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1 Introduction

A recent research field in Theoretical Computer Science is the design of program-
ming languages with bounded computational complexity. In fact, guaranteeing and
certifying a limited resources usage is of central importance for various aspects of
computer science. A typical example is the one of a network constituted of small
and mobile devices with bounded computational resources that receive programs to
be executed from the network itself.
One of the more promising approaches to the design of programming languages with
bounded complexity is based on the use of λ-calculus as paradigmatic programming
language, and on the design of type assignment systems for λ-terms, where types
guarantee, besides the functional correctness, also the desired complexity bound.
So the complexity can be checked statically at compilation time, in ML style.
Useful tools for this aim are the so called light logics, derived from Girard’s Linear
Logic [Gir87], where cut elimination is bounded in time by the size of the proof.
In these logics a complete characterization of different complexity classes have been
given, considering proofs as programs and the cut-elimination as computational
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mechanism. The idea is to exploit the Curry-Howard isomorphism, and so to use
formulae of light logics as types for (extensions of) the λ-calculus, in such a way
that well typed terms inherit the good properties of their types, with respect to the
complexity bound.
Here we will describe some results inspired by Lafont’s Soft Linear Logic (SLL)
[Laf04], which is a subsystem of second-order linear logic with restricted rules for
exponentials, correct and complete for polynomial time computations. SLL has
been the starting point for the characterization of PTIME and PSPACE through
type assignment systems, presented respectively in [GR07] and [GMR08]. Here we
use a similar approach to characterize the complexity class NPTIME. But, in order
to give a complete description of our methodology, in this paper we will present
all the three results, in an incremental way. First we will present STA [GR07], a
type assignments system for λ-calculus, where types are a proper subset of SLL
formulae. This restriction is necessary to obtain the property of subject reduction,
which is essential for making statically both type assignment and type checking. A
term which can be typed in STA can be reduced to normal form in a number of
β-reductions polynomial in its lenght. Moreover all polynomial time functions can
be computed by terms typable in this system. So STA is correct and complete for
(F)PTIME.
STA admits polynomial iterations, so we will use it as starting point for the charac-
terization of polynomial space, through STAB [GMR08], a type assignment system
obtained from STA by increasing the set of types by a type B for booleans, and the
λ-calculus by two boolean constants and a conditional constructor. STAB assigns
types to terms in such a way that the evaluation of programs (closed terms of type
B) can be performed carefully in polynomial space. Moreover all polynomial space
decision problems can be computed by programs of this system. So STAB is correct
and complete for PSPACE.
The characterization of the complexity class NPTIME is made through the type
assignment system STA+. The λ-calculus is extended by a non-deterministic choice
operator +, and STA+ is just STA plus by a rule for dealing with this new term
constructor. The typing of the + operator is inspired by the logical rule proposed
by Maurel in order to deal with non determinism inside Light Affine Logic (LAL)
[Mau03]. Obviously the obtained language is no more confluent, but it preserves
both the properties of subject reduction and strong normalization, when the defi-
nition of strong normalization is revised taking into account that a term can have
more than one normal form. If a term can be typed in STA+, then each one of its
normal forms can be reached in a number of reduction steps which is polynomial
in the size of the term, if the reduction is performed carefully. Moreover we show
that every non deterministic polynomial time decision problem can be simulated by
a term typable in STA+. Then STA+ is correct and complete for NPTIME.
The soundness and completeness proofs for the three systems are based on the same
methodology, in particular the completeness is proved, in all cases, by coding all
Turing machines characterizing the different computational classes by terms typable
in the corresponding type assignment system.
The paper is organized as follows. In Section 2 the Soft Linear Logic is recalled. In
Section 3 the type assignments STA is presented, and the technical problems to be
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U ` U
(Id)

Γ ` U V,∆ ` Z

Γ, U ( V,∆ `: Z
(( L) Γ ` U

Γ ` ∀α.U
(∀R)

Γ ` U ∆, U ` V

Γ,∆ ` V
(cut)

Γ, U ` V

Γ ` U ( V
(( R)

Γ, U [V/α] ` Z

Γ,∀α.U ` Z
(∀L)

Γ ` U
!Γ `!U

(sp)
Γ,

n︷ ︸︸ ︷
U, ..., U ` V n ≥ 0

Γ, !U ` V
(m)

Table 1
Soft Linear Logic

solved in order to derive it from SLL are briefly discussed. Section 4 contains the
type assignment system STAB. Moreover the two Sections 3 and 4 contain a sketch
of the proof methodology used for proving the correctness and completeness of the
two systems with respect to (F)PTIME and PSPACE respectively. In Section 5 the
type assignment system STA+ is presented, and its correctness and completeness
with respect to NPTIME are proved.

2 Soft Linear Logic

Soft Linear Logic (SLL) has been introduced by Lafont [Laf04], in order to cap-
ture the polynomial time complexity class PTIME. Here we will consider just the
fragment with the connectives (,∀ and the modality !, being it sufficient for our
aims.

Definition 2.1

i) The set of formulae of SLL is defined by the following grammar:

U, V, Z ::= α | U ( U | ∀α.U |!U

where α ranges over a countable set of variables.

ii) A SLL context is a multiset of SLL formulae. Contexts are ranged over by Γ,∆.

iii) The set of SLL rules prove judgements of the shape:

Γ ` U

where Γ is a context and U is a formula. The rules are given in Table 1.

SLL is a restriction of Girard’s Linear Logic (LL) [Gir87], obtained in two steps.
First, by replacing the rules of LL dealing with the modality !:

!Γ ` U
!Γ `!U

(!R)
Γ, V ` U

Γ, !V ` U
(!L)
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and the structural rules of weakening and contraction:

Γ ` U
Γ, !V ` U

(W )
Γ, !V, !V ` U

Γ, !V ` U
(C)

by the three rules of multiplexor, soft promotion and digging:

Γ,

n times︷ ︸︸ ︷
U, . . . , U ` Z

Γ, !U ` Z
(mpx) Γ ` U

!Γ `!U
(sp)

Γ, !!V ` U

Γ, !V ` U
(digging)

Note that the (mpx) rule is parametric in the number n, which is its rank. The
resulting system is equivalent to LL. The weakening rule is a particular case of
multiplexor, with n = 0. The contraction rule can be obtained by (mpx) followed
by (digging).
The second step is to erase the rule (digging): the result is that there isn’t anymore
the linear correspondence

!U (!!U.

As consequence, the modality ! can be used for counting the number of duplications
of (sub)proofs.

In order to give the complexity properties of SLL, we need to recall some impor-
tant notions. First of all, we assume that the reader know the notion of proof-nets, a
representation of proofs as graphs. Let π be a SLL proof-net: its size is the number
of its nodes, its rank is the maximum rank of a multiplexor in it, and its degree is
the maximum number of nested applications of rule (sp) in it. The cut elimination
procedure applied on a proof-net π takes a number of steps ≤ |π| × kd, where |π|
is the size of π, and k and d are its rank and degree, respectively. So, assuming
the proof-nets as computational model, and the cut-elimination as computational
rule, SLL is correct for polynomial time computations, once the degree is fixed. The
completeness is achieved through a coding of the polynomial time decision prob-
lems computed by a Turing Machines as SLL proof-nets and it is based on the fact
that data (Church numerals and boolean strings, which are used for representing
respectively iterators and input) can be coded as proof-nets with degree 0. So the
following theorem holds.

Theorem 2.2 ([Laf04]) SLL is correct and complete for PTIME.

3 A type assignment for (F)PTIME

A standard decoration of SLL proofs by λ-terms does not work for our purposes,
since it has two main problems. First, subject reduction does not holds for it,
since there is not a direct correspondence between cut-elimination in proofs and
β-reduction. The problem is not typical of SLL, but it arises for all the decorations
of light logics proofs by λ-terms made in the standard way. For a discussion about
this problem, the reader can refer to [BT04], where it is discussed for the Light
Affine Logic, and [GR07], where the problem for Soft Linear Logic is presented.
Very roughly speaking, SLL proof-nets have the property that only boxes can be
duplicated. In the decorated calculus, a box corresponds to a λ-term typed by a
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modal type starting from all modal assumptions. So the property of substitution
does not work in general, but it depends not only on types but also on the shape
of the context. The unpleasant consequence is that the subject reduction does not
hold. Moreover a type assignment for λ-calculus designed as decoration of a sequent
calculus is not easy to deal with, since terms are built through substitutions, and
so it is not possible to carry out proofs by induction on the structure of terms.
In this section we present STA, a type assignment system in natural deduction,
based on SLL, which enjoys the subject reduction property, and which inherits from
SLL the good computational properties. In order to obtain subject reduction, terms
are built in a linear way, and possible duplications of subterms are obtained through
the rules dealing with the modality, namely soft promotion and multiplexor. This
is possible thanks to a restriction of the SLL formulae, given in the next definition.

Definition 3.1

i) Terms of λ-calculus are defined by the following grammar:

M, N, Q ::= x | MM | λx.M

where x ranges over a countable set of variables.

ii) The reduction relation →β is the contextual closure of the following rule:

(λx.M)N→β M[N/x]

where, as usual, M[N/x] is the capture free substitution of all the free occurrences
of x in M by N . →∗

β is the reflexive and transitive closure of →β .

iii) The set T of soft types is defined as follows:

A,B, C ::= α | σ ( A | ∀α.A (Linear Types)

σ, τ, ρ, µ, ν ::= A |!σ

where α ranges over a countable set of type variables.

iv) A context is a set of assumptions of the shape x : σ, where x is a variable and
σ is a soft type. Variables in a context are all distinct. By abuse of notation,
contexts are ranged over by Γ,∆,Θ.

v) The Soft Type Assignment System (STA) proves statements of the shape:

Γ ` M : σ

where Γ is a context, M is a term of λ-calculus, and σ is a soft type. The rules are
given in Table 2.

FV (M) denotes the set of free variables of the term M. σ[A/α] denotes the capture
free substitution of all occurrences of the type variable α by the linear type A: note
that this kind of substitution preserves the correct syntax of types. Proofs in STA
are denoted by Π,Σ,Φ,Ψ. The statement Π � Γ ` M : σ denotes a proof Π with
conclusion Γ ` M : σ. As usual ` M : σ is a short for ∅ ` M : σ.
Some comments follow. STA is not a true natural deduction system, since rule (m)
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x : A ` x : A
(Ax) Γ ` M : σ

Γ, x : A ` M : σ
(w)

Γ, x : σ ` M : A

Γ ` λx.M : σ ( A
(( I)

Γ ` M : σ ( A ∆ ` N : σ Γ#∆
Γ,∆ ` MN : A

(( E)

Γ, x1 : σ, . . . , xn : σ ` M : µ

Γ, x :!σ ` M[x/x1, · · · , x/xn] : µ
(m) Γ ` M : σ

!Γ ` M :!σ
(sp)

Γ ` M : A α /∈ FTV(Γ)
Γ ` M : ∀α.A

(∀I) Γ ` M : ∀α.B
Γ ` M : B[A/α]

(∀E)

Table 2
The Soft Type Assignment system STA

performs a substitution in the subject, but it replaces variables by variables, so the
size of the term is preserved, and induction on it can be used. Note that rule (Ax)
and (w) introduce variables with linear type, rule (( I) introduces the binding λ

on a term with a linear type and rule (( E) builds a term with a linear type. So,
the only way of duplicating a subterm is by using the rule (sp).

Property 1 Π�Γ ` M :!σ implies Π can be tranformed (commuting some rules) in
a derivation of the shape:

Γ′ ` M : σ
!Γ′ ` M :!σ

(sp)

followed by rules (w) and (m) working on variables not occurring in M.

The consequence of the previous property is that a term with a modal type corre-
sponds always to a box (but some rules with no computational meaning). So the
following fundamental results hold:

Theorem 3.2

i) (Subject reduction) Γ ` M : σ and M→β N imply Γ ` N : σ.

ii) (Strong Normalization) Γ ` M : σ, for some Γ and σ, implies M is strongly
normalizing.

As far as the complexity results are concerned, we will prove that STA is correct
and complete for (F)PTIME. Namely every term typable in STA reduces to normal
form in a number of β-reduction steps which is polynomial in the size of the term,
and moreover every polynomial time Turing machine can be coded by a λ-term
typable in STA.
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3.1 Deterministic polynomial time soundness

In order to prove the complexity results, we need to define some measures both
of the terms and of the type derivations. The formal definition of measures is in
the Appendix. Roughly speaking, |M| and |Π| are the size of the term M and of
the derivation Π respectively, i.e., the number of symbols of M and the number of
rules of Π. The rank of a multiplexor is the number of variables xi in it, such that
xi ∈ FV(M) (using the notation of Table 2). rk(Π), the rank of the derivation Π,
is the maximum rank of a multiplexor rule in Π. The weight of Π with respect to
r, W(Π, r), is a static upper bound of the size of all the proofs obtained during the
normalization process of Π, in case every box is duplicated at most r times. Notice
that, since the linear construction of terms by the system, the number of possible
duplications is limited by the degree of Π, d(Π), which is the maximum nesting of
applications of rule (sp) in it.
It is important to notice that the trasformation of proofs defined in the text of
Property 1 never increases the measures of a derivation. The relations between
these measures are shown in the next lemma.

Lemma 3.3 Let Π � Γ ` M : σ. Then:

1. rk(Π) ≤ |M| ≤ |Π|.
2. W(Π, 1) ≤ |M|.
3. W(Π, r) ≤ rd(Π)W(Π, 1)

4. x :!qA ∈ Γ implies no(x, M) ≤ (rk(Π))q, where no(x, M) denotes the number of free
occurrences of x in M.

The weight of a proof decreases when a β-reduction is performed.

Lemma 3.4 Let Π � Γ ` M : σ and M→β M′. There is a derivation Π′ � Γ ` M′ : σ,
with rk(Π) ≥ rk(Π′), such that if r ≥ rk(Π′) then W(Π′, r) < W(Π, r).

As consequence, the following theorem holds.

Theorem 3.5 (Deterministic Polynomial Time Soundness) Let Π � Γ ` M :
σ, then M can be evaluated to normal form in a number of β-reduction steps ∈
O(|M|(d(Π)+1)).

So every typing of M is an upper bound of its reduction complexity. Since every
β-reduction step can be carried out on a Turing machine in a number of steps
polynomial in the size of the term, we have the soundness with respect to PTIME.

3.2 Deterministic polynomial time completeness

The completeness is proved by showing that every deterministic Turing machine
(DTM) working in polynomial time can be programmed by terms typable in STA.

Let ◦ denote composition. In particular M ◦ N stands for λz.M(Nz) and M1 ◦ M2 ◦
· · · ◦ Mn stands for λz.M1(M2(· · · (Mnz))). Tensor product is definable as σ ⊗ τ

.=
∀α.(σ ( τ ( α) ( α. In particular 〈M, N〉 stands for λx.xMN. Note that projectors
are definable as usual beacause STA is an affine system. n-ary tensor product can

7
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be easily defined through the binary one and we use σn to denote σ⊗· · ·⊗σ n-times.

Natural numbers are represented by Church numerals, i.e. n
.= λs.λz.sn(z).

Terms defining successor, addition and multiplication are typable by indexed types
Ni

.= ∀α.!i(α ( α) ( α ( α, where !iσ is short for !...!︸︷︷︸
i

σ. We write N to mean

N1. In particular the following holds for STA:

Lemma 3.6 Let P be a polynomial and deg(P ) be its degree. Then there is a term
P defining P typable as:

` P :!deg(P )N ( N2deg(P )+1

As usual, booleans are represented by the terms: 0
.= λxy.x, 1 .= λxy.y and

if x then M else N
.= xMN, where 0 and 1 denotes true and false respectively. The

usual boolean functions are typable using the type B .= ∀α.α ( α ( α.
Note that, for fresh x, we can conclude Γ,∆, x : B ` if x then M else N : σ from
Γ ` M : σ and ∆ ` N : σ only if Γ#∆. (Here, the multiplicative context management
is crucial, and this differs from the systems Λ+ and STAB that we shall study in
short while.) In particular the following holds for STA:

Lemma 3.7 Each boolean total function f : Bn → Bm, where n, m ≥ 1, can be
λ-defined by a term f typable in STA as ` f : Bn ( Bm.

Strings of boolean are represented by terms of the shape λcz.cb0(· · · (cbnz) · · · )
where bi ∈ {0, 1}. Such terms are typable by the indexed type Si

.= ∀α.!i(B (
α ( α) ( α ( α. Again, we write S to mean S1. Moreover there is a term len
typable as ` len : Si ( Ni that given a string of boolean returns its length. Note
that the data types defined above can be typed in STA by derivations with degree
0. In what follows we will refer to the next definition.

Definition 3.8 A decision problem D : {0, 1}∗ → {0, 1} is definable in STA by a
term M typable as ` M :!nSm ( B for some m,n ∈ N if and only if for each input
string s ∈ {0, 1}∗ definable by s:

D(s) = 0 ⇐⇒ Ms→∗
β 0.

DTM configurations can be encoded by terms of the shape:

λc.〈cbl
0 ◦ · · · ◦ cbl

n, cbr
0 ◦ · · · ◦ cbr

m, Q〉

where cbl
0 ◦ . . . ◦ cbl

n and cbr
0 ◦ . . . ◦ cbr

n are respectively the left and right hand-side
words of the DTM tape and Q is a tuple of length q encoding the state. Such terms
can be typed using the indexed type:

TMi
.= ∀α.!i(B ( α ( α) ( ((α ( α)2 ⊗Bq)

We can define terms dealing with DTM configurations. In particular for every
polynomial R we have a term: ` InitR :!deg(R)+1Si ( TM2deg(R)+1 that given an
input string s, returns a DTM configuration in the initial state q0 with the tape of

8
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lenght R(|s|) filled by s. Moreover we have a term: ` Tr : TMi ( TMi defining
the transition function and a term: ` Ext : TMi ( B that returns either 0 or 1 if
the given configuration is accepting or rejecting respectively.
So we can build terms of the shape:

DTMP
.= λs.Ext(P (len s) Tr (InitP s))

defining problems decidable by DTM working in polynomial time P .

Theorem 3.9 (PTIME Completeness) A decision problem D decidable by a
DTM M in polynomial time P is λ-definable by a term DTMP typable in STA as:

` DTMP :!deg(P )+2S ( B

Analogously, we can define a term ` ExtF : TMi ( Si extracting a string from
a configuration, so we can build terms of the shape:

DTMFP
.= λs.ExtF(P (len s) Tr (InitP s))

defining functions computable by DTM working in polynomial time P . So the
completeness for FPTIME can also be achieved.

4 A type assignment for PSPACE

We present STAB, a type assignment for polynomial space decision problem, which
is built on the top of STA. For this, we add a type B for Booleans and we extend the
language with a conditional construction if M then N0 else N1 with an additive
typing rule.

Definition 4.1

(i) The set ΛB of terms is defined by the following grammar:

M, N, P, V ::= x | 0 | 1 | λx.M | MM | if M then M else M

where x ranges over a countable set of variables and 0 and 1 are booleans.

(ii) The set TB of B types is defined as follows:

A ::= B | α | σ ( A | ∀α.A (Linear Types)

σ ::= A |!σ

where α ranges over a countable set of type variables and B is the only ground
type.

The typing rules of STAB are the ones of STA with the typing rules for Boolean,
which are written in Table 3.

The computational meaning of the λ-abstraction and of the conditional is con-
veyed by the reduction rule →βδ thus.

9
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` 0 : B
(B0I) ` 1 : B

(B1I)

Γ ` M : B Γ ` N0 : A Γ ` N1 : A
Γ ` if M then N0 else N1 : A

(BE)

Table 3
The Soft Type Assignment system with Booleans

Definition 4.2 The reduction relation →βδ⊆ ΛB ×ΛB is the contextual closure of
the following rules:

(λx.M)N→β M[N/x]

if 0 then M else N →δ M

if 1 then M else N →δ N

→∗
βδ denotes the reflexive and transitive closure of →βδ.

The other notions are very similar to the ones presented in the previous sections
and we refer to them in this section.

Theorem 4.3

i) (Subject reduction) Let Γ ` M : σ and M→βδ N. Then Γ ` N : σ.

ii) (Strong Normalization) Let Γ ` M : σ then M is strongly normalizing with
respect to the reduction relation →βδ.

4.1 Polynomial space soundness

Because of the additive rule (BE), there is an exponential length derivation in
STAB. Indeed, consider the following term

(λf.λz.fn(z))(λx. if x then x else x)0

A call by value strategy provides an exponential derivation length in n. How-
ever, a leftmost outermost computation with a careful bookkeeping evaluates the
above term in polynomial time. This observation leads us to define an abstract
machine KC

B, which evaluates programs, i.e., closed terms of type B. The machine
is reminiscent of Krivine’s one [Kri07], and is described in Table 4. There are two
kinds of context. The first one is the m-context which is noted A. It is used to store
variable assignments which come from β-reductions, see the rules (β) of Table 4.
So, a variable substitution is performed only if it is necessary, see the rule (h). The
second kind of context is a B-context. The machine pushes nested conditionals in
the B-context in order to be able to jump to the right conditional branch, avoiding
thus useless and costly computation, see both rules ( if 0) and ( if 1). The two
contexts are formally defined in the next definition.

Definition 4.4

10
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C,A |= b ⇓ b
(Ax)

C,A@{x′ := N} |= M[x′/x]V1 · · · Vm ⇓ b∗

C,A |= (λx.M)NV1 · · · Vm ⇓ b
(β)

{x := N} ∈ A C,A |= NV1 · · · Vm ⇓ b

C,A |= xV1 · · · Vm ⇓ b
(h)

C[( if [◦] then N0 else N1 )V1 · · · Vm],A |= M ⇓ 0 C,A |= N0V1 · · · Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · · Vm ⇓ b
( if 0)

C[( if [◦] then N0 else N1 )V1 · · · Vm],A |= M ⇓ 1 C,A |= N1V1 · · · Vm ⇓ b

C,A |= ( if M then N0 else N1 )V1 · · · Vm ⇓ b
( if 1)

(*) x′ is a fresh variable.

Table 4
The Abstract Machine KC

B

(i) An m-context A is a sequence of variable assignments of the shape xi := Mi

where all variables xi are distinct (1 ≤ i ≤ n), and its size, |A|, is
∑

1≤i≤n |Mi|+
i.

(ii) Let ◦ be a distinguished symbol. A B-contexts is defined by the following
grammar:

C[◦] ::= ◦ | ( if C[◦] then M else N )V1 · · · Vn

and its size |C[◦]| is the size of the term obtained by replacing the symbol ◦ by
a variable.

A computation of the abstract machine is abbreviated by ∇ :: C,A |= M ⇓ b
where ∇ is a derivation tree, in which each node is a configuration of the shape
C′,A′ |= N ⇓ b′. In particular, the conclusion of the derivation is the initial con-
figuration. |= M ⇓ b is a short for [◦], ε |= M ⇓ b. The machine computes the →βδ

reduction, as proved by the next lemma, where, if A = [x1 := N1, . . . , xn : Nn], (M)A

is M[Nn/xn][Nn−1/xn−1] · · · [N1/x1]. In particular the machine follows the leftmost
outermost reduction strategy.

Lemma 4.5 i) Let Π� ` M : B and ∇ ::|= M ⇓ b. For each C,A |= N ⇓ b′ ∈ ∇

M→∗
βδ (C[N])A →∗

βδ b

ii) Let M be a program, i.e., ` M : B. Then |= M ⇓ b.

The size of a configuration C,A |= M ⇓ b is the sum |C|+ |A|+ |M|. We define the

11
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space used by the abstract machine during the evaluation ∇ of a program to be the
maximal size of a configuration in ∇. This space usage is clearly related to Turing
machines. The next lemma gives a bound on the dimensions of all the components
of a machine configuration, namely the term, the m-context and the B-context.

Lemma 4.6 Let M be a closed term, Π� ` M : B where d(Π) = d, and ∇ :: |= M ⇓ b.
Then for each intermediate machine configuration C,A |= N ⇓ b′:

(i) |A| ≤ 2|M|d+2

(ii) |N| ≤ 2|M|2d+2

(iii) |C| ≤ 2|M|3d+3

The previous lemma is based on the observation that each term occurring in
A is an instance of a subterm of M. Since, by Lemma 4.5, for each configuration
C,A |= N ⇓ b′, (C[N])A is a reduct of M and d is an upper bound on the number of
subterms duplications during the reduction of M, the lemma follows. So we obtain
the following result.

Theorem 4.7 (Polynomial Space Soundness) Let Π� ` M : B. Then M can be
evaluated to normal form in space bounded by O(|M|O(d(Π))).

4.2 Polynomial space completeness

In what follows we use the fact that a polynomial space decision problem is com-
putable by a polynomial time Alternating Turing Machine (ATM) and vice-versa
[Sav70,CKS81]. We simulate a polynomial time ATM computation, following the
line of [LM94] and [LM97], by a recursion with substitution of parameters encoded
using higher type recursion. We consider the same representation of data types as
in STA, in particular data types are typable through derivations with degree 0. It
is worth noting that due to the presence of the (BE) rule it is possible to define the
usual boolean connectives with an additive management of contexts.
An ATM configuration can be viewed as a DTM configuration with an extra infor-
mation about the state. There are four kinds of state: accepting (A), rejecting (R),
universal (∧), existential (∨) . We can represent such information by tensor pairs of
booleans. A configuration is accepting, rejecting, universal or existential depending
on the kind of its state. We can encode ATM configurations by terms of the shape:

λc.〈cbl
0 ◦ · · · ◦ cbl

n, cbr
0 ◦ · · · ◦ cbr

m, 〈Q, k〉〉

where, as in the case of a DTM, cbl
0 ◦ . . .◦cbl

n and cbr
0 ◦ . . .◦cbr

n are respectively the
left and right hand-side words on the ATM tape, Q is a tuple of length q encoding
the state and k is the tensor pair encoding the kind of state. Such terms can be
typed using the following indexed type:

ATMi
.= ∀α.!i(B ( α ( α) ( ((α ( α)2 ⊗Bq+2)

12
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It is easy to adapt the terms dealing with DTM to the case of ATM. In particular:

`InitR :!deg(R)+1Si ( ATM2deg(R)+1 Initial configuration

`Tr1, Tr2 : ATMi ( ATMi Transition functions
`Ext : TMi ( B Result State Extraction

Moreover we have a term: Kind typable as ` Kind : ATMi ( B2 which takes a
configuration and return its kind.
Given an ATM M working in polynomial time we define, a recursive evaluation
procedure evalPM, working in polynomial time P , which takes a string s and returns
0 or 1 if the initial configuration (with the tape filled with s) leads to an accepting
or rejecting configuration respectively. Without loss of generality we consider ATMs
with transition relation of degree two (at each step we consider two transitions).
Using the conditional it is easy to define a function α behaving as: α(A, M1, M2) = A,
α(R, M1, M2) = R, α(∧, M1, M2) = M1 ∧ M2 and α(∨, M1, M2) = M1 ∨ M2.
We would now define evalPM as an iteration of an higher order StepM function over
a Base case.

Base
.= λc.(Kind c)

StepM
.= λh.λc.α((Kind c), (h(Tr1M c)), (h(Tr2M c)))

It is easy to verify that such terms are typable as: ` Base : TMi ( B2 and
` StepM : (TMi ( B2) ( TMi ( B2 respectively. Hence, the evaluation
function of an ATM M working in polynomial time P is definable as:

evalPM
.= λs.Ext((P (len s) StepM Base)(InitP s))

From the well known result of [CKS81] we can conclude.

Theorem 4.8 (PSPACE Completeness) A decision problem D decidable by a
DTM M in polynomial space P is definable by a term evalPM typable in STAB as:

` evalPM :!deg(P )+2S ( B

The characterization of FPSPACE could be reached by enriching the calculus
with strings of booleans and the type assignment system by a new type and rule
for dealing with them. Moreover the machine could be extended to deal with closed
terms typed by the type of the boolean strings. The extension does not present any
particular problem, but it would be technically very boring.

5 A type assignment for NP

We here present STA+, a type assignment system characterizing non deterministic
polynomial time computations, which is built on the top of STA. We need to extend
the language by a non deterministic construction M + N, and to deal carefully with
the corresponding reduction rules, while the set of types remains unchanged.

Definition 5.1

13
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Γ ` M : A Γ ` N : A
Γ ` M + N : A

(sum)

Table 5
The (sum) rule.

i) The set Λ+ of terms is defined by the following grammar:

M, N, P, V ::= x | MM | λx.M | M + M

where x ranges over a countable set of variables.

ii) The Non Deterministic Soft Type Assignment System (STA+) proves statements
of the shape:

Γ ` M : σ

where Γ is a context, M is a term, and σ is a soft type. STA+ is obtained by
adding to the rules of STA the (sum) rule pictured in Table 5.

The following property still holds for STA+.

Property 2 Π � Γ ` M :!σ implies Π can be transformed (commuting some rules)
in a derivation of the shape:

Γ′ ` M : σ
!Γ′ ` M :!σ

(sp)

followed by rules (w) and (m) working on variables not occurring in M.

The operational behaviour of Λ+ is described in the following definition.

Definition 5.2 The reduction relation →βγ⊆ Λ+×Λ+ is the contextual closure of
the following rules:

(λx.M)N→β M[N/x]

M + N→γ M

M + N→γ N

→∗
βγ denotes the reflexive and transitive closure of →βγ .

The calculus Λ+ equipped with the reduction βγ is non confluent. In particular
a term M can have more than one normal form. But we can extend to it in a natural
way the notion of strong normalization. A term M is βγ-strongly normalizing if
every reduction sequence starting from it stops. Then we can prove that the system
enjoys the desired key properties.

Property 3

i) (Subject reduction) Let Γ ` M : σ and M→βγ N. Then Γ ` N : σ.

ii) (Strong Normalization) Let Γ ` M : σ then M is strongly normalizing with
respect to the reduction relation →βγ.

The subject reduction property can be immediately derived by the corresponding
property of STA, since the definition of γ-reduction.

14
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5.1 Non deterministic polynomial time soundness

We are now interested in proving the soundness of STA+ with respect to non deter-
ministic computations. In order to prove it, we need to proceed in a similar way as
for PSPACE, and refer to a particular evaluation of terms. In fact, some βγ reduc-
tion sequence can use both time and space exponential in the size of the initial term,
as showed by the following example. Let M ≡ n((λx.zx+ zx)I), where n is a Church
numeral. If we first β-reduce M according to an innermost strategy, after n+2 steps
we obtain a term with a number of γ-redexes which is exponential in n. In order to
obtain the desired result, we need both to perform the reduction in an outermost
way, and moreover to perform the substitutions, arised by the β-reduction, only
when necessary. The abstract reduction machine KNDC

B defined in Table 6 does the
required job. In fact every substitution is made, by the rule (h), only on the head
occurrence of a variable, thanks to the m-context A. Moreover, thanks to the rules
(L) and (R) a γ-reduction cannot be postponed, but it is immediately performed
when it appears in head position. As far as the space of an evaluation is concerned,
this can be measured thanks to the context C, which is defined by the following
grammar:

C ::= [◦] | λx.C[◦] | xM1...Mi[◦]Mi+1...Mn (1 ≤ i ≤ n)

Note that, while in the PSPACE case we used a machine reducing only well typed
terms, this new machine works on all Λ+, and so it can run forever, in some cases.
The strong normalization of terms in STA+ assures us that for a well typed term
the machine always stops. An example of a running of the machine is given in Table
7. The following lemma is the key tool for the soundness proof. We will freely use
the notions and notations introduced in the previous section.

Lemma 5.3

i) ∇ :: [◦], ε |= M ⇓ N and C,A |= M′ ⇓ N′ ∈ ∇ imply M→∗
βγ (C[M′])A →∗

βγ (C[N′])A →∗
βγ

N where N is a normal form of M.

ii) ∇ :: [◦], ε |= M ⇓ N and C,A |= M′ ⇓ N′ ∈ ∇ imply (M′)A →∗
βγ N′ where N′ is a

normal form.

Proof. Easy, by inspecting the rules of the machine. 2

The above lemma can be further refined.

Lemma 5.4 ∇ :: [◦], ε |= M ⇓ N implies M →∗
βγ N where N is a normal form of M.

The computation can be carried out in a number of βγ-reduction equal to number
of applications of rules (β), (L) and (R) in ∇.

Proof. Easy, by inspecting the rules of the machine. 2

The analogous of Lemma 3.3 holds, thanks to a careful definition of the weight.

Lemma 5.5 Let Π � Γ ` M : σ. Then:

1. rk(Π) ≤ |M| ≤ |Π|.
2. W(Π, 1) ≤ |M|.
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C[λx.[◦]],A |= M ⇓ N

C,A |= λx.M ⇓ λx.N
(λ)

C,A@{x′ := P} |= M[x′/x]V1 · · · Vm ⇓ N x′ fresh
C,A |= (λx.M)PV1 · · · Vm ⇓ N

(β)

(∗) C[x[◦]V2 · · · Vm],A |= V1 ⇓ N1 · · · C[xN1 · · · Nm−1[◦]],A |= Vm ⇓ Nm

C,A |= xV1 · · · Vm ⇓ xN1 · · · Nm
(h1)

{x := P} ∈ A C,A |= PV1 · · · Vm ⇓ N

C,A |= xV1 · · · Vm ⇓ N
(h)

C,A |= M0V1 · · · Vm ⇓ N

C,A |= (M0 + M1)V1 · · · Vm ⇓ N
(L)

C,A |= M1V1 · · · Vm ⇓ N

C,A |= (M0 + M1)V1 · · · Vm ⇓ N
(R)

(∗) x /∈ dom(A)

Table 6
The ND Abstract Machine KNDC

B

3. W(Π, r) ≤ rd(Π)W(Π, 1).

4. M ∈ Λ implies that for every r ≥ 1: |M| ≤ W(Π, r).

The following lemma relates the measures on type derivation and the dimension
of the computation in the machine.

Lemma 5.6 Π � Γ ` M : σ and ∇ :: [◦], ε |= M ⇓ N imply that the number of rules
applications in ∇ (but the rule (h)) is bounded by W(Π, r) for every r ≥ rk(Π).

Proof. In every rule but (h) the weight of the conclusion is strictly grater than the
weight of the premises. 2

The above lemma leads to the following.

Lemma 5.7 Let Π�Γ ` M : σ. Then M can be evaluated to every one of its normal
form in a number of βγ-reduction steps ∈ O(|M|(d(Π)+1)).

In order to extend the above lemma to a polytime result we need to consider
also the space used in the computation. This is one of the reasons why we have
introduced the machine KNDC

B.
The non deterministic behaviour of +, together with the outermost reduction, imply
that some occurrences of variables will be never replaced during the evaluation. E.g.,
in the term (λx.x+ x)M only one occurrence of x will be replaced by M. The notion
of effective occurrence gives an upper bound on the number of variables which could
be replaced.

Definition 5.8 The number of effective occurrences neo(x, M) of the variable x oc-
curring free in M is defined as:
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C1,A1 |= y ⇓ y

C0,A1 |= λy.y ⇓ λy.y

C0,A1 |= x2 ⇓ I

C0,A0 |= II ⇓ I

[◦],A0 |= w(II) ⇓ wI

[◦],A0 |= x1 ⇓ wI

[◦],A0 |= x1 + x1 ⇓ wI

[◦], ε |= (λx.x + x)(w(II)) ⇓ wI

I = λx.x

A0 = [x1 := w(II)]

A1 = A0@[x2 := λy.y]

C0 = w[◦]

C1 = w(λy.[◦])

Table 7
An example of computation in KNDC

B.

neo(x, x) = 1, neo(x, y) = 0, neo(x, M + N) = max{neo(x, M), neo(x, N)}

neo(x, MN) = neo(x, M) + neo(x, N), neo(x, λy.M) = neo(x, M),

A type derivation gives us some informations about the number of effective
occurrences of a free variable x in its subject M.

Lemma 5.9 Let Π � Γ, x :!nA � M : σ then neo(x, M) ≤ rk(Π)n.

The above lemma, by giving a bound on the number of effective occurrence
is useful to give a bound on the number of applications of the (h) rule in every
computation.
The size of a configuration C,A |= M ⇓ N is the sum |C|+ |A|+ |M|+ |N|. We define
the space of the abstract machine to be the maximal size of a configuration in a
computation.

Lemma 5.10 Let M be a closed term, Π� ` M : B where d(Π) = d, and ∇ :: [◦], ε |=
M ⇓ N. Then for each intermediate machine configuration C,A |= M′ ⇓ N′:

(i) |A| ≤ 2|M|d+2

(ii) |M′| ≤ 2|M|2d+2

(iii) |N′| ≤ |M|d+1

(iv) |C| ≤ 2|M|4d+4

Proof. Note that analogously to the machine KC
B of the previous section also for

KNDC
B each term occurring in A is an instance of a subterm of M.

(i) It follows directly by the above observation and by Lemma 5.6.

(ii) It follows from the previous point and the fact that Lemma 5.9 gives a bound
on the number of applications of the (h) rule on every variable in A.

(iii) It follows from the fact that N′ is a normal form so it is a term in Λ and we
can apply Lemma 5.5.4.

(iv) It follows from the fact that the only rules that make the context C grow are
the rules (λ) and (h1). The case of (λ) rule is simple while the previous point
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can be used in the case of rule (h1).
2

As consequence, the following lemma holds.

Lemma 5.11 Let Π � Γ ` M : σ, Then M can be evaluated to normal form in space
bounded by O(|M|O(d(Π))).

From the above lemma and Lemma 5.7 we can conclude the following.

Theorem 5.12 (Non Deterministic Polynomial Time Soundness) Let Π �

Γ ` M : σ, then M can be evaluated to every one of its normal forms by a non
deterministic Turing machine in time ∈ O(|M|O(d(Π))).

5.2 Non deterministic polynomial time completeness

We consider the same representation of data types as in STA, in particular data
types are typable through derivations with degree 0. The following is the adaptation
to the case of STA+ of Definition 3.8.

Definition 5.13 A decision problem D : {0, 1}∗ → {0, 1} is definable in STA+ by
a term M typable as ` M :!nSm ( B for some m,n ∈ N if and only if for each input
string s ∈ {0, 1}∗ definable by s:

D(s) = 0 ⇐⇒ there exists a βγ-normal form of M equal to 0.

A configuration of a non-deterministic Turing machine (NDTM) is identical
to a configuration of a deterministic Turing machine. So we can encode NDTM
configurations by terms of the shape:

λc.〈cbl
0 ◦ · · · ◦ cbl

n, cbr
0 ◦ · · · ◦ cbr

m, Q〉

which can be typed again using the indexed type:

TMi
.= ∀α.!i(B ( α ( α) ( ((α ( α)2 ⊗Bq)

Analogously to the case of a DTM, we have terms for dealing with NDTM config-
urations. In particular we have the following terms introduced in Section 3.1.

`InitR :!deg(R)+1Si ( TM2deg(R)+1 Initial configuration

`Ext : TMi ( B Result State Extraction
`ExtF : TMi ( Si Result Tape Extraction

In fact, what distinguish a NDTM by a DTM is that the behaviour of a NDTM is
determined by a transition relation while the behaviour of a DTM is determined by
a transition function. We have seen that every transition function is definable by a
term typable as ` Tr : TMi ( TMi. Hence, we can define a transition relation by
a term NDTr defined as:

NDTr
.= Tr1 + · · ·+ Trn
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Obviously the case n = 1 coincide with the case of a transition function. The term
NDTr is typable using the (sum) rule as:

` NDTr : TMi ( TMi

So we can build terms of the shape:

NDTMP
.= λs.Ext(P (len s) NDTr (InitP s))

defining problems decidable by NDTM working in polynomial time P .

Theorem 5.14 (NPTIME Completeness) A decision problem D decidable by
a NDTM M in polynomial time P is definable by a term NDTMP typable in STA+

as:
` NDTMP :!deg(P )+2S ( B
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A Measures definition

Definition A.1

• The size |M| of a term M is defined as |x| = 1, |λx.M| = |M| + 1, |MN| = |M + N| =
|M|+ |N|+ 1, | if M then N0 else N1 | = |M|+ |N0|+ |N1|+ 1.

• The size |Π| of a proof Π is the number of rules in Π.
• The rank of a rule (m), as defined in Table 2,

Γ, x1 : τ, ..., xn : τ ` M : σ

Γ, x :!τ ` M[x/x1, ..., x/xn] : σ
(m)

is the number k ≤ n of variables xi such that xi ∈ FV(M) (1 ≤ i ≤ n ). Let r be
the the maximum rank of a rule (m) in Π. The rank rk(Π) of Π is the maximum
between 1 and r.

• The degree d(Π) of Π is the maximum nesting of applications of rule (sp) in Π.
• Let r be a natural number. The weight W(Π, r) of Π with respect to r is defined

inductively as follows.
· If the last applied rule is (Ax), (B0I), (B1I) then W(Π, r) = 1.
· If the last applied rule is:

Σ � Γ, x : σ ` M : A

Γ ` λx.M : σ ( A
(( I)

then W(Π, r) = W(Σ, r) + 1.
· If the last applied rule is:

Σ � Γ ` M : σ
!Γ ` M :!σ

(sp)

then W(Π, r) = rW(Σ, r).
· If the last applied rule is:

Σ � Γ ` M : µ ( A Θ � ∆ ` N : µ

Γ,∆ ` MN : A
(( E)

then W(Π, r) = W(Σ, r) + W(Θ, r) + 1.
· If the last applied rule is:

Σ � Γ ` M : B Θ0 � Γ ` N0 : A Θ1 � Γ ` N1 : A
Γ ` if M then N0 else N1 : A

then W(Π, r) = max{W(Σ, r), W(Θ0, r), W(Θ1, r)}+ 1
· If the last applied rule is:

Σ � Γ ` N0 : A Θ � Γ ` N1 : A
Γ ` N0 + N1 : A

then W(Π, r) = max{W(Σ, r), W(Θ1, r)}+ 1
· In every other case W(Π, r) = W(Σ, r) where Σ is the unique premise derivation.
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