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Abstract

On one hand, automatics is based on proofs be-
fore the experiment in order to validate an a pri-
ori (partially) known deterministic interaction be-
tween the robot and its environment; in return,
the experimenter may expect the reliability of the
real system based on his model. On another hand,
statistical methods are used when the environ-
ment is supposed unknown; in return, the robot
may own adaptation capabilities but its behavior
is not predictable before the experiment and is
not necessary reliable.
We believe that the core issue for the first ap-
proach (that we call deterministic approach) relies
on the fact it cannot handle the variety of all the
possible situations in an unconstrain environment
(we call this the variability issue). Oppositely, we
think that the statistical approach is essentially
missing a validating stage before the experiment
in order to possibly falsify a proposed model.
The aim of this article is to suggest a methodol-
ogy that combines both a validating stage before
the experiment and the creation of models that
handle unknown environments. To do this, we
suggest models that own a validation statement
and internal parameters that fix a compromise
between falsifiability and robustness. For simple
cases, we show that it is possible to fix internal
parameters in order to meet the two antagonist
constraints. As a consequence, we stress that the
precision of the model has a lower bound and we
determine a Heisenberg-like uncertainty principle.

1. Context of our study

1.1 The variability challenge

Nowadays, several scientific areas are facing complexity.
Nature is complex by itself; artifacts made by humans
may be too. However, in some cases, scientific break-

throughs give a framework that breaks the complexity
and permit to reduce a physical phenomenon to a
model. For example, the trajectory of Earth (which is
a complex system by itself) around the Sun may be
well approximated by using only a few variables (mass,
velocity and position) and by neglecting the other
planets of the solar system. Those cases, which I call
”favorable cases”, gave birth to scientific theories (like
Newton’s theory of gravitation) which are falsifiable
in Popper’sense (Popper, 1968). In particular, these
theories enable the prediction of what will happen and
what will never happen in reality.

At the opposite, biological systems - even the simplest
- may not be reduced in such a way, mainly because
they are bound to variability. Variability appears when
an entity behaves differently when facing apparently
equal situations or when apparently equal entities
behaves differently when facing the same situation.
In these cases, a system or components of a system
cannot be easily isolated to model a phenomenon in an
analytical manner. It is interesting to draw a parallel
with the study of the behavior of a mobile robot
which interacts with a complex and a priori unknown
environment. Even if human have built the robot and
has programmed it, one must admit that it is not
possible to know precisely before the experiment what
it will do and will never do: the robot behavior is not
really predictable (see (Nehmzow and Walkery, 2003)).
Hence it is not possible to calculate the reliability of the
robot behavior before the experiment.

The biological and artifact cases share the fact that
something in the phenomenon remains unknown by the
scientist but cannot be neglected; this carries poor or
context dependent results. Ad hoc algorithms or learn-
ing capabilities may be implemented for artifacts to
cope with discovery of a priori unknown characteris-
tics of the environment. However, taking a very sim-
ple example from the reinforcement learning domain



(which owns theoretical results), we have shown (see
(Davesne and Barret, 2003)) that good results mainly
depend on the ability of the experimenter to create a
proper context to make the learning algorithm work in
reality, whereas results may not be predictable before
the experiment. It turns to be that, on one side, spe-
cific parameters or strategies authorize the fulfillment of
a task but, on an other side, they disable the possibil-
ity to come up with the variability of the encountered
situations: this may lead to context dependency.

1.2 General postulate and method - previous
work

We postulate that a behavior or a capability of an entity
is the result of an adaptation process in which the in-
teraction between the entity and its environment obeys
an action/reaction law and the entity fulfills an internal
constraint at any time. The entity may be modeled as
a set of real parameters Xi and the internal constraint
may be written as follows:

F (X1,X2, ..,Xn) = 0 (1)

During the interaction, discovery of new situations
tends to break the internal constraint (action of the
environment on the entity). The adaptation process
may be seen as the reaction of the entity in order to
fulfill the constraint. It implies an internal change of the
entity (a lot of Xi values may vary simultaneously). If
we suppose that the behavior of the entity only depends
on the knowledge of the Xi, the reaction process
implies a modification of the behavior of the entity.
Hence the modification of the internal parameters is not
task-driven but is due to the fulfillment of an internal
consistency law. The underlying idea suggests that
a task cannot be considered independently of the real
robot/real environment interaction.

If the interaction law is supposed to be known, it
is possible to determine before any experiment all the
reachable internal modifications of the entity. The the-
oretical framework consists on two separate steps:

• proof that it is possible to fulfill the law for every
reachable situation.

• determination of the set of environments for which
the internal modifications lead to favorable 1 behav-
iors of the entity.

A model is considered to be suitable if the first item is
fulfilled and the resulting set of environments is compat-
ible with the reality.

In (Davesne, 2004), we show that a very simple inter-
action law gives rise to reinforcement learning capabil-
ities for a navigation task of an artificial rat. We are

1In the experimenter’s point of view.

currently working on the implementation of a physics-
like relation between effectors and sensors of a robot to
improve the reliability of the environment recognition
process (see (Hazan et al., 2005)).

1.3 Purpose of this paper

In the former paragraph, we have briefly described
a general method that both includes a falsifiability
property for proposed models and permits to get ride
of the necessity to model the environment. The toy
example exhibited in (Davesne, 2004) shows that this
method may be carried out successfully. However, the
results are far from being satisfactory for one reason:
the set of appropriate environments is too tight to be
met by real environments. This is due to the purely
deterministic tools used to design the constraints on our
proposed model in (Davesne, 2004).

The core issue we are facing may be expressed as fol-
lows:

• on one side, our method discards the use of statisti-
cal tools to create a model because the proof steps
have to be performed before any experiment in the
real environment (data is supposed to be unavailable
when the model is designed).

• on the other side, we need a more flexible mathemati-
cal tool than the formulation of equation 1 to express
the constraints.

In this paper, we develop a proposal to extend the
general formulation of equation 1. Our tool is not
supposed to be used exclusively with our methodology
but keeps the notion of equality/difference which is
mandatory in the context of a falsifiable method.

Section 2. explains the underlying idea of our proposal.
A simple model is analyzed and the flexibility of our ap-
proach comparing to the deterministic and correlation
methods. Numerical resolution is then proposed. Sec-
tion 3. shows how our proposal might permit to handle
signal processing. Theoretical results are given.

2. Proposal for an alternative methodol-

ogy

2.1 Introduction

In this section, we will give a tool example that will il-
lustrate our methodology in the rest of this article. Our
model considers a linear relation between two real vari-
ables X1 and X2. We have chosen this example because
our method may be compared easily with:

• the correlation method used in statistics that permits
to determine the best line followed by a set of gath-
ered couples

(

xi
1, x

i
2

)

.



• the deterministic method that fixes the parameters of
the straight line before the experiment (see equation
2).

X1 + a.X2 + b = 0 (2)

Where a and b are fixed real values.
We will show in 2.3 that our methodology may com-

pares favorably with both the deterministic and the cor-
relation methods for this simple example.

2.2 Underlying idea

Let consider the following relation:

X1 + a.X2 + b ∈ [−L,L] (3)

Where X1, X2 and L are real values. The solutions of
this relation are included into a cylinder (figure 1 (a)).
When L tends to 0, the set of solutions may be depicted
as a straight line (see equation 2 and the straight line of
the figure 1 (a)).

Our way of modeling transposes the relation of equa-
tion 2. Let’s consider the probability distributions PX1

and PX2
made by gathering all the couples (X1,X2) that

are solutions of the relation 3. In this case, PX1
and PX2

are uniform distributions. Let be an integer n and an
other integer i ∈ {1, .., n}. Let xi

1 and xi
2 be two values

obtained by the ith random draw over PX1
and PX2

. Fi-
nally, consider the ith event Ei defined by the sentence
”the couple

(

xi
1, x

i
2

)

fulfills the relation 4”:

xi
1 + a.xi

2 + b ∈ [−L,L] (4)

We finally consider a validation statement V S1,
including a integer k ∈ {1, .., n}: ”at least k of the n
events Ei have appeared”.

In summary, our transposed model, so called Ma,b, is
composed of:

1. 2 integers n and k

2. a set of n relations 4, including a parameter L

3. a validation statement V S1

A solution of our model Ma,b is a set of n couples
(

xi
1, x

i
2

)

that fulfills the validation statement V S1

included in the model. Figure 1 (b) gives an example
of data that validates the model and figure 1 (c) gives
another example of data that falsifies it.

It is not difficult to verify that:

• any set of n couples
(

xi
1, x

i
2

)

that follows the classical
equation 2 is a solution of our model for any n, k and
L. Oppositely, a couple

(

xi
1, x

i
2

)

that is an element of
a solution of our model may not follow the equation
2. In particular, a model may be validated even if
k < n: this means that ”outliers” may be authorized.
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(a) Simple model, with a=1,b=1,L=0.1
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(b) Simple model validated, with a=1,b=1,L=0.1,n=5,k=4
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(c) Simple model rejected, with a=1,b=1,L=0.1,n=5,k=4

Figure 1: A simple model (a), a validation case (b) and re-

jection case (c) - gathered data are depicted by crosses.



• in our case, if n grows sufficiently and/or L tends
to 0 and k tends to n, the probability Pn,k that k
events Ei over the n possible events has appeared
diminishes and may be as small as we desire 2. At
the limit, and if k = n, the couples

(

xi
1, x

i
2

)

that are
part of a solution of our model follow the classical
equation 2.

So, our model is more flexible that the one of the stan-
dard equation because a larger set of couples

(

xi
1, x

i
2

)

may be part of a validated solution. The standard equa-
tion may be seen as a limit of our model when k = n, n
tends to infinity and L tends to zero.

2.3 Flexibility and falsifiability

We claim that, in the latter example, our model is falsi-
fiable because it is possible to fix n, k and L in order to
diminish Pn,k as near as we want of 0. This way of defin-
ing falsifiability seems to be appropriate because the
standard equation 2, which owns falsifiability properties,
is the limit of our model when Pn,k tends to 0 and k = n.

We will define in 3.4 a quantification of the falsifiabil-
ity of a model depending on Pn,k and show that it is not
necessary that k = n or L tends to 0 to make Pn,k tends
to 0. So, in our way of modeling, a highly falsifiable
model (associated with Pn,k near 0) is compatible with
unpreciseness and the existence of outliers. This is a
first step to exhibit falsifiable models of a phenomenon
that owns variability properties. At this stage, we may
say that our methodology compares favorably to the
deterministic method because it is more flexible and
keeps falsifiability.

But the most outstanding advantage offered by our
way of modeling consists on the possibility to both en-
rich the set of relations within the model as well as keep
falsifiability properties. Until now, a and b were con-
sidered to be fixed. What if we consider a new model
M which is a set of models Ma,b, each depicted by the
following items, when a and b vary ?

1. a varying couple (a, b)

2. n, k

3. a set of n relations 4, including a parameter L

4. a validation statement V S2

V S2 that goes with this new model M is specified as
follows: ”There exists at least one model Ma,b that is
validated under the validation statement V S1”.

2In our case, P
n,k may be calculated accurately and its limit

may be deduced mathematically. We do not include the proof in
this article, but French readers may refer to (Davesne, 2002), part
II.

This proposed model is clearly different from the one
that a priori fixes a and b. It is also reacher: the set
of possible solutions consists of all the vectors of couples
(

xi
1, x

i
2

)

i∈{1,..,n}
that validate V S2. It means that they

validate at least one Ma,b. But they may validate simul-
taneously many Ma,b (figure 2 (a)). And what about
falsifiability ? Is it possible to diminish Pn,k associated
with M as near of 0 as we want ? Figure 2 (b) shows
that:

• Pn,n for model M is greater than Pn,n for model
Ma,b.

• But when n increases, Pn,n for model M diminishes
regularly with the same slope than Ma,b. So Pn,n

seems to converge to 0 for Ma,b.

Hence, M seems 3 to be compatible with our definition
of falsifiability.

Another possibility offered by our method is depicted
in figure 2 (c): two disconnected sub-models Ma,b may
be validated simultaneously. It is possible, in this case,
because k ≤ n/2.

3. Example of a model analysis that uti-

lizes our methodology

3.1 Introduction

In this section, we study a little further the model M .
How is it possible to numerically determine the set of
solutions of the validation statement V S2 ? What is the
influence of the parameters n, k and L on the falsifiability
of the model and the robustness to noise ? Paragraphs
3.2, 3.3 and 3.4 try to answer those questions.

3.2 Computation of the validation statement
output

We are considering model M , which possesses the V S2

validation statement. The aim of this paragraph is
to show how to compute the couples (a, b) that fulfill
V S2. Let be D a set of n couples

(

xi
1, x

i
2

)

obtained by
gathering data during the experiment. We face here
an inverse problem in which all the couples (a, b) that
fulfill V S2 must be found. A couple (a, b) is a solution
if at least k of the n inequalities following relation 4 are
validated given D.

A good way for resolving this problem numerically is
to use interval analysis (see (Moore, 1979) for a gen-
eral presentation). More precisely, we use the SIVIA4

3We say ”seems” because we have not found how to compute
P

n,k mathematically. P
n,k is determined by selecting X2 with

random draws and watch if M is validated or falsified (see 3.2 for
the computation of the validation procedure).

4SIVIA stands for Set Inverter Via Interval Analysis.
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 are validated − with parameters n=10,k=4,L=0.1

Figure 2: Some properties of model M: many sub-models may

be validated (a), M seems to be falsifiable (b), Two discon-

nected sub-models may be simultaneously validated (c).

method (see (Jaulin and Walter, 1993)). The advan-
tages of such a method mainly lies on the fact that:

• the set of solutions is approximated by two sets that
give with guaranty inner and outer bounds of this
set.

• the set of solutions may be parted into non connected
sub-sets (see figure 2 (c)).

The general idea for the use of SIVIA algorithm is as
follows. Consider two intervals namely Ia and Ib. The
relation 4 may be rewritten with the interval formula-
tion:

xi
1 + Ia.xi

2 + Ib ⊂ [−L,L] (5)

In the interval analysis formulation, the event Ei

which is linked with relation 5

• may appear for all couples (a, b) ∈ Ia × Ib. In this
case, this event is associated with the value Si = 1.

• may never appear for all couples (a, b) ∈ Ia × Ib.
In this case, this event is associated with the value
Si = 0.

• may appear for some couples (a, b) ∈ Ia × Ib and not
appear for other couples. In this case, this event is
associated with the interval Si = [0, 1].

The validation statement V S2 is reached for all
couples (a, b) ∈ Ia × Ib if and only if

∑n

i=1
Si ⊂ [k, n].

Whereas the validation statement V S2 is never
reached for all couples (a, b) ∈ Ia × Ib if and only if
∑n

i=1
Si ∩ [k, n] = ∅. Else V S2 is reached for some

couples (a, b) ∈ Ia × Ib and not reached for other
couples. In this situation, the box Ia × Ib is divided in
two and the algorithm is launched recursively for the
two sub-boxes until a stopping criterium is met.

Figure 3 shows the result of the validation process for
a perfectly linear input with parameters n = 50, k =
50, L = 0.1. The limits of the boxes show the recursive
division process of the outer box. At the end of the
validation process, it is possible to bound the volume V
of the set of solutions (interval [Vmin, Vmax]).

3.3 Some examples about the influence of the
parameters k and L on the compromise ro-
bustness/falsifiability of the model M

In section 2., we have shown briefly that our methodol-
ogy permits both flexibility and falsifiability. Falsifia-
bility means that if X1 and X2 are chosen by random
draws, the probability that V S2 is validated must be
small. At the opposite, we need that if noisy data is
gathered there exists some sub-models Ma,b of M that
are validated.



Figure 3: SIVIA algorithm used for the validation process of

model M for a perfectly linear input data. X-coordinate: a

values, Y-coordinate: b values.

Four models M are proposed, with different values of
k and L. The value of n is fixed to 50. Parameters for
model 1 are k = 50, L = 0.03. Parameters for model 2
are k = 50, L = 0.1. Parameters for model 3 are k = 40,
L = 0.1. Parameters for model 4 are k = 25, L = 0.1.
These models are exposed to three different kind of data
sets which come from a random process:

X1 = 0.2X2 − 0.5 + Ni (6)

Where Ni is a random distribution. Ni = (1−pi)G+piU
with G a Gaussian distribution G (0, σi), U a uniform
distribution U (0, 1) and pi a real parameter in [0, 1].
We have chosen: p1 = p2 = 0, p3 = 0.1, σ1 = 1e−4,
σ2 = 0.02 and σ3 = 0.02.

In order to test the falsifiability property of the
four models, we consider a forth data set consisting of
random draws over the distribution of X1.

Results are compiled in table 1. In terms of precision,
we may classify the four models, from the more precise
to the less: M1 > M2 > M3 > M4. This is deduced
from the volume of solutions [Vmin, Vmax] obtained with
the noiseless signal.

Precision goes with falsifiability: again, we may
classify the models from the more falsifiable to the
less falsifiable: M1 > M2 > M3 > M4. This result
is a consequence of the percent of validation within
the 1000 data gathering steps for the different kinds
of noises. In particular, the ”Fals.” column shows us
that M4 is poorly falsifiable (21 % of pure random data
sets validate the model) whereas the others seem more
falsifiable (no pure random data set validate the three
models).

Noise N1 N2 N3 Fals.

Model 1

Valid. 100% 0% 0% 0%

Mean [Vmin, Vmax]
[7.6e−4,

1.1e−3]
[0,0] [0,0] [0,0]

Model 2

Valid. 100% 99.9% 7.9% 0%

Mean [Vmin, Vmax]
[9.9e−4,

1.1e−3]
[7.9e−4,

1.5e−3]
[3.2e−6,

2.6e−5]
[0,0]

Model 3

Valid. 100% 100% 99.9% 0%

Mean [Vmin, Vmax]
[1.5e−2,

1.7e−2]
[1.2e−2,

1.4e−2]
[7.6e−3,

9.3e−3]
[0,0]

Model 4

Valid. 100% 100% 100% 21%

Mean [Vmin, Vmax]
[1.1e−1,

1.3e−1]
[1.1e−1,

1.3e−1]
[1.1e−1,

1.2e−1]
[9.6e−5,

2.6e−4]

Table 1: Validation results. They are obtained after 1000

data gathering iterations.

But precision goes against robustness to noise: we
may compare the models from the more robust to the
less robust: M4 > M3 > M2 > M1.

To summarize this experiment, we may suggest that it
is possible to find a compromise between precision and
reliability of the signal detection, without discarding fal-
sifiability properties of the model: the first three models
have good falsifiability properties, but M1 is less robust
than M3 whereas M1 is more precise than M3. The key
issue lies on the determination of appropriate parameters
values.

3.4 Existence of ”good” models

After looking at the former paragraph results, we postu-
late that it is possible to fix the internal parameters of
the model M in order to fulfill two opposite constraints:

• be the more falsifiable as possible

• be the more robust as possible

In terms of probability, we postulate that the following
equation may be met:

∀ǫ > 0,∃n ∈ N∗,∃k ∈ {0, .., n} ,∃L ∈ ℜ+∗, (7)

(P (Fals|pure random) > 1 − ǫ) ∧

(P (Fals|real data) < ǫ)

Where P (Fals|pure random) is the probability that
the model M is falsified with a data set of random
draws over the histogram of all the possible X1 and
P (Fals|real data) is the probability that the model M
is falsified with a data set coming from gathered data.
This is clearly a postulate about the existence of good
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models. This implies two opposite constraints. The first
may be called ǫ-falsifiability and the second ǫ-robustness.

We have proven that this postulate is true in the re-
stricted case of a model Ma,b ( the couple (a, b) is fixed)
if and only if X1 is a random process where the density
of probability P (X1|X2 = x2) is different from the his-
togram of all the possible X1 obtained when X2 varies:
this is a very light condition. Furthermore, given any ǫ,
it is possible to calculate the parameters L, n and k that
satisfy the two opposite constraints of ǫ-falsifiability and
ǫ-robustness.

3.5 Heisenberg inequality

Figure 4 gives the relation between L and n when a
signal with Gaussian noise is delivered. In this case, ǫ
is fixed to 10−15, so that the unfulfillment of the two
constraints is highly unlikely in practice.

Notice that each curve owns a minimum for n. This
means that the validation process needs a minimum
amount of data to work properly, being both ǫ-falsifiable
and ǫ-robust, whatever the value of L is. Besides, if we
consider the product L × n, we notice that it reaches a
minimum for each different σ. It is an Heisenberg in-
equality: one cannot be infinitely precise over both X1 (
precision associated with L) and X2 (precision associated
with n) variables. Furthermore, if we find the linear rela-
tion between σ2 and the minimum of the product n.Lmin

for this value of σ (figure 5). We deduce the following
inequality:

∃α > 0∀n ∈ N,∀L ∈ ℜ+∗ Ma,b is valid ⇒ n.L ≥ ασ2
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Figure 5: The relation between σ2 and n.Lmin is linear.

4. Conclusion and further work

In automatics, proof before the experiment is used to
validate the model of the interaction between the robot
and its environment. Our long-term research focuses on
extending this kind of falsifiable method to interactions
with a priori unknown environments. In order to do this,
we have paid attention to the following kind of equations

F (X1,X2, ..,Xn) = 0

which represents an invariant (over time) which is
commonly used in the validation phase of the building
of a model.

Unfortunately, this formulation is too strong if the
environment offers a variety of situations which are not
predictable.

This paper focuses on a methodology that transposes
this equation into a more flexible one, without using
statistics because we do not have data before the
experiment.

We define a probabilistic approach (and not a sta-
tistical one !) to falsifiability (so called ǫ-falsifiability)
and robustness (so called ǫ-robustness) which includes
models that possess their own validation statement
and some internal parameters that fix a compromise
between the flexibility (robustness) and falsifiability of
the model. For a specific model, we show that it is
always possible to fix internal parameters in order to
meet simultaneously the two antagonist constraints. We
also show that if this double constraint is met, there
exists a lower bound to the precision of the model, that
is similar to Heisenberg ’s uncertainty principle.

The existence proof is suspected to extend to a wider



variety of models, but it has not been proved yet.

How a model should be built to meet falsifiability
and robustness constraints together, whereas the envi-
ronment is a priori unknown ? A solution we study is to
part this problem into two smaller ones:

1. From a model that is known to be (highly) falsifiable,
build a class of transformations that is shown to pre-
serve the (high) falsifiability property. This may be
done before the experiment.

2. Use the class of transformations in order to obtain
the validation of the model at each time during the
experiment. This is a learning process.
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