
HAL Id: hal-00342323
https://hal.science/hal-00342323

Submitted on 4 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logical Account of PSPACE
Marco Gaboardi, Jean-Yves Marion, Simona Ronchi Della Rocca

To cite this version:
Marco Gaboardi, Jean-Yves Marion, Simona Ronchi Della Rocca. A Logical Account of PSPACE.
Symposium on Principles of Programming Languages - POPL’08, Jan 2008, San Francisco, United
States. pp.121-131. �hal-00342323�

https://hal.science/hal-00342323
https://hal.archives-ouvertes.fr

A Logical account of PSPACE

Marco Gaboardi

Simona Ronchi Della Rocca

Dipartimento di Informatica, Università degli Studi di
Torino - Corso Svizzera 185, 10149 Torino, Italy

gaboardi,ronchi@di.unito.it

Jean-Yves Marion

Nancy-University, ENSMN-INPL, Loria
B.P. 239, 54506 Vandoeuvre-lès-Nancy, France

Jean-Yves.Marion@loria.fr

Abstract

We propose a characterization of PSPACE by means of a type as-
signment for an extension of lambda calculus with a conditional
construction. The type assignment STAB is an extension of STA,
a type assignment for lambda-calculus inspired by Lafont’s Soft
Linear Logic.
We extend STA by means of a ground type and terms for booleans.
The key point is that the elimination rule for booleans is managed
in an additive way. Thus, we are able to program polynomial time
Alternating Turing Machines. Conversely, we introduce a call-by-
name evaluation machine in order to compute programs in polyno-
mial space. As far as we know, this is the first characterization of
PSPACE which is based on lambda calculus and light logics.

1. Introduction

The argument of this paper fits in the so called Implicit Compu-
tational Complexity topic, in particular on the design of program-
ming languages with bounded computational complexity. We want
to use a ML-like approach, so having a λ-calculus like language,
and a type assignment system for it, where the types guarantee,
besides the functional correctness, also complexity properties. So
types can be used in a static way in order to check the correct be-
haviour of the programs, also with respect to the resource usage. If
the considered resource is the time, the natural choice is to use as
types formulae of the light logics, which characterize some classes
of time complexity. Light Linear Logic (LLL) of Girard [Gir98],
and Soft Linear Logic (SLL) of Lafont [Laf04] characterize poly-
nomial time, while Elementary Linear Logic (EAL) characterizes
elementary time. The characterization is based on the fact that cut-
elimination in these logics is performed in a number of steps which
depends in a polynomial or elementary way from the initial size of
the proof (while the degree of the proof, i.e., the nesting of expo-
nential rules, is fixed). Moreover all these logics are also complete
with respect to the related complexity class.
The good properties of such logics have been fruitfully used in or-
der to design type assignment systems for λ-calculus which are
correct and complete with respect to the polynomial or elemen-
tary complexity bound. Namely every well typed term β-reduces
to normal form in a number of steps which depends in a poly-
nomial or elementary way from its size, and moreover all func-
tions with the corresponding complexity are representable by a
well typed term. Examples of polynomial type assignment systems
are in [BT04] and [GR07], based respectively on LAL (an affine
variant of LLL designed by Asperti and Roversi [AR02]) and on
SLL, and an example of an elementary type assignment system is
in [CDLRDR05].
Here we use the same approach for studying space complexity, in
particular we build a type system for a λ-calculus like language,
in such a way that well typed terms are correct and complete for

PSPACE. More precisely, every well typed program reduces in
polynomial space and all decision functions computable in poly-
nomial space are computed by well typed programs. There is no
previous logical characterization of PSPACE from which we can
start. But we will use the fact that polynomial space computations
coincide with polynomial time alternating Turing machine compu-
tations (APTIME) [Sav70, CKS81]. In particular

PSPACE = NPSPACE = APTIME

So we will start from the type assignment STA for λ-calculus pre-
sented in [GR07], which is based on SLL, in the sense that in STA
both types are a proper subset of SLL formulae, and type assign-
ment derivations correspond, through the Curry-Howard isomor-
phism, to a proper subset of SLL derivations. STA is correct and
complete (in the sense said before) with respect to polynomial time
computations. Then we design a type assignment system (STAB),
where the types are STA types plus a type B for booleans, and
the language ΛB is an extension of λ-calculus with two boolean
constants and a conditional constructor. The elimination rule for
conditional is the following:

Γ ⊢ M : B Γ ⊢ N0 : A Γ ⊢ N1 : A

Γ ⊢ if M then N0 else N1 : A
(BE)

In the if-rule above, contexts are managed in an additive way,
that is with free contractions. From a computational point of
view, this intuitively means that a computation can repeatedly
fork into subcomputations and the result is obtain by a backward
computation from all subcomputation results.
While the time complexity result for STA is not related to a
particular evaluation strategy, here, for characterizing space
complexity, the evaluation should be done carefully. Indeed, a
call-by-value evaluation can construct exponential size term. So we
define a call-by-name evaluation machine, inspired by Krivine’s
machine [Kri07] for λ-calculus, where substitutions are made
only on head variables. This machine is equipped with a memory
device thanks to which the space used is easily determined, as
the dimension of the maximal machine configuration. Then we
prove that, if the machine takes a program (i.e., a closed term
well typed with a ground type) as input, then each configuration
is bounded in a polynomial way in the size of the input. So
every program is evaluated by the machine in polynomial space.
Conversely, we encode every polynomial time alternating Turing
machine by a term of STAB. The simulation relies on a higher
order representation of a parameter substitution recurrence schema
which was used in [LM94].

STAB is the first characterization of PSPACE through a type
assignment system. A proposal for a similar characterization
has been made by Terui [Ter00], but the work has never been
completed.

1 2008/12/4

There are previous implicit characterizations of polynomial space
computations. The characterizations in [LM94, LM97] and
[Oit01] are based on ramified recursions over binary words. In
finite model theory, PSPACE is captured by first order queries
with a partial fixed point operator [Var82, AV89]. The reader
may consult the recent book [GKL+07]. Finally there are some
algebraic characterizations like the one [Goe92] or [Jon01] but
which are, in essence, over finite domains.

An example of a characterization of a complexity space class
through a light logic is in [Sch07] where a logical system charac-
terizing logarithmic space computations is defined, the Stratified
Bounded Affine Logic (SBAL). Logarithmic space soundness is
proved by considering only proofs of certain sequents to represent
the functions computable in logarithmic space.
Our characterization is strongly based on the additive rule (BE).
A similar tool has been used by Maurel’s Non Deterministic Light
Logic (nLLL) [Mau03] in order to characterize non deterministic
polynomial time. More precisely nLLL introduces an explicit sum
rule to deal with non deterministic computation.
A different approach but also based on linear logic is to charac-
terize circuit complexity classes by means of Booleans proof nets
[Ter04, MR07] but this does not relate to the task of designing pro-
gramming language with an intrinsically polynomial computational
bound.

Outline of the paper In Section 2 the system STAB is introduced
and the proofs of subject reduction and strong normalization prop-
erties are given. In Section 3 the operational semantics of STAB

program is defined, through an abstract evaluation machine. In Sec-
tion 4 we show that STAB programs can be executed in polyno-
mial space. In Section 5 the completeness for PSPACE is proved.
In Section 6 some complementary argument are considered. The
Appendix contains the most technical proofs.

2. Soft Type Assignment system with Booleans

In this section the type assignment STAB is presented, and its
properties are proved. STAB is an extension of the type system
STA for λ-calculus introduced in [GR07], which assigns to terms
of the λ-calculus a proper subset of formulae of Lafont’s Soft
Linear Logic [Laf04]. STA has been proved to be correct and
complete for polynomial time computations.
STAB is obtained from STA by extending both the calculus and
the set of types. The calculus is the λ-calculus extended by boolean
constants 0, 1 and an if constructor, types are the types of STA
plus a constant type B for booleans.

Definition 1.

1. The set ΛB of terms is defined by the following grammar:

M ::= x | 0 | 1 | λx.M | MM | if M then M else M

where x ranges over a countable set of variables and B =
{0, 1} is the set of booleans.

2. The set T of B types is defined as follows:

A ::= B | α | σ⊸ A | ∀α.A (Linear Types)
σ ::= A |!σ

where α ranges over a countable set of type variables and B is
the only ground type.

3. A context is a set of assumptions of the shape x : σ, where
all variables are different. We use Γ,∆ to denote contexts.
dom(Γ) = {x | ∃x : σ ∈ Γ} and Γ#∆ means dom(Γ) ∩
dom(∆) = ∅.

x : A ⊢ x : A
(Ax)

⊢ 0 : B
(B0I)

⊢ 1 : B
(B1I)

Γ ⊢ M : σ
Γ, x : A ⊢ M : σ

(w)
Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ⊸ A
(⊸ I)

Γ ⊢ M : σ⊸ A ∆ ⊢ N : σ Γ#∆

Γ,∆ ⊢ MN : A
(⊸ E)

Γ, x1 : σ, . . . , xn : σ ⊢ M : µ

Γ, x :!σ ⊢ M[x/x1, · · · , x/xn] : µ
(m) Γ ⊢ M : σ

!Γ ⊢ M :!σ
(sp)

Γ ⊢ M : A α /∈ FTV(Γ)

Γ ⊢ M : ∀α.A
(∀I)

Γ ⊢ M : ∀α.B
Γ ⊢ M : B[A/α]

(∀E)

Γ ⊢ M : B Γ ⊢ N0 : A Γ ⊢ N1 : A

Γ ⊢ if M then N0 else N1 : A
(BE)

Table 1. The Soft Type Assignment system with Booleans

4. STAB proves judgments of the shape Γ ⊢ M : σ where Γ is a
context, M is a term, and σ is a B type. The rules are given in
Table 1.

5. Derivations are denoted by ∇,♦,�. (∇) Γ ⊢ M : σ denotes
a derivation ∇ with conclusion Γ ⊢ M : σ. We let ⊢ M : σ
abbreviate ∅ ⊢ M : σ.

Note that while all rules in STA have a multiplicative treatment
of contexts, the rule (BE) of STAB is additive and so contraction
is free.

Notation 1. Terms are ranged over by M, N, V, P. As usual terms
are considered up to α-equivalence, namely a bound variable can
be renamed provided no free variable is captured. Moreover M[N/x]
denotes the capture-free substitution of all free occurrences of x in
M by N. FV(M) denotes the set of free variables of M, no(x, M) the
number of free occurrences of the variable x in M.
Type variables are ranged over by α, β, linear types by A,B,C,
and types by σ, τ, µ. ≡ denotes the syntactical equality both for
types and terms (modulo renaming of bound variables). As usual
⊸ associates to the right and has precedence on ∀, while ! has
precedence on everything else. σ[A/α] denotes the capture free
substitution in σ of all occurrences of the type variable α by
the linear type A. FTV(Γ) denotes the set of free type variables
occurring in the assumptions of the context Γ.
We stress that each type is of the shape !n∀~α.A where ∀~α.A is
an abbreviation for ∀α1....∀αm.A, and !nσ is an abbreviation for

!...!σ n-times. In particular !0σ ≡ σ.

We have the following standard properties for a natural deduc-
tion system.

Lemma 1 (Free variable lemma).

1. Γ ⊢ M : σ implies FV(M) ⊆ dom(Γ).

2. Γ ⊢ M : σ,∆ ⊆ Γ and FV(M) ⊆ dom(∆) imply ∆ ⊢ M : σ.

3. Γ ⊢ M : σ,Γ ⊆ ∆ implies ∆ ⊢ M : σ.

The functional behaviour of ΛB is described in the next defini-
tion.

2 2008/12/4

Definition 2. The reduction relation →βδ⊆ ΛB × ΛB is the
contextual closure of the following rules:

(λx.M)N →β M[N/x]

if 0 then M else N →δ M

if 1 then M else N →δ N

→∗
βδ denotes the reflexive and transitive closure of →βδ .

In what follows, we will need to talk about proofs modulo
commutations of rules.

Definition 3. Let Π and Π′ be two derivations in STAB, proving
the same conclusion: Π Π′ denotes the fact that Π′ is obtained
from Π by commuting or deleting some rules.

The Generation Lemma connects the shape of a term with its
possible typings, and will be useful in the sequel.

Lemma 2 (Generation lemma).

1. (∇) Γ ⊢ λx.M : ∀α.A implies there is ∇′ such that ∇ ∇′

where the last rule of ∇′ is (∀I).

2. (∇) Γ ⊢ λx.M : σ⊸ A implies there is ∇′ such that ∇ ∇′,
whose last rule is (⊸ I).

3. (∇) Γ ⊢ M :!σ implies there is ∇′ such that ∇ ∇′ where ∇′

consists of a subderivation, ending with the rule (sp) proving
!Γ′ ⊢ M :!σ, followed by a sequence of rules (w) and/or (m).

4. (∇) !Γ ⊢ M :!σ implies there is ∇′ such that ∇ ∇′, whose
last rule is (sp).

The substitution lemma will be the key lemma to show that
STAB enjoys the subject reduction property.

Lemma 3 (Substitution lemma). Let (∇) Γ, x : µ ⊢ M : σ and
(♦) ∆ ⊢ N : µ such that Γ#∆. Then there exists (�) Γ,∆ ⊢
M[N/x] : σ.

Proof. Since the proof is quite involved, we postpone it to Ap-
pendix A.1.

We can finally prove the main property of this section.

Lemma 4 (Subject Reduction). Let Γ ⊢ M : σ and M →βδ N. Then
Γ ⊢ N : σ.

Proof. The case of a →δ reduction is easy, the one of →β reduction
follows by Lemma 3.

By strong normalization of STA we have the following.

Lemma 5 (Strong Normalization). Let Γ ⊢ M : σ then M is strongly
normalizing with respect to the reduction relation →βδ .

Nevertheless due to the additive rule (BE), STAB is no more
correct for polynomial time, since terms with exponential number
of reductions can be typed in it.

Example 1. Consider for n ∈ N terms Mn of the shape:

(λf.λz.fn(z))(λx. if x then x else x)0

It is easy to verify that for each Mn there exist reduction sequences
of length exponential in n.

3. Structural Operational Semantics

In this section the operational semantics of terms of ΛB will be
given, through an evaluation machine, defined in SOS style, per-
forming the evaluation according to the leftmost outermost strat-
egy. The machine, if restricted to λ-calculus, is quite similar to
the Krivine machine[Kri07], since β-reduction is not an elemen-
tary step, but the substitution of a term to a variable is performed

one occurrence at a time. The evaluation machine is related to the
type assignment system STAB in the sense that, when it starts on
an empty memory, all the programs (closed terms of ground type)
can be evaluated.

Definition 4. The set P of STAB programs is the set of closed
terms typable by the ground type. i.e. P = {M | ⊢ M : B}.

It is easy to check that a STAB term is of the following shape:

M ≡ λx1...xn.ζV1 · · · Vm

where ζ is either a boolean b, a variable x, a redex (λx.N)P, or a
subterm of the shape if P then N0 else N1 .

In particular, if a term is a program, then its shape is as before,
but with the condition that the number n of initial abstractions
is equal to 0. Moreover if ζ is a boolean b then the number m
of arguments is equal to 0. We will use this characterization of

programs to design the evaluation machine KC
B.

KC
B uses two memory devices, the m-context and the B-context,

that memorize respectively the assignments to variables and the
control.

Definition 5.

1. An m-context A is a sequence of variable assignments of the
shape xi := Mi where all variables xi are distinct. The set of
m-contexts is denoted by Ctxm.

2. The cardinality of an m-context A, denoted by #(A), is the
number of variable assignments in A.

3. The size of an m-context A, denoted by |A|, is the sum of
the size of each variable assignment in A, where a variable
assignment x := M has size |M| + 1, and |M| is the number of
symbols of M.

4. Let ◦ be a distinguished symbol. The set CtxB of B-contexts is
defined by the following grammar:

C[◦] ::= ◦ | (if C[◦] then M else N)V1 · · · Vn

5. The size of a B-context C[◦] denoted |C[◦]| is the size of the
term obtained by replacing the symbol ◦ by a variable. The
cardinality of a B-context C[◦], denoted by #(C[◦]), is the
number of nested B-contexts in it.

Notation 2. ε denotes the empty m-context and A1@A2 denotes
the concatenation of the m-contexts A1 and A2. [x := M] ∈ A
denotes the fact that x := M is in the m-context A. FV(A) =
S

[x:=M]∈A FV(M).

As usual C[M] denotes the term obtained by filling the hole [◦] in
C[◦] by M. In general we omit the hole [◦] and we range over B-
contexts by C. FV(C) = FV(C[M]) for every closed term M.

Note that variable assignments in m-contexts are ordered; this
fact allows us to define the following closure operation.

Definition 6. Let A = [x1 := N1, . . . , xn : Nn] be an m-context.

Then ()A : ΛB → ΛB is the map associating to each term M the
term M[Nn/xn][Nn−1/xn−1] · · · [N1/x1].

KC
B is defined in Table 2. Some comments are in order. The rules

will be commented bottom-up, which is the natural direction of the
evaluation flow.

Rule (Ax) is obvious. Rule (β) applies when the head of the
subject is a β-redex: then the association between the bound vari-
able and the argument is remembered in the m-context and the body
of the term in functional position is evaluated. Note that an α-rule
is always performed. Rule (h) replaces the head occurrence of the
head variable by the term associated with it in the m-context. Rules
(if 0) and (if 1) perform the δ reductions. Here the evaluation
naturally erases part of the subject, but the erased information is

3 2008/12/4

C,A |= b ⇓ b
(Ax)

C,A@{x′ := N} |= M[x′/x]V1 · · · Vm ⇓ b∗

C,A |= (λx.M)NV1 · · · Vm ⇓ b
(β)

{x := N} ∈ A C,A |= NV1 · · · Vm ⇓ b

C,A |= xV1 · · · Vm ⇓ b
(h)

C[(if [◦] then N0 else N1)V1 · · · Vm],A |= M ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b

C,A |= (if M then N0 else N1)V1 · · · Vm ⇓ b
(if 0)

C[(if [◦] then N0 else N1)V1 · · · Vm],A |= M ⇓ 1 C,A |= N1V1 · · · Vm ⇓ b

C,A |= (if M then N0 else N1)V1 · · · Vm ⇓ b
(if 1)

(*) x′ is a fresh variable.

Table 2. The Abstract Machine KC
B

stored in the B-context. In order to state formally the behaviour of

the machine KC
B we need a further definition.

Definition 7.

1. The evaluation relation ⇓⊆ CtxB × Ctxm × ΛB × B is the

effective relation inductively defined by the rules of KC
B. If M is

a program, and if there is a boolean b such that [◦], ε |= M ⇓ b
then we say that M evaluates, and we write M ⇓. |= M ⇓ b is a
short for [◦], ε |= M ⇓ b.

2. Derivation trees are called computations in the abstract ma-
chine and are denoted by Π,Σ. Π :: C,A |= M ⇓ b denotes a
computation with conclusion C,A |= M ⇓ b.

3. Given a computation Π each node of Π, which is of the shape
C,A |= M ⇓ b is a configuration. Configurations are ranged
over by φ, ψ. φ ⊲ C,A |= M ⇓ b means that φ is the configu-
ration C,A |= M ⇓ b. The conclusion of the derivation tree is
called the initial configuration.

4. Given a computation Π, the path to reach a configuration φ
denoted pathΠ(φ) is the sequence of configurations between
the conclusion of Π and φ. In general we will write path(φ)
when Π is clear from the context.

We are interested in the behaviour of the machine when applied
to programs. By an analysis of the rules of Table 2, and from the
previous comments, it is easy to verify the following.

Lemma 6.

1. Let M ∈ P , Π ::|= M ⇓ b and C,A |= N ⇓ b′ ∈ Π. Then

(C[N])A, (N)A ∈ P .

2. Let M ∈ P and Π ::|= M ⇓ b. For each C,A |= N ⇓ b′ ∈ Π

M →∗
βδ (C[N])A →∗

βδ b

Note that, in the previous lemma, the m-context and the B-
context are essential in proving the desired properties. In fact the
B-context recovers the part of the term necessary to complete δ-
reductions, while the m-context completes β-reductions that have
been performed only partially by the machine.

Example 2. In Table 5 we present an example of KC
B computation

on the same term of Example 1.

Note that by Definition 7.1 a term M evaluates only if it is a
program and there exists b such that |= M ⇓ b. We stress here, that

the machine KC
B is complete with respect to programs, in the sense

that all the programs can be evaluated.

Theorem 1.

M ∈ P implies M ⇓

Proof. By induction on the reduction to normal form using Lemma
5.

3.1 A small step version of KC
B

In Table 3 we depict a small step version of the machine KC
B. The

rules are similar to the rules in Table 2 but the use of a garbage
collector procedure described in Table 4 which is needed in order
to maintain the desired complexity property. In fact the small step
machine can be easily shown equivalent to the big step one.
The small step machine explicit the evaluation order clearifying
that every configuration depends uniquely on the previous one
(thanks to the B-context). So the space necessary to evaluate a
program turns out to be the maximum space used by one of its
configurations.
Nevertheless, the big step machine has the advantage of being more
abstract and this make it easy to prove the complexity properties. In
fact, the garbage collector procedure make more difficult the proofs
of such properties for the small step machine. For this reason in
what follows we will work on the big step machine.

3.2 Space Measures

We can now define the space effectively used to evaluate a term.
The remarks in the previous section allows us to consider the
following definition.

Definition 8. Let φ ⊲ C,A |= M ⇓ b be a configuration then its
size denoted |φ| is the sum |C| + |A| + |M|. Let Π :: C,A |= M ⇓ b

be a computation, then its space occupation denoted space(Π) is
the maximal size of a configuration in Π.

In particular since there is a one-to-one correspondence between
a program M and its computation Π :: [◦], ε |= M ⇓ b, we will
usually write space(M) in place of space(Π). In order to have
polynomial space soundness we will show that for each M ∈ P
there exists a polynomial P (X) such that space(M) ≤ P (|M|).
The result will be proved in next section.

4 2008/12/4

〈C,A ≻ (λx.M)NV1 · · · Vm〉 7→ 〈C,A@[x′ := N] ≻ M[x′/x]V1 · · · Vm〉
(β)

〈C,A1@[x := N]@A2 ≻ xV1 · · · Vm〉 7→ 〈C,A1@[x := N]@A2 ≻ NV1 · · · Vm〉
(h0)

〈C,A ≻ (if M then N0 else N1)V1 · · · Vm〉 7→ 〈C[(if [◦] then N0 else N1)V1 · · · Vn],A ≻ M〉
(if)

A′ = clear(C,A, N0V1 · · · Vn)

〈C[(if [◦] then N0 else N1)V1 · · · Vn],A ≻ 0〉 7→ 〈C,A′ ≻ N0V1 · · · Vn〉
(r0)

A′ = clear(C,A, N1V1 · · · Vn)

〈C[(if [◦] then N0 else N1)V1 · · · Vn],A ≻ 1〉 7→ 〈C,A′ ≻ N1V1 · · · Vn〉
(r1)

Table 3. The small step machine kC
B

clear(C, ε, M) = ε

clear(C,A, M) = A′ x ∈ FV(C) ∪ FV(M) ∪ FV(A)

clear(C, [x := N]@A, M) = [x := N]@A′

clear(C,A, M) = A′ x /∈ FV(C) ∪ FV(M) ∪ FV(A)

clear(C, [x := N]@A, M) = A′

Table 4. The garbage collector procedure.

Example 3. By returning to the computation of Example 2 it is
worth noting that to pass from the configuration φ to the con-
figuration ψ all necessary information are already present in the
configuration φ itself. We can view such a step as a →δ step

(if 0 then x1 else x1)A3 →δ (x1)
A3 noting that (x1)

A3 ≡
(x1)

A2 . In fact this can be generalized, so in this sense we don’t
need neither mechanism for backtracking nor the memorization of
parts of the computation tree.

In what follows we will introduce some relations between the
size of the contexts and the behaviour of the machine, which will
be useful later.

Definition 9. Let Π be a computation and φ ∈ Π a configuration.

• #β(φ) denotes the number of applications of the (β) rule in
path(φ).

• #h(φ) denotes the number of applications of the (h) rule in
path(φ).

• #if(φ) denotes the number of applications of (if 0) and (if 1)
rules in path(φ).

The cardinality of the contexts is a measure of the number of
some rules performed by the machine.

Lemma 7. Let Π ::|= M ⇓ b. Then for each configuration φ ⊲
Ci,Ai |= Pi ⇓ b′ ∈ Π:

1. #(Ai) = #β(φ)
2. #(Ci) = #if(φ)

The following is an important property of the machine KC
B.

Property 1. Let M ∈ P and Π ::|= M ⇓ b then for each φ⊲C,A |=
P ⇓ b′ ∈ Π if [xj := Nj] ∈ Ai then Nj is an instance (possibly
with fresh variables) of a subterm of M.

Proof. The property is proven by contradiction. Take the configu-
ration φ with minimal path from it to the root of Π, such that in its
m-context Aφ there is xj := Nj , where Nj is not an instance of a
subterm of M. Let p be the length of this path. Since the only rule
that make the m-context grow is a (β) rule we are in a situation like
the following:

C,A′@[xj := Nj] |= P[xj/x]V1 · · · Vn ⇓ b

C,A′ |= (λx.P)NjV1 · · · Vn ⇓ b

If Nj is not an instance of a subterm of M it has been obtained by a
substitution. Substitutions can be made only through applications
of rule (h) replacing the head variable. Hence by the shape of
(λx.P)NjV1 · · · Vn, the only possible situation is that there exists
an application of rule (h) as:

[y := M′] ∈ A′ C,A′ |= M′V1 · · · Vn ⇓ b

C,A′ |= yV1 · · · Vn ⇓ b

with Nj a subterm of M′. But this implies M′ is not an instance of a
subterm of M and it has been introduced by a rule of a path of length
less than p, contradicting the hypothesis.

The next lemma gives upper bounds to the size of the m-
context, of the B-context and of the subject of a configuration.

Lemma 8. Let M ∈ P and Π ::|= M ⇓ b then for each configuration
φ⊲ C,A |= P ⇓ b′ ∈ Π:

5 2008/12/4

1. |A| ≤ #β(φ)(|M| + 1)
2. |P| ≤ (#h(φ) + 1)|M|
3. |C| ≤ #if(φ)(max{|N| | ψ ⊲ C′,A′ |= N ⇓ b′′ ∈ Π})

Proof. 1. By inspection of the rules of Table 2 it is easy to verify
that m-contexts can grow only by applications of the (β) rule.
So the conclusion follows by Lemma 7 and Property 1.

2. By inspection of the rules of Table 2 it is easy to verify that the
subject can grow only by substitutions through applications of
the (h) rule. So the conclusion follows by Property 1.

3. By inspection of the rules of Table 2 it is easy to verify that
B-contexts can grow only by applications of (if 0) and (if 1)
rules. So the conclusion follows directly by Lemma 7.

4. PSPACE Soundness

In this section we will show that STAB is correct for polynomial
space computation, namely each program typable through a deriva-

tion with degree d can be executed on the machine KC
B in space

polynomial in its size, where the maximum exponent of the poly-
nomial is d. The degree of a derivation counts the maximum nesting
of applications of the rule (sp) in it. So considering fixed degrees
we get PSPACE soundness. Considering a fixed d is not a limita-
tion. Indeed until now, in STAB programs we do not distinguish
between the program code and input data. But it will be shown in
Section 5 that data types are typable through derivations with de-
gree 0. Hence the degree can be considered as a real characteristic
of the program code.
Moreover every STAB program can be typed through derivations
with different degrees, nevertheless for each program there is a sort
of minimal derivation for it, with respect to the degree. So we can
stratify programs with respect to the degree of their derivations,
according to the following definition.

Definition 10.

1. The degree d(∇) of ∇ is the maximum nesting of applications
of rule (sp) in ∇.

2. For each d ∈ N the set Pd is the set of STAB programs typable
through derivation with degree d.

Pd = {M | (∇) ⊢ M : B ∧ d(∇) = d}

Clearly P corresponds to the union for n ∈ N of the different
Pn. Moreover if M ∈ Pd then M ∈ Pe for every e ≥ d.

This section is divided into two subsections. In the first, we will
prove an intermediate result, namely we will give the notion of
space weight of a derivation, and we will prove that the subject
reduction does not increment it. Moreover this result is extended to
the machine KC

B. In the second part the soundness with respect to
PSPACE will be proved.

4.1 Space and STAB

We need to define measures of both terms and proofs, which are an
adaptation of those given by Lafont in [Laf04].

Definition 11.

1. The rank of a rule (m):

Γ, x1 : σ, . . . , xn : σ ⊢ M : µ

Γ, x :!σ ⊢ M[x/x1, · · · , x/xn] : µ
(m)

is the number k ≤ n of variables xi such that xi belongs to the
free variables of M. Let r be the the maximum rank of a rule (m)
in ∇. The rank rk(∇) of ∇ is the maximum of 1 and r.

2. Let r be a natural number. The space weight δ(∇, r) of ∇ with
respect to r is defined inductively as follows.

(a) If the last applied rule is (Ax), (B0I), (B1I) then
δ(∇, r) = 1.

(b) If the last applied rule is (⊸ I) with premise a derivation
♦, then δ(∇, r) = δ(♦, r) + 1.

(c) If the last applied rule is (sp) with premise a derivation ♦,
then δ(∇, r) = rδ(♦, r).

(d) If the last applied rule is (⊸ E) with premises ♦ and �
then δ(∇, r) = δ(♦, r) + δ(�, r) + 1.

(e) If the last applied rule is:

(♦) Γ ⊢ M : B (�0) Γ ⊢ N0 : A (�1) Γ ⊢ N1 : A

Γ ⊢ if M then N0 else N1 : A

then δ(∇, r) = max{δ(♦, r), δ(�0, r), δ(�1, r)} + 1
(f) In every other case δ(∇, r) = δ(♦, r) where ♦ is the unique

premise derivation.

In order to prove that the subject reduction does not increase the
space weight of a derivation, we need to rephrase the Substitution
Lemma taking into account this measure.

Lemma 9 (Weighted Substitution Lemma). Let (∇) Γ, x : µ ⊢
M : σ and (♦) ∆ ⊢ N : µ such that Γ#∆ then there exists
(�) Γ,∆ ⊢ M[N/x] : σ such that if r ≥ rk(∇):

δ(�, r) ≤ δ(∇, r) + δ(♦, r)

Proof. We postpone the proof to Appendix A.2.

We are now ready to show that the space weight δ gives a bound
on the number of both β and if rules in a computation path of the

machine KC
B.

Lemma 10. Let M ∈ P and Π ::|= M ⇓ b.

1. Consider an occurrence in Π of the rule:

C,A@{x′ := N} |= M[x′/x]V1 · · · Vm ⇓ b

C,A |= (λx.M)NV1 · · · Vm ⇓ b
(β)

Then, for every derivations (♦) ⊢ ((λx.M)NV1 · · · Vm)A : B

there exists a derivation (�) ⊢ (M[x′/x]V1 · · · Vm)A@{x′:=N} :
B such that for every r ≥ rk(♦):

δ(♦, r) > δ(�, r)

2. Consider an occurrence in Π of an if rule as:

C′,A |= M ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b

C,A |= (if M then N0 else N1)V1 · · · Vm ⇓ b

where C′ ≡ C[(if [◦] then N0 else N1)V1 · · · Vm]. Then, for

each derivation (♦) ⊢ ((if M then N0 else N1)V1 · · · Vm)A :
B there are derivations (�) ⊢ (M)A : B and (∇) ⊢
(N0V1 · · · Vm)A : B such that for every r ≥ rk(♦):

δ(♦, r) > δ(�, r) and δ(♦, r) > δ(∇, r)

Proof.

1. It suffices to consider the case where m = 0, and to prove that,
if (∇) Γ ⊢ (λx.M)N : σ, then there exists (∇′) Γ ⊢ M[N/x]σ
with rk(∇) ≥ rk(∇′) such that for r ≥ rk(∇):

δ(∇, r) > δ(∇′, r)

Since (∀R), (∀L), (m) and (w) rules don’t change the δ mea-
sure we can without loss of generality assume that we are in a

6 2008/12/4

C1,A3 |= 0 ⇓ 0

C1,A3 |= z1 ⇓ 0

C1,A3 |= x2 ⇓ 0

φ⊲ C0,A3 |= 0 ⇓ 0

C0,A3 |= z1 ⇓ 0

C0,A3 |= x2 ⇓ 0

C0,A3 |= if x2 then x2 else x2 ⇓ 0

C0,A2 |= (λx. if x then x else x)z1 ⇓ 0

C0,A2 |= f1z1 ⇓ 0

C0,A2 |= x1 ⇓ 0

C2,A4 |= 0 ⇓ 0

C2,A4 |= z1 ⇓ 0

C2,A4 |= x3 ⇓ 0

A4 |= 0 ⇓ 0

A4 |= z1 ⇓ 0

A4 |= x3 ⇓ 0

A4 |= if x3 then x3 else x3 ⇓ 0

A2 |= (λx. if x then x else x)z1 ⇓ 0

A2 |= f1z1 ⇓ 0

ψ ⊲ A2 |= x1 ⇓ 0

A2 |= if x1 then x1 else x1 ⇓ 0

A1 |= (λx. if x then x else x)(f1z1) ⇓ 0

A1 |= f1(f1z1) ⇓ 0

A0 |= (λz.f1(f1z))0 ⇓ 0

|= (λf.λz.f2(z))(λx. if x then x else x)0 ⇓ 0

A0 = [f1 := λx. if x then x else x]
A1 = A0@[z1 := 0]
A2 = A1@[x1 := f1z1]
A3 = A2@[x2 := z1]
A4 = A2@[x3 := z1]

C0 = if ◦ then x1 else x1

C1 = C0[if ◦ then x2 else x2]
C2 = if ◦ then x3 else x3

Table 5. An example of computation in KC
B.

situation like the following:

(♦) Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ⊸ A
(⊸ I)

(�) ∆ ⊢ N : σ

Γ,∆ ⊢ (λx.M)N : A
(⊸ E)

!nΓ, !n∆ ⊢ (λx.M)N :!nA
(sp)n

where Γ#∆ and n ≥ 0. Clearly we have δ(∇, r) = δ(♦, r) +
1+ δ(�, r). By Lemma 9 we have (∇′) Γ ⊢ M[N/x]σ such that
δ(∇′, r) ≤ δ(♦, r) + δ(�, r). Hence, the conclusion follows.

2. Easy, by definition of δ.

Since it is easy to verify that h rules leave the space weight un-
changed, a direct consequence of the above lemma is the following.

Lemma 11. Let (∇) ⊢ M : B and Π ::|= M ⇓ b. Then for each
φ⊲ C,A |= N ⇓ b′ ∈ Π if r ≥ rk(∇):

#β(φ) + #if(φ) ≤ δ(∇, r)

Now we are ready to prove that subject reduction does not
increase the space weight.

Property 2. Let (∇) Γ ⊢ M : σ and M →∗
βδ N. Then there

exists (∇′) Γ ⊢ N : σ with rk(∇) ≥ rk(∇′) such that for each
r ≥ rk(∇):

δ(∇, r) ≥ δ(∇′, r)

Proof. By Lemma 9 and definition of δ, noting that a reduction
inside an if can leave δ unchanged.

The previous result can be extended to the machine KC
B in the

following way.

Property 3. Let (∇) ⊢ M : B and Π ::|= M ⇓ b. For each
configuration φ ⊲ Ci,Ai |= Ni ⇓ bi ∈ Π such that C 6≡ ◦ there

exist derivations (♦) ⊢ (C[Ni])
A : B and (�) ⊢ (Ni)

A : B such
that � is a proper subderivation of ♦ and for each r ≥ rk(∇):

δ(∇, r) ≥ δ(♦, r) > δ(�, r)

4.2 Proof of PSPACE Soundness

As we said in the previous section, the space used by the machine

KC
B is the maximum space used by its configurations. In order to

give an account of this space, we need to measure how the size of a
term can increase during the evaluation. The key notion for doing it
is that of number of the sliced occurrence of a variable, which takes
into account that in performing an if reduction a subterm of the
subject is erased. In particular by giving a bound on the number of
sliced occurrence we obtain a bound on the number of applications
of the h rule in a path.

Definition 12. The number of sliced occurrences nso(x, M) of the
variable x occurring free in M is defined as:

nso(x, x) = 1, nso(x, y) = nso(x, 0) = nso(x, 1) = 0,

nso(x, MN) = nso(x, M) + nso(x, N), nso(x, λy.M) = nso(x, M),

nso(x, if M then N0 else N1) =
max{nso(x, M), nso(x, N0), nso(x, N1)}

A type derivation gives us some informations about the number
of sliced occurrences of a free variable x in its subject M.

Lemma 12. Let (∇) Γ, x :!nA ⊢ M : σ then nso(x, M) ≤ rk(∇)n.

Proof. By induction on n.
Case n = 0. The conclusion follows easily by induction on (∇).
Base case is trivial. In the case (∇) ends by (BE) conclusion
follows by nso(x, M) definition and induction hypothesis. The other
cases follow directly from the induction hypothesis remembering
the side condition Γ#∆ in (⊸ E) case.

7 2008/12/4

Case n > 0. By induction on (∇). Base case is trivial. Let the last
rule of (∇) be:

(♦) Γ ⊢ M′ : B (�0) Γ ⊢ N0 : A (�1) Γ ⊢ N1 : A

Γ ⊢ if M′ then N0 else N1 : A
(BE)

where x :!nA ∈ Γ. By induction hypothesis nso(x, M
′) ≤ rk(♦)n

and nso(x, Ni) ≤ rk(�i)
n for i ∈ {0, 1}.

By definition rk(∇) = max{rk(♦), rk(�0), rk(�1)} and since
by definition nso(x, if M then N0 else N1) is equal to
max{nso(x, M), nso(x, N0), nso(x, N1)}, then the conclusion fol-
lows.
Let the last rule of (∇) be:

(♦) Γ, x1 :!n−1A, . . . , xm :!n−1A ⊢ N : µ

Γ, x :!nA ⊢ N[x/x1, · · · , x/xm] : µ
(m)

where N[x/x1, · · · , x/xm] ≡ M. By induction hypothesis

nso(xi, N) ≤ rk(♦)n−1 for 1 ≤ i ≤ m. Hence in particular,

nso(x, N) ≤ m×rk(♦)n−1. Now, sincem ≤ rk(∇) and rk(♦) ≤
rk(∇) it follows nso(x, N) ≤ rk(∇) × rk(♦)n−1 ≤ rk(∇)n and
so the conclusion. In every other case the conclusion follows di-
rectly by induction hypothesis.

It is worth noting that the above lemma and the subject reduction
property gives dynamical informations about the number of sliced
occurrences of a variable.

Lemma 13. Let (∇) Γ, x :!nA ⊢ M : σ and M →βδ N. Then
nso(x, N) ≤ rk(∇)n.

The lemma above is essential to prove the following remarkable
property.

Lemma 14. Let M ∈ Pd and Π ::|= M ⇓ b then for each
φ⊲ C,A |= P ⇓ b′ ∈ Π:

#h(φ) ≤ #(A)|M|d

Proof. For each [y := N] ∈ A the variable y is a fresh copy of a
variable x originally bound in M hence M contains a subterm (λx.P)Q
and there exists a derivation (∇) x :!nA ⊢ P : B. Hence by Lemma
13 for every P′ such that P →∗

βδ P′ we have nso(x, P
′) ≤ rk(∇)n.

In particular the number of applications of h rules on the variable
y is bounded by rk(∇)n. Since |M| ≥ rk(∇) and d ≥ n the
conclusion follows.

The following lemma relates the space weight with both the size
of the term and the degree of the derivation.

Lemma 15. Let (∇) Γ ⊢ M : σ.

1. δ(∇, 1) ≤ |M|

2. δ(∇, r) ≤ δ(∇, 1) × rd(∇)

3. δ(∇, rk(∇)) ≤ |M|d(∇)+1

Proof. 1. By induction on (∇). Base cases are trivial. Cases
(sp), (m), (w), (∀I) and (∀E) follow directly by induction hy-
pothesis. The other cases follow by definition of δ.

2. By induction on (∇). Base cases are trivial. Cases
(sp), (m), (w), (∀I) and (∀E) follow directly by induction hy-
pothesis. The other cases follow by definition of δ and d.

3. By definition of rank it is easy to verify that rk(∇) ≤ |M|, hence
by the previous two points the conclusion follows.

The next lemma gives a bound on the dimensions of all the
components of a machine configuration, namely the term, the m-
context and the B-context.

Lemma 16. Let M ∈ Pd and Π :: |= M ⇓ b. Then for each
φ⊲ C,A |= N ⇓ b′ ∈ Π:

1. |A| ≤ 2|M|d+2

2. |N| ≤ 2|M|2d+2

3. |C| ≤ 2|M|3d+3

Proof.

1. By Lemma 8.1, Lemma 11 and Lemma 15.3.

2. By Lemma 8.2, Lemma 14, Lemma 7.1, Lemma 11 and Lemma
15.3:

|N| ≤ (#h(φ) + 1)|M| ≤ #(A)|M|d+1 + |M| ≤ 2|M|2d+2

3. By Lemma 8.3, the previous point of this lemma, Lemma 7.2,
Lemma 11 and Lemma 15.3:

|C| ≤ #(C)2|M|2d+2 ≤ |M|d+12|M|2d+2 ≤ 2|M|3d+3

The PSPACE soundness follows immediately from the defini-
tion of space(Π), for a machine evaluation Π, and from the previ-
ous lemma.

Theorem 2 (Polynomial Space Soundness).
Let M ∈ Pd. Then:

space(M) ≤ 6|M|3d+3

5. PSPACE completeness

It is well known that the class of problem decidable by a Determin-
istic Turing Machine (DTM) in space polynomial in the length of
the input coincides with the class of problems decidable by an Al-
ternating Turing Machine (ATM) [CKS81] in time polynomial in
the length of the input.
In [GR07] it has been shown that polytime DTM are definable by
λ-terms typable in STA. Analogously here we will show that poly-
time ATM are definable by programs of STAB. We achieve such
a result considering a notion of function programmable in STAB.
We will consider the same representation of data types as in STA,
in particular data types typable through derivations with degree 0.
(We will recall it briefly but we refer to [GR07] for more details.)
Finally we show that for each polytime ATM M we can define a
recursive evaluation procedure which behaves as M.

Some syntactic sugar Let ◦ denote composition. In particu-
lar M ◦ N stands for λz.M(Nz) and M1 ◦ M2 ◦ · · · ◦ Mn stands for
λz.M1(M2(· · · (Mnz))).
Tensor product is definable as σ ⊗ τ

.
= ∀α.(σ ⊸ τ ⊸ α)⊸ α.

In particular 〈M, N〉 stands for λx.xMN and let z be x, y in N stands
for z(λx.λy.N). Note that, since STAB is an affine system, tensor
product enjoys some properties of the additive conjunction, as to al-
low the projectors: as usual π1(M) stands for M(λx.λy.x) and π2(M)
stands for M(λx.λy.y). n-ary tensor product can be easily defined
through the binary one and we use σn to denote σ⊗· · ·⊗σ n-times.

Natural numbers and strings of booleans Natural numbers are
represented by Church numerals, i.e. n

.
= λs.λz.sn(z). Terms

defining successor, addition and multiplication are typable by in-

dexed types Ni
.
= ∀α.!i(α ⊸ α) ⊸ α ⊸ α. We write N to

mean N1. In particular the following still holds for STAB:

Lemma 17. Let P be a polynomial and deg(P) its degree. Then
there is a term P defining P typable as:

⊢ P :!deg(P)
N⊸ N2deg(P)+1

8 2008/12/4

Strings of boolean are represented by terms of the shape
λcz.cb0(· · · (cbnz) · · ·) where bi ∈ {0, 1}. Such terms are ty-

pable by the indexed type Si
.
= ∀α.!i(B⊸ α⊸ α)⊸ α⊸ α.

Again, we write S to mean S1. Moreover there is a term len ty-
pable as ⊢ len : Si ⊸ Ni that given a string of boolean returns
its length.
Note that the data types defined above can be typed in STAB by
derivations with degree 0.

Programmable functions The polynomial time completeness in
[GR07] relies on the notion of λ-definability, given in [Bar84],
generalized to different kinds of data.
The same can be done here for STAB, by using a generalization
of λ-definability to the set of terms ΛB. Nevertheless this is not
sufficient, since we want to show that polynomial time ATM can
be defined by programs of STAB. In fact we have the following
definition.

Definition 13. Let f :

n-times
z }| {

S × ...× S → B and let every string s ∈ S

be representable by terms s). Then, f is programmable if, there
exists a term f ∈ ΛB, such that fs1 . . . sn ∈ P and:

f(s1, . . . sn) = b ⇐⇒ |= fs1 . . . sn ⇓ b

Boolean connectives It is worth noting that due to the presence of
the (BE) rule it is possible to define the usual boolean connectives.
In fact let M and N

.
= if M then (if N then 0 else 1) else 1

and M or N
.
= if M then 0 else (if N then 0 else 1) . Then

the following rules with an additive management of contexts are
derived:

Γ ⊢ M : B Γ ⊢ N : B
Γ ⊢ M and N : B

Γ ⊢ M : B Γ ⊢ N : B
Γ ⊢ M or N : B

Moreover we have a term not defining the expected boolean func-
tion.

ATMs Configurations The encoding of Deterministic Turing
Machine configuration given in [GR07] can be adapted in order to
encode Alternating Turing Machine configurations. In fact an ATM
configuration can be viewed as a DTM configuration with an extra
information about the state. There are four kinds of state: accepting
(A), rejecting (R), universal (∧), existential (∨) . We can encode
such information by tensor pairs of booleans. In particular:

〈1, 0〉 A 〈1, 1〉 R 〈0, 1〉 ∧ 〈0, 0〉 ∨

We say that a configuration is accepting, rejecting, universal or
existential depending on the kind of its state.
We can encode ATM configurations by terms of the shape:

λc.〈cbl
0 ◦ · · · ◦ cb

l
n, cb

r
0 ◦ · · · ◦ cb

r
m, 〈Q, k〉〉

where cbl
0 ◦ . . . ◦ cb

l
n and cbr

0 ◦ . . . ◦ cb
r
n are respectively the left

and right handside words on the ATM tape, Q is a tuple of length
q encoding the state and k is the tensor pair encoding the kind of
state. Such terms can be typed as:

ATMi
.
= ∀α.!i(B⊸ α⊸ α)⊸ ((α⊸ α)2 ⊗ B

q+2)

It is easy to adapt the term described in [GR07] dealing with TM to
the case of ATM. In particular we have:

⊢Init : Si ⊸ ATMi Initial configuration

⊢Tr1, Tr2 : ATMi ⊸ ATMi Transition functions

Moreover we have a term:

Kind
.
= λx.let x(λb.λy.y) be l, r, s in (let s be q, k in k)

typable as ⊢ Kind : ATMi ⊸ B2 which takes a configuration
and return its kind. We also have a term

Ext
.
= λx.let (Kind x) be l, r in r

typable as ⊢ Ext : ATMi ⊸ B. Assuming that a given config-
uration is either accepting or rejecting Ext returns 0 or 1 respec-
tively.

Evaluation function Given an ATM M working in polynomial
time we define a recursive evaluation procedure evalM which
takes a string s and returns 0 or 1 if the initial configuration (with
the tape filled with s) leads to an accepting or rejecting configura-
tion respectively.
Without loss of generality we consider ATMs with transition rela-
tion of degree two (at each step we consider two transitions). We
need to define some auxiliary functions.

α(M0, M1, M2)
.
= let M0 be a1, a2 in if a1 then (if a2 then 〈a1,

π2(M1) or π2(M2)〉 else 〈a1, π2(M1) and π2(M2)〉) else 〈a1, a2〉

which acts as:

α(A, M1, M2) = A

α(R, M1, M2) = R

α(∧, M1, M2) = M1 ∧ M2

α(∨, M1, M2) = M1 ∨ M2

Note that for α defined as above we have the following typing rule:

Γ ⊢ M0 : B2 Γ ⊢ M1 : B2 Γ ⊢ M2 : B2

Γ ⊢ α(M0, M1, M2) : B2

where the management of contexts is additive. We would now
define evalM as an iteration of an higher order StepM function
over a Base case. Let Tr1M and Tr2M be two closed terms defining
the two components of the transition relation.

Base
.
= λc.(Kind c) :

StepM
.
= λh.λc.α((Kind c), (h(Tr1M c)), (h(Tr2M c)))

It is easy to verify that such terms are typable as:

⊢ Base : ATMi ⊸ B2

⊢ StepM : (ATMi ⊸ B2)⊸ ATMi ⊸ B2

Now we can finally define the evaluation function. Let P be a

polynomial definable by a term P typable as ⊢ P :!deg(P)N →
N2deg(P)+1. Then the evaluation function of an ATM M working
in polynomial time P is definable by the term:

evalM
.
= λs.Ext((P (len s) StepM Base)(Init s))

which is typable in STAB as ⊢ evalM :!tS ⊸ B where t =
max(deg(P), 1) + 1.
Here, the evaluation is performed by a higher order iteration, which
represents a recurrence with parameter substitutions. Note that by
considering an ATM M which decides a language L the final
configuration is either accepting or rejecting hence the term Ext

can be applied with the intended meaning.

Lemma 18. A decision problem D : {0, 1}∗ → {0, 1} decidable
by an ATM M in polynomial time is programmable in STAB.

Proof. D(s) = b ⇐⇒ evalMs ⇓ b

From the well known result of [CKS81] we can conclude.

Theorem 3 (Polynomial Space Completeness). Every decision
problem D ∈ PSPACE is programmable in STAB.

6. Related Topic

In this section we will discuss some topic which are related to the
work we have presented.

FPSPACE characterization. FPSPACE is the class of function
computable in polynomial space. The completeness for FPSPACE

9 2008/12/4

can be obtained by replacing booleans by words over booleans. In
particular we can add to STA the type W and the following rules:

⊢ ǫ : W
Γ ⊢ M : W

Γ ⊢ 0(M) : W
Γ ⊢ M : W

Γ ⊢ 1(M) : W
Γ ⊢ M : W

Γ ⊢ p(M) : W

and the conditional

Γ ⊢ M : W Γ ⊢ Nǫ : W Γ ⊢ N0 : W Γ ⊢ N1 : W

Γ ⊢ D(M, Nǫ, N0, N1) : W

The obtained system STAW equipped with the obvious reduction
relation can be shown to be FPSPACE sound following what we
have done for STAB. Moreover, analogously to [LM93], complete-
ness for FPSPACE can be proved by considering two distincts data
types S (Church representations of Strings) and W (Flat words
over Booleans) as input and output data type respectively. The
above is one of the reasons that leads us to consider STAB instead
of the above system.

STAB and Soft Linear Logic. STA has been introduced as a type
assignment counterpart of Soft Linear Logic [Laf04]. STAB is an
extension of STA by booleans constants. We now pose our attention
to the question of which is the logical counterpart of such extension.
We can add to SLL (or define by means of second order quantifier)
the additive disjunction ⊕ and the rules to deal with it, which in a
natural deduction style [RDRR97] are:

Γ ⊢ A
Γ ⊢ A⊕B

Γ ⊢ B
Γ ⊢ A⊕B

Γ ⊢ A⊕B ∆, A ⊢ C ∆, B ⊢ C

Γ,∆ ⊢ C

We can so define B = 1 ⊕ 1, where 1 is the multiplicative unit,
and specialize the above rules to booleans:

Γ ⊢ 1

Γ ⊢ 1 ⊕ 1
(0)

Γ ⊢ 1

Γ ⊢ 1 ⊕ 1
(1)

Γ ⊢ 1 ⊕ 1 ∆,1 ⊢ C ∆,1 ⊢ C

Γ,∆ ⊢ C
(E)

It is worth noting that such rules do not change the complexity
of SLL. In fact it is essential in order to obtain a logical system
behaving as STAB to modify the above elimination rule allowing
free contraction between contexts Γ and ∆. Hence we can modify
it as:

Γ ⊢ 1 ⊕ 1 Γ,1 ⊢ C Γ,1 ⊢ C

Γ ⊢ C
(E)

We conjecture that the logical system obtained by adding the above
modified rule to SLL behaves like STAB. In order to prove the
polynomial space soundness for such a system we need to mimick
in the cut elimination process the abstract machine mechanism of
Section 3. For this reason it could be more interesting introduce
proof-nets for such a system and study cut elimination in this
framework.

A. Technical Proofs

A.1 Proof of Substitution Lemma

The technical notion of height of a variable in a derivation will be
useful in the proof of the Substitution Lemma.

Definition 14. Let (∇) Γ, x : τ ⊢ M : σ. The height of x in ∇ is
inductively defined as follows:

1. if the last applied rule of ∇ is:

x : A ⊢ x : A or

Γ′ ⊢ N : σ

Γ′, x : A ⊢ N : σ

then the heigth of x in ∇ is 0.

2. if the last applied rule of ∇ is:

(♦) Γ′, x1 : τ, . . . , xk : τ ⊢ N : σ

Γ′, x :!τ ⊢ N[x/x1, ..., x/xk] : σ
(m)

then the heigth of x in ∇ is the max beetween the heights of xi

in ∇ for 1 ≤ i ≤ k plus one.

3. Let x : τ ∈ Γ and let the last applied rule π of ∇ be:

(♦) Γ ⊢ M : B (�0) Γ ⊢ N0 : A (�0) Γ ⊢ N1 : A

Γ, x : τ ⊢ if M then N0 else N1 : A

Then the height of x in ∇ is the max between the heigths of x in
♦,�0 and �1 respectively plus one.

4. In every other case there is an assumption with subject x both
in the conclusion of the rule and in one of its premises ♦. Then
the height of x in ∇ is equal to the height of x in ♦ plus one.

Proof of Substitution Lemma. By induction on the height of x in
∇. Base cases (Ax) and (w) are trivial. The cases where ∇ ends by
(⊸ I), (∀I), (∀E) and (⊸ E) follow directly from the induction
hypothesis.
Let ∇ ends by (sp) rule with premise (∇′) Γ′, x : µ′ ⊢ M : σ′ then
by Lemma 2.3 ♦ ♦

′′ which is composed by a subderivation
ending with an (sp) rule with premise (♦′) ∆′ ⊢ N : µ′ followed
by a sequence of rules (w) and/or (m). By the induction hypothesis
we have a derivation (�′) Γ′,∆′ ⊢ M[N/x] : σ′. By applying
the rule (sp) and the sequence of (w) and/or (m) rules we obtain
(�) Γ,∆ ⊢ M[N/x] : σ.
Let ∇ ends by

(∇0) Γ ⊢ M0 : B (∇1) Γ ⊢ M1 : A (∇1) Γ ⊢ M2 : A

Γ ⊢ if M0 then M1 else M2 : A
(BE)

with Γ = Γ′, x : µ. Then by the induction hypothesis there are
derivations (�0) Γ′,∆ ⊢ M0[N/x] : B, (�1) Γ′,∆ ⊢ M1[N/x] : A
and (�2) Γ′,∆ ⊢ M2[N/x] : A. By applying a (BE) rule we obtain
a derivation (�) with conclusion:

Γ′,∆ ⊢ if M0[N/x] then M1[N/x] else M2[N/x] : A

Let ∇ ends by

(∇′) Γ′, x1 : µ′, . . . , xm : µ′ ⊢ N : σ

Γ′, x :!µ′ ⊢ N[x/x1, · · · , x/xm] : σ
(m)

By Lemma 2.3 ♦ ♦
′′ ending by an (sp) rule with premise

(♦′) ∆′ ⊢ N : µ′ followed by a sequence of rules (w) and/or (m).
Consider fresh copies of the derivation ♦′ i.e. (♦′

j) ∆′
j ⊢ Nj : µ′

where Nj and ∆′
j are fresh copies of N and ∆′ (1 ≤ j ≤ m).

By induction hypothesis there is a derivation (�i) Γ′, x1 :
µ′, . . . , xi−1 : µ′, xi+1 : µ′, . . . , xm : µ′,∆′

i ⊢ M[Ni/xi] : σ′

where the height of xi in ∇′ is maximal between the heights of xj

in ∇′ for 1 ≤ j ≤ m. Since the heights of xj in �i continue to
be smaller than the height of x in ∇ we can repeatedly apply in-
duction hypothesis to obtain a derivation (�′) Γ′,∆′

1, . . . ,∆
′
m ⊢

M[N1/x1, · · · , Nm/xm] : σ. Finally by applying repeatedly the
rules (m) and (w) the conclusion follows.

A.2 Proof of Weighted Substitution Lemma

It suffices to verify how the weights are modified by the proof of
Lemma 3. We will use exactly the same notation as in the lemma.

Proof of Weighted Substitution Lemma. Base cases are trivial
and in the cases where ∇ ends by (⊸ I), (∀I), (∀E) and (⊸ E)
the conclusion follows directly by induction hypothesis.
If ∇ ends by (sp): δ(∇, r) = rδ(∇′, r) and δ(♦, r) = rδ(♦′, r).

10 2008/12/4

By the induction hypothesis δ(�′, r) ≤ δ(∇′, r) + δ(♦′, r) and
applying (sp):

δ(�, r) ≤ r(δ(∇′, r) + δ(♦′, r)) = δ(∇, r) + δ(♦, r)

If ∇ ends by (BE): δ(∇, r) = max0≤i≤2(δ(∇i, r)) + 1. By
induction hypothesis we have derivations δ(�i, r) ≤ δ(∇i, r) +
δ(♦, r) for 0 ≤ i ≤ 2. and applying a (BE) rule:

δ(�, r) ≤ max
0≤i≤2

(δ(∇i, r)+δ(♦, r)) = max
0≤i≤2

(δ(∇i, r))+δ(♦, r)

If ∇ ends by (m): δ(∇, r) = δ(∇′, r) and δ(♦, r) = rδ(♦′, r).
Clearly δ(♦′, r) = δ(♦′

j , r) so δ(�′, r) ≤ δ(∇′, r) + mδ(♦′, r)
and since r ≥ rk(∇) then:

δ(�′, r) ≤ δ(∇′, r) + rδ(♦′, r) = δ(∇, r) + δ(♦, r)

Now the rules (m) and (w) leave the space weight δ unchanged
hence the conclusion follows.

References

[AR02] Andrea Asperti and Luca Roversi. Intuitionistic light
affine logic. ACM Transactions on Computational Logic,
3(1):137–175, 2002.

[AV89] S. Abiteboul and V. Vianu. Fixpoint extensions of first-
order logic and datalog-like languages. In Proceedings

of the Fourth Annual Symposium on Logic in Computer

Science, pages 71–79, Washington, D.C., 1989. IEEE
Computer Society Press.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and

Semantics. Elsevier/North-Holland, Amsterdam, London,
New York, revised edition, 1984.

[BT04] P. Baillot and K. Terui. Light types for polynomial time
computation in lambda-calculus. In Proceedings of LICS

2004. IEEE Computer Society, pages 266–275, 2004.

[CDLRDR05] Paolo Coppola, Ugo Dal Lago, and Simona Ronchi
Della Rocca. Elementary affine logic and the call by
value lambda calculus. In TLCA’05, volume 3461 of
LNCS, pages 131–145. Springer, 2005.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer.
Alternation. Journal of the ACM, 28(1):114–133, 1981.

[Gir98] J-Y. Girard. Light linear logic. Information and

Computation, 143(2):175–204, 1998.

[GKL+07] E. Gädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer,
M. Vardi, Y. Venema, and S. Weinstein. Finite Model

Theory and its applications. Springer, 2007.

[Goe92] A. Goerdt. Characterizing complexity classes by higher
type primitive recursive definitions. Theoretical Computer

Science, 100(1):45–66, 1992.

[GR07] M. Gaboardi and S. Ronchi Della Rocca. A soft
type assignment system for λ-calculus. In Computer

Science Logic, 21st International Workshop, CSL 07, 16th

Annual Conference of the EACSL, Lausanne, Switzerland,

September 11-15, 2007, Proceedings, volume 4646 of
Lecture Notes in Computer Science, pages 253–267.
Springer, 2007.

[Jon01] N.D. Jones. The expressive power of higher-order types
or, life without cons. J. Funct. Program., 11(1):55–94,
2001.

[Kri07] J-L. Krivine. A call-by-name lambda calculus machine.
Higher Order and Symbolic Computation, 2007. To
appear.

[Laf04] Y. Lafont. Soft linear logic and polynomial time.
Theoretical Computer Science, 318(1-2):163–180, 2004.

[LM93] D. Leivant and J-Y. Marion. Lambda calculus charac-
terizations of poly-time. In Typed Lambda Calculi and

Applications, TLCA ’93, Utrecht, The Netherlands, March

16-18, 1993, Proceedings, volume 664 of Lecture Notes

in Computer Science, pages 274–288. Springer, 1993.

[LM94] D. Leivant and J-Y. Marion. Ramified recurrence and
computational complexity II: Substitution and poly-space.
In CSL, volume 933 of LNCS, pages 486–500. Springer,
1994.

[LM97] D. Leivant and J-Y. Marion. Predicative functional
recurrence and poly-space. In TAPSOFT ’97: Theory

and Practice of Software Development, volume 1214
of Lecture Notes in Computer Science, pages 369–380.
Springer-Verlag, 1997.

[Mau03] F. Maurel. Nondeterministic light logics and NP-time.
In Martin Hofmann, editor, Typed Lambda Calculi and

Applications, 6th International Conference, TLCA 2003,

Valencia, Spain, June 10-12, 2003, Proceedings, volume
2701 of Lecture Notes in Computer Science, pages 241–
255. Springer, 2003.

[MR07] V. Mogbil and V. Rahli. Uniform circuits, & boolean proof
nets. In Sergei N. Artemov and Anil Nerode, editors,
Proceedings of the Symposium on Logical Foundations

of Computer Science (LFCS’07), volume 4514 of Lecture

Notes in Computer Science, pages 401–421. Springer,
June 2007.

[Oit01] I. Oitavem. Implicit characterizations of pspace. In
Proof Theory in Computer Science, International Seminar,

PTCS 2001, Dagstuhl Castle, Germany, October 7-12,

2001, Proceedings, volume 2183 of Lecture Notes in

Computer Science, pages 170–190. Springer, 2001.

[RDRR97] S. Ronchi Della Rocca and L. Roversi. Lambda calculus
and intuitionistic linear logic. Studia Logica, 59(3), 1997.

[Sav70] W. J. Savitch. Relationship between nondeterministic and
deterministic tape classes. JCSS, 4:177–192, 1970.

[Sch07] U. Schopp. Stratified bounded affine logic for logarithmic
space. In LICS ’07: Proceedings of the 22nd Annual

IEEE Symposium on Logic in Computer Science, pages
411–420, Washington, DC, USA, 2007. IEEE Computer
Society.

[Ter00] K. Terui. Linear logical characterization of polyspace
functions (extended abstract), 2000. Unpublished.

[Ter04] K. Terui. Proof nets and boolean circuits. In LICS

’04: Proceedings of the 19nd Annual IEEE Symposium

on Logic in Computer Science, pages 182–191. IEEE
Computer Society, 2004.

[Var82] M. Vardi. Complexity and relational query languages. In
Fourteenth Symposium on Theory of Computing, pages
137–146. ACM, New York, 1982.

11 2008/12/4

