t,
if(w == epsilon) {
return(i,u_0,...,u_d);
}
else{
a := pop(w); //get the first letter of w
w := tail(w); //remove the first letter to w
switch(i,a){//i in I, a in {0,1}

case (i1,0):
v_0 = d_0(u_0);
foreach 1 <= k <= d:

v_k = sigma_i1_0_k(u_0,...,u_d);
//use the sigma defined above
next_i = p_i1_0;
//the map p is hard-encoded

break;
...
case (im,1):
v_0 = d_1(u_0);
foreach 1 <= k <= d:

v_k = sigma_im_1_k(u_0,...,u_d);
next_i = p_im_1;

break;
}
return G(next_i,w,d_a(u_0),v_1,...,v_d);

}
}

Recursion schemata for NCk 15

Observe that this program is a tail recursive program. As a consequence, to
compute it, one needs only to store the recurrence arguments, that is a finite
number of variables. Since the value of these latter variables can be stored in
logarithmic space, the computation itself can be performed within the bound.
Finally, the program returns the name i of the circuit that must be build, a
pointer on each of the inputs of the circuit with their size. It is then routine to
build the corresponding circuit at the corresponding position w.

References

1. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program
logic for resources. Theor. Comput. Sci., 389(3):411–445, 2007.

2. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural complexity II, volume 22 of
EATCS Monographs of Theoretical Computer Science. Springer, 1990.

3. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97–110, 1992.

4. S. Bellantoni and I. Oitavem. Separating NC along the δ axis. Theoretical Computer
Science, 318:57–78, 2004.

5. G. Bonfante, R. Kahle, J.-Y. Marion, and I. Oitavem. Towards an implicit char-
acterization of NCk. In Zoltán Èsik, editor, Computer Science Logic ’06, volume
4207 of Lecture Notes in Computer Science, pages 212–224. Springer, 2006.

6. G. Bonfante, J.-Y. Marion, and R. Péchoux. A characterization of alternating log
time by first order functional programs. In LPAR, pages 90–104, 2006.

7. A. K. Chandra, D. J. Kožen, and L. J. Stockmeyer. Alternation. Journal ACM,
28:114–133, 1981.

8. J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204,
1998.

9. Neil Immerman. Descriptive Complexity. Springer, 1998.
10. L. Kristiansen and N. D. Jones. The flow of data and the complexity of algorithms.

In S. B. Cooper, B. Löwe, and L. Torenvliet, editors, CiE, volume 3526 of Lecture
Notes in Computer Science, pages 263–274. Springer, 2005.

11. D. Leivant. A foundational delineation of computational feasiblity. In Proceedings
of the Sixth IEEE Symposium on Logic in Computer Science (LICS’91), 1991.

12. D. Leivant. Predicative recurrence and computational complexity I: Word recur-
rence and poly-time. In P. Clote and J. Remmel, editors, Feasible Mathematics II,
pages 320–343. Birkhäuser, 1994.

13. D. Leivant. A characterization of NC by tree recurrence. In Foundations of Com-
puter Science 1998, pages 716–724. IEEE Computer Society, 1998.

14. D. Leivant and J.-Y. Marion. A characterization of alternating log time by ramified
recurrence. Theoretical Computer Science, 236(1–2):192–208, 2000.

15. J.-Y. Marion. Predicative analysis of feasibility and diagonalization. In TLCA,
volume 4583 of Lecture Notes in Computer Science, 2007.

16. K.-H. Niggl and H. Wunderlich. Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput., 35(5):1122–1147, 2006.

17. I. Oitavem. Characterizing NC with tier 0 pointers. Mathematical Logic Quarterly,
50:9–17, 2004.

18. W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22:365–383, 1981.

19. H. Simmons. The realm of primitive recursion. Archive for Mathematical Logic,
27:177–188, 1988.

