Marco Gaboardi
email: gaboardi@di.unito.it

Jean-Yves Marion
email: jean-yves.marion@loria.fr

Simona Ronchi
email: ronchi@di.unito.it

Della Rocca

A Logical Account of PSPACE

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The argument of this paper fits in the so called Implicit Computational Complexity topic, in particular on the design of programming languages with bounded computational complexity. We want to use a ML-like approach, so having a λ-calculus like language, and a type assignment system for it, where the types guarantee, besides the functional correctness, also complexity properties. So types can be used in a static way in order to check the correct behaviour of the programs, also with respect to the resource usage. If the considered resource is the time, the natural choice is to use as types formulae of the light logics, which characterize some classes of time complexity. Light Linear Logic (LLL) of Girard [START_REF] Girard | Light linear logic[END_REF], and Soft Linear Logic (SLL) of Lafont [START_REF] Lafont | Soft linear logic and polynomial time[END_REF] characterize polynomial time, while Elementary Linear Logic (EAL) characterizes elementary time. The characterization is based on the fact that cutelimination in these logics is performed in a number of steps which depends in a polynomial or elementary way from the initial size of the proof (while the degree of the proof, i.e., the nesting of exponential rules, is fixed). Moreover all these logics are also complete with respect to the related complexity class. The good properties of such logics have been fruitfully used in order to design type assignment systems for λ-calculus which are correct and complete with respect to the polynomial or elementary complexity bound. Namely every well typed term β-reduces to normal form in a number of steps which depends in a polynomial or elementary way from its size, and moreover all functions with the corresponding complexity are representable by a well typed term. Examples of polynomial type assignment systems are in [START_REF] Baillot | Light types for polynomial time computation in lambda-calculus[END_REF] and [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF], based respectively on LAL (an affine variant of LLL designed by Asperti and Roversi [START_REF] Asperti | Intuitionistic light affine logic[END_REF]) and on SLL, and an example of an elementary type assignment system is in [START_REF] Coppola | Elementary affine logic and the call by value lambda calculus[END_REF].

Here we use the same approach for studying space complexity, in particular we build a type system for a λ-calculus like language, in such a way that well typed terms are correct and complete for PSPACE. More precisely, every well typed program reduces in polynomial space and all decision functions computable in polynomial space are computed by well typed programs. There is no previous logical characterization of PSPACE from which we can start. But we will use the fact that polynomial space computations coincide with polynomial time alternating Turing machine computations (APTIME) [START_REF] Savitch | Relationship between nondeterministic and deterministic tape classes[END_REF][START_REF] Chandra | [END_REF]. In particular PSPACE = NPSPACE = APTIME So we will start from the type assignment STA for λ-calculus presented in [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF], which is based on SLL, in the sense that in STA both types are a proper subset of SLL formulae, and type assignment derivations correspond, through the Curry-Howard isomorphism, to a proper subset of SLL derivations. STA is correct and complete (in the sense said before) with respect to polynomial time computations. Then we design a type assignment system (STA B), where the types are STA types plus a type B for booleans, and the language ΛB is an extension of λ-calculus with two boolean constants and a conditional constructor. The elimination rule for conditional is the following:

Γ ⊢ M : B Γ ⊢ N0 : A Γ ⊢ N1 : A Γ ⊢ if M then N0 else N1 : A (BE)
In the if-rule above, contexts are managed in an additive way, that is with free contractions. From a computational point of view, this intuitively means that a computation can repeatedly fork into subcomputations and the result is obtain by a backward computation from all subcomputation results. While the time complexity result for STA is not related to a particular evaluation strategy, here, for characterizing space complexity, the evaluation should be done carefully. Indeed, a call-by-value evaluation can construct exponential size term. So we define a call-by-name evaluation machine, inspired by Krivine's machine [START_REF] Krivine | A call-by-name lambda calculus machine[END_REF] for λ-calculus, where substitutions are made only on head variables. This machine is equipped with a memory device thanks to which the space used is easily determined, as the dimension of the maximal machine configuration. Then we prove that, if the machine takes a program (i.e., a closed term well typed with a ground type) as input, then each configuration is bounded in a polynomial way in the size of the input. So every program is evaluated by the machine in polynomial space. Conversely, we encode every polynomial time alternating Turing machine by a term of STA B . The simulation relies on a higher order representation of a parameter substitution recurrence schema which was used in [START_REF] Leivant | Ramified recurrence and computational complexity II: Substitution and poly-space[END_REF].

STA B is the first characterization of PSPACE through a type assignment system. A proposal for a similar characterization has been made by Terui [START_REF] Terui | Linear logical characterization of polyspace functions[END_REF], but the work has never been completed.

There are previous implicit characterizations of polynomial space computations. The characterizations in [START_REF] Leivant | Ramified recurrence and computational complexity II: Substitution and poly-space[END_REF][START_REF] Leivant | Predicative functional recurrence and poly-space[END_REF] and [START_REF] Oitavem | Implicit characterizations of pspace[END_REF] are based on ramified recursions over binary words. In finite model theory, PSPACE is captured by first order queries with a partial fixed point operator [START_REF] Vardi | Complexity and relational query languages[END_REF][START_REF] Abiteboul | Fixpoint extensions of firstorder logic and datalog-like languages[END_REF]. The reader may consult the recent book [GKL + 07]. Finally there are some algebraic characterizations like the one [START_REF] Goerdt | Characterizing complexity classes by higher type primitive recursive definitions[END_REF] or [START_REF] Jones | The expressive power of higher-order types or, life without cons[END_REF] but which are, in essence, over finite domains.

An example of a characterization of a complexity space class through a light logic is in [START_REF] Schopp | Stratified bounded affine logic for logarithmic space[END_REF] where a logical system characterizing logarithmic space computations is defined, the Stratified Bounded Affine Logic (SBAL). Logarithmic space soundness is proved by considering only proofs of certain sequents to represent the functions computable in logarithmic space. Our characterization is strongly based on the additive rule (BE). A similar tool has been used by Maurel's Non Deterministic Light Logic (nLLL) [START_REF] Maurel | Nondeterministic light logics and NP-time[END_REF] in order to characterize non deterministic polynomial time. More precisely nLLL introduces an explicit sum rule to deal with non deterministic computation. A different approach but also based on linear logic is to characterize circuit complexity classes by means of Booleans proof nets [START_REF] Terui | Proof nets and boolean circuits[END_REF][START_REF] Mogbil | Uniform circuits, & boolean proof nets[END_REF] but this does not relate to the task of designing programming language with an intrinsically polynomial computational bound.

Outline of the paper In Section 2 the system STA B is introduced and the proofs of subject reduction and strong normalization properties are given. In Section 3 the operational semantics of STA B program is defined, through an abstract evaluation machine. In Section 4 we show that STA B programs can be executed in polynomial space. In Section 5 the completeness for PSPACE is proved. In Section 6 some complementary argument are considered. The Appendix contains the most technical proofs.

Soft Type Assignment system with Booleans

In this section the type assignment STA B is presented, and its properties are proved. STA B is an extension of the type system STA for λ-calculus introduced in [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF], which assigns to terms of the λ-calculus a proper subset of formulae of Lafont's Soft Linear Logic [START_REF] Lafont | Soft linear logic and polynomial time[END_REF]. STA has been proved to be correct and complete for polynomial time computations. STA B is obtained from STA by extending both the calculus and the set of types. The calculus is the λ-calculus extended by boolean constants 0, 1 and an if constructor, types are the types of STA plus a constant type B for booleans.

Definition 1.

1. The set ΛB of terms is defined by the following grammar:

M ::= x | 0 | 1 | λx.M | MM | if M then M else M
where x ranges over a countable set of variables and B = {0, 1} is the set of booleans.

The set T of B types is defined as follows:

A ::= B | α | σ ⊸ A | ∀α.A (Linear Types) σ ::= A |!σ
where α ranges over a countable set of type variables and B is the only ground type. Note that while all rules in STA have a multiplicative treatment of contexts, the rule (BE) of STA B is additive and so contraction is free.

Γ ⊢ M : B Γ ⊢ N0 : A Γ ⊢ N1 : A Γ ⊢ if M then N0 else N1 : A (BE)
Notation 1. Terms are ranged over by M, N, V, P. As usual terms are considered up to α-equivalence, namely a bound variable can be renamed provided no free variable is captured. Moreover M[N/x] denotes the capture-free substitution of all free occurrences of x in M by N. FV(M) denotes the set of free variables of M, no(x, M) the number of free occurrences of the variable x in M. Type variables are ranged over by α, β, linear types by A, B, C, and types by σ, τ, µ. ≡ denotes the syntactical equality both for types and terms (modulo renaming of bound variables). As usual ⊸ associates to the right and has precedence on ∀, while ! has precedence on everything else. σ[A/α] denotes the capture free substitution in σ of all occurrences of the type variable α by the linear type A. FTV(Γ) denotes the set of free type variables occurring in the assumptions of the context Γ. We stress that each type is of the shape ! n ∀ α.A where ∀ α.A is an abbreviation for ∀α1....∀αm.A, and ! n σ is an abbreviation for !...!σ n-times. In particular ! 0 σ ≡ σ.

We have the following standard properties for a natural deduction system.

Lemma 1 (Free variable lemma).

1. Γ ⊢ M : σ implies FV(M) ⊆ dom(Γ). 2. Γ ⊢ M : σ, ∆ ⊆ Γ and FV(M) ⊆ dom(∆) imply ∆ ⊢ M : σ. 3. Γ ⊢ M : σ, Γ ⊆ ∆ implies ∆ ⊢ M : σ.
The functional behaviour of ΛB is described in the next definition.

Definition 2. The reduction relation → βδ ⊆ ΛB × ΛB is the contextual closure of the following rules:

(λx.M)N → β M[N/x] if 0 then M else N → δ M if 1 then M else N → δ N → *
βδ denotes the reflexive and transitive closure of → βδ .

In what follows, we will need to talk about proofs modulo commutations of rules. Definition 3. Let Π and Π ′ be two derivations in STA B , proving the same conclusion: Π Π ′ denotes the fact that Π ′ is obtained from Π by commuting or deleting some rules.

The Generation Lemma connects the shape of a term with its possible typings, and will be useful in the sequel.

Lemma 2 (Generation lemma).

1. (∇) Γ ⊢ λx.M : ∀α.A implies there is ∇ ′ such that ∇ ∇ ′ where the last rule of ∇ ′ is (∀I). 2. (∇) Γ ⊢ λx.M : σ ⊸ A implies there is ∇ ′ such that ∇ ∇ ′ , whose last rule is (⊸ I). 3. (∇) Γ ⊢ M :!σ implies there is ∇ ′ such that ∇ ∇ ′
where ∇ ′ consists of a subderivation, ending with the rule (sp) proving !Γ ′ ⊢ M :!σ, followed by a sequence of rules (w) and/or (m). 4.

(∇) !Γ ⊢ M :!σ implies there is ∇ ′ such that ∇ ∇ ′ , whose last rule is (sp).
The substitution lemma will be the key lemma to show that STA B enjoys the subject reduction property.

Lemma 3 (Substitution lemma). Let (∇) Γ, x : µ ⊢ M : σ and (♦) ∆ ⊢ N : µ such that Γ#∆. Then there exists () Γ, ∆ ⊢ M[N/x] : σ.
Proof. Since the proof is quite involved, we postpone it to Appendix A.1.

We can finally prove the main property of this section.

Lemma 4 (Subject Reduction). Let Γ ⊢ M : σ and M → βδ N. Then Γ ⊢ N : σ.

Proof. The case of a → δ reduction is easy, the one of → β reduction follows by Lemma 3.

By strong normalization of STA we have the following.

Lemma 5 (Strong Normalization). Let Γ ⊢ M : σ then M is strongly normalizing with respect to the reduction relation → βδ .

Nevertheless due to the additive rule (BE), STA B is no more correct for polynomial time, since terms with exponential number of reductions can be typed in it.

Example 1. Consider for n ∈ N terms Mn of the shape:

(λf.λz.f n (z))(λx. if x then x else x)0
It is easy to verify that for each Mn there exist reduction sequences of length exponential in n.

Structural Operational Semantics

In this section the operational semantics of terms of ΛB will be given, through an evaluation machine, defined in SOS style, performing the evaluation according to the leftmost outermost strategy. The machine, if restricted to λ-calculus, is quite similar to the Krivine machine [START_REF] Krivine | A call-by-name lambda calculus machine[END_REF], since β-reduction is not an elementary step, but the substitution of a term to a variable is performed one occurrence at a time. The evaluation machine is related to the type assignment system STA B in the sense that, when it starts on an empty memory, all the programs (closed terms of ground type) can be evaluated. Definition 4. The set P of STA B programs is the set of closed terms typable by the ground type. i.e. P = {M | ⊢ M : B}.

It is easy to check that a STA B term is of the following shape:

M ≡ λx1...xn.ζV1 • • • Vm
where ζ is either a boolean b, a variable x, a redex (λx.N)P, or a subterm of the shape if P then N0 else N1 .

In particular, if a term is a program, then its shape is as before, but with the condition that the number n of initial abstractions is equal to 0. Moreover if ζ is a boolean b then the number m of arguments is equal to 0. We will use this characterization of programs to design the evaluation machine

K C B . K C
B uses two memory devices, the m-context and the B-context, that memorize respectively the assignments to variables and the control.

Definition 5. Note that variable assignments in m-contexts are ordered; this fact allows us to define the following closure operation.

An m-context

C[•] ::= • | (if C[•] then M else N)V1 • • • Vn 5. The size of a B-context C[•] denoted |C[•]|
Definition 6. Let A = [x1 := N1, . . . , xn : Nn] be an m-context. Then () A : ΛB → ΛB is the map associating to each term M the term M[Nn/xn][Nn-1/xn-1] • • • [N1/x1]. K C
B is defined in Table 2. Some comments are in order. The rules will be commented bottom-up, which is the natural direction of the evaluation flow.

Rule (Ax) is obvious. Rule (β) applies when the head of the subject is a β-redex: then the association between the bound variable and the argument is remembered in the m-context and the body of the term in functional position is evaluated. Note that an α-rule is always performed. Rule (h) replaces the head occurrence of the head variable by the term associated with it in the m-context. Rules (if 0) and (if 1) perform the δ reductions. Here the evaluation naturally erases part of the subject, but the erased information is We are interested in the behaviour of the machine when applied to programs. By an analysis of the rules of Table 2, and from the previous comments, it is easy to verify the following. Lemma 6.

C, A |= b ⇓ b (Ax) C, A@{x ′ := N} |= M[x ′ /x]V1 • • • Vm ⇓ b * C, A |= (λx.M)NV1 • • • Vm ⇓ b (β) {x := N} ∈ A C, A |= NV1 • • • Vm ⇓ b C, A |= xV1 • • • Vm ⇓ b (h) C[(if [•] then N0 else N1)V1 • • • Vm], A |= M ⇓ 0 C, A |= N0V1 • • • Vm ⇓ b C, A |= (if M then N0 else N1)V1 • • • Vm ⇓ b (if 0) C[(if [•] then N0 else N1)V1 • • • Vm], A |= M ⇓ 1 C, A |= N1V1 • • • Vm ⇓ b C, A |= (if M then N0 else N1)V1 • • • Vm ⇓ b (if 1) (*) x ′ is a fresh variable.
M ⇓. |= M ⇓ b is a short for [•], ε |= M ⇓ b.
1. Let M ∈ P, Π ::|= M ⇓ b and C, A |= N ⇓ b ′ ∈ Π. Then (C[N]) A , (N) A ∈ P. 2. Let M ∈ P and Π ::|= M ⇓ b. For each C, A |= N ⇓ b ′ ∈ Π M → * βδ (C[N]) A → * βδ b
Note that, in the previous lemma, the m-context and the Bcontext are essential in proving the desired properties. In fact the B-context recovers the part of the term necessary to complete δreductions, while the m-context completes β-reductions that have been performed only partially by the machine.

Example 2. In Table 5 we present an example of K C B computation on the same term of Example 1.

Note that by Definition 7.1 a term M evaluates only if it is a program and there exists b such that |= M ⇓ b. We stress here, that the machine K C B is complete with respect to programs, in the sense that all the programs can be evaluated.

Theorem 1.

M ∈ P implies M ⇓

Proof. By induction on the reduction to normal form using Lemma 5.

A small step version of K C B

In Table 3 we depict a small step version of the machine K C B . The rules are similar to the rules in Table 2 but the use of a garbage collector procedure described in Table 4 which is needed in order to maintain the desired complexity property. In fact the small step machine can be easily shown equivalent to the big step one. The small step machine explicit the evaluation order clearifying that every configuration depends uniquely on the previous one (thanks to the B-context). So the space necessary to evaluate a program turns out to be the maximum space used by one of its configurations. Nevertheless, the big step machine has the advantage of being more abstract and this make it easy to prove the complexity properties. In fact, the garbage collector procedure make more difficult the proofs of such properties for the small step machine. For this reason in what follows we will work on the big step machine.

Space Measures

We can now define the space effectively used to evaluate a term. The remarks in the previous section allows us to consider the following definition. In particular since there is a one-to-one correspondence between a program M and its computation Π :: [•], ε |= M ⇓ b, we will usually write space(M) in place of space(Π). In order to have polynomial space soundness we will show that for each M ∈ P there exists a polynomial P (X) such that space(M) ≤ P (|M|). The result will be proved in next section. In what follows we will introduce some relations between the size of the contexts and the behaviour of the machine, which will be useful later. Definition 9. Let Π be a computation and φ ∈ Π a configuration.

C, A ≻ (λx.M)NV1 • • • Vm → C, A@[x ′ := N] ≻ M[x ′ /x]V1 • • • Vm (β) C, A1@[x := N]@A2 ≻ xV1 • • • Vm → C, A1@[x := N]@A2 ≻ NV1 • • • Vm (h0) C, A ≻ (if M then N0 else N1)V1 • • • Vm → C[(if [•] then N0 else N1)V1 • • • Vn], A ≻ M (if) A ′ = clear(C, A, N0V1 • • • Vn) C[(if [•] then N0 else N1)V1 • • • Vn], A ≻ 0 → C, A ′ ≻ N0V1 • • • Vn (r0) A ′ = clear(C, A, N1V1 • • • Vn) C[(if [•] then N0 else N1)V1 • • • Vn], A ≻ 1 → C, A ′ ≻ N1V1 • • • Vn (r1) Table 3. The small step machine k C B clear(C, ε, M) = ε clear(C, A, M) = A ′ x ∈ FV(C) ∪ FV(M) ∪ FV(A) clear(C, [x := N]@A, M) = [x := N]@A ′ clear(C, A, M) = A ′ x / ∈ FV(C) ∪ FV(M) ∪ FV(A) clear(C, [x := N]@A, M) = A ′
• # β (φ) denotes the number of applications of the (β) rule in path(φ). • # h (φ) denotes the number of applications of the (h) rule in path(φ). • #if(φ) denotes the number of applications of (if 0) and (if 1) rules in path(φ).

The cardinality of the contexts is a measure of the number of some rules performed by the machine.

Lemma 7. Let Π ::|= M ⇓ b. Then for each configuration φ ⊲ Ci, Ai |= Pi ⇓ b ′ ∈ Π: 1. #(Ai) = # β (φ) 2. #(Ci) = #if(φ)
The following is an important property of the machine K C B . Proof. The property is proven by contradiction. Take the configuration φ with minimal path from it to the root of Π, such that in its m-context A φ there is xj := Nj, where Nj is not an instance of a subterm of M. Let p be the length of this path. Since the only rule that make the m-context grow is a (β) rule we are in a situation like the following:

C, A ′ @[xj := Nj] |= P[xj/x]V1 • • • Vn ⇓ b C, A ′ |= (λx.P)NjV1 • • • Vn ⇓ b
If Nj is not an instance of a subterm of M it has been obtained by a substitution. Substitutions can be made only through applications of rule (h) replacing the head variable. Hence by the shape of (λx.P)NjV1 • • • Vn, the only possible situation is that there exists an application of rule (h) as:

[y := M ′] ∈ A ′ C, A ′ |= M ′ V1 • • • Vn ⇓ b C, A ′ |= yV1 • • • Vn ⇓ b
with Nj a subterm of M ′ . But this implies M ′ is not an instance of a subterm of M and it has been introduced by a rule of a path of length less than p, contradicting the hypothesis.

The next lemma gives upper bounds to the size of the mcontext, of the B-context and of the subject of a configuration.

1. |A| ≤ # β (φ)(|M| + 1) 2. |P| ≤ (# h (φ) + 1)|M| 3. |C| ≤ #if(φ)(max{|N| | ψ ⊲ C ′ , A ′ |= N ⇓ b ′′ ∈ Π})

Proof. 1. By inspection of the rules of

PSPACE Soundness

In this section we will show that STA B is correct for polynomial space computation, namely each program typable through a derivation with degree d can be executed on the machine K C B in space polynomial in its size, where the maximum exponent of the polynomial is d. The degree of a derivation counts the maximum nesting of applications of the rule (sp) in it. So considering fixed degrees we get PSPACE soundness. Considering a fixed d is not a limitation. Indeed until now, in STA B programs we do not distinguish between the program code and input data. But it will be shown in Section 5 that data types are typable through derivations with degree 0. Hence the degree can be considered as a real characteristic of the program code. Moreover every STA B program can be typed through derivations with different degrees, nevertheless for each program there is a sort of minimal derivation for it, with respect to the degree. So we can stratify programs with respect to the degree of their derivations, according to the following definition. This section is divided into two subsections. In the first, we will prove an intermediate result, namely we will give the notion of space weight of a derivation, and we will prove that the subject reduction does not increment it. Moreover this result is extended to the machine K C B . In the second part the soundness with respect to PSPACE will be proved.

Space and STA B

We need to define measures of both terms and proofs, which are an adaptation of those given by Lafont in [START_REF] Lafont | Soft linear logic and polynomial time[END_REF].

Definition 11.

The rank of a rule (m):

Γ, x1 : σ, . . . , xn :

σ ⊢ M : µ Γ, x :!σ ⊢ M[x/x1, • • • , x/xn] : µ (m)
is the number k ≤ n of variables xi such that xi belongs to the free variables of M. Let r be the the maximum rank of a rule (m) in ∇. The rank rk(∇) of ∇ is the maximum of 1 and r. 2. Let r be a natural number. The space weight δ(∇, r) of ∇ with respect to r is defined inductively as follows.

(♦) Γ ⊢ M : B (0) Γ ⊢ N0 : A (1) Γ ⊢ N1 : A Γ ⊢ if M then N0 else N1 : A then δ(∇, r) = max{δ(♦, r), δ(0, r), δ(1, r)} + 1 (f)
In every other case δ(∇, r) = δ(♦, r) where ♦ is the unique premise derivation.

In order to prove that the subject reduction does not increase the space weight of a derivation, we need to rephrase the Substitution Lemma taking into account this measure.

Lemma 9 (Weighted Substitution Lemma). Let (∇) Γ, x : µ ⊢ M : σ and (♦) ∆ ⊢ N : µ such that Γ#∆ then there exists

() Γ, ∆ ⊢ M[N/x] : σ such that if r ≥ rk(∇): δ(, r) ≤ δ(∇, r) + δ(♦, r)
Proof. We postpone the proof to Appendix A.2.

We are now ready to show that the space weight δ gives a bound on the number of both β and if rules in a computation path of the machine K C B . Lemma 10. Let M ∈ P and Π ::|= M ⇓ b.

Consider an occurrence in Π of the rule:

C, A@{x ′ := N} |= M[x ′ /x]V1 • • • Vm ⇓ b C, A |= (λx.M)NV1 • • • Vm ⇓ b (β)
Then, for every derivations (♦) ⊢ ((λx.M)NV1 • • • Vm) A : B there exists a derivation () ⊢ (M[x ′ /x]V1 • • • Vm) A@{x ′ :=N} : B such that for every r ≥ rk(♦):

δ(♦, r) > δ(, r)
2. Consider an occurrence in Π of an if rule as:

C ′ , A |= M ⇓ 0 C, A |= N0V1 • • • Vm ⇓ b C, A |= (if M then N0 else N1)V1 • • • Vm ⇓ b where C ′ ≡ C[(if [•] then N0 else N1)V1 • • • Vm]. Then, for each derivation (♦) ⊢ ((if M then N0 else N1)V1 • • • Vm) A : B there are derivations () ⊢ (M) A : B and (∇) ⊢ (N0V1 • • • Vm) A : B such that for every r ≥ rk(♦): δ(♦, r) > δ(, r) and δ(♦, r) > δ(∇, r) Proof.
1. It suffices to consider the case where m = 0, and to prove that, if (∇) Γ ⊢ (λx.M)N : σ, then there exists

(∇ ′) Γ ⊢ M[N/x]σ with rk(∇) ≥ rk(∇ ′) such that for r ≥ rk(∇): δ(∇, r) > δ(∇ ′ , r)
Since (∀R), (∀L), (m) and (w) rules don't change the δ measure we can without loss of generality assume that we are in a

C1, A3 |= 0 ⇓ 0 C1, A3 |= z1 ⇓ 0 C1, A3 |= x2 ⇓ 0 φ ⊲ C0, A3 |= 0 ⇓ 0 C0, A3 |= z1 ⇓ 0 C0, A3 |= x2 ⇓ 0 C0, A3 |= if x2 then x2 else x2 ⇓ 0 C0, A2 |= (λx. if x then x else x)z1 ⇓ 0 C0, A2 |= f1z1 ⇓ 0 C0, A2 |= x1 ⇓ 0 C2, A4 |= 0 ⇓ 0 C2, A4 |= z1 ⇓ 0 C2, A4 |= x3 ⇓ 0 A4 |= 0 ⇓ 0 A4 |= z1 ⇓ 0 A4 |= x3 ⇓ 0 A4 |= if x3 then x3 else x3 ⇓ 0 A2 |= (λx. if x then x else x)z1 ⇓ 0 A2 |= f1z1 ⇓ 0 ψ ⊲ A2 |= x1 ⇓ 0 A2 |= if x1 then x1 else x1 ⇓ 0 A1 |= (λx. if x then x else x)(f1z1) ⇓ 0 A1 |= f1(f1z1) ⇓ 0 A0 |= (λz.f1(f1z))0 ⇓ 0 |= (λf.λz.f 2 (z))(λx. if x then x else x)0 ⇓ 0 A0 = [f1 := λx. if x then x else x] A1 = A0@[z1 := 0] A2 = A1@[x1 := f1z1] A3 = A2@[x2 := z1] A4 = A2@[x3 := z1] C0 = if • then x1 else x1 C1 = C0[if • then x2 else x2] C2 = if • then x3 else x3 Table 5. An example of computation in K C B .
situation like the following:

(♦) Γ, x : σ ⊢ M : A Γ ⊢ λx.M : σ ⊸ A (⊸ I) () ∆ ⊢ N : σ Γ, ∆ ⊢ (λx.M)N : A (⊸ E) ! n Γ, ! n ∆ ⊢ (λx.M)N :! n A (sp) n
where Γ#∆ and n ≥ 0. Clearly we have δ(∇, r) = δ(♦, r) + 1 + δ(, r). By Lemma 9 we have (∇ ′) Γ ⊢ M[N/x]σ such that δ(∇ ′ , r) ≤ δ(♦, r) + δ(, r). Hence, the conclusion follows. 2. Easy, by definition of δ.

Since it is easy to verify that h rules leave the space weight unchanged, a direct consequence of the above lemma is the following.

Lemma 11. Let (∇) ⊢ M : B and Π ::|= M ⇓ b. Then for each φ ⊲ C, A |= N ⇓ b ′ ∈ Π if r ≥ rk(∇): # β (φ) + #if(φ) ≤ δ(∇, r)
Now we are ready to prove that subject reduction does not increase the space weight.

Property 2. Let (∇) Γ ⊢ M : σ and M → * βδ N. Then there exists (∇ ′) Γ ⊢ N : σ with rk(∇) ≥ rk(∇ ′) such that for each r ≥ rk(∇): δ(∇, r) ≥ δ(∇ ′ , r)
Proof. By Lemma 9 and definition of δ, noting that a reduction inside an if can leave δ unchanged.

The previous result can be extended to the machine K C B in the following way.

δ(∇, r) ≥ δ(♦, r) > δ(, r)

Proof of PSPACE Soundness

As we said in the previous section, the space used by the machine K C B is the maximum space used by its configurations. In order to give an account of this space, we need to measure how the size of a term can increase during the evaluation. The key notion for doing it is that of number of the sliced occurrence of a variable, which takes into account that in performing an if reduction a subterm of the subject is erased. In particular by giving a bound on the number of sliced occurrence we obtain a bound on the number of applications of the h rule in a path.

Definition 12. The number of sliced occurrences nso(x, M) of the variable x occurring free in M is defined as: nso(x, x) = 1, nso(x, y) = nso(x, 0) = nso(x, 1) = 0, nso(x, MN) = nso(x, M) + nso(x, N), nso(x, λy.M) = nso(x, M), nso(x, if M then N0 else N1) = max{nso(x, M), nso(x, N0), nso(x, N1)} A type derivation gives us some informations about the number of sliced occurrences of a free variable x in its subject M.

Lemma 12. Let (∇) Γ, x :! n A ⊢ M : σ then nso(x, M) ≤ rk(∇) n .
Proof. By induction on n.

Case n = 0. The conclusion follows easily by induction on (∇). Base case is trivial. In the case (∇) ends by (BE) conclusion follows by nso(x, M) definition and induction hypothesis. The other cases follow directly from the induction hypothesis remembering the side condition Γ#∆ in (⊸ E) case.

Case n > 0. By induction on (∇). Base case is trivial. Let the last rule of (∇) be:

(♦) Γ ⊢ M ′ : B (0) Γ ⊢ N0 : A (1) Γ ⊢ N1 : A Γ ⊢ if M ′ then N0 else N1 : A (BE)
where x :! n A ∈ Γ. By induction hypothesis nso(x, M ′) ≤ rk(♦) n and nso(x, Ni) ≤ rk(i) n for i ∈ {0, 1}. By definition rk(∇) = max{rk(♦), rk(0), rk(1)} and since by definition nso(x, if M then N0 else N1) is equal to max{nso(x, M), nso(x, N0), nso(x, N1)}, then the conclusion follows. Let the last rule of (∇) be:

(♦) Γ, x1 :! n-1 A, . . . , xm :! n-1 A ⊢ N : µ Γ, x :! n A ⊢ N[x/x1, • • • , x/xm] : µ (m)
where

N[x/x1, • • • , x/xm] ≡ M. By induction hypothesis nso(xi, N) ≤ rk(♦) n-1 for 1 ≤ i ≤ m.
Hence in particular, nso(x, N) ≤ m×rk(♦) n-1 . Now, since m ≤ rk(∇) and rk(♦) ≤ rk(∇) it follows nso(x, N) ≤ rk(∇) × rk(♦) n-1 ≤ rk(∇) n and so the conclusion. In every other case the conclusion follows directly by induction hypothesis.

It is worth noting that the above lemma and the subject reduction property gives dynamical informations about the number of sliced occurrences of a variable.

Lemma 13. Let (∇) Γ, x :! n A ⊢ M : σ and M → βδ N. Then nso(x, N) ≤ rk(∇) n .

The lemma above is essential to prove the following remarkable property.

Lemma 14. Let M ∈ P d and Π ::

|= M ⇓ b then for each φ ⊲ C, A |= P ⇓ b ′ ∈ Π: # h (φ) ≤ #(A)|M| d Proof.
For each [y := N] ∈ A the variable y is a fresh copy of a variable x originally bound in M hence M contains a subterm (λx.P)Q and there exists a derivation (∇) x :! n A ⊢ P : B. Hence by Lemma 13 for every P ′ such that P → * βδ P ′ we have nso(x, P ′) ≤ rk(∇) n . In particular the number of applications of h rules on the variable y is bounded by rk(∇) n . Since |M| ≥ rk(∇) and d ≥ n the conclusion follows.

The following lemma relates the space weight with both the size of the term and the degree of the derivation.

Lemma 15. Let (∇) Γ ⊢ M : σ. 1. δ(∇, 1) ≤ |M| 2. δ(∇, r) ≤ δ(∇, 1) × r d(∇) 3. δ(∇, rk(∇)) ≤ |M| d(∇)+1
1. |A| ≤ 2|M| d+2 2. |N| ≤ 2|M| 2d+2 3. |C| ≤ 2|M| 3d+3
Proof.

By Lemma

|C| ≤ #(C)2|M| 2d+2 ≤ |M| d+1 2|M| 2d+2 ≤ 2|M| 3d+3
The PSPACE soundness follows immediately from the definition of space(Π), for a machine evaluation Π, and from the previous lemma.

Theorem 2 (Polynomial Space Soundness). Let M ∈ P d . Then: space(M) ≤ 6|M| 3d+3

PSPACE completeness

It is well known that the class of problem decidable by a Deterministic Turing Machine (DTM) in space polynomial in the length of the input coincides with the class of problems decidable by an Alternating Turing Machine (ATM) [START_REF] Chandra | [END_REF] in time polynomial in the length of the input. In [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF] it has been shown that polytime DTM are definable by λ-terms typable in STA. Analogously here we will show that polytime ATM are definable by programs of STA B . We achieve such a result considering a notion of function programmable in STA B . We will consider the same representation of data types as in STA, in particular data types typable through derivations with degree 0. (We will recall it briefly but we refer to [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF] for more details.) Finally we show that for each polytime ATM M we can define a recursive evaluation procedure which behaves as M. Some syntactic sugar Let • denote composition. In particular M • N stands for λz.M(Nz) and M1

• M2 • • • • • Mn stands for λz.M1(M2(• • • (Mnz))).
Tensor product is definable as σ ⊗ τ . = ∀α.(σ ⊸ τ ⊸ α) ⊸ α. In particular M, N stands for λx.xMN and let z be x, y in N stands for z(λx.λy.N). Note that, since STA B is an affine system, tensor product enjoys some properties of the additive conjunction, as to allow the projectors: as usual π1(M) stands for M(λx.λy.x) and π2(M) stands for M(λx.λy.y). n-ary tensor product can be easily defined through the binary one and we use σ n to denote σ⊗

. = ∀α.! i (B ⊸ α ⊸ α) ⊸ α ⊸ α.
Again, we write S to mean S1. Moreover there is a term len typable as ⊢ len : Si ⊸ Ni that given a string of boolean returns its length. Note that the data types defined above can be typed in STA B by derivations with degree 0.

Programmable functions

The polynomial time completeness in [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF] relies on the notion of λ-definability, given in [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF], generalized to different kinds of data. The same can be done here for STA B , by using a generalization of λ-definability to the set of terms ΛB. Nevertheless this is not sufficient, since we want to show that polynomial time ATM can be defined by programs of STA B . In fact we have the following definition.

Definition 13. Let f : n-times z }| { S × ... × S → B and let every string s ∈ S be representable by terms s). Then, f is programmable if, there exists a term f ∈ ΛB, such that fs1 . . . sn ∈ P and:

f (s1, . . . sn) = b ⇐⇒ |= fs1 . . . sn ⇓ b
Boolean connectives It is worth noting that due to the presence of the (BE) rule it is possible to define the usual boolean connectives. In fact let M and N . = if M then (if N then 0 else 1) else 1 and M or N . = if M then 0 else (if N then 0 else 1) . Then the following rules with an additive management of contexts are derived:

Γ ⊢ M : B Γ ⊢ N : B Γ ⊢ M and N : B Γ ⊢ M : B Γ ⊢ N : B Γ ⊢ M or N : B
Moreover we have a term not defining the expected boolean function.

ATMs Configurations

The encoding of Deterministic Turing Machine configuration given in [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF] can be adapted in order to encode Alternating Turing Machine configurations. In fact an ATM configuration can be viewed as a DTM configuration with an extra information about the state. There are four kinds of state: accepting (A), rejecting (R), universal (∧), existential (∨) . We can encode such information by tensor pairs of booleans. In particular:

1, 0 A 1, 1 R 0, 1 ∧ 0, 0 ∨
We say that a configuration is accepting, rejecting, universal or existential depending on the kind of its state. We can encode ATM configurations by terms of the shape:

λc. cb l 0 • • • • • cb l n , cb r 0 • • • • • cb r m , Q, k
where cb l 0 • . . . • cb l n and cb r 0 • . . . • cb r n are respectively the left and right handside words on the ATM tape, Q is a tuple of length q encoding the state and k is the tensor pair encoding the kind of state. Such terms can be typed as:

ATMi . = ∀α.! i (B ⊸ α ⊸ α) ⊸ ((α ⊸ α) 2 ⊗ B q+2)
It is easy to adapt the term described in [START_REF] Gaboardi | A soft type assignment system for λ-calculus[END_REF] dealing with TM to the case of ATM. In particular we have: ⊢Init : Si ⊸ ATMi Initial configuration ⊢Tr1, Tr2 : ATMi ⊸ ATMi

Transition functions

Moreover we have a term: Kind . = λx.let x(λb.λy.y) be l, r, s in (let s be q, k in k)

typable as ⊢ Kind : ATMi ⊸ B 2 which takes a configuration and return its kind. We also have a term Ext . = λx.let (Kind x) be l, r in r typable as ⊢ Ext : ATMi ⊸ B. Assuming that a given configuration is either accepting or rejecting Ext returns 0 or 1 respectively.

Evaluation function Given an ATM M working in polynomial time we define a recursive evaluation procedure evalM which takes a string s and returns 0 or 1 if the initial configuration (with the tape filled with s) leads to an accepting or rejecting configuration respectively. Without loss of generality we consider ATMs with transition relation of degree two (at each step we consider two transitions). We need to define some auxiliary functions.

α(M0, M1, M2) . = let M0 be a1, a2 in if a1 then (if a2 then a1, π2(M1) or π2(M2) else a1, π2(M1) and π2(M2)) else a1, a2 which acts as:

α(A, M1, M2) = A α(R, M1, M2) = R α(∧, M1, M2) = M1 ∧ M2 α(∨, M1, M2) = M1 ∨ M2
Note that for α defined as above we have the following typing rule:

Γ ⊢ M0 : B 2 Γ ⊢ M1 : B 2 Γ ⊢ M2 : B 2 Γ ⊢ α(M0, M1, M2) : B 2
where the management of contexts is additive. We would now define evalM as an iteration of an higher order StepM function over a Base case. Let Tr 1 M and Tr 2 M be two closed terms defining the two components of the transition relation. which is typable in STA B as ⊢ evalM :! t S ⊸ B where t = max(deg(P), 1) + 1.

Here, the evaluation is performed by a higher order iteration, which represents a recurrence with parameter substitutions. Note that by considering an ATM M which decides a language L the final configuration is either accepting or rejecting hence the term Ext can be applied with the intended meaning.

Related Topic

In this section we will discuss some topic which are related to the work we have presented.

FPSPACE characterization. FPSPACE is the class of function computable in polynomial space. The completeness for FPSPACE

 is the size of the term obtained by replacing the symbol • by a variable. The cardinality of a B-context C[•], denoted by #(C[•]), is the number of nested B-contexts in it. Notation 2. ε denotes the empty m-context and A1@A2 denotes the concatenation of the m-contexts A1 and A2. [x := M] ∈ A denotes the fact that x := M is in the m-context A. FV(A) = S [x:=M]∈A FV(M). As usual C[M] denotes the term obtained by filling the hole [•] in C[•] by M. In general we omit the hole [•] and we range over Bcontexts by C. FV(C) = FV(C[M]) for every closed term M.

 2. Derivation trees are called computations in the abstract machine and are denoted by Π, Σ. Π :: C, A |= M ⇓ b denotes a computation with conclusion C, A |= M ⇓ b. 3. Given a computation Π each node of Π, which is of the shape C, A |= M ⇓ b is a configuration. Configurations are ranged over by φ, ψ. φ ⊲ C, A |= M ⇓ b means that φ is the configuration C, A |= M ⇓ b. The conclusion of the derivation tree is called the initial configuration. 4. Given a computation Π, the path to reach a configuration φ denoted pathΠ(φ) is the sequence of configurations between the conclusion of Π and φ. In general we will write path(φ) when Π is clear from the context.

Definition 8 .

 8 Let φ ⊲ C, A |= M ⇓ b be a configuration then its size denoted |φ| is the sum |C| + |A| + |M|. Let Π :: C, A |= M ⇓ b be a computation, then its space occupation denoted space(Π) is the maximal size of a configuration in Π.

Property 1 .

 1 Let M ∈ P and Π ::|= M ⇓ b then for each φ⊲ C, A |= P ⇓ b ′ ∈ Π if [xj := Nj] ∈ Ai then Nj is an instance (possibly with fresh variables) of a subterm of M.

Lemma 8 .

 8 Let M ∈ P and Π ::|= M ⇓ b then for each configuration φ ⊲ C, A |= P ⇓ b ′ ∈ Π:

 degree d(∇) of ∇ is the maximum nesting of applications of rule (sp) in ∇. 2. For each d ∈ N the set P d is the set of STA B programs typable through derivation with degree d. P d = {M | (∇) ⊢ M : B ∧ d(∇) = d} Clearly P corresponds to the union for n ∈ N of the different Pn. Moreover if M ∈ P d then M ∈ Pe for every e ≥ d.

(a)

 a If the last applied rule is (Ax), (B0I), (B1I) then δ(∇, r) = 1. (b) If the last applied rule is (⊸ I) with premise a derivation ♦, then δ(∇, r) = δ(♦, r) + 1. (c) If the last applied rule is (sp) with premise a derivation ♦, then δ(∇, r) = rδ(♦, r). (d) If the last applied rule is (⊸ E) with premises ♦ and then δ(∇, r) = δ(♦, r) + δ(, r) + 1. (e) If the last applied rule is:

Property 3 .

 3 Let (∇) ⊢ M : B and Π ::|= M ⇓ b. For each configuration φ ⊲ Ci, Ai |= Ni ⇓ bi ∈ Π such that C ≡ • there exist derivations (♦) ⊢ (C[Ni]) A : B and () ⊢ (Ni) A : B such that is a proper subderivation of ♦ and for each r ≥ rk(∇):

Proof. 1 .

 1 By induction on (∇). Base cases are trivial. Cases (sp), (m), (w), (∀I) and (∀E) follow directly by induction hypothesis. The other cases follow by definition of δ. 2. By induction on (∇). Base cases are trivial. Cases (sp), (m), (w), (∀I) and (∀E) follow directly by induction hypothesis. The other cases follow by definition of δ and d. 3. By definition of rank it is easy to verify that rk(∇) ≤ |M|, hence by the previous two points the conclusion follows.The next lemma gives a bound on the dimensions of all the components of a machine configuration, namely the term, the mcontext and the B-context. Lemma 16. Let M ∈ P d and Π :: |= M ⇓ b. Then for each φ ⊲ C, A |= N ⇓ b ′ ∈ Π:

 Base. = λc.(Kind c) :StepM . = λh.λc.α((Kind c), (h(Tr 1 M c)), (h(Tr 2 M c))) It is easy to verify that such terms are typable as:⊢ Base : ATMi ⊸ B 2 ⊢ Step M : (ATMi ⊸ B 2) ⊸ ATMi ⊸ B 2Now we can finally define the evaluation function. Let P be a polynomial definable by a term P typable as ⊢ P :! deg(P) N → N 2deg(P)+1 . Then the evaluation function of an ATM M working in polynomial time P is definable by the term: evalM . = λs.Ext((P (len s) StepM Base)(Init s))

Lemma 18 .

 18 A decision problem D : {0, 1} * → {0, 1} decidable by an ATM M in polynomial time is programmable in STA B . Proof. D(s) = b ⇐⇒ evalMs ⇓ b From the well known result of [CKS81] we can conclude. Theorem 3 (Polynomial Space Completeness). Every decision problem D ∈ PSPACE is programmable in STA B .

Table 1 .

 1 The Soft Type Assignment system with Booleans 4. STA B proves judgments of the shape Γ ⊢ M : σ where Γ is a context, M is a term, and σ is a B type. The rules are given in Table 1. 5. Derivations are denoted by ∇, ♦, . (∇) Γ ⊢ M : σ denotes

a derivation ∇ with conclusion Γ ⊢ M : σ. We let ⊢ M : σ abbreviate ∅ ⊢ M : σ.

Table 2 .

 2 The Abstract Machine K C

B stored in the B-context. In order to state formally the behaviour of the machine K C B we need a further definition. Definition 7. 1. The evaluation relation ⇓⊆ Ctx B × Ctxm × ΛB × B is the effective relation inductively defined by the rules of K C B . If M is a program, and if there is a boolean b such that [•], ε |= M ⇓ b then we say that M evaluates, and we write

Table 4 .

 4 The garbage collector procedure.

Example 3. By returning to the computation of Example 2 it is worth noting that to pass from the configuration φ to the configuration ψ all necessary information are already present in the configuration φ itself. We can view such a step as a → δ step (if 0 then x1 else x1) A 3 → δ (x1) A 3 noting that (x1) A 3 ≡ (x1) A 2 . In fact this can be generalized, so in this sense we don't need neither mechanism for backtracking nor the memorization of parts of the computation tree.

 Table 2 it is easy to verify that m-contexts can grow only by applications of the (β) rule. So the conclusion follows by Lemma 7 and Property 1. 2. By inspection of the rules of Table 2 it is easy to verify that the subject can grow only by substitutions through applications of the (h) rule. So the conclusion follows by Property 1. 3. By inspection of the rules of Table 2 it is easy to verify that B-contexts can grow only by applications of (if 0) and (if 1) rules. So the conclusion follows directly by Lemma 7.

 • • •⊗σ n-times. We write N to mean N1. In particular the following still holds for STA B : Strings of boolean are represented by terms of the shape λcz.cb0(• • • (cbnz) • • •) where bi ∈ {0, 1}. Such terms are typable by the indexed type Si

	Natural numbers and strings of booleans Natural numbers are represented by Church numerals, i.e. n . = λs.λz.s n (z). Terms
	defining successor, addition and multiplication are typable by in-dexed types Ni . = ∀α.! Lemma 17. Let P be a polynomial and deg(P) its degree. Then
	there is a term P defining P typable as:	
	⊢ P :! deg(P) N ⊸ N 2deg(P)+1	
	8	2008/12/4

i (α ⊸ α) ⊸ α ⊸ α.

2008/12/4

A context is a set of assumptions of the shape x : σ, where all variables are different. We use Γ, ∆ to denote contexts.dom(Γ) = {x | ∃x : σ ∈ Γ} and Γ#∆ means dom(Γ) ∩ dom(∆) = ∅. x : A ⊢ x : A (Ax) ⊢ 0 : B (B0I) ⊢ 1 : B (B1I) Γ ⊢ M : σ Γ, x : A ⊢ M : σ (w) Γ, x : σ ⊢ M : A Γ ⊢ λx.M : σ ⊸ A (⊸ I) Γ ⊢ M : σ ⊸ A ∆ ⊢ N : σ Γ#∆ Γ, ∆ ⊢ MN : A (⊸ E) Γ, x1 : σ, . . . , xn : σ ⊢ M : µ Γ, x :!σ ⊢ M[x/x1, • • • , x/xn] : µ (m) Γ ⊢ M : σ !Γ ⊢ M :!σ (sp) Γ ⊢ M : A α / ∈ FTV(Γ) Γ ⊢ M : ∀α.A (∀I) Γ ⊢ M : ∀α.B Γ ⊢ M : B[A/α] (∀E)

2008/12/4

2008/12/4

2008/12/4

2008/12/4

2008/12/4

2008/12/4

2008/12/4

can be obtained by replacing booleans by words over booleans. In particular we can add to STA the type W and the following rules: STA B and Soft Linear Logic. STA has been introduced as a type assignment counterpart of Soft Linear Logic [START_REF] Lafont | Soft linear logic and polynomial time[END_REF]. STA B is an extension of STA by booleans constants. We now pose our attention to the question of which is the logical counterpart of such extension. We can add to SLL (or define by means of second order quantifier) the additive disjunction ⊕ and the rules to deal with it, which in a natural deduction style [START_REF] Della Rocca | Lambda calculus and intuitionistic linear logic[END_REF] are:

We can so define B = 1 ⊕ 1, where 1 is the multiplicative unit, and specialize the above rules to booleans:

It is worth noting that such rules do not change the complexity of SLL. In fact it is essential in order to obtain a logical system behaving as STA B to modify the above elimination rule allowing free contraction between contexts Γ and ∆. Hence we can modify it as:

We conjecture that the logical system obtained by adding the above modified rule to SLL behaves like STA B . In order to prove the polynomial space soundness for such a system we need to mimick in the cut elimination process the abstract machine mechanism of Section 3. For this reason it could be more interesting introduce proof-nets for such a system and study cut elimination in this framework.

A. Technical Proofs A.1 Proof of Substitution Lemma

The technical notion of height of a variable in a derivation will be useful in the proof of the Substitution Lemma.

Definition 14. Let (∇) Γ, x : τ ⊢ M : σ. The height of x in ∇ is inductively defined as follows:

1. if the last applied rule of ∇ is:

if the last applied rule of ∇ is:

then the heigth of x in ∇ is the max beetween the heights of xi in ∇ for 1 ≤ i ≤ k plus one. 3. Let x : τ ∈ Γ and let the last applied rule π of ∇ be:

Then the height of x in ∇ is the max between the heigths of x in ♦, 0 and 1 respectively plus one. 4. In every other case there is an assumption with subject x both in the conclusion of the rule and in one of its premises ♦. Then the height of x in ∇ is equal to the height of x in ♦ plus one.

Proof of Substitution Lemma. By induction on the height of x in ∇. Base cases (Ax) and (w) are trivial. The cases where ∇ ends by (⊸ I), (∀I), (∀E) and (⊸ E) follow directly from the induction hypothesis.

Let ∇ ends by (sp) rule with premise (∇ ′) Γ ′ , x : µ ′ ⊢ M : σ ′ then by Lemma 2.3 ♦ ♦ ′′ which is composed by a subderivation ending with an (sp) rule with premise (♦ ′) ∆ ′ ⊢ N : µ ′ followed by a sequence of rules (w) and/or (m). By the induction hypothesis we have a derivation (′) Γ ′ , ∆ ′ ⊢ M[N/x] : σ ′ . By applying the rule (sp) and the sequence of (w) and/or (m) rules we obtain

with Γ = Γ ′ , x : µ. Then by the induction hypothesis there are derivations

By applying a (BE) rule we obtain a derivation () with conclusion:

By Lemma 2.3 ♦ ♦ ′′ ending by an (sp) rule with premise (♦ ′) ∆ ′ ⊢ N : µ ′ followed by a sequence of rules (w) and/or (m). Consider fresh copies of the derivation ♦ ′ i.e. (♦ ′ j) ∆ ′ j ⊢ Nj : µ ′ where Nj and ∆ ′ j are fresh copies of N and ∆ ′ (1 ≤ j ≤ m). By induction hypothesis there is a derivation

Since the heights of xj in i continue to be smaller than the height of x in ∇ we can repeatedly apply induction hypothesis to obtain a derivation

Finally by applying repeatedly the rules (m) and (w) the conclusion follows.

A.2 Proof of Weighted Substitution Lemma

It suffices to verify how the weights are modified by the proof of Lemma 3. We will use exactly the same notation as in the lemma.

Proof of Weighted Substitution Lemma. Base cases are trivial and in the cases where ∇ ends by (⊸ I), (∀I), (∀E) and (⊸ E) the conclusion follows directly by induction hypothesis. If ∇ ends by (sp): δ(∇, r) = rδ(∇ ′ , r) and δ(♦, r) = rδ(♦ ′ , r). By the induction hypothesis δ(′ , r) ≤ δ(∇ ′ , r) + δ(♦ ′ , r) and applying (sp):

If ∇ ends by (BE): δ(∇, r) = max 0≤i≤2 (δ(∇i, r)) + 1. By induction hypothesis we have derivations δ(i, r) ≤ δ(∇i, r) + δ(♦, r) for 0 ≤ i ≤ 2. and applying a (BE) rule:

δ(, r) ≤ max 0≤i≤2 (δ(∇i, r)+δ(♦, r)) = max 0≤i≤2 (δ(∇i, r))+δ(♦, r)

If ∇ ends by (m): δ(∇, r) = δ(∇ ′ , r) and δ(♦, r) = rδ(♦ ′ , r).

Clearly δ(♦ ′ , r) = δ(♦ ′ j , r) so δ(′ , r) ≤ δ(∇ ′ , r) + mδ(♦ ′ , r) and since r ≥ rk(∇) then: δ(′ , r) ≤ δ(∇ ′ , r) + rδ(♦ ′ , r) = δ(∇, r) + δ(♦, r) Now the rules (m) and (w) leave the space weight δ unchanged hence the conclusion follows.